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Abstract. We prove some results in group theory in a model theoretic 
spirit. 

(i) We construct Jonsson groups of cardinality 84, and other cardinalities 
as well. This answers an old question of Kurosh. 

(ii) Our group is simple with no maximal subgroup; so i t  follows that 
taking Frattini subgroups does not commute with direct products. 

(ii) Assuming the continuum hypothesis, our group is not a topological 
group, except with the trivial topologies. This answers a quite old question 
of A.A. Markov. 

paper intelligible to both group theorists and model theorists. Only a 
knowledge of naive set theory and group theory is needed. 

In the construction we use small cancellation theory. We try to make the 

80. Introduction 

We first give the background, state the results, and then explain the 
proof. Schmidt asked whether infinite groups with no infinite proper 
subgroups exist; there has been much work in Schmidt groups, see e.g. 
[16]. Kurosh generalized this question to the following: Does there 
exist a group of cardinality N, which has no proper subgroup of the 
same cardinality? Later Jonsson asked the same question for any 
algebra; so now an algebra with no proper subalgebra of the same 
cardinality is called a Jonsson algebra. Chang and Keisler [ 5 ]  in their 
list of open problems, repeat Kurosh’s question in this terminology: is 
there a Jonsson group of cardinality N,? McKenzie [ l l ]  proved that, 
for almost any cardinal A, every Jonsson semi-group of cardinality A is 
a group. Much work was done on the following question: for which A 

The author would like to thank the United States-Israel Binational Science 
Foundation for partially supporting his research, by Grant 1110, and the U.S. National 
Science Foundation for similar support under Grant 144-H 747. 
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374 S. Shelah 

is there a Jonsson algebra of cardinality A (with countably many 
operations, of course). See e.g. [5]. Magidor and Malitz showed, from a 
general theorem, that if there is a Jonsson group in some regular 
cardinal, and V = L (or even OM,) holds, then there is a Jonsson group 
of cardinality NI. 

The main body of the paper is a proof of the following result: 

Theorem A. There is a Jonsson group of cardinality N, and also of 
cardinality A + when A + = 2^. 

The groups we construct can serve as counterexamples for some 
problems; more properties of these groups are stated in Theorem 1, 
and more hold by the construction. 

It has been asked whether the operation of taking the Frattini 
subgroup commutes with direct products. Now T ( G ) ,  the Frattini 
subgroup of G, is the intersection of all proper maximal subgroups. It 
was well known that any simple group G with no  maximal subgroup 
will provide a counterexample (because T ( G )  = G, but T ( G  x G )  = the 
diagonal subgroup = { (a ,  a )  : a E G}). Our groups serve as examples. 

Theorem B. (1) There is a simple group (ofpower NI) with no maximal 
subgroup. 

( 2 )  Taking Frattini subgroups does not commute with direct products. 

Problem. Does Theorem B hold for countable groups? 

A.A. Markov [IS] asked about the existence of an untopologizable 
group; i.e., a group which admits only the discrete topology. A.A. 
Markov [19] and Podewski [12] reported this question and proved that 
for any Hausdoff indiscrete topologizable group, any finite set of 
inequations which has at’least one solution has at least two; and that 
for countable groups this condition on the group is necessary and 
sufficient for the existence of a Hausdorff indiscrete topology for the 
group. (The demand of “Hausdorff” is quite natural.) It is still 
unknown whether countable groups not satisfying this condition exist. 
Podowski [I21 also gives a sufficient condition on a not necessarily 
countable group G (any system of less than I G 1 inequations which has 
at least one solution has at least two) for the existence of such a 
topology. He also deals with other algebras. Previously Hanson 17) 
gave an untopologizable groupoid and Arnautov [2], [3] proved results 
on  rings similar to those of Podewski. Kertesz and Szele [S] showed 
that for abelian groups a nontrivial topology always exists. 
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O n  a problem of Kurosh 375 

Theorem C .  Assume CH (i.e. 2"0= Nl). Then there is an 
untopologizable group of cardinality NI. 

In fact, every countable subgroup of this group is topologized, thus 
answering negatively a question of hkowski .  Of course we can 
replace NI by any A' = 2^. 

Bokut [4] asked whether every algebra M over a field K (M not 
necessarily associative) of infinite dimension can be represented as 
U.,,M,,, M,, a subalgebra over K, dim(M,,) = dim(M,,+l, M.) = A for 
every n. 

Theorem D. There is a group G of cardinality N1 such that for every 
field K, the group-ring K[G] is not the union of a strictly increasing 
chain of length w. 

Note that Sabbagh [13] had proved the result for modules and 
groups; but they were of cardinality A = A"o; but his group can serve as 
well, and we can easily change it to cardinality N1. 

Koppelberg and Tits [9] have shown that no complete Boolean 
algebra is the union of a strictly ascending chain of subalgebra of 
length w. 

I would like to thank G. Hesse wholeheartedly for pointing out the 
incorrectness of 2.11 as it was stated (it was needed for Theorem 2.9) 
and suggesting a proof of 2.9 avoiding 2.11. The error was that if K \ H  
contains torsion elements we cannot get L CmdL** so we added in 
2.11 the hypothesis "all groups are torsion-free" and added a proof to 
2.11 (which was left to the reader in the first version). Hesse's proof is 
added too. (Note that by his method in 2.9 for any uncountable set of 
elements I of the group, and element a, a belongs to the subgroup 
generated by three elements instead of two, but the length of the word 
is shorter.) 

We shall first present small cancellation theory. We prove everything 
except the main theorem. We also slightly improve an application from 
[14]. We shall prove (in Theorem 2.1) that for A '  = 2^, A >No, there is 
a Jonsson group of cardinality A'  satisfying some other conditions. 
Then we show that with small changes our proof works for A = No. 
Next with less details (Theorem 2.9) we prove there is a Jonsson group 
of cardinality N1 (without assuming CH). Now Theorems A, B, follow 
immediately from 2.1, 2.9; we then give the (short) proof of theorems 
C, D, and we finish the paper by making a few remarks. 
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I would like to thank Paul Schupp wholeheartedly for explaining 
small cancellation theory to me, and for checking the proof. 

Let me try to explain the proof of Theorem 1.  We construct the 
group M as the  union of an ascending chain of length A’, of groups of 
cardinality A, say Ma (a < A ’). For definiteness we assume that the set 
of elements of Mu is A (1 + a) ( =  the set of ordinals < A (1 + a)). We 
try to prevent the existence of large proper subgroups G. In stage a 
Mu is already defined, and we are defining we have a list of 
proper subgroups of Ma of cardinality A { S ,  : p a}, we look at them 
as approximations in some a (0) s a to a G (i.e. as G fl and try 
not to let them “grow”. More specifically, we want that for every 
a E Ma+, - Mu, and p s a, the subgroup of M e + ,  generated by S, and 
a includes M,. This means that if G is a proper subgroup of 
M, M,,,,C G, S,  = G fl M,,,,, then G is disjoint to Ma+,  - M,. If we 
choose S,  ( p  < A + )  so that every subgroup of M of cardinality A 
appears (and this can be done by 2* = A + )  this scheme works, provided 
that we can define Ma+,  from Mu. We construct Ma+,  by a series of 
approximations of smaller cardinality L, ( p  < A )  (L ,  ascending and 
continuous, of course) and let H, = L, f l  M ,  (of course u , H ,  = Ma, 
U,L, = M a + , ) .  So we have to amalgamate L,, H,+, over H,, faithfully. 
The free product of L,, H P + ,  with amalgamation over H,  satisfies this; 
but we have tasks to fulfil. To ensure U P C A H p  = M, is easy; but we 
also have to ensure that each b E Ma belongs to (a, S , )  for 
a E L, - H,, y s a. There are A such tasks, so in each amalgamation 
we can deal with one such task only. We can choose H,,, such that 
b E H,,,, and S ,  fl H,,, is “quite” large. But how to do this? We want 
something like free amalgamation, with an extra relation, saying that a 
word in a and some x E S,  is equal to b. 

some hypothesis on Q and x. For this we make the induction 
assumption that H, is a malnormal subgroup of L, (see “Notation”, 
just below, for a definition), and we use the fact that IH, 1 < A = 

to find suitable x, y E S,  f l  H , + , .  Now a,  x, y satisfy a variant of the 
blocking pair condition, so small cancellation theory works. 

For A = N,, (see 2.7) we should replace usually “of cardinaltiy < A ”  
by “finitely generated”. The main point is that a set S C M,, which is 
not included in a finitely generated subgroup of Mu may be included in 
a finitely generated subgroup of some M,, p 3 a. However our 
construction prevents this possibility, as shown in fact by 2.8, which is 
useful also in replacing O,, by CH in Macintyre [lo] for algebraically 
closed groups (see [17]). 

Theorem 2.9, which says that in power NI Jonsson groups always 

Small cance]lation theory is just the right theory. However one needs 
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O n  a problem of Kurosh 377 

exist, demands more changes, but we give fewer details and the ideas 
are essentially the  same. 

Notation. G, H, K, L, M will be groups. G G H means G is a 
subgroup of H. If G < H, x E H, then we call x malnormal over G 
(relative to H, of course) if G, G" are disjoint, except for the unit 
element which we ignore where G' = {xgx-' : g E G}. If G 6 H and 
every x in H - G is malnormal over G, then H is a malnormal 
extension of G, and G a malnormal subgroup H and we write 
G S m H .  If G 6 H ,  x E H then the righr, left, double coset of x over G 
in H is xG, Gx, GxG resp; and belonging to the  same right (or left, 
or double) coset, is an equivalence relation; and inequivalent elements 
have disjoint right (left or double) cosets. 

We do not distinguish strictly between a group and its set of 
elements. J A  1 is t he  number of elements of A, i.e., its cardinality. 

For X C G, (X) is the  subgroup of G generated by X. We call 
x ,  y E H good fellows over G if x, y E G - H with XI' I?' Gy "G. Note 
that among any three elements of G - H with distinct double cosets at 
least two are good fellows over G. Note also that for good fellows x ,y  
( G x f l G ) n ( G y f l G ) =  0; and that G itself is a double coset. The 
relation of not being good fellows is an equivalence relation. 

11. Free products with amalgamation 

Definition 1.1. Suppose H, K, L are groups, K n L = H (for notational 
simplicity only). We now define the free product with amalgamation of 
K, L over H, denoted by L* = K * H L  as follows: 

i) Let F, be the free group generated by the  elements K U L. 
ii) Let N ,  be the  normal subgroup of F ,  generated by 

{glg2g3: gl ,  g2, g3E K,  glgz = g;' or g,, gz, g 3  E L, glg2 = gill.  
iii) Let L* = F , / N , .  Now K, L, H have natural homomorphisms into 

L* : g I-+ glN, .  

Fact 1.2. These homomorphisms are embeddings, and the intersection 
of the images of K and L is the image of their intersection, H (see 
e.g. [41). 

We shall not from now on distinguish between g and g l N , ,  and we 
shall call an element of F,  a word, and of K U L a letter. It follows 
that every element of L*  which is not in H is equal to a product of 
the form g,. * . g, such that for each 1, gr E L U K - H, and gr E L iff 

Sh:69



378 S. Shelah 

gl+l E K. Such a product will be called a canonical representation. For 
g E H, g itself is the canonical representation. A subword of (a 
canonical representation) g,. . * g, is gr * * * g,, 1 s 1 s m s n. In general 
canonical representation is not unique but 

Fact 1.3. If g E L * has the canonical representations gl  
then: 

. g,, g: . * . g!,, 

(i) n = m. 
(ii) gl E K iff g: E K.  
(iii) There are h,, . . . , h,-,  E H such that letting h, = h, = e, for every 

1, g: = hrgrh;:,. 

Definition 1.4. If g E L * has a canonical representation gl  * * * g,, n will 
be called the length of g and denoted by Ig I. 

Definition 1.5. The canonical representation g, * 

cyclically reduced if n is even, or n = 1 or g,gI 6Z H (equivalently, 
g l .  . * g, has no  conjugate of length < n - 1). Notice that this is a 
property of the element. 

g, is called weakly 

Small cancellation theory 
The aim of this theory in this context, is as follows: We have in 

L* = L *“K,  a set R of words which are “long and complicated”, 
which we want to make equal to the identity without “hurting” L, K,  
and short words in general. More accurately, we want to divide L* by 
the normal subgroup N of L* generated by R, and want that N will 
be disjoint to K ,  L and moreover will not have “short” elements. 

For simplicity R will always be a set of weakly cyclically reduced 
elements. 

Definition 1.6. (1) The symmetrized closure of R is obtained from R 
by the following operations: 

(i) Add the inverses of the elements in R. 
(ii) Add the conjugates (in L*) which are weakly cyclically reduced. 
(2) R is symmetrized if it is equal to its symmetrized closure. 
(3) A part of a cyclically reduced word is a subword of a weakly 

cyclically reduced conjugate of it. A part of R is a part of one of its 
elements. 

Claim 1.7. If R = {g, - * * g,}, n even, g, * g. a canonical 
representation, the symmetrized closure of R consists of the following 
elements: for each 1 =S 1 Q n, gr = g:g:, g:E K @ gr E K, the words: 
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On a problem of Kurosh 379 

gfg,,, - . * g,gl . g,-,g: and (gi)-'g;J1 . . . g;'g;' . . g;+'&;)-'. (Note that 
we write the elements in canonical form except that maybe g f E  H and 
then we multiply it with its neighbor.) 

Definition 1.8. A symmetrized R satisfies the condition C(O) ( 0  a real 
positive number < 1) if whenever g * = g" . . * g I ,  g * = gl  - - * g, are 
canonical representations of elements of R, g *  # g-d and 
g""' . . . g 'gl * - gf(,, E H (hence this hold for any 1 s l (0))  then l(0) < On, 
l (0 )  < Om and n, m > (l/O) (this means g *, (g * ) - I  have n o  common 
segment of this length. Clearly l(0) depends on  g*  and g, and not on 
the representation). 

Main Theorem 1.9. If  L * = K *H L,  R 
C'(l/k), k 3 6 ,  N the normal subgroup of L *  that R generates, w = 
g l . .  . g. E N in a weakly cyclically reduced canonical form, then w has 
a part wo which is part of some w1 E R, and 1 w o J  2 [ ( k  - 3 ) / k ]  I w1 1 .  

L * symmetrized and satisfies 

Now we have to find suitable R. Schupp [14], [15) suggests, as a nice 
sufficient condition for existence, that L (or K )  contains a blocking 
pair { x , y }  over H, which means a pair of malnormal elements over H 
which are good fellows except that possibly x = y - ' .  Then for a 
a E L \ H the symmetrized closure of {axayax(ay)*ax(ay)'* * .  ax(ay)"} 
satisfies C'(l/lO). We notice two weaker conditions: 

(1) there is a malnormal a E L over H, and two good fellows 

(2) there is a malnormal a E L, and x # y E K - H (this is weaker 
than (1) but the word contains inverses). So we can somewhat improve 
Theorem 10, p. 582 of Schupp (14) (see [15]). 

Theorem 1.10. Let L * = L *H K be a free product with amalgamation 
where L # H, K #  H, and in at least one of them there is a malnormal 
element over H. Then L *  is SQ-universal except when L, K, H are 
cyclic groups of order 2 ,  2, 1 resp. (SQ-universal means every countable 
group can be embedded in a quotient group of K ) .  

X ,  y E K - H ;  

Now we present this more accurately. We denote by w ( - f ) =  
w ( x I , .  . . , x,) a sequence composed of the letters x I , .  . . , x,. For every 
group (or serfiigroup) G and a, ,  . . . , a, E G t he  meaning of 
w ( a l  ,..., a,) is clear. 

Definition 1.11. w ( i ) =  w ( x I  ,..., x , ) = x ' - . . . . x k ,  where 
X I  E { x l , .  . . , x,} and we stipulate x i  = x i  when i = j mod k (for latter 
use). 
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(1) We call w ( 2 )  n-random if 
(i) whenever 1,s p ,  q s k ,  and ( V i )  (1 < i s k / n  + x p + '  = x q + ' )  

(ii) for every p, 1 s p ,  q s k ,  for some i, 1 s i < k / n  and x p + '  = 
then p = q, 

x 4 - 1  

( 2 )  We call w ( f )  strongly n-random if 
(iii) if 1 s p ,  q s k ,  u1  . . . u,, u I  * * u. sequences of x , ' ~ ,  

u, u,, x q + e ( I + t )  = 
E ,  6 E (1, - 1) then for some 1, 1 s 1 < k / n  - n, x P + ' ( ' + ' ) =  
for every i, 1 s i < n, except when an apparent contradiction arises 
(that is 6 = E ,  and for some i , j ,  1 < j  s n, p + 6i = q + ~ j ,  u,#  v: (SO 

IP - 9 I<n). 

Remark. It is easy to check that a strongly n-random sequence is an 
n-random sequence. 

Claim 1.12. For every n, r for every big enough k, there is an n- 
random word w L ( f )  = w k ( x l , .  . . , x , )  which is even strongly n-random. 

Proof. For every large enough k ,  compute the number of sequences, 
and number of non-strongly n-random sequences. 

Claim 1.13. (1) Suppose L * = L * H K ,  z E L U K ,  a E L is malnormal 
over H ,  and x ,  y E K are good fellows over H. If w ( x l ,  x2)  = X I  * * * x k  
is 4/O-random then the symmetrized closure R of  ax, a y ) )  satisfies 

( 2 )  Suppose L * = L * H K ,  z E L U K ,  a E L is malnormal over H, 
and x ,  y E K - H, x # y.  If w ( x I ,  x 2 ,  x 3 ,  x 4 )  is strongly (4/8)-random then 
the  symmetrized closure of ( Z W ( U X ,  a y ,  a - ' x ,  a - ' y ) }  satisfies C'(0). 

C'(0). 

Proof. (1) The length of every word in R is 2 k  or 2 k  + 1 (note that 
w ( a x , a y )  is already in canonical form, and of even length 2 k ) .  Also if 
g = glgz * * * g, E R (in canonical form) then we can assume for some 
E E (0, l}, 6 E (1, - 1) and p the following hold: 

g,+2, = a6,  gL+2,+1 = ( x ) ~  when x p + 6 i  = x l ;  

gr+2, = a6,  ga+2i+l = ( Y ) ~  when x ~ + ~  = x2 

when the  index of g is < rn and > 2 ,  except possibly once (because of 
z) .  Of course E ,  6 and p depends on g, so we shall write E(g) ,  S(g), 

Suppose now g * , g , , I ( O )  are as in 1.8, and let h, = g' . - .g l ,  g I * . . g t  
and Pk). 

E H for I d I(0); so hr+, = g'+lh,gl+l, h, = e;  and note g' E K 
(otherwise I ( O ) = O ) .  Except for at most three I's (1, and one 

gr E K 
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exception for g,, and one for g*) g' E L 3 [g ' ,gI  = af ']  and 
g' E K .$ [g,, g' E {x*', y*'}] .  There are 1 < l(1) < l (2 )  S l ( O ) ,  
l ( 2 )  - l(1) 3 1(0)/3, such that no 1, l(1) < 1 s l (2)  is exceptional. So for 
every such 1, if g' E K ,  (as x, y are good fellows and g'hl-lgl E H), then 
gr = x t 1  iff g' = x* ' .  This means for 1(1)/2 < i < 1(2)/2, x ~ ( ~ ) - ' ~ ( ~ ~ ) + ~ ( ~ * ) ~ ~  = 

By the (4/8)-randomness of w(x1,x2) this implies S ( g * )  = - S ( g * )  
Ip(g.)+s(s.)i-(=(g')-E(s.))/21 (note g *  was written in a reverse order). 

and g'  = (gr) - '  for 1 < 1 < rnin{m, n} .  If gigl # e, then for every 1 < l ( O ) ,  
hl# e (as a conjugate of an element # e is # e )  and for some 1, 
g' = a s  so gI = a-' and hl+, = ashla-*, so by the malnormality of a, 
hr+l Sr H, contradiction. So necessarily g' = gi',  hence n = m, g"  = g, , 
so g *  = g;'. So we finish. 

(2) We proved as before and let u E {x, y } ,  u # x-' .  Suppose S(g *) = 

S ( g . )  = 1 for simplicity. But now by strong (4/8)-randomness we can 
find 1,1(1) < 1, 1 + 2 < l (2)  such that g'  = a, gl = a- ' ,  g"' = x, gr+ l  = u, 
g'+* = a, gl+2 = a- ' .  As h, = g'hl-lgr E H, a rnalnormal over H ,  clearly 
hl-l, hr E H so hl = hl-l = e (otherwise hr fZ H by a being malnormal 
over H )  SO hl+l= XU# e SO hi+2 = a(xu)a- '  $! H, contradiction. In the 
other cases we get similar contradictions except in the desired case. 

- 1  

92. The theorems 

Theorem 2.1. Suppose A is an infinite uncountable cardinal and A '  = 2A. 
( 1 )  There is a Jonsson group of cardinality A + .  
(2 )  Moreover this group is a Jonsson semigroup (i.e. has no proper 

semigroup of the same cardinality), is simple, and there is a natural 
number no such that for any subset S of the group of cardinality A ' ,  any 
element of the group is equal to the product of no elements of S. 

Proof. We will note some facts on groups, then  we describe the 
construction, and at last prove it works. 

Fact 2.2. Suppose H is a subgroup of K and A a subset of K such 
that either 

(i) 3(H12<IA 1 ,  or 
(ii) H is included in a finitely generated subgroup of K and A is 

not included in a finitely generated subgroup of K.  
Then there are x, y E A which are good fellows over H. 

Proof. Say x = y if x or x - ' E  HyH. Now = is an equivalence relation 
on  A - H. Then x, y are good fellows over H iff they are not 
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=-equivalent. Thus if no x,  y E K are good fellows over H, A - H is 
contained in the union of at most 2 double cosets: HaH, Ha-'H ( a  
any element of A - H); which contradicts (i), and contradicts (ii) as if 
H is contained in a finitely generated subgroup of K,  so is 
(HaH) u (Ha- lH)  u H. 

Fact 2.3. Suppose H = K r l  L (so H is a subgroup of K and of L), 
and H s,,, L, and L* = K *HL (i.e. L* is the free product of K and L 
with amalgamation over H). Then K G,,, L* 

Proof. Let g E K, g #  e, p = w I w 2  * * w. E L* - K (a canonical form, 
the w's are letters; so each wi belongs to L - H  or K - H ,  and 
successive letters do not belong to the same one). Note that 
n = 1 + w I  E L - H as p 6Z K. We should prove that q = pgp-' = 
W I . .  . w&w; ' .  . . w;' does not belong to K. 

(of length 2n + 1 > 1) hence q 6Z K. 

of H in L, hence q has the canonical form 
w 1 w 2 . - *  w . - l ( w ; l g w n ) w ; l l . . -  W ; ' W ; '  and w ; ' g w . E K .  So qg K. 
So we can assume w. E K - H, so as p $2 K, n > 1. 

canonical form of q hence q E K. 

reduced to case (ii). 
We exhaust all possibilities, thus finish. 

(i) If w. E L - H, g E K - H, q is already written in canonical form 

(ii) If w. E L - H, g E H, then w,,gw ;' E L - H by the malnormality 

(iii) If w,,gw;' 6Z H, then w 1  * - - ~ . - ~ ( w , , g w ~ ' ) w ~ l ~  - 
(iv) If gl  = w,,gw;'E H, then clearly gl # 1, and as n > 1, we are 

w;' is a 

We shall need the following fact about small cancellation theory over 
free products with amalgamation. 

Fact 2.4. L * = K *HL where H 6, L. Suppose that x,  y E K - H are 
good fellows over H and let a E L - H, z E K.  

Let r = r(a,  x,  y ,  z )  = z - ' ~ z y a x a ( y a ) ~ x a ( y a ) ' .  - x a ( y a ) @ " ,  and let R 
be the symmetrized closure of r. Let N be the normal closure of R in 
L*, and let L** = L*/N.  Then 

(i) the natural map r : L * +  L** embeds H and K, so that their 
intersection does not increase, 

(ii) K s,,, L** .  

Remarks. In fact r has to be a long enough random word consisting of 
instances of x a ,  y a ;  then multiplied by z - ' ;  but group theorists like 
this particular r. "Random" means that no two distinct "large" (e.g. of 
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length at least 1/100 of that of r )  segments of r are the same, even i f  
we allow to inverting the order (but a segment and its inversion are 
considered distinct). 

We could have replaced "good fellows" by "with distinct double 
coset representations" but then the random word should consist also of 
instances of ax-', ay-', so later we should not get a Jonsson semi- 
group. 

Proof. For (i) see 1.13 (1) and then 1.9. 
To see that (ii) holds, let e f  k E K.  Suppose u k? K.  We can assume 

that u does not contain more that half of an element of R. Write 
u = u 1 u 2 ~ * -  u. in reduced form in L*. If u-'ku = k'E K, we have the 
equation u- 'ku (k ' ) - '=  e in L** and thus the left-hand side contains a 
part of more than 7/10 of an element of R by length. This cannot 
occur in u-l nor in u (as they do not contain more than half of a 
generator), so this occurs around k (or (k ' ) - ' ) ,  and at least 2/10 of it 
lies on each side of k. This means that for some v (initial segment of 
u )  u- 'ku is a part of more than 1/10 of a member of R. But no 
element of R contains a long subword of the form c-lgc where g has 
length 1. Thus the above equation cannot hold. If the part is around 
(k ' ) - ' ,  the proof is similar. 

The construction 2.5 (for Theorem 2.1). As we have assumed 2* = A'  
the number of subsets of A'  (as a set of ordinals) of cardinality exactly 
A is 2* = A', so let {S, : a < A'} be a list of them. 

We now define an increasing sequence of groups Mu (a < A + )  such 
that the set of elements of Ma is A(l+a) .  We define them such that 

(i) Mu is a malnormal subgroup of Mu+I. 
(ii) For every y S a and a E Ma+' - Mu, if S, C Ma then the 

subgroup (S, U { a } >  includes Mu. In fact, every element of Ma is a 
product of length no elements from S,  U { a }  (where no is the length of 
the r in Fact 2.4). 

(iii) For limit S, M~ = Uac8Ma. 
We do the induction step later, and now let us prove that M = 

u,,,+M, is as desired. Suppose by contradiction that M has a proper 
sub-semigroup, M*, of cardinality A'. Clearly, for some a(0) < A + ,  S = 
M* r l  Ma(o) has cardinality A, and let a E M - M*, for some a ( l ) ,  
a E Ma('). Now S is a subset of A' of cardinality A, hence for some 
a(3), S = &). Let a = max{a(O), a(1), (~(3) ) .  Since M* has cardinality 
A + ,  it is not included in Mu and hence for some b E M* - Ma. So 
necessarily for some p 2 a, b E MB+' - MB. Thus by (ii) (p, a(3) here 
stands for a, y there) the subgroup generated by b and includes 
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Ma. Therefore it includes 
S,(9 C M*, hence a E M*, contradicting its choice. 

a Jonsson semi-group as just proved; moreover checking how the 
group generated by b and S,(3) includes M, (by (ii)) we see that we 
have proved that if S is any subset of M of cardinality A', any 
element of M is equal to the  product of no elements of S,  here no is 
the length of the  word r from Fact 2.4 and is a fixed natural number. 
From 2.1(2) only the simplicity remains, but if a E M, a not the  unit, 
for some a,a E Ma, so for every /3 a'cy a has a conjugate in M,+l-M, 
(as M,+I is a malnormal extension of M,, for each b E MScl - M, we 
have bab-'E M,,, - M,).  Hence the  set of conjugates of a has power 
A + ,  so the  subgroup they generate is the whole group M. In other 
words the  normal subgroup a generates is M, so M is simple. 

and hence a belongs to it. But b E M*, 

This finishes the proof of 2.1(1). As for part 2 of Theorem 2.1, M is 

The induction step 2.6. So Ma is given and we should define Ma+,. Let 
{c,  : i < A }  be a list of t h e  elements of Ma. Let {(a,, y,, b,):  /3 < A }  be a 
list of all triples (a, y, b), b E Ma, y S a, a E 
yet defined, but - Ma is A, = (5 : A(1 + a) S 5 < A(l + a + 1))) and 
each triple appearing A times. (This can be done by cardinality 
considerations.) Now we shall define groups Lo, H,  (/3 < A )  (more 
accurately L;, H ; )  and later let Ma+, = uPc,L,. 

- Ma ( M a + ,  is not 

We define them such that: 
(a) IL,I<A, moreover I L , ( S N n + I / 3 1 .  
(b) L, is a subset of Ma U A,; L, f l  Ma = H, S H,+I S M,, and for 

(c) c, E 

limit 6 < A ,  L~ = U p c a ~ ,  so 

will have the  appropriate set of elements). (c, is from the  list of 
elements of Ma.) 

product of length n,, of elements of (S,@ r l  H,+,)  U {a,}. 

We define L,, H, by induction on /3 : Ho is the  trivial group, Lo the 
free group with one generator. For limit /3 define by (b). Suppose we 
have defined for /3 and define for /3 + 1.  Now we can by Fact 2.l(i) 
find x ,  y E S,,, which are good fellows over H,, and let HPfl = 

(H,, x ,  y, bp, c,). Clearly H,+l satisfies (c), (b), and we can define LP+, by 
Fact 2.4, so that (d), (e) holds. 

It is easy to check that Ma+, = U P C A L p  is as required: part (i) as 
H, S m  L, (and easy checking) part (ii) as for every a E Ma+, - Ma for 
some Po, a E Ls,, and for every y s a, b E Ma, the triple (a, y, b )  is 
(a,, y,, b,) for many /3 3 Po\, (as each triple appears A times) so we can 

= U,,,H,. 
(so Ma = up<AH,) and A(1+ a)+ /3 E LO+, (so 

(d) If up E L,, S,,, C Ma then b, E (S,@ fl 

(e) H ,  is a malnormal subgroup of L,. 

a,), in fact it is t he  
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apply (d). Part (iii) and the condition on the set of elements of 
holds by (b) and (c). 

Statement 2.7. The proof works for A = No, too, the only changes 
being: 

included in a finitely generated subgroup of Mu”. 

instead of 2.2(i); and in (a) we should assert that L,, Hp are finitely 
generated and ( 5  < w(1 + a + 1): 5 fZ Mu, 5 $Z Lo} is infinite. 

(C) In the construction 2.5 when we prove the construction works, 
we have to define S = M *  fl Mace, somewhat more carefully. First of all 
we have to choose it so that it is not included in a finitely generated 
subgroup of Mu,, which can be done by a Lowenheim-Skolem 
argument. However, a priori, maybe in M, this is no longer true; but 
the following fact closes the gap. 

(A) In the construction 2.5 in (ii) we have to say “if S,  C Mu is not 

(B) In the induction step 2.6 at the end we have to use Fact 2.2(ii) 

Fact 2.8. Suppose Mu (a < 6)  is an increasing continuous chain of 
groups, and Mu+, is defined from Mu as in 2.6 for A = No, i.e. Mu+, = 

u B < w L ; ,  L; f l  Mu = H;,  HE is a finitely generated subgroup of Mu (or 
even is included in such a subgroup) Mu = u p < w H ; .  Then if a < 6, 
and G a subgroup of Mu not included in a finitely generated subgroup 
of Ma, then G is not included in any finitely generated subgroup of M6 
(of course, we can replace group by algebra of some fixed kind). 

Proof. We prove there is n o  finitely generated subgroup of M , ( p  S 6) 
which includes G, by induction on p. For p S a this is a hypothesis, 
for p limit it is easy. For p + 1, suppose a l , .  . . , ak generates some 
such subgroup. Then for some n a l ,  . . . , at are in L!, hence 
G C ( a , , .  . . , a k )  f l  Mu C L! r l  Mu = H,, so G is included in a finitely 
generated subgroup of M,, contradiction. 

Theorem 2.9. (1) There is a Jonsson group of cardinality N,. 
(2) This group is simple, and is a Jonsson semigroup. 

Proof. We first we state a definition and a fact. 

Definition 2.10. (1) When H C L, x E L is made over H if for n, m 
natural numbers, h, ,  h2 E H, hlxnh2 = x”’ implies n = m, h ,  = h2 = e. 

(2)  H is a mad subgroup of L, and L is a mad extension of H, if 
every x E L - H is mad over H; and we write H cmd L. 
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Fact 2.11. Let L* = L *"K, and H SmdL, all of them countable 
torsion-free. Let {(b,,, c,,, z, ,):  n < w }  be a list of all triples (b, c, z ) ,  
b E L - H, c E K - H, and z E K. We can find natural numbers k ( n )  
(n < w )  such that the following holds. 

where r is strongly 4000-random and N the normal closure of R, and 
L * *  = L *IN. Then 

Let R be the symmetrized closure of {r(c,bt(2"), c , ~ ; ( ~ " + ~ ) ) z ; ~  : n < w }  

(i) R satisfies the small cancellation condition C'(1/1000), 
(ii) the natural maps L * +  L** embed K and L, and the 

(iii) K SmdL **, 
(iv) L** is torsion-free. 

intersection of their images is the image of H, 

Proof of 2.11. For each n, the  classes HbkH (0 < k < w )  are distinct 
(hence disjoint), because H is a mad subgroup of L. A similar 
assertion holds for Hb;*H (0 < k < w ) .  Hence we can define by 
induction on n, k ( n )  > 0 such that 2n  + p #  2m + q, n, m natural 
numbers, p = 0,1,  q = 0,1,  h , ,  h2 E H implies hlb:k(2n+p)h2 # bZkL(2m+q) 
or, equivalently, b ~ k ( 2 n + p ) h 2 b  ik*(2m+q) # hi.  

Let us check each part: 
(i) We use the notation of Definition 1.8, and let 

g" * . g1gl  * * g, = h, E H, so ho = e, g"+lh,g,+l = h,+l, so by the 
choice of the k ( n ) ,  for some r. = r(cnbt(2n),cnh~(2n+'))z-i n ,  g*, g .,, are 
cyclically reduced conjugations of r,,, r;' respectively or of r;', r. 
respectively. By the strong 4000-randomness we get the desired 
contradiction (like 1.13). 

(ii) Follows from (i). 
(iii) Suppose x E L** - K, k l  E K, k2E K, and n, m are distinct 

natural nnmbers > 0, and klxmk2 = x n  and we shall get a 
contradiction. 

z = z i  9 - . z, (where y l .  . * z I  . * . E K U L )  with smallest p + 2q (p, q 
natural numbers). So y;'. * - y l  z1 * zqyl * * y, is in canonical form 
except that we may put together y;lzi,z,yl, and z I - * - z ,  is weakly 
cyclically reduced. [Otherwise q > 1 is odd, z,zl E H, so x = 
( y ; i . .  . y;1z;1)((zqz1z2)z3 . . Z , - ~ ( Z , ~ ~  . . y,) so we can let y'  = 
z,yl . * y, z' = (z,zlz2)zs * - z,-~). (Note z,zlz2 E L U K - H) so p'  = 
p + 1, q' = q - 2, contradicting the minimality of p + 2q). ]  Similarly q > 
1 implies q is even; y,, ..., z l * * *  4: H. 

Among the representations of x we choose one y-'zy, y = y l  - * * y, 

- 1  

A s x E L * * - K  clearly q 2 1 .  
Note: 
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A) y,y- ' ,  z cannot contain more than half of a word from R. (As 

B) y- 'z ,  z y  cannot contain more than 9/10 of a word from R. 
By symmetry suppose z,+'. . * zqyl * 

then we can decrease p without changing q or vice versa.) 

y, is a subword of a word w 
zqyI .  - * y,t ( t  a from R, of length > 91 w 1/10, so w.1.o.g. w = z,+' * 

word 1 t 1 s 1 w I/ 10). Clearly 
x = y;'. . . y ; I z , .  . . zqyl * .  . y, 

= (y; ' . .  . yy:l)(y;'. * * y;')(zi * * * zt)(zt+I * .  . zq)(yl. * * y j ) ( y j + I * .  . y p )  

= ( y ; l . .  . yY+!l)[(y;'. ' ' y;')(zl * * * z l ) t - ' ] ( y J + l .  ' * y p ) *  

So we get a representation with y '  = y,+' * * * y,, z '  = 
y;' . . . y ;'zI . . - 2,t-I. So p '  = p - j ,  q' = j + i + I t - ' l ,  hence 

(p + 29) -  @'+ 29') 3 (p + 2 q ) -  (p - j + 2j + 2i + 2lt - I l )  

= 2 ( q - i ) - j - 2 I t - l /  

3 2(q - i )  - j - 21 w 1/10. 

But p + 29 was minimal, hence s p '  + 2q', hence j 3 
2(q - i) - 21 w 1/10. But also j + (q - i) 3 91 w 1/10, hence 

3j /2 = j + j /2  3 j + (q  - i ) - I w 1 / 1 O 3 9 1 w 1 / 10 - 1 w I / 10 = 4 1 w I /5 .  

So j > I w 1(4-2/5.3) = 1 w 1(8/15) > I w 1/2, contradiction. 
C) zz cannot contain more than 9/10 of a word from R. 
So suppose z , + ~  - - * z,zl * * z, is a subword of a word w from R of 

length > 9 )  w 1/10. So w.1.o.g. w = z , + ~  - * z,zl * 

I t 1 < 1 w I /  10). Assume first j < i. 
z, t ( r  a word so 

so 
x = y , ' .  . .y; 'zl . .  . z q y l . .  . y, 

= ( y ; ' . .  a y ; ' ) ( z ; l . .  . 2;:1)(2,+1.. * Z,)(ZI * * * Z,)(Z,+l.  * * Z,)(Yl* * * y,) 

= ( y ; l . .  . y ; ' z ; ' - . .  z;:l)(~-lzJ+l * * *  Z,)(Z,+1*** z,y1..* y p ) .  

So let y '  = z,+' - - * z q y l .  . ym z '  = t - ' ~ ,  * * z,. Then x = (y ' ) - ' z 'y ' ,  and 
p ' s p  + ( q  - i), q ' s  I t - ' J +  i - j Q 1 w 1/10 + i - j .  Again 

O 3 ( p + 2 q ) - @ ' + 2 q f )  

s @  + 2 q ) -  @ + (q - i ) + 2 (  w I/lO+2(i - j ) )  

= q - i +2j  - 1  w p5 .  

So q - i s 1 w ) / 5  - 2j, but by the choice of w, i, j ,  t clearly 
(q  - i )  + j s 9 1 w I / 10, hence q - i 3 9 1 w 1 / 10 - j .  Those two inequalities 
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imply I w ) / 5  - 2j  3 9 )  w 1/10 - j ,  which is a contradiction (as I w IS  1, 
j S O ) .  

randomness of r, j - i s I w )/1000, so replace j by i - 8, and repeat the 
same argument. 

Now we are left with the case j 2 i ,  but then by the strong 

D) In B) and C) we can replace 9 )  w 1/10 by 1 w )(9/10 - 1/1500). 

We have assumed n # m >0,  k l x m k 2  = x". We shall get weakly 
cyclically reduced forms of word which is e, and using 1.9 and A)-D) 
get a contradiction. 
Case 1. q = 1. 

Notice z I  E K - H .$ y l  E L - H by p + 2q minimality. Then X "  = 

If k l  = k 2  = e we get z 7-" = e and as K, L are torsion free, n = m. 
If k l = e # k 2 ,  m > n  weget  y p ' . * . y ; ' ~ ; i - ~ y ~ . . - y k  P 2  = e =  

As before, zT-"#e.  As y l . - . z l . . .  are in K U L - H ,  if k 2 E H ,  

If k 2  E H, z"-" E H, y l  E L - H, by the  madness condition w = 

y p  - I  - . y ; l Z ; y ' . - y , .  

yp' .  . . Y; 'z" -"Y~.  * . yP-I(ypk2). 

z"-" tZ H then the word is in canonical form. 

y,'...y;'(y;'z"-"yl)y2...y p-l(ypk2) is in canonical form ( z m - " #  e as K 
is torsion free) when p > 1, and (y;lzrn-"ylh2)E L - H is in canonical 
form when p = 1. When k2 $Z H we have a similar situation. So in all 
cases in the  word w is not e in L * .  As it is e it should be long, SO we 
can make it weakly cyclically reduced by small changes and we get 
easy contradiction by the  strong 4000-randomness. 

The case k l ,  k 2  # e is similar. 
Case 11. q > 1 hence q is even. 

We get that 

e = k l x m k 2 x - "  = k l y , ' . .  y ; ' z l . .  . z ,  . . . z I  - z,yl * .  . ypk2 

I z'l y p ' . .  . y - '  - 1 . .  . z i t . .  . . z; 'y, .  . . yp = d f w * *  

The word is not weakly cyclically reduced only, possibly in 
k l ,  k2 ,y ; ' z I , z4yI ,y ; ' zq ' ,  z;'y,. But if kl, k z #  e, the needed changes 
involve few letters (much less than a hundred) so we ignore them. Let 
w * be the weakly cyclically reduced form. If k ,  = k 2  = e we get e = 
x"-" = z I  . z, . z l .  - a  z,. If k l  = e #  k 2  

e = Xm-"k2 = y;' . y;'z,  . . -2, . . e z , .  . . z q y l .  * - y,k2. 

Both cases are easier, and we leave them to the reader. 

I t 1 a 997 1 w I /  1000. 
So by 1.9 there is t = tl - -  - t, a part of w * and of a word w from R 
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If for some natural number j > 1 w 1 / 1000, 1 < i < i < i + j < 9, t 
contains 2, . . . z,+, from two copies of z, we get a contradiction to the  
strong 4000-randomness of r. Similarly if t contains z1 * 

z ,+, . . . z ;'. Also if for some j > 1 w 1 /4000, 1 < i < i + j < p, t contains 
y ;+!, * . y ;', and y ,  * . . y , + ,  (or two copies from one of them) we get a 
contradiction. 

But t is a part of w * ,  so looking at it we can see that if it intersects 
two among the four copies of y, y - '  in w *  with length > I w 1/4000, we 
get a contradiction to the above. With the one left its intersection has 
length =G I w ) / 2  (by A). 

(w1(99/100-3/4000- 1 /2 )>496(w( / lOOO so with one of them, e.g. 
z'", it is a 2 1 w ( / 1 0 .  

j ,  i S j < i + 1 w 1/10 t, is equal to 
4000-randomness of r. So the length of z is > 1 w ) / l o o ,  hence t 
cannot contain two copies of z (see above). 

only : 

z,+,, 
- 1  

Necessarily the sum of its intersection with z", z - "  is Z= 

If the  length of z is < I  w I/lOO, then for some i ,  1 < i < 1, for every 
(or t,+,-J contradicting the strong 

So summing our observations we have the following possibilities 

a) t is contained in y - ' z z ,  and is not disjoint to y - l .  
So its intersection with the second z has length < I w ( /1000,  SO y- 'z  

contains a subword of w of length > (91/100 - 1/100))  w I = 91 w 1/10, 
contradiction to (B). 

b) r is contained in zzy and is not disjoint to y .  
The same contradiction. 
c) r is contained in zz, so it is 

z:z,+1 * .  . Z , Z l . .  . z,-1z:. 

We get contradiction to (C). 
d) t is contained in zzyk2y-'zz  (or similarly with k l ) .  We can get 

(iv) Left to the  reader. 
similar contradictions. 

Proof of Theorem 2.9. The construction is as in 2.5, but the list 
{S, : y < A'} is no  longer necessary; and we make the changes 
mentioned in 2.7 and assume all groups are torsion-free. The main 
point is that in the induction step 2.6 we use Fact 2.11 rather than Fact 
2.4. So in 2.5, condition (ii) is replaced by 

(ii)' For every a E Ma+, - Ma, for an S C Ma which is not included in 
a finitely generated subgroup of Ma, Ma s (a, S ) .  Let us prove that the  
definition of Ma+l (see 2.6) satisfies this. 

enough n, a E L., b E H.; and we can find m 3 n such that 
So let b E Ma, and we should prove b E (a, S ) .  Clearly for big 
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S fl (H,,,+, - H,)# 0 (as Ma = u,,,H,,,, but for no m is S C H,,,). Now 
choose c E S n (H,,,+l - If,,,). As we have used Fact 2.11 in La+], 
b E (a, c ) ;  so we finish. 

Proof of Theorem C. We assume 2*0 = N,, and let M be the group 
from 2.7. Suppose v is a non-trivial topology which makes M a 
topological group. Choose a neighborhood Uo # M of the unit, and 
define inductively neighbourhoods U, of the unit such that Un+l C U,, 
and x , y  E 

elements of it and hence belongs to Uo, so Uo= M. Contradiction. If 
U,,, is countable, it is a subset of Ma for some a < ol. Choose 
x E M - Ma; xU,,,x-’ is necessarily open, so U,,, n xU,,,x-’ is a 
neighbourhood of the unit; but by the malnormality condition 
(Ma SmM, see 2.5(i)) this intersection contains the unit alone. So any 
singleton is an open set, so any subset of M is open, a contradiction. 

3 xy E U,. 
If U,,, is uncountable, every element of M is the product of no 

We can conclude that is either {M,0}  or the discrete topology. 

Proof of Theorem D. Let M be the group of Theorem 2.9. Clearly we 
cannot find a strictly increasing sequence of sub-semi-groups M,, M = 
u.,,M, (as some M ,  is necessarily uncountable, so M ,  = M). Hence 
if K is a field, K ( M )  the group-ring, K ( M )  = U.,,A., then M = u,,, (A,, n M). Now A,, fl M is a sub-semi-group of M. Clearly 
M E  A,, so A, n M is strictly increasing and get a contradiction to the 
previous observation. 

Additional information 

2.15. Simplicity of Jonsson groups 
Macintyre has shown that in fact “almost” any Jonsson group is 

simple. More exactly, there is no Jonsson abelian group, hence M has 
centre Z ( M )  of power < [ M I .  For any a E M -  Z ( M ) ,  its centralizer 
again (is by its choice # M, hence) has cardinality < ( M I ;  so the 
number of conjugates of a is 1 M 1, so the normal subgroup it generates 
is M. So M / Z ( M )  is a Jonsson group, and is simple. 

2.16. Jonsson groups with centre 
This naturally raises the question whether there are Jonsson groups 

with a non-trivial centre. We can repeat the proofs and constructions 
of 2.1, 7, 9 by starting with an abelian group Z, IZ 1 S A, and change 
the definitions and requirements accordingly. So all groups will extend 

Sh:69



On a pmblem of Kumh 391 

Z, and Z will be in their centre; H =% L means a E L - H, b E H - 
Z j aba-' 62 H, etc. S o  the generalization will be easy. 

2.17. On torsion Jonsson groups 
The groups we constructed are torsion free, and moreover satisfy 

x "  = y "  + x = y for n# 0. We may like to build torsion Jonsson 
groups. Now free products with "good" amalgamation for some torsion 
groups (i.e. the given groups and the result are torsion) exists (by 
Adian [l]) but not with small cancellation, so we can only hope. 

2.18. Jonsson group in Nz 
The proof of Theorem 2.9 works also for A = Nz without any CH 

but for any N,, we need more complicated amalgamations, and the 
situation is not clear. 

Appendix 

Another proof of Theorem 2.9 avoiding 2.11. This proof is due to G. 
Hesse. 

Lemma. Let H,  K,  L be groups such that K n L = H and H S,,, L, and 
let 0 be a subset of H x (K \ H )  X ( L  \ H)* satisfying : 

(i) If (h, a, b, b')  E 0, then b, b' are good fellows over H. 
(ii) If (h l ,  a', bl, bl)  and (h2, az, bz, b;) are different elements of 0, 

then at least one of the pairs bl, bz and bl, b; is a pair of good fellows. 
Suppose L * =  K * H L ,  w(x l ,xz )  is the word xlxzxlx:...xlx?, R C L *  is 
the symmetrized closure of {h-'w(ba, b ' a ) (  (h, a, b, b')€ a}, N is the 
normal closure of R in L *  and L** = L*/N. Then: 

and L, so that their intersection does not increase. 
(1)  R satisfies C'(l/lO), and the natural map 7r : L*+ L** embeds K 

(2) K s , L * * .  
(3) I f a E K \ H ,  b E L \ H a n d O S m < n € o , r h e n  (ab)",(ab)"are 

(4) If b,, bz E L \ H are good fellows over H, then b l ,  bS are good 
good fellows over K in L* .  

fellows over K in L**. 

Proof. (1) Let g *  = g" * * * g', g ., = gl * . . g, be canonical 
representations of elements of R such that g*g, # e, and let 
g' * - g 'gl * - * gr € H for some 1 S min{m, n }  =: p. An easy computation 
shows m, nE{k ,  k + l}, where k = 6640. We may assume that there are 
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elements (hl,  a, ,  bl ,  bl)  and (hz ,  az, bz, b;) of 0, canonical 
representations h;'w(blal,  bIal)  = ul  * * * Uk and hi'w(bzaz,  b h z )  = 
V, * - - V,, p , q  E (1,. . . , k} and 6, E E { - 1,1} such that 

(a) g'= uf-&, g, = VG+e, (1 c i < p ) ,  
(b) g'g" * * * g' = U ; - ~ U : - & -  * - u:-+ g ,  * * * g,,gl= V;++ * * * VG+akVG+L, 

where u, = u, and V, = V, when i = j mod K. 
Case 1.  p # q  or E = 6. 

Then by (i) and the choice of w we can find i E (2,. . . ,664) such 
that g' = u;-& and g, = VG+e, are good fellows over H. Hence g'hg, 
for every h E H, and we have 1 C i d 664 C p /lo. 
Case 2. p = q and E = - 6. 

We find i , j  E (2, .  . . ,664) such that w.l.0.g. g '  = u& = bye, g,  = 

V;+.,= b;, g' = u&= b!-' and g, = V;+,= bl-e. If we assume 12664, 
then none of the pairs b, ,  bz and bI, b; is a pair of good fellows. By 
(ii), ( h , ,  a , ,  b,, b : )  = (hz ,  az, bz, b;) and w.1.0.g. u, = V, ( i  = 1,. . . , k). 
Choose u E {2,3} and b E L \ H  with g' = b-', g .  = be. Since by 
assumption b-'(g"-' * 

over H we have g "-I  * 

H 

g'g, . . . g,-,)b" E H, by the malnormality of b 
g'g, - . . g V - ,  = e. Therefore by (a) and (b): 

g * g *  = g" . . .g'g'-'. . . g " g y . .  .g,-,g,. . . g ,  

= g" . . . g'g' . . . g, 

= (g v-I . . . g ' ) - I g  "-1 . . . gigm * * . g'g, . . - g,g, * - * g"-l(gl . . . gJ' 

- - ( g u - l . .  . g')-'(g,. . . gV-,)- '  = e, 

a contradiction. 
The embedding property follows now from 1.9. 
The proof of (2) is exactly the same as the proof of Fact 2.4(ii). 
(3) Suppose n, n E w, rn # n, E E { - 1, I}, a , ,  az  E K and 

(ab)"a,(ab)""az = e in L**. Let w = g l .  * .  gr be a canonical 
representation of the element (ab)"al(ab)' '"az of L *. Obviously there 
is at most one i E{l, .  . . , l }  such that gi, b are good fellows over H in 
L. Since m # n, we have 1 2 1. Thus by (1) and the Main Theorem 1.9, 
g, .  . . gr contains a long subword W o  which is also a piece of some 
w ,  E R. It follows from (i) that there are at least two i E (1,. . . , I }  such 
that gi,  b are good fellows over H in L, a contradiction. 

The proof of (4) is left to the reader. 

Proof of Theorem 2.9. As before M is constructed as the union of an 
increasing continuous chain ( M ,  I a < N,) of countable groups, where 
no M, is finitely generated If M ,  has already been constructed, we 
choose a strictly increasing chain (H,  I n E w )  of finitely generated 
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subgroups such that H o =  {e}  and M, = u { H ,  I n E w } .  By induction, 
we now define a strictly increasing chain (L, 1 n < w )  of groups with 
the following properties: 

(a) I L n ) = N o .  
(b) L, n M, = H <,+, L.. 
(c) If a E Hn+,\Hn, b E L,\H,, 0 s  rn < n < w, then (ab)", (ab)" are 

good fellows over H,+, in L.,,. 
(d) If b, ,  bz E L, \H, are good fellows over H,, then b, ,  bz are good 

fellows over H,+,  in L n C l .  
In order to define L.+,, let ((h,, a,, a:, b:)  1 i E w )  be an enumeration 

of all (h, a, a', b') such that h E H,, a E H,+,\H,, a ' €  H,  \H, and 
b ' E  L, \H,  for some m < n. Using the induction hypothesis and the 
Lemma above, one can define a sequence (b, I i E w )  of elements of 
L,\H, such that: 

(1) b E L n  \ H n *  
(2) b, is a product of elements of {a;, b; } .  
(3) b,, b ;  are good fellows over H.  
(4) If j < i then 6, and b, are good fellows over H.  
By induction hypothesis "H, 6, L," and by the lemma, the 

symmetrized closure R of {h;'  * w(b,a,, b h )  1 i E w }  satisfies C'(lIl0) in 
L i + l : =  H,+,*HnLn, and we may define L n + l : =  L : + , / N ,  where N is the 
normal closure of R in L i , ,  and w.l.0.g. Ln+, n M, = Hn+,.  The 
desired properties of L.,, follows from the lemma. This concludes the 
main step of our construction, and we put Ma+, = u{Ln n E w } .  

and h is an element of M. Then there is an a < N, such that 
S fl (M,+,\ M,) # q and S fl M, contained in no finitely generated 
subgroup of M,. 

a ' €  H, \ H ,  and b ' E  L, \H,, where the groups H,, L, are as in the 
construction of M,,,. By construction, h is a product of elements of 
{a, a', b'} in L.+, and hence in M. 

Suppose now that S is an uncountable subset of M = L { M ,  I a < N,} 

Choose m < n < w and a, a', b ' E  S such that h E H,, a E Hn+,\Hn, 
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