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Assuming the generalized continuum hypothesis we construct 
arbitrarily big indecomposable Banach spaces. i.e., such that 
whenever they are decomposed as X ⊕ Y , then one of 
the closed subspaces X or Y must be finite dimensional. 
It requires alternative techniques compared to those which 
were initiated by Gowers and Maurey or Argyros with 
the coauthors. This is because hereditarily indecomposable 
Banach spaces always embed into �∞ and so their density 
and cardinality is bounded by the continuum and because 
dual Banach spaces of densities bigger than continuum are 
decomposable by a result due to Heinrich and Mankiewicz.
The obtained Banach spaces are of the form C(K) for some 
compact connected Hausdorff space and have few operators in 
the sense that every linear bounded operator T on C(K) for 
every f ∈ C(K) satisfies T (f) = gf + S(f) where g ∈ C(K)
and S is weakly compact or equivalently strictly singular. In 
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Banach spaces of continuous 
functions
Endo-rigid Boolean algebras
Strongly rigid compact spaces
Generalized Continuum Hypothesis

particular, the spaces carry the structure of a Banach algebra 
and in the complex case even the structure of a C∗-algebra.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The research in the classical period of the isomorphic theory of Banach spaces led 
to questions of Lindenstrauss ([26]) and Johnson and Lindenstrauss ([18]), respectively, 
which can be phrased as follows:

(A) Is it true that every infinite dimensional Banach space has a complemented infinite 
dimensional and infinite codimensional subspace?

(B) Is it true that every infinite dimensional Banach space has a complemented infinite 
dimensional subspace of density ≤ continuum?

Recall that a linear closed subspace Y of a Banach space X is complemented in X if 
there is another closed linear subspace Z ⊆ X such that Y ∩ Z = {0} and Y + Z = X. 
Y is complemented in X if and only if there is a bounded linear projection from X
onto Y ([37]).

The first, spectacular negative solution to question (A) (such spaces are called inde-
composable Banach spaces) was obtained by Gowers and Maurey in [14], where they 
constructed an infinite dimensional separable Banach space which has even a stronger 
property of being hereditarily indecomposable, i.e., each of its infinite dimensional closed 
subspaces is indecomposable. Being hereditary indecomposable is tightly related to hav-
ing few operators in the sense that every operator on the space is a strictly singular 
perturbation of a multiple of identity (see [11] for exact description of the relation in 
both the real and the complex case). Every operator on a hereditarily indecomposable 
Banach space may even be a compact perturbation of a multiple of identity as recently 
proved by Argyros and Haydon ([1]). Many constructions of indecomposable Banach 
spaces followed the paper of Gowers and Maurey, however most of them, including non-
separable ones, were hereditarily indecomposable, which as proved e.g., in [2] or [33], 
must embed in �∞ which limits their density character or cardinality to the continuum. 
This led to the following question of S. Argyros:

(C) Is there an upper bound for densities of indecomposable Banach spaces?

Assuming various additional properties of a Banach space the positive answer to question 
(B) and so to question (C) has been obtained by many authors, for a survey of this 
type of results see [33]. As many hereditarily indecomposable spaces are dual Banach 
spaces (see [2]) most relevant for us is the result of Heinrich and Mankiewicz [16], which 
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says that dual Banach spaces of density bigger than continuum are decomposable. Also 
several new upper bounds for densities of Banach spaces with some rigidity concerning 
basic sequences were recently obtained by P. Dodos, J. Lopez-Abad, S. Todorcevic ([7], 
[27], [29], [28]).

In the meantime a different kind of indecomposable Banach spaces was introduced 
in [21] by the first named author, namely, spaces of continuous functions4 with few 
operators, or with few∗ operators in the sense of the following:

Definition 1.1. Let K be a compact Hausdorff space and let T : C(K) → C(K) be a 
bounded linear operator on C(K).

(1) T is called a weak multiplier if T ∗ = gI + S where g : K → R is a Borel bounded 
function and S is a weakly compact operator on C(K)∗,

(2) T is called a weak multiplication if T = gI + S where g ∈ C(K) and S is a weakly 
compact operator on C(K),

(3) The Banach space C(K) has few operators (few∗ operators) if every linear bounded 
operator on C(K) is a weak multiplication (weak multiplier),

(4) A point x ∈ K is called a butterfly point if and only if there are disjoint open 
U, V ⊆ K such that U ∩ V = {x}.

We have the following:

Theorem 1.2 (2.5., 2.7., 2.8 [21]; 13 [23]). Suppose that K is compact Hausdorff.

• If C(K) has few operators and K is connected, then C(K) is indecomposable,
• If C(K) has few∗ operators and K \F is connected for any finite F ⊆ K, then C(K)

is indecomposable,
• If C(K) has few∗ operators and K has no butterfly points, then C(K) has few oper-

ators.

The first constructions of an indecomposable Banach space as above (with few∗ opera-
tors in ZFC and with few operators under CH, both Ks separable) of density continuum 
appeared in [21] and some improvements followed, among others, in [32] (with few oper-
ators in ZFC for K nonseparable) and [36] (with few operators in ZFC for K separable), 
for a survey see [23]. In [22] and [24] the first consistent examples of Banach spaces giv-
ing the negative answer to question (B) and (A) respectively were presented. They were 
Banach spaces of the form C(K) with few operators, however the (forcing) method was 
limited to the density 2ω1 . Note that by the classification of separable Banach spaces 
of the form C(K) due to Milutin, Bessaga and Pełczyński ([37]) indecomposable C(K)s 

4 By C(K) we understand the Banach space of all real-valued continuous functions on a compact Hausdorff 
space K with the supremum norm.
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must be nonseparable. On the other hand it is consistently possible to obtain indecom-
posable C(K)s, with few operators of densities strictly smaller than continuum ([10]). It 
should be also added that the classes of strictly singular and weakly compact operators 
coincide for C(K) spaces ([31]).

The main result of this paper is to give the negative answer to question (C) and 
strengthen (compared to [22] and [24]) the negative answer to question (B) and provide 
new examples relevant to question (A) by proving:

Theorem 1.3. Assume the generalized continuum hypothesis. For every cardinal κ there 
is an indecomposable Banach space of density bigger than κ. In particular it has no infi-
nite dimensional complemented subspace of density smaller than κ. The spaces are (real 
Banach algebras) of the form C(K) with few operators where K is compact Hausdorff 
and connected.

Proof. Use Theorems 1.2, 2.5, and 5.3. �
The methods of the paper consist of a fusion of the techniques of constructing spaces 

of continuous functions with few operators developed by the first named author and other 
authors, in particular by I. Schlackow ([36]) and the techniques of S. Shelah developed 
in [38] and [39] for constructing endo-rigid5 Boolean algebras, i.e. Boolean algebras with 
no other endomorphisms than finite perturbations of the identity on an ideal.

Both of these methods are related to rigidity of a compact K. For a compact K we 
introduce the following notions:

(a) K is piecewise strongly rigid, if for every continuous φ : K → K there is a partition 
U1 ∪ ... ∪ Uk = K of K into pairwise disjoint clopen sets U1, ..., Uk for some k ∈ N

such that φ � Ui is either constant or the identity,
(b) K is strongly rigid, if every continuous φ : K → K is either constant or the identity,
(c) K satisfies the weak∗ rigidity condition, if for every φ : K → M(K) where M(K) is 

space of Radon measures on K with the weak∗ topology (induced from C(K)) the 
set {τ(x)|(K \ {x}) | x ∈ K} is relatively weakly compact in the weak topology on 
M(K).

Assuming that K has no butterfly points condition (a) for the Stone space KA of a 
Boolean algebra A is equivalent for the algebra A to be endo-rigid. Condition (c) is 
equivalent for C(K) to have few∗ operators (Theorem 23 of [23]). For K connected (c) 
implies (b) and (b) is equivalent to (a) (cf. [35]). However (c) and (a) are not equiva-
lent either in connected or totally disconnected situation. The classical space satisfying 
(b) and not (c) is the Cook continuum ([6]) and arbitrarily big spaces constructed by 

5 Formally a Boolean algebra A is called endo-rigid if for every endomorphism h : A → A the quotient 
algebra A/exker(h) is a finite Boolean algebra, where exker(h) = {a ∨ b ∈ A : a ∈ ker(h), b ∈ fix(h)}, 
fix(h) = {a ∈ A : h(b) = b for all b ≤ a}, ker(h) = {a ∈ A : h(a) = 0}.
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Trnkova ([40]). The former space is a metrizable continuum, so by the Milutin theorem 
the corresponding C(K) has as many operators as C([0, 1]) and that is why it fails (c). 
A totally disconnected space satisfying (a) and not (c) is the Stone space of a Boolean al-
gebra A minimally generated in the sense of Koppelberg ([19]) and endo-rigid. As proved 
by Borodulin–Nadzieja in [5], the Banach space C(KA) is not Grothendieck, but C(K)s 
which have few∗ operators must be Grothendieck (Theorem 2.4 [21]).

Both types of constructions of endo-rigid Boolean algebras and rigid Banach spaces 
C(K) can be traced back to the papers [30] of Monk and [15] of Haydon respectively 
which surprisingly present practically the same constructions focusing on these different 
topics.

So our construction needs a stronger property than the constructions from [38]
and [39]. The usual constructions of C(K) spaces with few or few∗ operators ([21], [32], 
[36], [3]) consisted of obtaining the above weak∗ topological rigidity (c), and hence 
few∗ operators, by constructing K with asymmetric distribution of separations, for 
example, in the sense that given a sequence {xn : n ∈ N} ⊆ E for some dense 
E ⊆ K and a sequence (Un)n∈N of open subsets of K such that xn /∈ Un we have 
{xn : n ∈ M} ∩ {xn : n ∈ N \M} �= ∅ while 

⋃
{Un : n ∈ M} ∩

⋃
{Un : n ∈ N \M} = ∅

for some infinite and coinfinite M ⊆ N (see [23] Theorems 24 and 25). It is clear 
that this method puts an upper bound of the density of C(K) which is related to 
the number of all separable compact nonhomeomorphic Hausdorff spaces. In this pa-
per we formulate a new asymmetry condition depending on additional parameters which 
incorporates the ideas of [38] and [39] in the context of weak∗ rigidity and connected 
spaces:

Definition 1.4. Let κ be a cardinal, K be a compact Hausdorff space with a open basis 
B and let dα : K → [0, 1] be continuous for every α < κ. Let d1,α = dα and d−1,α =
1 − dα. C(K) is said to have asymmetric distribution of separations in the direction of 
D = (dα : α < κ) if and only if

Given

(i) (fn)n∈N ⊆ C(K) such that fn · fm = 0 for all distinct n, m ∈ N, fn : K → [0, 1]
continuous and

(ii) a pairwise disjoint (Un)n∈N ⊆ B such that supp(fn) ∩ Um = ∅ for all n, m ∈ N,
(iii) νξn ∈ {−1, 1} for all n ∈ N and ξ ∈ κ,
(iv) { Uξ

n | n ∈ N, ξ ∈ κ } ⊆ B such that Uξ
n ⊆ Un for every n ∈ N and ξ ∈ κ;

There exist an increasing sequence (ηn)n∈N ⊆ κ and an infinite, coinfinite M ⊆ N such 
that

(a) the supremum 
∨

n∈M

(
fn · dηn,ν

ηn
n

)
exists in C(K),

(b)
⋃

n∈M Uηn
n ∩

⋃
n∈N\M Uηn

n �= ∅.
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Section 2 of the paper is devoted to proving the following theorem (recall that a 
topological space has c.c.c. if it does not contain an uncountable family of pairwise 
disjoint nonempty open sets):

Theorem 2.5. Suppose that K and D are as in Definition 1.4. If C(K) has asymmetric 
distribution of separations in the direction of D and K is c.c.c., then C(K) has few∗

operators.

This is done by modifying proofs of previously considered asymmetric conditions and 
using some stronger extraction principles (Lemma 2.1, and Lemma 2.2) also proved in 
this section. Section 3 is devoted to the reformulation of the existing theory concerning 
the inverse limit constructions ensuring asymmetric distribution of separations in pre-
viously considered senses. While the conditions from Definition 1.4 can be rephrased in 
the Banach algebra language (although the final result, Theorem 1.3 concerns only the 
Banach space structure), the proof techniques concerning separations and the connect-
edness involve the topological arguments in K. So the main object in Section 3 is the 
concrete representation ∇F of the Gelfand space of the Banach algebra [F ] generated 
by subsets F ⊆ C(L) for some extremally disconnected L.

In section 4 we introduce a concrete type of an inverse limit of compact spaces con-
struction which on the level of the space of continuous functions is called a ladder family 
(Definition 4.1). The lemmas from Section 3 are used there to prove that if F ⊆ C(K)
is a ladder family, then C(∇F) is connected, has no butterfly points and provides a 
fertile environment for both the existence of suprema and nonseparated pairwise disjoint 
sequences of open sets in ∇F needed to obtain the properties from Definition 1.4.

In Section 5 we use the combinatorial principle ♦(Eκ
ω) which follows, by a result of 

Gregory, from the generalized continuum hypothesis for any regular uncountable cardinal 
κ to perform a particular construction of a ladder family. The character of ♦(Eκ

ω) as 
a prediction tool allows us to balance the amount of the suprema and nonseparated 
pairwise disjoint sequences of open sets to obtain the conditions from Definition 1.4. 
The main theorem of Section 5 completing the list of all ingredients needed to obtain 
Theorem 1.3 is:

Theorem 5.3. Assume the generalized continuum hypothesis. Let κ be the successor of a 
cardinal of uncountable cofinality. There is a compact Hausdorff connected c.c.c. space 
K of weight κ without a butterfly point such that C(K) has asymmetric distribution of 
separations in the direction of some D ⊆ CI(K).

We do not know if the hypothesis of the generalized continuum hypothesis can be 
removed from Theorem 1.3. In [39] Shelah’s black boxes were used to avoid any additional 
set theoretic assumption in the construction of endo-rigid Boolean algebras. The Banach 
space construction seems more demanding in this context. The first and the third named 
authors would like to thank Gabriel Salazar for discussions concerning Shelah’s black 
boxes.
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The obtained spaces C(K) have other usual properties of C(K)s with few operators 
proved in [21] such as having proper subspaces, in particular hyperplanes not isomorphic 
to the entire space, not being isomorphic to C(L) for L totally disconnected etc. One 
could point out one property not mentioned in the literature that the space CC(K)
of complex valued functions of K is an indecomposable complex Banach space which 
additionally carries the structure of a commutative C∗-algebra.6

Making considerably less technical effort and following the ideas of this paper one 
could construct a totally disconnected K of arbitrarily big size such that C(K) has few 
operators. This would already provide Banach spaces of densities κ, for arbitrarily big 
κ without complemented infinite dimensional subspaces of densities less than κ giving a 
strong negative answer to question (B). We opted for presenting just the connected ex-
ample. Our K has one additional peculiar property: while it has no nontrivial convergent 
sequence (this would give rise to a complemented copy of c0) for any pairwise disjoint 
sequence (Un)n∈N of nonempty open subsets of K there are only countably many sets 
M ⊆ N such that {Un | n ∈ M} ∩ {Un | n ∈ N \M} = ∅. This follows from Lemma 4.5
and the construction.

The terminology and notation of the paper should be standard. In set theory we 
follow [17], [25], in topology [8], in Boolean algebras [20], [12], in Banach spaces [9], [37]. 
Important conventions include:

• CI(K) = {f ∈ C(K) | f : K → [0, 1]},
• (fn)n∈N are pairwise disjoint if fn · fm = 0 for all distinct n, m ∈ N,
• For f : X → Y and U ⊆ X the restriction f � U : U → Y satisfies (f � U)(x) = f(x)

for all x ∈ U ,
• GCH is the generalized continuum hypothesis i.e., the statement that 2κ is the suc-

cessor cardinal κ+ for every infinite cardinal κ,
• Eκ

ω = {α ∈ κ | cf(α) = ω} denotes the set of ordinals smaller than κ of cofinality ω,
• supp(f) denotes f−1[R \ {0}] for any real valued function f .

6 To see this look at CC(K) as C(K) ⊕ C(K) with the multiplication by a complex scalar defined as 
(α + iβ)(f, g) = (αf − βg, βf +αg). A linear operator on CC(K) can be identified with a 2 × 2 matrix A of 
operators on C(K) such that T (f, g) = A(f, g). The C-linearity of T imposes the condition iT (1, 0) = T (0, 1)
which yields (by i(f, g) = (−g, f)):

T (f, g) =
[
T1 −T2
T2 T1

] [
f
g

]

for some operators T1, T2 on C(K). If C(K) has few operators, this reduces to a sum of a matrix of weakly 
compact operators and an operator of multiplication by a complex function Mh(f+ig) = (h1+ih2)(f+ig) =
(h1f −h2g) + i(h2f +h1g) for some h1, h2 ∈ C(K). Hence as in the real case every projection P on CC(K)
is of the form hI + S for h ∈ CC(K) and S strictly singular, and the condition P 2 = P yields that h2 = h
as no multiplication can be strictly singular for continuous functions on a K with no isolated points (K is 
connected). Hence h(x) = 0 or h(x) = 1 for each x ∈ K and so h = 1 or h = 0 since K is connected. It 
follows that P = I +S of P = S where S is finite dimensional since S is a projection as well, and so CC(K)
is indecomposable indeed.
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2. Few∗ operators from asymmetric distributions of separations

The purpose of this section is to prove Theorem 2.5. This amounts to applying the 
theory initiated in [21] and later developed in [22], [24], [32], [36], [23] in the new context 
of the sequence D = {dα : α < κ}. The first step is to prove a Rosenthal lemma7

type extraction principle in the flavour of the approach from Chapter 4.3 of [36] (cf. 
Theorems 24 and 25 of [23]):

Lemma 2.1. Let K be a compact Hausdorff space, T : C(K) → C(K) a bounded linear 
operator and let ε > 0. Let (fn)n∈N ⊆ CI(K) be pairwise disjoint and let (Un)n∈N be 
a pairwise disjoint family of nonempty open subsets of K. Then there are an infinite 
M ⊆ N and nonempty open sets Vn ⊆ Un for n ∈ N such that for all m ∈ M and for all 
sequences (gn)n∈N ⊆ CI(K) satisfying gn ≤ fn for n ∈ N we have

sup
x∈Vm

∑
n∈M\{m}

|T (gn)(x)| < ε.

Proof. Let us introduce an auxiliary notation: for sets M ⊆ N ⊆ N and two pair-
wise disjoint sequences (Vn)n∈M , (Un)n∈N of nonempty open subsets of K we write 
(Vn)n∈M ≺ (Un)n∈N if Vn ⊆ Un for all n ∈ M .

By recursion on k ∈ N construct

• n1 < ... < nk in N,
• (Vn1 , ..., Vnk

) ≺ (U0
n1
, ..., Uk−1

nk
) ≺ (Un1 , ..., Unk

),
• N = X0 ⊇ X1 ⊇ ... ⊇ Xk such that Xk is an infinite subset of N \ [1, nk],
• (Un)n∈N = (U0

n)n∈X0 � (U1
n)n∈X1 � · · · � (Uk

n)n∈Xk
,

such that

|T (gnk
)(x)| ≤ ε

2k+1 (∗)

holds for all 0 ≤ gnk
≤ fnk

and for all x ∈ Uk
n with n ∈ Xk. Moreover

∑
n∈Xk

|T (gn)(x)| ≤ ε

2k (∗∗)

holds for all x ∈ Vnk
and for all 0 < gn ≤ fn with n ∈ Xk.

As n0 is undefined, the above is vacuously true for k = 0. So, suppose we have the 
above objects for k ≥ 0 and let us construct the corresponding objects for k + 1. Note 
that (∗) and (∗∗) are worded in such a way that given Xk we need to find nk+1 ∈ Xk

and an infinite Xk+1 ⊆ Xk \ [1, nk+1] such that (∗) and (∗∗) are satisfied for k + 1 in 

7 See Lemma 1.1 of [34].
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place of k. That is, the previous (n1, ..., nk) and (Vn1 , ..., Vnk
) play no role when we pass 

to (∗) and (∗∗) for k + 1. First we will take care of (∗).
Suppose that there is no nk+1, Xk+1 and Uk+1

n for n ∈ Xk+1 such that (∗) holds, 
that is, for all n′ ∈ Xk, all infinite X ⊆ Xk \ [1, n′], and all (U ′

n)n∈X ≺ (Uk
n)n∈Xk

there 
exist a number n′′ ∈ X, and 0 ≤ gn′,n′′ ≤ fn′ , and an element xn′′ ∈ U ′

n′′ such that

|T (gn′,n′′)(xn′′)| > ε

2k+2 . (∗∗∗)

We will derive contradiction from this hypothesis. Let l ∈ N be such that lε
2k+2 > ‖T‖. 

Applying the above recursively on i ≤ 2l we can construct (note that the index k + 1
below is fixed and indicates only that we are in the (k + 1)-th stage of the recursive 
construction):

• an increasing (ni
k+1)i≤2l ⊆ Xk with n1

k+1 > nk,
• an infinite Xi

k+1 such that Xi+1
k+1 ⊆ Xi

k+1 ⊆ Xk \ [1, ni
k+1],

• nonempty open W i
ns for n ∈ Xi

k+1 such that

(W i+1
n )n∈Xi+1

k+1
≺ (W i

n)n∈Xi
k+1

≺ (Uk
n)n∈Xk

,

• 0 ≤ gni
k+1,n

≤ fni
k+1

for n ∈ Xi
k+1 such that

|T (gni
k+1,n

)(x)| > ε

2k+2

for all x ∈ W i
n, and all n ∈ Xi

k+1.

To move from i to i + 1 we set ni+1
k+1 = minXi

k+1 and use repeatedly the above 
hypothesis for each j ∈ N with n′ = ni+1

k+1, X = Xi
k+1 ∩ [n′′

j−1, ∞), and (U ′
n)n∈X =

(W i
n)n∈X to obtain n′′

j ∈ X, gn′,n′′
j
≤ fn′ , and xn′′

j
∈ U ′

n′′
j
. Then Xi+1

k+1 = (n′′
j )j∈N and we 

use the continuity of |T (gn′,n′′
j
)| to conclude that if it is bigger than ε

2k+2 at point xn′′
j
, 

then it is bigger than ε
2k+2 at some neighbourhood W i

n′′
j

of that point.
Arriving at i = 2l we set m = minX2l

k+1, pick x0 ∈ W 2l
m and fix a finite set F ⊆ [1, 2l]

of cardinality not less than l such that all numbers T (gni
k+1,m

)(x0) have the same sign 
for i ∈ F . Then we have

|T (
∑
i∈F

gni
k+1,m

)(x0)| >
lε

2k+2 ≥ ||T ||.

This is a contradiction since the norm of 
∑

i∈F gni
k+1,m

is less than or equal to one.
Hence our hypothesis was false, that is, there is nk+1 ∈ Xk and an infinite X ′

k+1 ⊆
Xk \ [1, nk+1] such that for some nonempty Uk+1

n ⊆ Uk
n with n ∈ X ′

k+1 the condition 
(∗∗∗) holds. That is (∗) holds for k + 1 in place of k.
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Now we will choose a nonempty Vnk+1 ⊆ Uk
nk+1

and an infinite Xk+1 ⊆ X ′
k+1 such 

that (∗∗) holds for k + 1 instead of k. Let

s = sup
x∈Uk

nk+1

{
∑

n∈X′
k+1

|T (gn)(x)| | 0 ≤ gn ≤ fn}.

Note that s ≤ 2‖T‖ as for the supremum we can consider finite sums of numbers with 
constant sign, which by the linearity of T are reduced to values of the operator T on 
vectors of norm less than or equal to one. Choose x0 ∈ Uk

nk+1
such that

s− sup{
∑

n∈X′
k+1

|T (gn)(x0)| | 0 ≤ gn ≤ fn)} <
ε

2k+3 ,

and then a finite F ⊆ X ′
k+1 and 0 ≤ gn ≤ fn for n ∈ F such that

s−
∑
n∈F

|T (gn)(x0)| <
ε

2k+2 .

Now, note that by the continuity of the functions T (gn) for n ∈ F at x0 there is a 
nonempty neighbourhood of x0 of the form Vnk+1 for Vnk+1 ⊆ Uk

nk+1
where the above 

inequality holds. Put Xk+1 = X ′
k+1 \ F and note that by the choice of s and F we have 

(∗∗) with k + 1 in the place of k.
This completes the recursive construction. Note that nk+1 ∈ Xk for each k ∈ N. To 

verify the statement of the lemma let M = (nk)k∈N and choose a sequence (gn)n∈M ⊆
CI(K) with gn ≤ fn for all n ∈ M and m = nk ∈ M and x ∈ Vnk

. Then
∑

n∈M\{m}
|T (gn)(x)| ≤

∑
1≤i<k

|T (gi)(x)| +
∑
n∈Xk

|T (gn)(x)|

as M \ {n1, . . . , nk} ⊆ Xk. The first sum is not bigger than
∑

1≤i<k

ε

2i+1 = ε

2(1 − 2−k+1) ≤ ε/2

by applying (∗) since nk ∈ Xi for each i < k and Vnk
≤ U i

nk
. On the other hand 

the second sum is not bigger than ε/2 by applying directly (∗∗). Hence we obtain the 
statement of the lemma. �

Another extraction principle which we will need is the following:

Lemma 2.2. Suppose that Vn’s for n ∈ N are pairwise disjoint open sets in a compact 
space K and xn ∈ K \ Vn are distinct. Suppose that ε > 0 and μn for n ∈ N is a Radon 
measure on K such that |μn|(Vn) > ε for all n ∈ N. Then there are: an infinite M ⊆ N, 
open V ′

n ⊆ Vn and a δ > 0 such that for all n ∈ M we have that |μn|(V ′
n) > δ and

⋃
V ′
n ∩ {xn : n ∈ M} = ∅.
n∈M
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Proof. By going to a subset we may assume that {xn : n ∈ N} forms a discrete subspace 
of K. By the regularity of the measures and by going to subsets of Vns we may assume 
that (Vn)n∈N is pairwise disjoint and xn /∈ Vn for each n ∈ N. Consider a coloring 
c : [N]2 → {0, 1, 2} defined for distinct n, m ∈ N by c({n, m}) = 0 if xn ∈ V m and 
n < m, c({n, m}) = 1 if the previous condition does not hold and xm ∈ V n and n < m, 
and c({n, m}) = 2 if {xn, xm} ∩ (V n ∪ V m) = ∅. Apply the Ramsey theorem for c
obtaining an infinite subset of N which is homogeneous for c. However, a three element 
0-homogeneous set or 1-homogeneous set would contradict the pairwise disjointness of 
V ns, so we have an infinite 2-homogeneous set. Hence, by going to a subset we may 
assume that xn /∈ V m for any two n, m ∈ N. Let Un be an open neighbourhood of xn

such that Un ∩ Vm = ∅ for all m ≤ n in N. We will consider two cases.

Case 1. There is δ > 0 and a point x ∈ K such that for each open neighbourhood W of 
x the set {n ∈ N : |μn|(Vn ∩W ) > δ} is infinite.

As Vn’s are pairwise disjoint and by the regularity of the measures by going from Vn

to its subset we may assume that x /∈ V n for every n ∈ N. Further removing at most 
one index we may assume that x /∈ {xn : n ∈ N}.

Now recursively define a decreasing sequence (Wk)k∈N of open neighbourhoods of x
and a strictly increasing sequence (nk)k∈N ⊆ N such that the following two conditions 
hold:

|μnk
|
(
Vnk

∩ (Wk \W k+1)
)
> δ (1)

xnk
/∈ Wk+1. (2)

This is possible by the hypothesis of Case 1. Put V ′
nk

= Vnk
∩ (Wk \W k+1). It follows 

that
⋃
k∈N

V ′
nk

\
⋃
k∈N

V ′
nk

⊆
⋂
k∈N

W k,

which is disjoint from {xnk
: k ∈ N} by (2). Since {xnk

: k ∈ N} is disjoint form ⋃
n∈N

V n by the argument before Case 1, we conclude the proof of the Lemma in this 
case for M = {nk : k ∈ N}.

Case 2. Case 1 does not hold.

Since the hypothesis of Case 1 fails, for every n ∈ N and for every δ′ > 0 there is an 
m(n, δ′) ∈ N and an open neighbourhood W (n, δ′) of xn such that

|μk|(Vk ∩W (n, δ′)) < δ′ (1)

for all k > m(n, δ′). Thus, one can choose recursively a strictly increasing sequence of 
integers (kn)n∈N such that kn > m(kj , ε

j+2 ) for all j < n. Consider
2
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V ′
kn

= Vkn
−
⋃

{W (kj ,
ε

2j+2 ) : j < n}.

By (1) we have |μkn
|(Vkn

∩W (kj , ε
2j+2 )) < ε

2j+2 for j < n and so

|μkn
|(V ′

kn
) > ε/2 = δ. (2)

Now, note that W (kj , ε
2j+2 ) is disjoint from V ′

kn
for n > j and hence W (kj , ε

2j+2 ) ∩ Ukj

is an open neighbourhood of xkj
witnessing the fact that xkj

/∈
⋃

n∈N
V ′
kn

(recall that 
Uns are open neighbourhoods of xns such that Un ∩ Vm = ∅ for all m ≤ n in N). So this 
proves the lemma for M = {nk : k ∈ N} and δ = ε/2. �

Now recall Definition 1.1 and the following characterization of weak multipliers:

Theorem 2.3 ([21] Definition 2.1, Theorem 2.2). Let K be a compact Hausdorff space 
and let T : C(K) → C(K) be a bounded linear operator. The following conditions are 
equivalent:

(1) T is a weak multiplier,
(2) for every pairwise disjoint sequence (fn)n∈N ⊆ CI(X) and every sequence

(xn)n∈N ⊆ K such that fn(xn) = 0 for all n ∈ N we have

lim
n→∞

T (fn)(xn) = 0.

Lemma 2.4. Let K be a compact Hausdorff space and let T : C(K) → C(K) be a bounded 
linear operator. If T is not a weak multiplier, then there exist ε > 0, a pairwise disjoint 
sequence (fn)n∈N ⊆ CI(K) and a pairwise disjoint sequence (Un)n∈N of nonempty open 
subsets of K such that

supp(fn) ∩ Um = ∅ for all n,m ∈ N

and

|T (fn)| � Un > ε for all n ∈ N.

Proof. By Theorem 2.3(2) there is a pairwise disjoint sequence (gn)n∈N ⊆ CI(K) and 
a sequence (xn)n∈N ⊆ K such that gn(xn) = 0 for all n ∈ N, and |T (gn)(xn)| > ε′

for some ε′ > 0. Let Vn = supp(gn) and μn = T ∗(δxn
). Note that the hypothesis of 

Lemma 2.2 is satisfied for ε′ instead of ε, so we may find appropriate δ > 0, and infinite 
M ⊆ N and V ′

n ⊆ Vn for each n ∈ N. Let U ′
n be open neighbourhoods of xn for n ∈ M

such that 
⋃

n∈M V ′
n ∩ U ′

n = ∅. Since {xn : n ∈ N} may be assumed to be discrete by 
going to a subsequence, we may assume that U ′

ns are pairwise disjoint. Now choose 
fn ∈ CI(K) such that supp(fn) ⊆ V ′

n and that | 
∫
fndμn| > δ/2; this can be done since 

|μn(V ′
n)| > δ. It follows that |T (fn)(xn)| > δ/2 for each n ∈ N. Now find Un ⊆ U ′

n
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such that |T (fn) � Un| > δ/2. By re-enumerating M and putting ε = δ/2 we obtain the 
statement from the lemma. �
Theorem 2.5. Suppose that K and D are as in Definition 1.4. If C(K) has asymmetric 
distribution of separations in the direction of D and K is c.c.c., then C(K) has few∗

operators.

Proof. Arguing by contradiction, we suppose that C(K) does not have few∗ operators. 
By Definition 1.1 there is a bounded linear operator T : C(K) → C(K) which is not a 
weak multiplier. Let κ and B be as in Definition 1.4. Then by Lemma 2.4 there are

• a pairwise disjoint sequence (fn)n∈N in CI(K),
• a pairwise disjoint sequence (Un)n∈N in B such that

supp(fn) ∩ Um = ∅, for all n,m ∈ N,

• ε > 0,

and for each n ∈ N we have

|T (fn)| � Un > 2ε.

Now by applying Lemma 2.1 for ε/3 we may assume that for any m ∈ N and for any 
sequence (gn)n∈N ⊆ CI(K) such that gn ≤ fn for all n ∈ N we have

sup
x∈Um

∑
n∈M\{m}

|T (gn)(x)| < ε/3. (∗)

To make use of the asymmetric distribution of separations in the direction of D we 
need to construct the following:

• {(νξn)n∈N | ξ ∈ κ} ⊆ {±1},
• { (Uξ

n)n∈N | ξ ∈ κ } ⊆ B satisfying Uξ
n ⊆ Un for every n ∈ N and every ξ ∈ κ.

We will construct the above objects in such a way that for all n ∈ N and all ξ ∈ κ we 
have |T (fndνξ

n,ξ
)| � U ξ

n > ε. This is achieved in the following way. Fix ξ ∈ κ, n ∈ N, and 
xn ∈ Un. Since fn = fnd1,ξ + fnd−1,ξ, we have either

|T (fnd1,ξ)(xn)| > ε or |T (fnd−1,ξ)(xn)| > ε.

We choose νξn ∈ {±1}, the one for which the above holds and define Uξ
n ∈ B to be an 

open neighbourhood of xn included in Un such that

|T (fndνξ
n,ξ

)| � Uξ
n > ε. (∗∗)

This completes the construction of {(νξn)n∈N | ξ ∈ κ} and {(Uξ
n)n∈N | ξ ∈ κ}.
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Let us fix an almost disjoint family {Nα | α < ω1} of infinite subsets of N. We will be 
considering the sets:

• Fα = (fn)n∈Nα
,

• Uα = (Un)n∈Nα
,

• Nα = {(νξn)n∈Nα
| ξ ∈ κ},

• Uα = {(Uξ
n)n∈Nα

| ξ ∈ κ}.

We use the hypothesis that C(K) has asymmetric distribution of separations in the 
direction of D for Fα, Uα, Nα, and Uα for each α < ω1 obtaining increasing sequences 
(ηαn)n∈N ⊆ κ and infinite sets Mα ⊆ Nα such that

(1)
∨

n∈Mα
fndνηα

n
n ,ηα

n

exists in C(K),

(2)
⋃
{Uηα

n
n | n ∈ Mα} ∩

⋃
{Uηα

n
n | n ∈ Nα \Mα} �= ∅.

Let us define gαn = fndνηα
n

n ,ηα
n

for all n ∈ N, α < ω1. If for some α < ω1 we had

• for all n ∈ Mα, x ∈ U
ηα
n

n : |T (
∨

n∈Mα
gαn)(x)| ≥ 2ε/3 and

• for all n ∈ Nα \Mα, x ∈ U
ηα
n

n : |T (
∨

n∈Mα
gαn)(x)| ≤ ε/3

then, we would separate the sets in (2) contradicting the condition (2). Therefore the 
conjunction of the above statements are false for each α < ω1. By going to an uncountable 
subset of ω1 we may assume that there is δ > 0 and n0 ∈ N such that for each α < ω1

we have some ∅ �= Vα ⊆ U
ηα
n0

n0 ⊆ Un0 such that either

(3) n0 ∈ Mα and for all x ∈ Vα we have |T (
∨

n∈Mα
gαn)(x)| < 2ε/3 − δ or

(4) n0 ∈ Nα \Mα and for all x ∈ Vα we have |T (
∨

n∈Mα
gαn)(x)| > ε/3 + δ.

This gives for each α < ω1 the following statement:

• n0 ∈ N \M ′
α and for all x ∈ Vα we have |T (

∨
n∈M ′

α
gαn)(x)| > ε/3 + δ,

where M ′
α = Mα if (4) holds and M ′

α = Mα \ {n0} if (3) holds. In the latter case the 
above condition follows from (3) and (∗∗). Now consider m ∈ N such that mδ/2 > ‖T‖. 
Using the c.c.c. of the space K we may find (see Lemma 3.1) α1 < ... < αm < ω1 such 
that

Vα1 ∩ Vα2 ∩ · · · ∩ Vαm
�= ∅.

So let x0 be a point in Vα1 ∩ Vα2 ∩ · · · ∩ Vαm
�= ∅.
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Now take k ∈ N such that for each 1 ≤ i < j ≤ m we have

(M ′
αi

\ k) ∩ (M ′
αj

\ k) = ∅.

By (∗) for each 1 ≤ i ≤ m we have that
∑

n∈M ′
αi

∩k

|T (gαi
n )(x0)| < ε/3

and so for each 1 ≤ i ≤ m we have

|T
( ∨

n∈M ′
αi

\k
gαi
n

)
(x0)| > δ.

For m/2 indices 1 ≤ i ≤ m, say from a set F ⊆ {1, ..., m} all the reals

T
( ∨

n∈M ′
αi

\k
gαi
n

)
(x0)

have the same sign, and so

‖T
(∑

i∈F

∨
n∈M ′

αi
\k

gαi
n

)
‖ ≥ |T

(∑
i∈F

∨
n∈M ′

αi
\k

gαi
n

)
(x0)| =

∑
i∈F

|T
( ∨

n∈M ′
αi

\k
gαi
n

)
(x0)|

> mδ/2.

However

‖
∑
i∈F

∨
n∈M ′

αi
\k

gαi
n ‖ ≤ 1

as (M ′
αi

\ k)s are pairwise disjoint. This is impossible since ‖T‖ < mδ/2. This completes 
the proof. �
3. Controlling separations and the connectedness

The purpose of this section is to generalize the methods developed in [21,22,24,36]
necessary for controlling the constructions of C(K) spaces with few operators. To be 
able to adopt the ideas coming from the constructions of endo-rigid Boolean algebras 
we need to operate in the language of Banach algebras of functions, on the other hand 
the above mentioned methods concerning separations and the connectedness involve the 
topological arguments in K. So in this section we work at the same time with a family 
F of functions in C(L) for some extremally disconnected L, the Banach algebra [F ]
generated by it and a concrete representation ∇F of the Gelfand space of the Banach 
algebra [F ].
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3.1. Boolean algebras, their Stone spaces and continuous functions on the Stone spaces

Recall that a topological space is called c.c.c. if it does not contain an uncountable 
collection of pairwise disjoint open sets. We have the following:

Lemma 3.1. Suppose K is a compact Hausdorff space and that κ is a cardinal. Then

• {0, 1}κ×N is c.c.c.
• If K is c.c.c., m ∈ N and {Vξ : ξ < ω1} is a collection of nonempty open subsets 

of K, then there are distinct ξ1, ..., ξm such that Vξ1 ∩ ... ∩ Vξm �= ∅.

Proof. The first condition follows from the Hewitt–Marczewski–Pondiczery Theorem 
(Theorem 2.3.17. of [8]). For the second condition prove it by induction on m ∈ N. For 
m = 2 it is the c.c.c. Given it for m, build recursively pairwise disjoint family of sets 
Fα ⊆ ω1 of cardinality m for α < ω1 such that Wα =

⋂
ξ∈Fα

Vξ �= ∅, now apply the c.c.c. 
for (Wα)α<ω1 . �

In this section we use the following notation:

• κ will denote an uncountable regular cardinal,
• If A is a Boolean algebra, S(A) denotes the Stone space of A, i.e., a compact Haus-

dorff totally disconnected space such that there is a Boolean isomorphism between 
A and the algebra of clopen subsets of S(A),

• the clopen set of S(A) corresponding to an element a of A will be denoted by sA(a),
• Fr(κ) denotes the free Boolean algebra generated by (eα,n)α<κ,n∈N,
• For A ⊆ κ, Fr(A) denotes the subalgebra of Fr(κ) generated by (eα,n)α∈A,n∈N,
• For A ⊆ κ, Fr(A) denotes the Boolean completion of Fr(A),
• We will identify Fr(A) with a subalgebra of Fr(B) when A ⊆ B ⊆ κ,
• For A ⊆ κ, LA denotes the Stone space of Fr(A),
• Lκ will be denoted by L,
• I = [0, 1],
• The supremum of a family F of functions will be denoted by 

∨
F . In principle the 

supremum of the same family of functions can depend on the ambient lattice of 
functions, so we will need to add where the supremum is taken.

For the Stone duality or other dual terminology concerning Boolean algebras see [20]
or [12], for Gleason spaces see [13]. The following proposition is the summary of standard 
facts concerning the above objects:

Proposition 3.2.

• For any A ⊆ κ the space LA is the Gleason space of IA,
• For any A ⊆ κ the space LA is extremally disconnected and c.c.c., which implies that 

bounded subsets of C(LA) have suprema in the lattice C(LA),
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• For A ⊆ κ there is a continuous surjective map pA : L → LA dual to the inclusion 
Fr(A) ⊆ Fr(κ), in particular p−1

A [sFr(A)(a)] = sFr(κ)(a) for a ∈ Fr(A),
• For A ⊆ κ there is an isometric inclusion C(LA) ⊆ C(L) induced by pA.

Lemma 3.3 ([24] Corollary 2.5). Suppose that A, B are disjoint subsets of κ and tA ∈ LA

and tB ∈ LB. There exists a point t ∈ L such that pA(t) = tA and pB(t) = tB.

Definition 3.4. For all α ∈ κ we define a Cantor-like surjection dα ∈ CI(L) by

dα(x) =
∑
n∈N

χsFr(κ)(eα,n)(x)
2n ∈ I,

for all x ∈ L. We will use d1,α = dα and d−1,α = 1 − dα. We will also use the notation 
D = {dα : α ∈ κ}.

Definition 3.5. We say that f ∈ C(L) depends on a set A ⊆ κ, if pA(s) = pA(t) implies 
f(s) = f(t) for any s, t ∈ L. We say that F ⊆ C(L) depends on a set A ⊆ κ, if every 
f ∈ F depends on A.

Lemma 3.6. Let α ∈ κ, then

(1) dα depends on the set {α},
(2) dα[L] = I.

Proof. By Proposition 3.2 χsFr(κ)(eα,n) = χsFr({α})(eα,n) ◦ p{α}. So, if s, t ∈ L satisfy 
p{α}(s) = p{α}(t), then dα(s) = dα(t), as required. The second part follows from the fact 
that eα,ns as free generators are independent, which implies that for every σ ∈ {0, 1}N
there is t ∈ L such that χsFr(κ)(eα,n)(t) = σ(n) for every n ∈ N. Now use the standard 

fact that the mapping φ from {0, 1}N into I given by φ(σ) =
∑

n∈N

σ(n)
2n is surjective. �

Lemma 3.7 ([24] Lemma 2.10). Each f ∈ C(L) depends on some countable A ⊆ κ.

Lemma 3.8. Suppose that X, Y are compact spaces, φ : X → Y is a continuous surjection 
and that f ∈ C(X) is such that f(x1) = f(x2) whenever φ(x1) = φ(x2). Then there is 
a continuous g ∈ C(Y ) such that f = g ◦ φ. In particular, for every f ∈ C(L) which 
depends on some A ⊆ κ there exist g ∈ C(LA) such that f = g ◦ pA.

Proof. By the hypothesis one can well define g : Y → R satisfying f = g ◦ φ. Since φ is 
a closed onto mapping (2.4.8. of [8]) it is a quotient map and so g is continuous (2.4.2. 
of [8]). �
Lemma 3.9. Suppose that X, Y are compact spaces φ : X → Y is continuous and Z ⊆ X, 
then f [Z] = f [Z].
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Proof. Continuous mappings of compact spaces are closed, so φ is a closed function (see 
1.4.C of [8]). �
3.2. Algebras of functions and their Gelfand spaces

Given F ⊆ CI(L) we will consider the closed algebra over the reals containing constant 
functions generated by F in C(L), that is the real unital Banach algebra generated by F , 
we will denote it by [F ]. [F ]I will stand for [F ] ∩ CI(L).

The role of the Stone space for Boolean algebras is played for commutative Banach 
algebras by the Gelfand space. We will work with the following concrete representation 
∇F of the Gelfand space of [F ] (cf. [24]):

Definition 3.10 ([24]). Let F ,G be families of elements of CI(L).

(1) Define ΠF : L → IF by a formula
(
(ΠF)(x)

)
(f) = f(x)

for all x ∈ L and for all f ∈ F ,
(2) the image ΠF [L] ⊆ IF is denoted by ∇F ,
(3) for G ⊆ F ⊆ CI(L) we define the natural projection

πG,F : ∇F → ∇G,

which is the restriction of the natural projection from IF to IG ,
(4) given F ⊆ CI(L) we say that f ∈ C(∇F) depends on a set A ⊆ κ if f ◦ΠF depends 

on A.

Proposition 3.11. Suppose that F ⊆ CI(L). Then there is an isometric isomorphism of 
real Banach algebras TF : C(∇F) → [F ] induced by ΠF such that TF (π{f},F ) = f for 
each f ∈ F .

Proof. The surjective continuous function ΠF : L → ∇F induces an isometric isomor-
phic embedding of C(∇F) into C(L) simply by sending g ∈ C(∇F) to g ◦ ΠF . Then it 
is clear that TF (π{f},F ) = f , so the image of TF includes [F ]. It remains to show that 
it is included in [F ]. For this it is enough to show that C(∇F) is generated as a unital 
algebra by the functions π{f},F for f ∈ F . This follows from the real Stone–Weierstrass 
theorem, as the coordinates separate points in products. �
Lemma 3.12. Suppose that f ∈ [F ] ⊆ CI(L). Then there is a unique f(F) in C(∇F)
satisfying

f = f(F) ◦ ΠF .
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f(F) will be called the factorization of f through F . If F ⊆ G ⊆ CI(L), then f(F) ◦
πF,G = f(G).

Proof. Put f(F) to be T−1
F (f) where TF is the isometry from Proposition 3.11. The 

second part follows from the fact that πF,G ◦ ΠG = ΠF and the uniqueness of the 
factorization. �
Lemma 3.13. Suppose that α ∈ κ, then

(1) if F depends on κ \{α}, then there is a homeomorphism φ : ∇(F∪{dα}) → (∇F) ×I

such that π ◦ φ = πF,F∪{dα} where π is the natural projection from (∇F) × I onto 
∇F ,

(2) ∇D = Iκ.

Proof. Fix x ∈ I and y ∈ ∇F . Using Lemma 3.6 let t ∈ L be such that dα(t) = x. Fix 
s ∈ L such that (ΠF)(s) = y. Use Lemma 3.3 to find u ∈ L such that p{α}(u) = p{α}(t)
and pκ\{α}(u) = pκ\{α}(s). Since dα depends on α by Lemma 3.6 and F depends on 
κ \ {α} by the hypothesis, we obtain that (Π(F ∪ {dα}))(u) = (y, x) which completes 
the proof of part (1). (2) follows from (1) applied inductively and Lemma 3.6. �

For a Banach space X a density character of X is a cardinality of a minimal dense 
subset of X and it is denoted by d(X).

Lemma 3.14 (GCH). Let D ⊆ F ⊆ CI(L). Then the density character of C(∇F) equals κ.

Proof. Using the surjections πD,F and ΠF we obtain isometric injection of C(∇D) into 
C(∇F) and C(∇F) into C(L), so κ ≤ d(C(∇F)) ≤ d(C(L)) by Lemma 3.13. On the 
other hand, by the Stone–Weierstrass theorem, the density of the Banach space C(L)
is not bigger than the cardinality of the Boolean algebra of clopen subsets of L which 
is isomorphic to the algebra Fr(κ), which is c.c.c. (Proposition 3.2) and contains a 
dense subalgebra Fr(κ) of cardinality κ. So each element of Fr(κ) is the supremum of 
a countable subset of Fr(κ), hence |Fr(κ)| ≤ κω. So, we obtain d(C(L)) ≤ κω = κ (see 
Lemma 5.1), which completes the proof. �

It turns out to be convenient to talk about open subsets of the Gelfand spaces ∇F of 
the algebras [F ] using a language purely depending on F . The next definition is aiming 
at this purpose.

Definition 3.15. Suppose that F ⊆ G ⊆ CI(L). Let J denote the family of all nonempty 
open subintervals of [0, 1] with rational endpoints. By B(F) we denote the family of all 
partial functions

U : dom(U) → J ,
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where the domain dom(U) of U is a finite subset of F . We will consider the evaluation 
U(G) of U at G which is defined as

U(G) = {x ∈ ∇G : x(f) ∈ U(f) for all f ∈ dom(U)}.

By U(L) we will mean the set {x ∈ L : f(x) ∈ U(f) for all f ∈ dom(U)} =⋂
f∈dom(U) f

−1[U(f)].

Note that with the above notation U(f) is the same subinterval of I as the one defined 
as U({f}).

Lemma 3.16. Suppose that F ⊆ G ⊆ CI(L) and U, V ∈ B(F). Then

(1) The family of all sets of the form W (F) for W ∈ B(F) forms a basis of open sets 
for ∇F ,

(2) (ΠF)−1[U(F)] = U(L),
(3) ΠF [U(L)] = U(F),
(4) π−1

F,G [U(F)] = U(G),
(5) πF,G [U(G)] = U(F),
(6) U(F) ∩ V (F) = ∅, if and only if U(G) ∩ V (G) = ∅,
(7) U(F) ⊆ V (F), if and only if U(G) ⊆ V (G),
(8) U(F) ⊆ V (F), if and only if U(G) ⊆ V (G), where the closures are taken in ∇F and 

∇G respectively.

Proof. The first item is clear from the definition of the product topology. Item (2) 
follows directly from Definition 3.15. Item (3) is the immediate consequence of (2). 
Item (4) follows from the fact that π−1

F,G[X] = ΠG[(ΠF)−1[X] for any X ⊆ ∇F and 
(2)–(3), namely π−1

F,G [U(F)] = ΠG[(ΠF)−1[U(F)] = ΠG[U(L)] = U(G). Item (5) is the 
immediate consequence of (4). Items (6)–(7) are the immediate consequences of (4) and 
the properties of the preimages of functions. For the forward direction of (8), note that 
always π−1

F,G [U(F)] ⊆ π−1
F,G [U(F)] and apply (4). For the backward direction of (8), note 

that always πF,G [U(G)] = πF,G [U(G)] by Lemma 3.9 and apply (5). �
Definition 3.17. Suppose that F ⊆ CI(L). A family U ⊆ B(F) is called an antichain if 
and only if U(F) ∩ V (F) = ∅ for all U, V ∈ U .

We see by Lemma 3.16 that the property of being of antichain does not change if 
we pass from F to a bigger G. Despite of Lemma 3.16 a nontrivial interplay between 
properties U(F)s and U(G)s for F ⊆ G ⊆ CI(L) is possible and will actually be at the 
heart of the difficulties of the main construction of this paper. For example, as we want 
∇F to be connected, we would need ΠF [U ] ∩ ΠF [L \ U ] �= ∅ for any clopen U ⊆ L. In
fact, the main properties of ∇F for the main construction of F (Section 5) corresponding 
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to Definition 1.4 (b) are expressed in terms of the nonemptyness of the intersection ⋃
n∈M Un(F) ∩

⋃
n∈N\M Un(F) for some antichain (Un)n∈N ⊆ B(F) and M ⊆ N, while ⋃

n∈M Un(L)∩
⋃

n∈N\M Un(L) is always empty, since L is extremally disconnected, which 
implies that it is empty if we replace Un(L)s by Un(G)s for sufficiently big G. The following 
lemma is the first of a series of observations aiming at developing techniques of increasing 
the family F to a bigger G with preserving the nonemptyness of the intersections of the 
closures of unions as above.

Lemma 3.18. Let F ⊆ CI(L), and let (Un)n∈N ⊆ B(F) be an antichain. Let M ⊆ N be 
such that there exists x ∈ ∇F with

x ∈
⋃

n∈M

Un(F) ∩
⋃

n∈N\M
Un(F).

Then there exist s, t ∈ L such that

(1) s ∈
⋃

n∈M Un(L) and t ∈
⋃

n∈N\M Un(L), and
(2) ΠF(s) = ΠF(t) = x.

Moreover if f ∈ CI(L) is such that

(3) f(s) = f(t) for any s, t satisfying (2),

then

⋃
n∈M

Un(G) ∩
⋃

n∈N\M
Un(G) �= ∅,

where G = F ∪ {f}.

Proof. By Lemma 3.9 and Lemma 3.16 (3) we have

ΠF [
⋃

n∈M

Un(L)] = ΠF [
⋃

n∈M

Un(L)] =
⋃

n∈M

Un(F) � x,

so the existence of s, t as in (1)–(2) follows. For (3) again use Lemma 3.9 and 
Lemma 3.16 (3) to note that

Π(F ∪ {f})(s) ∈ Π(F ∪ {f})[
⋃

n∈M

Un(L)] = Π(F ∪ {f})[
⋃

n∈M

Un(L)] =
⋃

n∈M

Un(G),

and similarly Π(F ∪ {f})(t) ∈
⋃

n∈N\M Un(G), which finishes the proof, since Π(F ∪
{f})(t) = (x, f(t)) = (x, f(s)) = Π(F ∪ {f})(s) by (2) and by the hypothesis of (3). �
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3.3. Adding suprema

If we pass from a smaller algebra of functions to a bigger one, a sequence of functions 
from the smaller one may acquire its supremum in the bigger one. This is quite natural 
when we work with subalgebras of an algebra where all bounded sequences have suprema, 
i.e., in the algebra of all continuous functions on an extremally disconnected compact 
space. However in general a function which is the supremum in a subalgebra may no 
longer be the supremum in a bigger algebra. In this section we recall and prove lemmas 
describing the above phenomena in the context we are interested in. One should note that 
adding suprema in a careful way while extending algebras is one of the main techniques 
behind our construction in Section 5 as the main property of the required Banach space 
is expressed in terms of the suprema in Definition 1.4.

Definition 3.19. Suppose that K is a compact Hausdorff space. For a pairwise disjoint 
sequence (fn)n∈N ⊆ CI(K) and a function f ∈ CI(K) we define the set

Δ
(
f, (fn)n∈N

)
= {x ∈ K | f(x) �=

∑
n∈N

fn(x)}.

Lemma 3.20 (4.1.(a) [21]). Let K be a compact Hausdorff space. A function f ∈ CI(K)
is the supremum in C(K) of a pairwise disjoint sequence (fn)n∈N ⊆ CI(K) if and only 
if the set Δ

(
f, (fn)n∈N

)
is nowhere dense.

Lemma 3.21. Let K be a compact Hausdorff space. For a pairwise disjoint sequence 
(fn)n∈N ⊆ CI(K) the following set

D((fn)n∈N) =
⋃

{U | U is open in K and {n ∈ N : U ∩ supp(fn) �= ∅} is finite}

is dense open and for f =
∨

n∈N
fn in C(K) we have

f � D((fn)n∈N) =
∑
n∈N

fn � D((fn)n∈N).

Proof. The first part is the first part of 4.1. (b) of [21]. The second part follows from 
the second part of Lemma 4.1. (b) which says that 

∑
n∈N

fn is continuous on the open 
set D((fn)n∈N), from the fact that two distinct continuous function differ on an open set 
and from Lemma 3.20. �
Lemma 3.22. Let K be a compact Hausdorff space. Suppose that (fn)n∈N ⊆ CI(K) is an 
antichain and f =

∨
n∈N

fn in C(K). Then

supp(f) ⊆
⋃
n∈N

supp(fn).
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Proof. The set

supp(f) \
⋃
n∈N

supp(fn) ⊆ Δ
(
f, (fn)n∈N

)

is open. If it was nonempty, it would contradict Lemma 3.20. �
In general, when passing from C(∇F) to C(∇G) for F ⊆ G ⊆ CI(L) the supremum 

f of a pairwise disjoint sequence (fn)n∈N of functions in C(∇F) may no longer be its 
supremum in C(∇G), i.e., f ◦πF,G may not be the supremum of (fn◦πF,G)n∈N. However, 
if we use the supremum of (fn ◦ ΠF)n∈N in C(L), this will not happen as stated in the 
following:

Lemma 3.23. Suppose that F ⊆ CI(L) and (fn)n∈N ⊆ [F ] is a pairwise disjoint sequence 
of functions, and let f =

∨
n∈N

fn in C(L). Then for every G ⊆ CI(L) such that F ∪
{f} ⊆ G we have that the factorization f(G) of f is the supremum of the factorizations 
(fn(G))n∈N in CI(∇G).

Proof. Use Definition 5.11 and Lemma 5.12 of [24] and the isometric isomorphism be-
tween [F ] and ∇F from Proposition 3.11 and Lemma 3.12. �
Lemma 3.24. Let A ⊆ κ. Suppose that (fn)n∈N ⊆ CI(L) is pairwise disjoint sequence of 
functions which all depend on A. Then the supremum 

∨
n∈N

fn in C(L) depends on A.

Proof. Let f ′
n be such a function in C(LA) that f ′

n ◦pA = fn for n ∈ N. Its existence fol-
lows from Lemma 3.8. It is clear that f ′

ns are pairwise disjoint as well. As LA is extremally 
disconnected (Proposition 3.2), we can take the suprema of bounded sequences in C(LA). 
So let g =

∨
n∈N

f ′
n, where the supremum is taken in C(LA). It is clear that g◦pA depends 

on A. So it is enough to prove that g ◦pA is the supremum 
∨

n∈N
fn in C(L). Recall Defi-

nition 3.19 and let X = Δ(g, (f ′
n)n∈N). It is clear that Y = p−1

A [X] = Δ(g ◦ pA, (fn)n∈N). 
So by Lemma 3.20 it is enough to prove that preimages of nowhere dense sets under pA
are nowhere dense, or that images of open sets under pA have nonempty interior.

As Fr(κ) is a dense subalgebra of Fr(κ), it is enough to prove that pA[sFr(κ)(a)]
has a nonempty interior in LA for any a ∈ Fr(κ) (see Proposition 3.2). But by the 
independence of the generators of Fr(κ) such an a is a finite sum of elements of the form 
a′ ∧ a′′ where a′ ∈ Fr(A) and a′′ ∈ Fr(κ \A). Moreover pA[sFr(κ)(a′ ∧ a′′)] = sFr(A)(a′)
by the definition of the Stone functor and the fact that any ultrafilter in Fr(A) which 
contains a′ can be extended to one in Fr(κ) which contains a′∧a′′. It follows that images 
of open sets under pA have nonempty interior which completes the proof. �
Lemma 3.25. Let F ⊆ CI(L), (fn)n∈N ⊆ [F ] be pairwise disjoint, (νn)n∈N ⊆ {±1}, 
(ηn)n∈N ⊆ κ be increasing with dηn

∈ F for all n ∈ N and let f =
∨

n∈N
(fndνn,ηn

) in 
CI(L). Then

f �
⋃

supp(fn) =
∑

(fndνn,ηn
) �

⋃
supp(fn).
n∈N n∈N n∈N
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Proof. Note that supp(fn) ⊆ D((fndνn,ηn
)n∈N) and so the second part of the 

Lemma 3.21 may be used. �
3.4. Extensions and preserving the connectedness

For sets X, Y and a function f : X → Y let us denote the graph of f by Γ(f).

Definition 3.26 (4.2. [21]). Let K be a compact Hausdorff space and let (fn)n∈N ⊆
CI(K) be pairwise disjoint. Then the closure of Γ

(∑
n∈N

fn � D((fn)n∈N)
)

in K × I is 
called an extension of K by (fn)n∈N. We denote it by ext(K, (fn)n∈N). The extension 
is called strong if Γ

(∑
n∈N

fn
)
⊆ ext(K, (fn)n∈N). If K = ∇F for some F ⊆ CI(K)

and (fn)n∈N ⊆ [F ], then an extension of ∇F by (fn)n∈N means the extension of ∇F by 
(fn(F))n∈N and is denoted ext(∇F , (fn)n∈N).

Indiscriminate adding of suprema leads to a complete lattice C(K) and implies that 
K is extremally disconnected, so in general extensions of compact spaces do not need 
to preserve the connectedness (for explicit analysis of this phenomenon in the case of 
pairwise disjoint sequences of functions see [4]), however we have the following:

Lemma 3.27 ([21] Lemma 4.4.). Let K be a compact and connected Hausdorff space and 
let (fn)n∈N ⊆ CI(K) be pairwise disjoint. The strong extension of K by (fn)n∈N is a 
compact and connected space.

Lemma 3.28. Let F ⊆ CI(L) and A ⊆ κ be such that the family F depends on A and 
{dα | α ∈ A} ⊆ F . Let (fn)n∈N ⊆ [F ] be pairwise disjoint and let f ∈ CI(L) be the 
supremum of (fn)n∈N. Then ext(∇F , (fn)n∈N) = ∇(F ∪ {f}).

Proof. Use Lemma 5.13. of [24] and Lemma 3.12. �
Lemma 3.29 ([24] Lemma 2.7.). Let F ⊆ C(L). Then ∇F is connected if and only if 
∇F is connected for all finite F ⊆ F .

Lemma 3.30. Let

(1) F ⊆ CI(L),
(2) (fn)n∈N ⊆ [F ]I be an pairwise disjoint,
(3) F depends on A ⊆ κ,
(4) (ηn)n∈N ⊆ κ be such that the set {n ∈ N | ηn ∈ A} is finite,
(5) (νn)n∈N ∈ {−1, 1}N.

Then for all infinite M ⊆ N and for G = F ∪ {dηn
| n ∈ N} the extension 

of ∇G by (fndνn,ηn
)n∈M is strong. Moreover, if ∇G is compact and connected, then 

ext(∇G, (fndνn,ηn
)n∈M ) is compact and connected as well.
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Proof. Fix some infinite M ⊆ N and (x, s) ∈ Γ(
∑

n∈M (fndνn,ηn
)(G)). We need to check 

that

(x, s) ∈ Γ
( ∑
n∈M

(fndνn,ηn
)(G) � D(((fndνn,ηn

)(G))n∈M )
)
.

If s > 0, then x ∈ D(((fndνn,ηn
)(G))n∈M ), so we can assume that s = 0. Fix a neigh-

bourhood of (x, 0) of the form U(G) × (−ε, ε) where U ∈ B(G) and ε > 0. It will be 
sufficient to show that

(U(G) × (−ε, ε)) ∩ Γ
( ∑
n∈M

(fndνn,ηn
)(G) � D(((fndνn,ηn

)(G))n∈M )
)
�= ∅.

If U(G) intersects only finitely many sets supp((fndνn,ηn
)(G)), then we have the in-

clusion U(G) ⊆ D(((fndνn,ηn
)(G))n∈M ) and so the point (x, 0) belongs to the graph 

Γ
(∑

n∈M (fndνn,ηn
)(F) � D(((fndνn,ηn

)(G))n∈M )
)
.

If U(G) intersects supp((fndνn,ηn
)(G)) for infinitely many n ∈ M then, by the hy-

pothesis of the lemma, we can pick a number n0 ∈ M such that ηn0 /∈ A ∪ B where 
B = {ηn | dηn

∈ dom(U)}, and there is an x ∈ U(G) ∩ supp((fn0dνn0 ,ηn0
)(G)). In 

particular fn0(G)(x) �= 0. Let u ∈ L be such that ΠG(u) = x. Let v ∈ L be such that

0 < dνn0 ,ηn0
(v) < ε/fn0(G)(x), (1)

which exists by Lemma 3.6 (2). By Lemma 3.3 there is t ∈ L such that pA∪B(t) =
pA∪B(u) and p{ηn0}(t) = p{ηn0}(v). Put y = ΠG(t). It follows that f(t) = f(u) for every 
f ∈ dom(U) and so

y ∈ U(G), (2)

since ΠG(u) = x ∈ U(G). Also by the dependence of F by A, Lemma 3.12 and Lemma 3.6
we have

fn0(G)(y) = fn0(t) = fn0(u) = fn0(G)(x) �= 0, (3)

and dνn0 ,ηn0
(G)(y) = dνn0 ,ηn0

(t) = dνn0 ,ηn0
(v) and so by (1) and (3) we have

0 < (fn0dνn0 ,ηn0
)(G)(y) < ε. (4)

The first inequality of (4) implies that y ∈ D(((fndνn,ηn
)(G))n∈M ) and so that 

(y, fn0dνn0 ,ηn0
)(G)(y)) is in Γ

(∑
n∈M fndνn,ηn

� D((fndνn,ηn
)n∈M ), while (2) and the 

second inequality of (4) imply that it is in U(G) × (−ε, ε) which completes the proof of 
the first part of the lemma. The moreover part follows from Lemma 3.27. �
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3.5. Separations

Definition 1.4 requires us in (a) to have many suprema while maintaining the dis-
jointness of certain closures in (b). In this sections we prove lemmas concerning the 
disjointness of these closures.

Definition 3.31. Let F ⊆ CI(L). We say that an antichain (Un)n∈N of elements of B(F)
is separated along M in [F ] iff

⋃
n∈M

Un(F) ∩
⋃

n/∈M

Un(F) = ∅,

where the closures are taken in ∇F .

Lemma 3.32. Let F ⊆ CI(L) and let (Un)n∈N be an antichain of elements of B(F). 
Then (Un)n∈N is separated along M in [F ] if and only if there are elements {Vj | j ∈
J}, {V ′

j | j ∈ J ′} ⊆ B(F), with J and J ′ finite, such that for V (F) =
⋃

j∈J Vj(F) and 
V ′(F) =

⋃
j∈J ′ V ′

j (F) and we have

⋃
n∈M

Un(F) ⊆ V (F) ⊆ V (F) ⊆ V ′(F) ⊆ ∇F \
( ⋃
n/∈M

Un(F)
)
.

Proof. It follows directly from the normality of the compact space ∇F and from 
Lemma 3.16 (1). �

Note that by Lemma 3.16 the above condition from Lemma 3.32 is preserved if we pass 
from F to a bigger G. However if an antichain (Un)n∈N is not separated along M ⊆ N in 
[F ], it may become separated along M ⊆ N in [G].

Lemma 3.33. Let F ⊆ G ⊆ CI(L) and let (Un)n∈N ⊆ B(F) be an antichain, M ⊆ N. 
Then the antichain (Un)n∈N ⊆ B(G) is separated along M in [G] if and only if it is 
separated in [F ∪H] for some finite H ⊆ G.

Proof. Suppose that (Un)n∈N is separated along M in [G] and let V, V ′, {Vj | j ∈ J}, {V ′
j |

j ∈ J ′} be as in Lemma 3.32. Let H ⊆ G be a finite set including domains of all Vj for 
j ∈ J and all V ′

j for all j ∈ J ′. Now use Lemma 3.16 (7) and (8). �
Lemma 3.34. Let F ⊆ CI(L) be countable and let (Un)n∈N ⊆ B(F) be an antichain. 
Then there is a set M ⊆ N such that the antichain (Un(F))n∈N is not separated along 
M in [F ].

Proof. The separation of (Un)n∈N along M would yield finite sets {V M
j : j ∈ J}, {(V ′

j )M :
j ∈ J ′} ⊆ B(F) as in Lemma 3.32. For distinct M1, M2 ⊆ N , these finite families must 
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be distinct. However there are continuum many subsets of N while B(F) is countable for 
countable F . �
Definition 3.35. Let F ⊆ G ⊆ CI(L) and let (Un)n∈N be an antichain in B(F). We say 
that F is separating for (Un)n∈N in G, if whenever (Un(G))n∈N is separated along some 
M ⊆ N in [G], then already (Un(F))n∈N is separated along M in [F ].

Lemma 3.36. Let F ⊆ G ⊆ CI(L) and let (Un)n∈N be an antichain in B(F) such that 
F is separating for (Un)n∈N in G. Suppose that (fn)n∈N ⊆ CI(L) is an antichain such 
that Un(L) ∩ supp(fm) = ∅ for every n, m ∈ N and let f ∈ CI(L) be the supremum of 
(fn)n∈N in C(L). Then F is separating for (Un)n∈N in G ∪ {f}.

Proof. Fix M ⊆ N and suppose that the antichain (Un(F))n∈N is not separated along M
in [F ]. Then the hypothesis of the lemma guarantees that (Un(G))n∈N is not separated 
along M in [G] and so we can pick x ∈

⋃
n∈M Un(G) ∩

⋃
n∈N\M Un(G) ⊆ ∇G. Now it is 

enough to find appropriate s, t ∈ L and use Lemma 3.18.
By the hypothesis we have for every P ⊆ N:

⋃
n∈P

Un(L) ∩
⋃
n∈N

supp(fn) = ∅,

but the space L is extremally disconnected, hence for every P ⊆ N we have

⋃
n∈P

Un(L) ∩
⋃
n∈N

supp(fn) = ∅. (∗)

By Lemma 3.18 (1)–(2) there are s ∈
⋃

n∈M Un(L) such that (ΠG)(s) = x and t ∈⋃
n∈N\M Un(L) such that (ΠG)(t) = x. By (∗) we have that s, t /∈

⋃
n∈N

supp(fn), so by 
Lemma 3.22 we have s, t /∈ supp(f), which means exactly that f(s) = f(t) = 0 so an 
application of Lemma 3.18 (3) completes the proof. �
Lemma 3.37. Let A ⊆ κ, α ∈ κ \ A and suppose that F ⊆ CI(L) depends on A and 
(Un)n∈N is an antichain in B(F). Then F is separating for (Un)n∈N in F ∪ {dα}.

Proof. By Lemma 3.13 (1) the sets Un(F∪{dα}) correspond to Un(F) ×I, so the lemma 
follows. �
Lemma 3.38. Suppose that we are given

(1) A ⊆ κ,
(2) F ⊆ CI(L) which depends on A with {dα | α ∈ A} ⊆ F ,
(3) an antichain (Un)n∈N ⊆ B(F),
(4) a pairwise disjoint (fn)n∈N ⊆ [F ]I ,
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(5) (νn)n∈N ⊆ {±1},
(6) a strictly increasing (ηn)n∈N ⊆ κ with the set {n ∈ N | ηn ∈ A} finite.

Let

f =
∨
n∈N

fndνn,ηn

in CI(L). Then G is separating for (Un)n∈N in G ∪ {f} where G = F ∪ {dηn
| n ∈ N}.

Proof. Fix M ⊆ N such that the antichain (Un)n∈N is not separated along M in [G], 
we will show that (Un)n∈N is not separated along M in [G ∪ {f}]. Let F ⊆ N be 
the finite set of all n’s such that ηn ∈ A and let H = F ∪ {ηn : n ∈ F} ⊆ G. 
Lemma 3.33 implies that (Un)n∈N is not separated along M in [H]. Hence there is x ∈⋃

n∈M Un(H) ∩
⋃

n∈N\M Un(H) ⊆ ∇H. Using Lemma 3.18 (1)–(2) fix t ∈
⋃

n∈M Un(L)
and s ∈

⋃
n∈N\M Un(L) such that ΠH(t) = ΠH(s) = x.

As H depends on A we have ΠH(t′) = ΠH(s′) = x for any t′, s′ ∈ L such that 
pA(t′) = pA(t) and pA(s′) = pA(s). Using this observation and inductively Lemma 3.6
and Lemma 3.3 we may assume that dνn,ηn

(s) = dνn,ηn
(t) = 0 for all n ∈ N \F . Inductive 

application of Lemma 3.18 and later Lemma 3.33 implies that (Un)n∈N is not separated 
along M in [G ∪ {g}] where

g =
∨

n∈N\F
fndνn,ηn

in CI(L). So it is enough to show that there is a continuous surjection φ : ∇(G ∪
{g}) → ∇(G ∪ {f}) such that φ[U(G ∪ {g})] = U(G ∪ {f}) for every U ∈ B(G). For 
this it is enough to have a continuous surjection ψ : ∇(G ∪ {g}) → ∇(G ∪ {f, g}) such 
that φ[U(G ∪ {g})] = U(G ∪ {f, g}) for every U ∈ B(F) since then we can consider 
φ = πG∪{f},G∪{f,g} ◦ ψ and Lemma 3.16 (5). To get ψ note that f is the composition of 
Π(G ∪{g}) with the sum h of two continuous functions on ∇(G ∪{g}) namely g(G ∪{g})
and Σn∈F ((fndνn,ηn

)(G ∪ {g})), so ψ(x) = (x, h(x)) works. �
3.6. Butterfly points

Recall Definition 1.1 (4) of a butterfly point and Theorem 1.2. Thus, if we want to 
construct a space C(K) with few operators, we would like to obtain K with no butterfly 
points. The purpose of this subsection is to prove a lemma which provides a sufficient 
condition for the nonexistence of butterfly points.

Lemma 3.39. Let F ⊆ CI(L) and let U ⊆ ∇F be open. Then there is a countable subset 
F0 ⊆ F and an antichain (Un)n∈N ⊆ B(F0) such that

U =
⋃

Un(F) in ∇F .

n∈N
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Proof. Let U be a maximal with respect to inclusion subfamily of B(F) such that

• V (F) ⊆ U for all V ∈ U ,
• V (F) ∩W (F) = ∅ for any two distinct V, W ∈ U .

Note that U is countable since ∇F satisfies the c.c.c. as a continuous image of L
and by Proposition 3.2. The maximality together with Lemma 3.16 (1) gives U =⋃

n∈N
Un(F). �

Recall the notion of a butterfly point from Definition 1.1.

Lemma 3.40. Let D = {dα : α < κ} ⊆ F ⊆ CI(L) be of the form F =
⋃

α<κ Fα for Fαs 
satisfying Fα′ ⊆ Fα, Fα+1 = Fα∪{dα}, Fα depends on α and Fα∪{dα} is separating in 
F for every antichain in B(Fα′) for each α′ < α < κ. Then ∇F has no butterfly points.

Proof. Fix two disjoint open set U, V ⊂ ∇F such that there exists x ∈ U ∩ V . We will 
show that U∩V contains at least two distinct points. By Lemmas 3.39 and 3.7 there exist 
countable sets A ⊆ κ and G ⊆ F and antichains (Un)n∈N ⊆ B(G) and (Vn)n∈N ⊆ B(G)
such that G depends on A and

U =
⋃
n∈N

Un(F) and V =
⋃
n∈N

Vn(F) in ∇F .

Using the regularity of κ we see that there exists α < κ such that A ⊆ α and G ⊆ Fα

By Lemma 3.16 (6) we have that πFα,F [Un(F)] = Un(Fα) and πFα,F [Vn(F)] =
Vn(Fα), so x′ ∈

⋃
n∈N

Un(Fα) ∩
⋃

n∈N
Vn(Fα) where x′ = πFα,F (x). It is clear that 

in ∇Fα× [0, 1] we have (x′, u+v
2 ) ∈

⋃
n∈N

Un(Fα) × (u, v)∩
⋃

n∈N
Vn(Fα) × (u, v) for any 

0 < u < v < 1.
Now define Wu,v

2n = Un ∪ {〈dα, (u, v)〉} in B(Fα+1) and Wu,v
2n+1 = Vn ∪ {〈dα, (u, v)〉}

in B(Fα+1) for all n ∈ N. By the above observation and Lemma 3.13 (1), for every 
0 < u < v < 1 the sequence (Wu,v

n )n∈N is an antichain in B(Fα+1) which is not separated 
along 2N in ∇(Fα+1). By Lemma 3.37 and the hypothesis that Fα+1 depends on α + 1
the sequence (Wu,v

n )n∈N is an antichain in B(Fα+1) which is not separated along 2N in 
∇(Fα+2). Hence by the hypothesis that Fα+2 is separating in F for every antichain in 
Fα+1, the antichain (Wu,v

n )n∈N is not separated along 2N in ∇F .
Now let X = 〈dα, (0, 1/3)〉 and Y = 〈dα, (2/3, 1)〉 be elements of B(F). We see that 

W
0,1/3
n (F) ⊆ X(F) as well as W 2/3,1

n (F) ⊆ Y (F) while X(F) ∩ Y (F) = ∅ which shows 
that the points witnessing the nonseparation of (W 0,1/3

n (F))n∈N and (W 2/3,1
n (F))n∈N

along 2N in ∇F must be distinct.
On the other hand we have Wu,v

2n (F) ⊆ Un(F) and Wu,v
2n+1(F) ⊆ Vn(F) for any 

0 < u < v < 1 and any n ∈ N which shows that these two distinct points must belong to ⋃
n∈N

Un(F) ∩
⋃

n∈N
Vn(F) and consequently to U ∩ V which completes the proof. �
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4. Ladder families

This section is devoted to a particular type of construction of a family of functions 
F ⊆ CI(Lλ) which we call a ladder family. The construction depends, among others, on 
a choice of “ladders” i.e., sequences (ηαn)n∈N ⊆ α increasingly convergent to α for each 
α ∈ S ⊆ Eλ

ω where Eλ
ω denotes the set of ordinals less then λ of countable cofinality. In 

Section 5 the choice of the ladders will be provided by a combinatorial principle which 
follows from GCH.

Definition 4.1. Let λ < κ and S ⊆ Eλ
ω. We say that a family F ⊆ CI(Lλ) is a ladder 

family of length λ given by the following parameters defined for all α ∈ S:

(1) (ναn )n∈N ⊆ {−1, 1},
(2) sequences (ηαn)n∈N ⊆ α increasingly convergent to α,
(3) pairwise disjoint (fα

n )n∈N ⊆ [F ], which depends on some βα < α,
(4) infinite coinfinite set of integers Mα ⊆ N,

if F = {dα | α < λ} ∪ {gα | α ∈ S} where

gα =
∨

n∈Mα

fα
n dνα

n ,ηα
n

in C(L)

and each fα
n belongs to

[{dβ | β < βα} ∪ {gβ | β ∈ S ∩ βα}].

Given B ⊆ λ we denote the family {dα | α ∈ B} by D[B] and the family D[B] ∪ {gα |
α ∈ B ∩ S} by F [B].

Thus a ladder family is a family determined by S and the parameters as in (1)–(4) 
and constructed in a recursive manner following the values of these parameters.

Lemma 4.2. Suppose that F is a ladder family of length λ. Then F [α] depends on α for 
every α < λ.

Proof. Use the recursive definition of F [α], Lemma 3.6 (1) and Lemma 3.24. �
Lemma 4.3. Let λ < κ and let F be a ladder family of length λ and let (Un)n∈N ⊆
B(F [λ0]) be an antichain for some λ0 < λ. Then the family F [λ0 ∪ {λ0}] is separating 
for (Un)n∈N in F .

Proof. Let S ⊆ Eλ
ω be as in the definition of a ladder family and let M ⊆ N be such 

that the antichain (Un)n∈N ⊆ B(F [λ0]) is not separated along M in [F [λ0 ∪ {λ0}]]. By 
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Lemma 3.33 it is enough to show that the antichain (Un)n∈N is not separated along M in 
[F [α+1]] for all α ∈ [λ0, λ). We proceed by induction. The base step α = λ0 follows from 
the choice of M . For the inductive step we fix α ∈ (λ0, λ) and assume the hypothesis for 
all ordinals smaller than α. Then by Lemma 3.33 the antichain (Un)n∈N is not separated 
along M in F [α] and we have the following two cases:

Case 1. α /∈ S. Then F [α + 1] = F [α] ∪ {dα} and the family F [α] depends on α so we 
can use Lemma 3.37.

Case 2. α ∈ S. Then F [α + 1] = F [α] ∪ {gα, dα}. First, we show that the antichain 
(Un)n∈N is not separated along M in [F [α] ∪{gα}]. By the definition of the ladder family 
we have that gα =

∨
n∈Mα

(fα
n dνα

n ,ηα
n
) and all fα

n s are from [F [βα]]. Now, as βα < α, 
we observe that by Lemma 3.33, it is enough to show that the antichain (Un)n∈N is not 
separated along M in [F [β] ∪{gα}] for all β ∈ [βα, α). But this follows from Lemma 3.38
for F = F [β + 1], A = β, f = gα and the inductive hypothesis that for all β ∈ [βα, α)
the antichain (Un)n∈N is not separated along M in [F [β + 1]].

Finally, to conclude that the antichain (Un)n∈N is not separated along M in [F [α] ∪
{gα, dα}] we use Lemma 3.37 as in the Case 1 and Lemma 3.24. The proof of the Lemma 
is finished. �
Lemma 4.4. Suppose that κ is an uncountable regular cardinal, S ⊆ Eκ

ω and a strictly 
increasing sequence (ηαn)n∈N ⊆ κ is convergent to α for every α ∈ S. Then for every 
countable A ⊆ κ the set SA of all α ∈ S such that {ηαn | n ∈ N} ∩A is infinite is at most 
countable.

Proof. Define f : SA → A ∪{supA} by putting for α ∈ SA the value f(α) to be the least 
upper bound of the set {ηαn | n ∈ N} ∩ A among the elements of the set A ∪ {supA}. 
Since A ∪ {supA} is countable it is enough to check the injectivity of f . Fix α, α′ ∈ SA

such that α < α′. A ∩ {ηα′
n | n ∈ N} is cofinal in α′, so we can pick n0 such that α < ηα

′
n0

and ηα
′

n0
∈ A. Then we see that f(α) ≤ ηα

′
n0

< f(α′). �
Lemma 4.5. Let λ < κ, let F be a ladder family of length λ and let (Un)n∈N ⊆ B(F) be 
an antichain. Then there is a countable A ⊆ λ such that (Un)n∈N ⊆ B(F [A]) and F [A]
is separating for (Un)n∈N in F .

Proof. Fix the set S from the definition of a ladder family.

Claim 1. There exists an increasing sequence (An)n∈N of countable subsets of λ such that

(i) (Un)n∈N ⊆ B(F [A0]),
(ii) for all n ∈ N the family F [An] depends on An,
(iii) for all α ∈ S and all n ∈ N if ηαk ∈ An for infinitely many k then α ∈ An+1.
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Proof. By the assumption the domain of every Un is some finite set Fn ⊆ F of coor-
dinates. Fix an arbitrary countable set A0,0 ⊆ λ such that 

⋃
n∈N

Fn ⊆ F [A0,0]. This 
choice guarantees that (Un)n∈N ⊆ B(F [A0,0]). Then for every n ∈ N define A0,n+1 ⊆ λ

as the union of A0,n and the countable set 
⋃
{Yα | α ∈ An,0 ∩ S} where Yα ⊆ α is some 

countable set such that gα depends on Yα for α ∈ S. We see that A0,n is countable for 
every n ∈ N and so is the set A0 =

⋃
n∈N

A0,n. Now we have (i) and (ii) for n = 0.
Fix n ∈ N and assume we have defined An such that (ii) and (iii) hold. We define 

An+1 in two steps. First, we use Lemma 4.4 with S = S and A = An to obtain the 
countable set SAn

so that we know the set An+1,0 = An ∪SAn
is countable and that any 

superset An+1 of An+1,0 satisfies (iii). Then we apply the procedure outlined above for 
constructing A0 to obtain countable An+1 such that (i) and (ii) hold. This completes 
the proof of the Claim. �

Fix a sequence (An)n∈N from the above claim and set A =
⋃

n∈N
An. We will show 

that F [A] is separating for (Un)n∈N in F . So suppose that (Un)n∈N is not separated 
along M in [F [A]]. By Lemma 3.33 it is enough to show that (Un)n∈N is not separated 
along M in [F [A ∪α+ 1]] for every α < λ. We prove it by induction on α < λ. The base 
step for α = 0 that (Un)n∈N is not separated along M in [F [A]] follows from the choice 
of M . Now assume that α < λ and that the hypothesis is true for all ordinals smaller 
than α that is the antichain (Un)n∈N is not separated along M in [F [A ∪ α]]. We have 
the following three cases:

Case 1. α ∈ A. Then F [A ∪ (α + 1)] = F [A ∪ α ∪ {α}] = F [A ∪ α] and we are done by 
inductive hypothesis.

Case 2. α /∈ A and α /∈ S. Then

F [A ∪ (α + 1)] = F [A ∪ α] ∪ {dα}.

The family F [A ∪ α] depends on A ∪ α by (ii) of the above claim, by Lemma 4.2 and 
by definition of ladder family. Therefore, we can use Lemma 3.37 to conclude that the 
antichain (Un)n∈N is not separated along M in [F [A ∪ (α + 1)]].

Case 3. α /∈ A and α ∈ S. Then

F [A ∪ (α + 1)] = F [A ∪ α] ∪ {gα, dα}.

We prove the inductive step in this case in two steps. In the first step we show that 
the antichain (Un)n∈N is not separated along M in [F [Ak ∪ α] ∪ {gα}] for every k ∈ N, 
which, by Lemma 3.33, implies that the antichain (Un)n∈N is not separated along M in 
[F [A ∪α] ∪{gα}]. Fix k ∈ N and let βα < α be as in the definition of a ladder family. Using 
Lemma 3.33 once more we see that it is sufficient to show that the antichain (Un)n∈N

is not separated along M in [F [Ak ∪ β] ∪ {gα}] for all β ∈ (βα, α). Fix β ∈ (βα, α) and 
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apply Lemma 3.38 with F = F [Ak ∪ β], A = Ak ∪ β and f = gα. Let us check the 
assumptions of Lemma 3.38:

• the family F [Ak∪β] depends on the set Ak∪β by (ii) of the above claim, Lemma 4.2
and the definition of ladder family,

• we have D[Ak ∪ β] ⊆ F [Ak ∪ β] by the definition of operation F [(·)],
• the elements fα

n all depend on β because we have βα < β,
• the set {n ∈ N | ηαn ∈ Ak ∪ β} is finite because by the assumption of this case 

α /∈ Ak+1 and (ηαn)n∈N increasingly converges to α > β.

As the antichain (Un)n∈N is not separated along M in [F [Ak ∪ β]], then Lemma 3.38
guarantees that the antichain (Un)n∈N is not separated along M in [F [A ∪ β] ∪ {gα}].

The second step of the proof of Case 3 consists of showing that the antichain (Un)n∈N

is not separated along M in [F [A ∪α] ∪{gα, dα}]. This is done by Lemma 3.37 since the 
family F [A ∪ α] ∪ {gα} depends on A ∪ α. This completes the inductive step and hence 
the proof of the lemma. �
Lemma 4.6. Let F be a ladder family of length κ. Then ∇F is connected.

Proof. By Lemma 3.29 it is enough to show that ∇F [α + 1] is connected for all α < κ. 
We use the transfinite induction so let us fix α < κ and let us assume that we are done 
below α. The inductive hypothesis implies that ∇F [α] is connected. If α /∈ S then

∇(F [α + 1]) = ∇(F [α] ∪ {dα}) = ∇(F [α]) × I

by Lemma 3.13, since F [α] depends on α by Lemma 4.2, so we are done. If α ∈ S then 
F [α + 1] = F [α] ∪ {gα, dα}. By the definition of the ladder family we have

gα =
∨

n∈Mα

fα
n dνα

n ,ηα
n

and all fα
n s are from [F [βα]] where βα < α. Using Lemma 3.29 once more we see that it 

is enough to prove that ∇(F [β] ∪ {gα}) is connected for all β ∈ (βα, α). By Lemma 3.28
we have that

∇(F [β] ∪ {gα}) = ext
(
∇(F [β]), (fα

n dνα
n ,ηα

n
)n∈N

)

and we use Lemma 3.30 to conclude that ∇(F [β] ∪{gα}) is connected for all β ∈ (βα, α)
since ∇(F [β]) is connected by the inductive hypothesis. With adding dα we proceed as 
in the first case. �
Lemma 4.7. Let F be a ladder family of length κ. Then ∇F has no butterfly points.
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Proof. Put Fα = F [α + 1] and note that the hypothesis of Lemma 3.40 is satisfied by 
Lemmas 4.2 and 4.3, so the proof is completed by applying Lemma 3.40. �
5. The construction

In this section we construct ladder families F ⊆ CI(Lκ) as described in Section 4 such 
that the spaces C(K) for K = ∇F satisfy Theorem 1.3. To do so we use the previously 
developed techniques and a combinatorial principle ♦(Eκ

ω) (Theorem 5.2) which follows 
from GCH.

Lemma 5.1. Assume the GCH. Let κ be a regular cardinal which is of the form λ+ for λ
which is a cardinal of uncountable cofinality. Then κω = κ and for every α < κ we have

αω < κ.

Proof. We prove the lemma by induction on a cardinal α < κ. If cf(α) = ω, then 
αω ≤ 2α = α+ ≤ κ by the GCH and α+ < κ by the hypothesis on κ. If cf(α) > ω, 
then αω =

∑
{βω | β < α} which is less than κ by the inductive assumption and the 

regularity of κ. It also follows that κω = κ. �
When talking about topological concepts like convergence in the context of ordinals 

we always refer to the order topology on the ordinals. Recall that a subset C ⊆ κ is 
called club if and only if it is unbounded in κ and closed in the order topology. S ⊆ κ is 
called stationary if it intersects all club sets. It is well known that Eκ

ω is stationary for 
any uncountable regular κ (see [17], [25]). Assuming GCH we have the following theorem 
due to Gregory:

Theorem 5.2 (Theorem 23.2 [17]). Assume GCH. There is a sequence (Sα)α∈Eκ
ω

such 
that:

(1) Sα ⊆ α for every α ∈ Eκ
ω,

(2) for every X ⊆ κ the set

{α ∈ Eκ
ω | X ∩ α = Sα}

is stationary in κ.

The above statement is called ♦(Eκ
ω).

Fix a bijection Ψ from κ onto ({−2, −1} ∪ κ) × {−1, 1}N ×
(
CI(L)N ∪ B(CI(L))N

)
, 

which exists by the fact that the cardinalities of the sets CI(L) and B(CI(L)) are κ and 
κω = κ by Lemma 5.1 and Lemma 3.14. By the standard closure argument and the fact 
that αω < κ for all α < κ (Lemma 5.1) the set
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CΨ = {α ∈ κ : Ψ[α] = ({−2,−1} ∪ α) × {−1, 1}N ×
(
CI(Lα)N ∪ B(CI(Lα))N

)
}

is a club set in κ. While using Ψ we will only be working with such subsets T ⊆ α for 
α ∈ CΨ∪{κ} that Ψ[T ] is a graph of a function with two coordinate functions, first from 
{−2, −1} ∪α into {−1, 1}N and the second from {−2, −1} ∪α into CI(Lα)N∪B(CI(Lα))N
considered as a subset of ({−2, −1} ∪ α) × {−1, 1}N ×

(
CI(Lα)N ∪ B(CI(Lα))N

)
. That 

is, Ψ will serve as a coding of such pairs of functions by subsets of ordinals in κ. ♦(Eκ
ω)

from Theorem 5.2 will be our prediction principle which for α ∈ CΨ may provide such a 
code for the above pair of functions in the form of T = Sα ⊆ α.

Theorem 5.3. Assume GCH. Let κ be the successor of a cardinal of uncountable cofinality. 
There is a compact Hausdorff connected c.c.c. space K of weight κ without a butterfly 
point such that C(K) has asymmetric distribution of separations in the direction of some 
D ⊆ CI(K).

Proof. We will construct a ladder family F ⊆ CI(Lκ) such that K = ∇F satisfies the 
theorem. Let (Sα)α<κ be a ♦κ(Eκ

ω)-sequence as in Theorem 5.2. Let Ψ and CΨ be as 
above. For each ordinal α ∈ Eκ

ω choose a ladder (ηαn)n∈N, that is an increasing, cofinal 
in α sequence of type ω. The family F will depend of S ⊆ κ and will be a ladder family 
with the following parameters for α ∈ S:

• (ραn)n∈N ⊆ {−1, 1},
• (ηαn)n∈N,
• (fα

n )n∈N ⊆ [F ], which depends on some βα < α,
• Mα ⊆ N.

So we will use for it the terminology and notation as in Definition 4.1. In fact the 
above parameters are build by recursion together with some additional objects which 
will witness the fact that F has asymmetric distribution of separations. Namely, the 
recursive construction involves:

(1) S = {αξ : ξ < κ} ⊆ Eκ
ω ∩ CΨ,

(2) {βαξ
: ξ < κ} ⊆ κ, βαξ

< αξ,
(3) (ραξ

n )n∈N ⊆ {−1, 1},
(4) {fαξ

n : n ∈ N} which is a pairwise disjoint sequence in the algebra [F [βξ]],
(5) {V ξ

n : n ∈ N} which is an antichain in B(F [αξ]) such that

V ξ
n (L) ∩ supp(fαξ

m ) = ∅, for all n,m ∈ N,

(6) Aξ a countable subset of αξ such that F [Aξ] is separating in F [αξ] for {V ξ
n : n ∈ N}

(see Definition 3.35),
(7) Mαξ

⊆ N such that {V ξ
n : n ∈ N} is not separated in [F [Aξ]] along Mαξ

,
(8) gαξ

=
∨

n∈M (fαξ
n d αξ αξ ).
αξ ηn ,ρn
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Suppose that we have constructed all these objects for all ξ < γ for some γ < κ. This 
gives ladder families F [α] for any sup{αξ : ξ < γ} ≤ α ≤ κ, just consisting of the 
elements {gαξ

: ξ < γ} and {dβ : β < α} for α as above. Let αγ be the first ordinal in 
Eκ

ω ∩ CΨ not smaller than sup{αξ : ξ < γ} such that

(i) Ψ[Sαγ
] = (φ, ψ) is a function (identified with its graph) from ({−2, −1} ∪ αγ) into 

{−1, 1}N ×
(
CI(L)N ∪ B(CI(L))N

)
,

(ii) ψ(−2) is a pairwise disjoint sequence (fαγ
n )n∈N in F [βγ ] for some βγ < αγ ,

(iii) ψ(−1) is an antichain (V γ
n )n∈N in B[F [αγ ]] such that for all n, m ∈ N we have 

V γ
n (L) ∩ supp(fαγ

m ) = ∅,
(iv) for α ∈ αγ the value ψ(α) is an antichain {V γ

α,n : n ∈ N} in B[F [αγ ]] whose n-th 
element V γ

α,n is below V γ
n .

In this case we define

(a) βγ , fαγ
n , V γ

n as above,
(b) ρ

αγ
n = φ(ηαγ

n )(n),

The existence of αγ follows from ♦(Eκ
ω). To define Aγ and Mαγ

we need to make some 
argument: The family F [αγ ] is a ladder family and {V γ

η
αγ
n ,n

: n ∈ N} is an antichain 

in B[F [αγ ]], hence by Lemma 4.5, there is a countable Aγ ⊆ αγ such that F [Aγ ] is 
separating for {V γ

η
αγ
n ,n

: n ∈ N} in F [αγ ]. Since F [Aγ ] is a countable, by Lemma 3.34 we 
can find an infinite Mαγ

⊆ N such that

(c) {V γ

η
αγ
n ,n

: n ∈ N} is not separated in [F [Aγ ]] along Mαγ
.

Finally put

(d) gαγ
=

∨
n∈Mαγ

(fαγ
n dηαγ

n ,ρ
αγ
n

).

This completes the inductive step in the construction of the ladder family F . Now let 
us prove that C(∇F) has asymmetric distribution of separations in the direction of 
D = {dα : α < κ}. So, fix

• Pairwise disjoint (fn)n∈N ⊆ [F ] and antichain (Un)n∈N ⊆ B(F) such that

supp(fn) ∩ Un(L) = ∅ for all n,m ∈ N,

• (νξn)n∈N ⊆ {−1, 1} for all ξ ∈ κ,
• { (Uξ

n)n∈N | ξ ∈ κ } ⊆ B(F) such that Uξ
n(F) ⊆ Un(F) for every n ∈ N and ξ ∈ κ.



P. Koszmider et al. / Advances in Mathematics 323 (2018) 745–783 781

Sh:1086
Let X ⊆ κ be such that Ψ[X] is a function (φ, ψ) from {−2, −1} ∪ αγ into {−1, 1}N ×(
CI(L)N ∪ B(CI(L))N

)
(identified with its graph) such that:

• φ(α)(n) = ναn for each n ∈ N and each α ∈ κ,
• ψ(−2) is (fn)n∈N,
• ψ(−1) is (Un)n∈N,
• ψ(α) is (Uα

n )n∈N for each α ∈ κ.

By the properties of the ♦κ(Eκ
ω)-sequence (Theorem 5.2), the facts that Eκ

ω is stationary 
and Cψ \ β is a club set, there is α ∈ Eκ

ω ∩ [Cψ \ (β + 1)] such that Sα = X ∩ α where 
β < κ is such that fn ∈ F [β] and Un ∈ B[F [β]] for each n ∈ N which exists by the 
uncountable cofinality of κ. By the definition of CΨ and the choice of α we have

Ψ[Sα] = Ψ[X ∩ α] = Ψ[X] ∩ Ψ[α] = (φ, ψ) ∩ Ψ[α] = (φ, ψ) � ({−2,−1} ∪ α).

So, (i)–(iv) are satisfied, moreover, then α = αγ ∈ S for some γ < κ. In particular, by 
the construction (1)–(8) we have

• ρ
αγ
n = νηn

n , where ηn = η
αγ
n ,

• f
αγ
n = fn for each n ∈ N,

• βγ = β,
• V γ

n = Un for each n ∈ N,
• V γ

α,n = Uα
n for all α < αγ and each n ∈ N.

So

gαγ
=

∨
n∈Mαγ

(fαγ
n dηαγ

n ,ρ
αγ
n

) =
∨

n∈Mαγ

(fndηαγ
n ,νηn

n
)

as required in Definition 1.4. So it remains to prove that the antichain (Uηn
n )n∈N is 

not separated along the set Mγ in [F ]. First note that (Uηn
n )n∈N is (V γ

ηn,n)n∈N so is not 
separated along Mγ in [F [αγ ]] by (c). Now, since Un∩supp(fm) = ∅ for all n, m ∈ N, and 
Uα
n ⊆ Un by Lemma 3.36 and Lemma 4.3 we conclude that (Uηn

n )n∈N is not separated 
along Mγ in [F ]. So, C(∇F) has asymmetric distribution of separations in the direction 
of {dα : α < κ}. ∇Δ is connected and has no butterfly points by Lemma 4.7 and 
Lemma 4.6. It is c.c.c. as a continuous image of a c.c.c. space Lκ by Proposition 3.2, and 
has weight κ by Lemma 3.14, so the proof is completed. �
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