Incompactness for chromatic numbers of graphs

Saharon Shelah*

0 Introduction

We have proved the singular cardinal compactness theorem ($[12,13]$). A special case of it is that if G is a graph of size a singular cardinal λ such that every subgraph of power less than λ has colouring number less than or equal to ω, then G has countable colouring number. We asked in [12] if this held for the chromatic number. Komjáth showed in [10] that it is consistent that there exists a counterexample of size $\mathcal{K}_{\omega_{1}}$. In this model the continuum is $\kappa_{\omega_{1}+1}$. Answering his question, we show that such a counterexample is consistent even with GCH (Section 1) and show that similar examples exist in $V=L$ (Section 1).
P. Erdốs and A. Hajnal showed that under GCH there is a graph G of size κ_{2} with $\operatorname{Chr}(G)=\kappa_{1}$ such that every subgraph of size κ_{1} is countably chromatic. They asked in [5] if a similar example which is κ_{2}-chromatic exists. The consistency and independence of this statement were shown by Baumgartner and Foreman \& Laver, respectively ([2], [6]). Whether or not similar examples exist under $V=L$ was an old problem. We show that this is the case and much more (Section 3): for every regular non-weakly compact κ there is a graph G on κ, with $\operatorname{Chr}(G)=\kappa$, such that every smaller subgraph is countably chromatic. We notice that our earlier proof with just $\operatorname{Chr}(G)=\omega_{1}$ was published in [4].
Galvin [9] observed that it is not obvious whether or not an x chromatic graph should contain an K_{1}-chromatic subgraph. Komjáth showed that this is in fact independent ($[10]$). Here we show that, e.g. under $V=L$, no counterexample of size \aleph_{2} exists.

Under GCH, P. Erdős \& A. Hajnal showed that for $0<k \leqslant n<\omega$ there is a graph of size \aleph_{n} with chromatic number with \aleph_{k} all subgraphs of size \aleph_{n-1} being $\leqslant \aleph_{k-1}$-chromatic. In Section 5 we show that it is consistent (relative to a supercompact) that every \aleph_{n}-chromatic graph $(0<n<\omega)$ contains an \aleph_{n}-chromatic subgraph of power less than $\aleph_{\omega} . *$

Notation

A graph is a pair $G=(V, E)$, where $E \subseteq\left[V^{2}\right]=\{x \subseteq V:|x|=2\}$. E and G are sometimes confused. $\operatorname{Chr}(G)$ is the chromatic number of G. $\operatorname{tp}(A)$ is the order type of A.

1 Incompactness in singular cardinals via forcing

Theorem $1(\mathrm{GCH})$ If $\lambda>\operatorname{cf}(\lambda)=\omega_{1}$, then there exists a cardinality, cofinality and GCH-preserving partial ordering which adds an κ_{1} chromatic graph on λ such that every subgraph of power less than λ is countably chromatic.

We can, of course, replace ω_{1} by any regular cardinal.
Proof The proof is broken into a series of definitions and lemmas. Let $\left\{\kappa_{\alpha}: \alpha<\omega_{1}\right\}$ be an increasing, continuous sequence of singular cardinals converging to λ and let $\lambda_{\alpha}=\kappa_{\alpha}^{+}$. Fix a sequence $\left\{D_{\alpha}: \alpha<\omega_{1}\right\}$ of disjoint sets with $\left|D_{\alpha}\right|=\lambda_{\alpha}, \quad D=\bigcup\left\{D_{\alpha}: \alpha<\omega_{1}\right\}$ and $E_{\alpha}=$ $\bigcup\left\{D_{\beta}: \beta<\alpha\right\}$. For $A, B \subseteq D$ we use the following convention: $A_{\alpha}=A \cap D_{\alpha}$ and $B_{\alpha}=B \cap D_{\alpha}$.

Definition $p=(A, X) \in P$ if $A \subseteq D,\left|A_{\alpha}\right|<\lambda_{\alpha}$ for $\alpha<\omega_{1}$ and X is a graph on D with
(a) $X \cap\left[D_{\alpha}\right]^{2}=\varnothing$;
(b) if $\{x, y\} \in X, y \in E_{\alpha}$ and $x \in D_{\alpha}$, then $x \in A$;
(c) for $x \in A$, the set $\{y \in D-A:\{x, y\} \in X\}$ is finite and is included in E_{α};
(d) for $x \in A_{\alpha}$ and $\beta<\alpha$, the set $\left\{y \in E_{\beta}:\{y, x\} \in X\right\}$ is finite;
(e) $\operatorname{Chr}(X) \leqslant \omega$.

Next we define extension.
Definition $q=(B, Y) \geqslant p=(A, X)$, that is, (B, Y) extends (A, X), if
(f) $B \supseteq A$ and $Y \supseteq X$;
(g) if $x \in A_{\alpha}$, then $\left\{y \in E_{\alpha}:\{y, x\} \in Y\right\}=\left\{y \in E_{\alpha}:\{y, x\} \in X\right\}$;

* We thank Peter Komjáth for rewriting the paper.
(h) if $x \in B_{\alpha}-A_{\alpha}$, then $\{y \in A:\{y, x\} \in Y-X\}$ is finite and is included in E_{α}.

Notice that the second clause of (h) follows from (g). It is a trivial calculation to check that the partial order is transitive.

Definition $(B, Y) \geqslant_{\alpha}(A, X)$ if $(B, Y) \geqslant(A, X), B \cap E_{\alpha+1}=A \cap E_{\alpha+1}$ and $Y \cap\left[E_{\alpha+1}\right]^{2}=X \cap\left[E_{\alpha+1}\right]^{2}$. Similarly $(B, Y) \geqslant^{\alpha}(A, X)$ denotes that $(B, Y) \geqslant(A, X), B \cap\left(D-E_{\alpha+1}\right)=A \cap\left(D-E_{\alpha+1}\right)$ and

$$
Y \cap\left[D-E_{\alpha+1}\right]^{2}=X \cap\left[D-E_{\alpha+1}\right]^{2}
$$

Obviously \leqslant_{α} and \leqslant^{α} are transitive suborderings.
Lemma 1.2 If $\theta \leqslant \kappa_{\alpha+1}$ and $\left\{p_{\xi}: \xi<\theta\right\}$ form a continuou $\xi^{\prime} \leqslant \leqslant_{\alpha}$ increasing sequence, then they have a common \leqslant_{α}-extension.
Proof Put $p_{\xi}=\left(A^{\xi}, X^{\xi}\right)$. We take $A=\bigcup\left\{A^{\xi}: \xi<\theta\right\}$ and $X=$ $\bigcup\left\{X^{\xi}: \xi<\theta\right\}$. We show that (A, X) is a condition and that $(A, X) \geqslant_{\alpha}$ $\left(A^{\xi}, X^{\xi}\right)(\xi<\theta)$.
Everything is trivial except that $\operatorname{Chr}(X) \leqslant \omega$. As every $D_{\beta}(\beta \leqslant \alpha)$ is independent in X (i.e. there is no edge of X joining two vertices of D_{β}), $E_{\alpha+1}$ is certainly countably chromatic. The vertex set of X on $D-E_{\alpha+1}$ is the union of an independent set, $D-A$, and $A-E_{\alpha+1}=$ $\bigcup\left\{A^{\xi+1}-A^{\xi}-E_{\alpha+1}: \xi<\theta\right\} . X$ on $A^{\xi+1}$ is countably chromatic, and from every vertex in $A^{\xi+1}-A^{\xi}$ only finitely many edges go to A^{ξ}. This implies that $\operatorname{Chr}(X) \leqslant \omega$.
Lemma 1.3 If $q \geqslant p$ and $\alpha<\omega_{1}$, then there are r and s with $p \leqslant_{\alpha} r \leqslant^{\alpha} q$ and $p \leqslant^{\alpha} s \leqslant_{\alpha} q$.
Proof If $q=(B, Y)$ and $p=(A, X)$, put $r=(C, Z)$, where $C_{\beta}=A_{\beta}$ for $\beta \leqslant \alpha, C_{\beta}=B_{\beta}$ for $\beta>\alpha$ and

$$
Z=X \cup\left\{\{x, y\} \in Y: x \in D_{\beta}, y \in B_{\gamma}(\beta<\gamma, \alpha<\gamma)\right\} .
$$

Similarly for s.
Lemma 1.4 Assume that $\alpha<\omega_{1}, p \in P$ and $p \Vdash$ ' τ is a name for an ordinal'. Then there exists a $q \geqslant_{\alpha} p$ and a set $A\left(|A| \leqslant \lambda_{\alpha}\right)$ such that
(i) $q \Vdash$ ' $\tau \in A$ ';
(j) if $q \leqslant q^{*}, q^{*}$ decides a value for τ and $q \leqslant^{\alpha} r \leqslant_{\alpha} q^{*}$, then r decides a value for τ.

Proof We let $\left\{r_{\xi}: \xi<\lambda_{\alpha}\right\}$ enumerate the possible restrictions $\left(A \cap E_{\alpha+1}, X \cap\left[E_{\alpha+1}\right]^{2}\right)$ for $(A, X) \in P$. By transfinite recursion on ξ
we construct an \leqslant_{α}-ascending sequence p_{ξ} with $p_{0}=p$ such that $p_{\xi+1} \cup r_{\xi}$ decides a value for τ if there exists a $q \geqslant_{\alpha} p$ with $q \cup r_{\xi}$ deciding τ.

Lemma 1.5 Cardinals and cofinalities remain.

Proof As usual, it suffices to show that if κ is a regular cardinal in the ground model, then $\theta=\operatorname{cf}(\kappa)<\kappa$ is impossible in the enlarged model. As $|P|=\lambda^{+}$, no problem arises with $\kappa \geqslant \lambda^{++}$.
Assume first that $\lambda_{\alpha}<\kappa<\lambda_{\alpha+1}, p \Vdash ' S \subseteq \kappa$ is cofinal and $|S|=\theta$ ' and $\theta<\kappa$. By Lemma 1.4 there is a $q \geqslant p$ and a T with $|T| \leqslant$ $\theta+\lambda_{\alpha}<\kappa$ such that $q \Vdash$ ' T is cofinal' with T in the ground model: a contradiction.

If $\alpha<\omega_{1}, \alpha$ a limit and $\kappa=\kappa_{\alpha}^{+}$, then (as κ_{α} is singular) $\theta<\kappa_{\alpha}$, so that $\theta<\kappa_{\beta}$ for some $\beta<\alpha$. Again, we get that $\operatorname{cf}(\kappa) \leqslant \lambda_{\beta}<\kappa$ in the ground model. Assume, finally, that $\kappa=\lambda^{+}$. Then $\theta \leqslant \lambda_{\alpha}$ for some $\alpha<\omega_{1}$ and we may proceed as in the previous case.

Lemma 1.6 GCH survives.

Proof As P is ω_{1}-closed, it suffices (by Silver's theorem) to show that $2^{\theta}=\theta^{+}$holds in an enlarged model for every regular cardinal θ. There is no problem for $\theta>\lambda$; so assume that $\kappa_{\alpha}^{+} \leqslant \theta<\kappa_{\alpha+1}$ and that $p \Vdash$ ' $T_{\xi} \subseteq \theta$ are different $\left(\xi<\theta^{++}\right)$'. By Lemma 1.4 , there is a q, as there, and a partial function $F(r, \xi, \zeta)$ such that if $r=(A, X)$ with $A \subseteq E_{\alpha+1}$ and $X \subseteq\left[E_{\alpha+1}\right]^{2}$, then $r \cup q$ forces either that $\zeta \in T_{\xi}$ or that $\zeta \notin T_{\xi}$ according to whether $F(r, \xi, \zeta)$ is 0 or 1 . As the number of different r 's is λ_{α}, the number of $F(r, \cdot, \zeta)$ functions is $\leqslant\left(\lambda_{\alpha}^{+}\right)^{\theta}=\theta^{+}$, and so there are $\xi_{1} \neq \xi_{2}$ with $F\left(r, \xi_{1}, \zeta\right)=F\left(r, \xi_{2}, \zeta\right)$, that is, q پ ' $T_{\xi_{1}}=T_{\xi_{2}}{ }^{\prime}$: a contradiction.
Lemma 1.7 P forces that the generic graph is countably chromatic on every set of size less than λ.
Proof Assume that $p \Vdash$ ' $\tau \subseteq D$ with $|\tau| \leqslant \lambda_{\alpha}$ '. There is a $q \geqslant_{\alpha} p$ such that $q \Vdash$ ' $\tau \subseteq F$ ', where $|\bar{F}| \leqslant \lambda_{\alpha}$, by Lemma 1.4. Extend q to an $r=(X, A)$ with $F \subseteq A$; then we are done by (e).
Lemma 1.8 The generic graph is \aleph_{1}-chromatic.
Assume that p ॥' $f: \lambda \rightarrow \omega$ is a good colouring'. We let $p_{0}=\vec{p}$ and, by induction, define p_{n}, x_{n} and α_{n} with $p_{n}=\left(A^{n}, X^{n}\right), p_{n} \leqslant p_{n+1}$ and $\alpha_{n}<\alpha_{n+1}$ for $n<\omega$ and such that either $p_{n+1} \Vdash{ }^{\prime} f\left(x_{n}\right)=n$ and
$x_{n} \in D_{\alpha_{n+1}}-A^{n}$, or else $p_{n+1} \Vdash ' f\left(x_{n}\right) \neq n$ and $x_{n} \in D_{\alpha_{n+1}}-A^{n}-E_{\alpha_{n}}$ and for every $x \in D-A^{n}-E_{\alpha_{n}}$ we have $h(x) \neq n$ '. This can easily be done. Put $q=(B, Y)$, where $\alpha=\sup \left(\alpha_{n}\right), y \in D_{\alpha}-\bigcup\left\{A_{\alpha_{n}}^{n}: n<\omega\right\}$, $B=\bigcup A^{n} \cup\{y\}$ and $Y=\bigcup\left\{X^{n}: n<\omega\right\} \cup\left\{\left\{x_{n}, y\right\}: n<\omega\right\}$. Obviously, q is a condition and $q \geqslant p_{n}$ for $n<\omega$. If $r \geqslant q$ forces $f(y)=n$, then r forces a contradiction.

That completes the proof of Theorem 1.1.

2 Incompactness in singular cardinals under $\boldsymbol{V}=\boldsymbol{L}$.

Theorem $2.1(V=L)$ If $\kappa=\operatorname{cf}(\kappa)$ is not, weakly compact, $\omega \leqslant \theta<\kappa$ and $\lambda>\operatorname{cf}(\lambda)=\kappa$, then there is a θ^{+}-chromatic graph of power λ in which every subgraph of power less than λ is $\leqslant \theta$-chromatic.
Definition If f and g are functions on a common domain, a set of ordinals of limit type, then $f<^{*} g$ denotes that there is a $\beta \in \operatorname{Dom} f$ such that $f\left(\beta^{\prime}\right)<g\left(\beta^{\prime}\right)$ holds for every $\beta^{\prime}>\beta$.
Lemma 2.2 ([16]) $(V=L)$ Assume that $\lambda_{i}(i \leqslant \mu)$ is an increasing continuous sequence of singular cardinals. Put

$$
\Gamma=\left\{f: \operatorname{Dom} f=\mu, f(i)<\lambda_{i}^{+}(i<\mu)\right\}
$$

Then there is $a<^{*}$-increasing, $<^{*}$-cofinal sequence $\left\{f_{\xi}: \xi<\lambda_{\mu}^{+}\right\}$in Γ such that for every $\xi<\lambda_{\mu}^{+}$the system $\left\{f_{\zeta}: \zeta<\xi\right\}$ can be disjointed, that is, there is a function $g: \xi \rightarrow \mu$ such that if $\zeta_{0}<\zeta_{1}<\xi$ and $i>$ $g\left(\zeta_{0}\right), g\left(\zeta_{1}\right)$, then $f_{\zeta_{0}}(i)<f_{\zeta_{1}}(i)$ holds.

By the result of in Section 3, there is a graph G on κ with $\operatorname{Chr}(G)=\theta$ and $\operatorname{Chr}(G \uparrow \alpha) \leqslant \theta^{+}$for $\alpha<\kappa$, and if, for $i<\kappa, G(i):=$ $\{j<i:\{j, i\} \in G\}$, then $G(i)$ is either empty or of type θ.

Let $\left\{\lambda_{i}: i<\kappa\right\}$ be a continuous, increasing sequence of singular cardinals, converging to λ, with $\lambda_{0}>\kappa$. Put $A_{i}=\{i\} \times \lambda_{i}^{+} \times \kappa$. We are going to build a graph H on $\bigcup\left\{A_{i}: i<\kappa\right\}$ such that, for every $x \in A_{i}$, there are g_{x} and h_{x} defined on $G(i)$, with $g_{x}(j)<\lambda_{j}^{+}$and $h_{x}(j)<\kappa$, and the vertices in $\bigcup\left\{A_{j}: j<i\right\}$ joined to x are $H(x)=$ $\left\{\left\langle j, g_{x}(j), h_{x}(j)\right\rangle: j \in G(i)\right\}$. As there is a natural projection of H onto G, mapping A_{i} onto $i, \operatorname{Chr}(H) \leqslant \theta^{+}$is obvious. We stipulate that $h_{x}(j)>i$ holds for $x \in A_{i}$ and $j \in G(i)$.
Definition $X \subseteq A_{i}$ is large if, for every $\xi<\lambda_{i}^{+}$and $\nu<\kappa$, there is an $\left\langle i, \xi^{\prime}, \nu^{\prime}\right\rangle \in X$ with $\xi^{\prime}>\xi$ and $\nu^{\prime}>\nu$.

We add the following stipulation on H. Let $\left\{f_{\xi}^{i}: \xi<\lambda_{i}^{+}\right\}$be a $<^{*}$ cofinal sequence, as in Lemma 2.2, for $G(i) \neq \varnothing$. So $\operatorname{Dom} f_{\xi}^{i}=G(i)$ and $f_{\xi}^{i}(j)<\lambda_{j}^{+}$.
(a) For $x \in A_{i}$ there are $\gamma_{x}<\delta_{x}<\lambda_{i}^{+}$such that $f_{\gamma_{x}}^{i}<^{*} g_{x}<^{*} f_{\delta_{x}}^{i}$ and the intervals $\left[\gamma_{x}, \delta_{x}\right]\left(x \in A_{i}\right)$ are pairwise disjoint;
(b) if, for $j \in G(i), B_{j} \subseteq A_{j}$ is large, then

$$
\left\{x \in A_{i}: H(x) \subseteq \bigcup\left\{B_{j}: j \in G(i)\right\}\right\}
$$

is large.

This selection can be made by an obvious transfinite recursion. The graph H is already constructed: we first show that $\operatorname{Chr}(\theta)=\theta^{+}$. If $F: \bigcup\left\{A_{i}: i<\kappa\right\} \rightarrow \theta$ is a good colouring, by recursion on $i<\kappa$ we can choose a large $X_{i} \subseteq A_{i}$ such that
(c) F on X_{i} is constant;
(d) if $x \in X_{i}, H(x) \subseteq\left\{X_{j}: j \in G(i)\right\}$.

One only needs to notice that the union of θ non-large sets is not large, either. By (c), we have a θ-colouring on G and so we are finished by $\operatorname{Chr}(G)=\theta^{+}$.
We finally show that every $B \subseteq \bigcup\left\{A_{i}: i<\kappa\right\}$ with $|B|<\lambda$ spans a subgraph which is θ-chromatic. Let $|B| \leqslant \lambda_{i}$. The graph on $B \cap \bigcup\left\{A_{j}: j \leqslant i\right\} \subseteq \bigcup\left\{A_{j}: j \leqslant i\right\}$ is θ-chromatic by our assumptions on G (using the projection). Assume now that $B \subseteq \bigcup\left\{A_{j}: j>i\right\}$ (and that $|B| \leqslant \lambda_{i}$). For every $j>i$, there is, by Lemma 2.2 , a disjointing function $\xi_{x}\left(x \in B \cap A_{j}\right)$ for g_{x}. Decompose the edges of $H \upharpoonright B$ into two classes: $\{y, x\} \in H_{1}$ if $y=\left\langle j, g_{x}(j), h_{x}(j)\right\rangle$ if $j \leqslant \xi_{x}$ and $\{y, x\} \in H_{2}$ otherwise. Now H_{1} has the property that there is a well-ordering (the ordered sum of $\left.A_{j} \cap B(j>i)\right)$ such that every vertex is joined to less than θ smaller vertices. As is well known, this implies that $\operatorname{Chr}\left(H_{1}\right) \leqslant$ θ. It suffices to show that $\operatorname{Chr}\left(H_{2}\right) \leqslant \theta$. If $\{y, x\} \in H_{2}, y \in A_{j}$, $x \in A_{i}, j<i$ and if $y=\left\langle j, g_{x}(j), h_{x}(j)\right\rangle$, then, given y and i, there is at most one x, and $i<h_{x}(j)$. Therefore, every vertex has not more than θ edges 'going down' and less than κ edges 'going up'. So every connected component is of size less than κ. By the properties of G, every component is $\leqslant \theta$-chromatic. Thus so is H_{2}.
Note Even $\bigcap_{i}\left|B \cap A_{i}\right| \leqslant \lambda_{i}$ implies that $\operatorname{Chr}(G \mid B) \leqslant \theta$.

3 Large gaps in regular cardinals under $\boldsymbol{V}=\boldsymbol{L}$

Theorem $3.1(V=L)$ If κ is a cardinal then there is a graph G on κ^{+} such that $\operatorname{Chr}(G)=\kappa^{+}$but, for every $\alpha<\kappa, \operatorname{Chr}(G \uparrow \alpha) \leqslant \omega$ holds.

Proof We use the following principle deduced from $V=L$ in [1].
(B$)$ There is a sequence $\left\langle C_{\delta}, M_{\delta}: \delta<\kappa^{+}\right.$, limit \ranglesuch that
(a) $C_{\delta} \subseteq \delta$ is a club;
(b) if $\alpha \subseteq C_{\delta}^{\prime}$ then $C_{\alpha}=C_{\delta} \cap \alpha$;
(c) M_{δ} is a model on δ;
(d) if $\alpha \in C_{\delta}^{\prime}$, then $M_{\alpha}<M_{\delta}$;
(e) if M is a model on κ^{+}with vocabulary $\leqslant \kappa$, then

$$
\left\{\delta<\kappa^{+}: \operatorname{tp}\left(C_{\delta}\right)=\kappa, M_{\delta}<M\right\}
$$

is stationary.
We assume that for every limit $\delta,{ }_{\star} M_{\delta}=\left\langle\delta, f_{\delta}\right\rangle$, where f_{δ} is a function from δ into κ. We define for every $\delta<\kappa^{+}$(δ a limit) $g_{\delta}: C_{\delta}^{\prime} \rightarrow \kappa^{+}$as follows. Let $B=\left\{\delta<\kappa^{+}: \operatorname{tp}\left(C_{\delta}\right)=\kappa\right\}$ and, for $\delta \in B^{+}$let $\hbar^{*}(\delta)=$ $\min C_{\delta}^{\prime}$. Then
(f) if $\alpha \in C_{\delta}^{\prime}$, then $g_{\alpha} \subseteq g_{\delta}$;
(g) if $\operatorname{tp}\left(C_{\delta}^{\prime}\right)=\xi+1$ and $\epsilon=\max \left(C_{\delta}^{\prime}\right)$, then

$$
g_{\delta}(\epsilon)=\min \left\{\tau: \tau \in B, h^{*}(\tau) \geqslant \epsilon, f_{\delta}(\tau)=\xi\right\}
$$

if such a τ exists and is undefined otherwise.
To define G we join every $\delta<\kappa^{+}$with $\operatorname{tp}\left(C_{\delta}\right)=\kappa$ into the vertex set $\left\{g_{\delta}(\xi): \xi \in C_{\delta}^{\prime}\right\}$.
We show that $\operatorname{Chr}(G)=\kappa^{+}$. Assume that $f: \kappa^{+} \rightarrow \kappa$ is a good colouring. Select a δ as in (e). Then, for every $\xi<\kappa$ with $E_{\xi}=$ $\left\{h^{*}(\delta): \delta \in B, f(\delta)=\xi\right\}$ unbounded (in κ^{+}), $g_{\delta}(\xi)$ is defined and so $f(\delta)=\xi$ is ruled out by construction. If E_{ξ} is bounded, then this bound is less than $h^{*}(\delta)$, and so $f(\delta)=\xi$ is impossible again.

We now turn to the proof of the other property.
Definition $F: \alpha \rightarrow \omega$ is suitable if it is a good colouring and, for every limit $\beta \leqslant \alpha, \mid \omega-\left\{F\left(g_{\beta}(\xi): \xi \in C_{\beta}^{\prime}\right\} \mid=\omega\right.$.

The following claim clearly suffices for the proof.
Claim If $\beta<\alpha, \operatorname{tp}\left(C_{\beta}\right) \neq \kappa, F$ is a suitable colouring of β and F^{\prime} is a colouring of a finite subset of $\left[\beta, \kappa^{+}\right)$such that $F \cup F^{\prime}$ is a good colouring, then there is a good colouring on α, compatible with $F \cup F^{\prime}$.
Proof of the claim (by transfinite induction on α) If $\alpha=\alpha^{\prime}+1$, add α^{\prime} to the domain of F^{\prime} and apply the claim.

Assume that α is a limit. Enumerate C_{α} as $\left\{\gamma_{\xi}: \xi<\operatorname{tp}\left(C_{\alpha}\right)\right\}$ and suppose that $\gamma_{\zeta} \leqslant \beta<\gamma_{\zeta+1}$ ($\gamma_{0}=0$ is assumed). As F is suitable on β, $\left.A=\omega-F\left(g_{\alpha}\left(\gamma_{\omega \xi}\right)\right): \omega \xi<\zeta\right\}$ is infinite. Select $k^{*} \in A$. Applying the
claim we can extend F from β to $\gamma_{\zeta+1}$, from $\gamma_{\zeta+1}$ to $\gamma_{\zeta_{2}}$, and so on, but colouring vertices $g_{\alpha}\left(\gamma_{\omega \epsilon}\right)\left(\gamma_{\zeta} \leqslant \epsilon \in C_{\alpha}^{\prime}\right)$ only with the colour k^{*}. For a limit ordinal $\xi \leqslant \operatorname{tp}\left(C_{\alpha}\right),\left\{F\left(g_{\alpha}\left(\gamma_{\omega \tau}\right)\right): \omega \tau<\xi\right\}$ contains only one element of A. The inductive step is possible as $g_{\alpha}\left(\gamma_{\omega \xi}\right)$ is connected by an edge to no ordinal less than or equal to $h^{*}\left(g_{\alpha}\left(\gamma_{\omega \xi}\right)\right)$ which is greater or equal to $\gamma_{\omega \xi}$.
Theorem $3.2(V=L)$ If κ is an inaccessible, not weakly compact cardinal, then there is a graph G on κ with $\operatorname{Chr}(G)=\kappa$, but for $\alpha<\kappa$, $\operatorname{Chr}(G \upharpoonright \alpha) \leqslant \omega$.
Proof Similar to the proof of the previous theorem, only we use the appropriate principle with
(e*) if M is a model on κ with vocabulary $\leqslant \kappa$ and $\mu<\kappa$, then

$$
\left\{\delta<\kappa: \operatorname{tp}\left(C_{\delta}\right)=\mu, M_{\delta}<M\right\}
$$

is stationary.
Remark It is easy to modify the construction to get graphs as in Theorems 3.1 and 3.2 with arbitrary chromatic number less than $|G|$.

4 Non-spanned subgraphs

Theorem $4.1(V=L)$ If G is a graph on $\lambda=\operatorname{cf}(\lambda)>\omega$ with $\operatorname{Chr}(G) \geqslant$ $\theta \geqslant \omega$ and, for every $\alpha<\lambda$ we have $\operatorname{Chr}(G \upharpoonright \alpha)<\theta$, then there exists a subgraph G^{\prime} of G with $\operatorname{Chr}\left(G^{\prime}\right)=\theta$.
Proof We are going to use the following consequence of $V=L$, proved like the proof of \diamond by R. L. Jensen. Let $L_{\mathrm{a}} \subseteq L_{\mathrm{b}} \subseteq L_{\mathrm{c}}$ be extensions of ZF vocabulary by finitely many new symbols. $M^{\text {a }}(\delta)$ denotes a model of L_{a} and similarly for $M^{\mathrm{b}}(\delta)$, etc.
Lemma $4.2(V=L)$ If $\lambda=\operatorname{cf}(\lambda)>\omega, M^{\mathrm{a}}$ is a model on λ and φ is a first-order sentence in L_{c}, then there exist models

$$
\left\langle M_{\xi}^{\mathrm{c}}(\delta): \xi<\epsilon_{\delta}, \delta<\lambda \text { limit }\right\rangle
$$

such that
(a) $M_{\xi}^{\mathrm{c}}(\delta)$ expands $M^{\mathrm{a}} \uparrow \delta$;
(b) for $\xi \neq \zeta, M_{\xi}^{\mathrm{c}}(\delta) \uparrow L_{\mathrm{b}} \neq M_{\zeta}^{\mathrm{c}}(\delta) \uparrow L_{\mathrm{b}}$;
(c) if M^{c} expand M^{a} satisfies φ, then there is an $N^{\mathrm{c}} \supseteq M^{\mathrm{a}}$ satisfying φ, such that for a closed unbounded set of δ there is a $\xi<\epsilon_{\delta}$ with $M_{\xi}^{\mathrm{c}}(\delta)=N^{\mathrm{c}} \upharpoonright \delta$.
If \wedge_{*}^{*} holde we can tales $c_{-}=\delta$

Definition Let C and D be closed, unbounded sets in $\lambda=\operatorname{cf}(\lambda)$ and $\tau(\alpha)=\min (C-(\alpha+1))$ for $\alpha<\lambda$. Then

$$
\Delta(C, D)=\tau(0) \cup \bigcup\{[\alpha, \tau(\alpha)): \alpha \in D\}
$$

Lemma 4.3 If I has the property that for every club C there is a club D such that $\Delta(C, D) \in I$, then λ is the union of countably many elements of I.

Proof Let $C_{0}=\lambda$ and let C_{n+1} satisfy $\Delta\left(C_{n}, C_{n+1}\right) \in I$. If $\alpha \notin \bigcup \Delta\left(C_{n}, C_{n+1}\right)$ and $\alpha_{n}=\max \left(\alpha \cap C_{n}\right)$, then $\alpha=\alpha_{0}>\alpha_{1}>\cdots$: a contradiction. \square

In order to prove the result, we try to formulate the fact that no subgroup G^{\prime} of G has $\operatorname{Chr}\left(G^{\prime}\right)=\theta . \quad \operatorname{Chr}\left(G^{\prime}\right) \leqslant \theta$ means thát ther̂e is an $F: \lambda \rightarrow \theta$ good colouring of G^{\prime}. On the other hand, given F, we may assume that G^{\prime} consists of the edges $\{\alpha, \beta\}$ with $\{\alpha, \beta\} \in G$ and $F(\alpha) \neq F(\beta)$. So the property can be translated as follows. For every $F: \lambda \rightarrow \theta$ there is a $\sigma<\theta$ and an $H: \lambda \rightarrow \sigma$ with
(d) if $\{\alpha, \beta\}$ is in G and $F(\alpha) \neq F(\beta)$, then $H(\alpha) \neq H(\beta)$.

We now let $M^{\text {a }}$ be $G, L_{\mathrm{b}}=L_{\mathrm{a}} \cup\{F, \theta\}, L_{\mathrm{c}}=L_{\mathrm{b}} \cup\{H\}$ and φ the sentence in (d).

If I is the collection of subsets of λ spanning subgraphs with chromatic number less than θ, then by Lemma 4.3 and the fact that $\operatorname{Chr}(G)>\theta$ (otherwise we are done), there is a club C such that, for no club D, $\Delta(C, D) \in I$ holds. Enumerate $C \cup\{0\}$ as $\left\{\gamma_{\alpha}: \alpha<\lambda\right\}$. We construct an $F: \lambda \rightarrow \theta$ by recursively defining $F \upharpoonright\left[\gamma_{\alpha}, \gamma_{\alpha+1}\right)$.

If there exists a ξ such that $M_{\xi}^{\mathrm{c}}\left(\gamma_{\alpha}\right) \uparrow L_{\mathrm{b}}=\left(M^{\mathrm{a}} \uparrow \delta, F \upharpoonright \gamma_{\alpha}, \theta\right)$, then the range of H in $M_{\xi}^{\mathrm{C}}\left(\gamma_{\alpha}\right)$ is bounded (in θ) and ξ is unique by (b). For $\gamma_{\alpha} \leqslant \tau<\gamma_{\alpha+1}$ we then put

$$
B(\tau)=\left\{\beta<\gamma_{\alpha}:\{\beta, \tau\} \text { is in } G, \text { and no } \beta^{\prime}<\beta \text { has }\left\{\beta^{\prime}, \tau\right\} \in G\right.
$$

$$
\text { and } \left.M_{\xi}^{\mathrm{c}}\left(\delta_{\alpha}\right) \vDash H\left(\beta^{\prime}\right)=H(\beta) .\right\}
$$

$|B(\tau)|<\theta$ as Rang H is bounded (in θ). Now define

$$
F(\tau)=\min \left\{\theta-F^{\prime \prime} B(\tau)\right\}
$$

If no such ξ exists, any extension works.
Having constructed $F: \lambda \rightarrow \theta$, by our indirect assumption there is $H: \lambda \rightarrow \sigma<\theta$, a 'better colouring of G ', determined by F. So, by Lemma 4.2, there is (a possibly different) H such that, for a closed unbounded D, if $\delta \in D$ there is a ξ with $M_{\xi}^{\mathrm{c}}(\delta)=M_{\mathrm{c}} \uparrow \delta$. We assume that $n \sim r$
$\mathbf{C l a i m} \operatorname{Chr}(G 队 \Delta(C, D))<\theta$.
Clearly this claim gives the desired contradiction.
Proof of the claim As $\operatorname{Chr}(G \upharpoonright \alpha)<\theta$ for every $\alpha<\lambda$ and $\operatorname{cf}(\lambda)>\theta$, there exists a $\sigma<\theta$ such that $\operatorname{Chr}(G \uparrow \alpha) \leqslant \sigma(\alpha<\lambda)$. From this, those edges joining vertices in the same interval of $\Delta(C, D)$ can get a good colouring by not more than σ colours. It suffices to show that H is a good colouring for the edges between different intervals. Otherwise there is $\left\{\tau^{\prime}, \tau\right\} \in G$ with $\tau^{\prime}<\gamma_{\alpha} \leqslant \tau<\gamma_{\alpha+1}\left(\gamma_{\alpha} \in D\right)$ and $H\left(\tau^{\prime}\right)=$ $H(\tau)$. Fix τ and take τ^{\prime} minimal. Then $F\left(\tau^{\prime}\right) \neq F(\tau)$ and so $H\left(\tau^{\prime}\right) \neq$ $H(\tau)$: a contradiction.

5 Compactness is consistent

We mention that Foreman \& Laver showed, from an almost huge cardinal, the consistency of GCH and the statement that every graph with power and chromatic number κ_{2} contains a subgraph of power and chromatic number \aleph_{1}. See also [7, 8, 15]. We use the following result.
Lemma 5.1 (Ben-David \& Magidor [3]) If the existence of a supercompact cardinal is consistent, then so is $Z F C+G C H$ and that for every regular $\lambda>\omega_{\omega}$ there is an ultrafilter D on λ such that $\aleph_{n}^{\lambda} / D=\aleph_{n}$ for $0<n<\omega$, and there are $A_{\xi} \in D(\xi<\lambda)$ such that, for $\alpha<\lambda$, the set $w_{\alpha}=\left\{\xi: \alpha \in A_{\xi}\right\}$ has power less than \aleph_{ω}.

Theorem 5.2 In the model of Lemma 5.1, if $0<n<\omega, G$ is a graph such that every subgraph of G of power less than \aleph_{ω} has chromatic number not exceeding \aleph_{n}, then $\operatorname{Chr}(G) \leqslant \aleph_{n}$.
Proof We may assume that the vertex set of G is λ, a regular cardinal (otherwise we may use λ^{+}). By assumption, there is a good colouring, $f_{\alpha}: w_{\alpha} \rightarrow \omega_{n}$. For $\xi<\lambda$, let $g_{\xi}(\alpha)=f_{\alpha}(\xi)$ and, finally, define $h: \lambda \rightarrow$ ω_{n}^{λ} / D by $h(\xi)=g_{\xi} / D$. This h is a good colouring of G by ω_{n} colours. [It is a good colouring because, if we assume that $\xi, \zeta<\lambda,\{\xi, \zeta\} \in G$ and $h(\xi)=h(\zeta)$, then

$$
\begin{aligned}
\left\{\alpha: g_{\xi}(\alpha)=g_{\zeta}(\alpha)\right\} & =\left\{\alpha: f_{\alpha}(\xi)=f_{\alpha}(\zeta)\right\} \\
& \subseteq\left\{\alpha:\{\xi, \zeta\} \nsubseteq W_{\alpha}\right\} \\
& =\left\{\alpha: \alpha \notin A_{\xi} \text { or } \alpha \notin A_{\zeta}\right\} \\
& \subseteq\left\{\alpha: \alpha \notin A_{\xi} \cap \in A_{\zeta}\right\}=\varnothing(\bmod D)
\end{aligned}
$$

Hence $g_{\xi} / D \neq g_{\zeta} / D$. The number of colours is \aleph_{n} because, as $\left|\omega_{n}^{\lambda} / D\right|=\kappa_{n}$, the function h has the right number of colours.]

References

[1] U. Abraham, S. Shelah \& R. M. Solovay, Squares with diamonds and Souslin trees with special squares, Fundamenta Math., 127 (1986), 133-62
[2] J. E. Baumgartner, Generic graph construction, J. Symb. Logic, 49 (1984) 234-40
[3] Sh. Ben-David \& M. Magidor, The weak \square is really weaker than the full \square, J. Symb. Logic, 51 (1986), 1029-33
[4] K. Devlin, Constructibility, in Handbook ôf Mathematical Logic (ed. J. Barwise), North-Holland, 1977, 453-89
[5] P. Erdốs \& A. Hajnal, On chromatic number of graphs and set systemis, Actä Math. Acad. Sci. Hung., 17 (1966), 61-99
[6] M. Foreman \& R. Laver, A graph reflection property (to appear)
[7] M. Foreman, M. Magidor \& S. Shelah, Martin's maximum, saturated ideals and non-regular ultrafilters, Part I, Annals of Math., 127 (1988), 1-47
[8] M. Foreman, M. Magidor \& S. Shelah, Martin's maximum, saturated ideals and non-regular ultrafilters, Part II, Annals of Math., 127 (1988), 521-45
[9] F. Galvin, Chromatic numbers of subgraphs, Period. Math. Hung., 4 (1973), 117-19
[10] P. Komjáth, Consistency results in finite graphs, Israel J. of Math., 61 (1988) 285-94
[11] P. Komjáth \& S. Shelah, Forcing constructions for uncountably chromatic graphs, J. Symb. Logic (to appear)
[12] S. Shelah, A compactness theorem for singular cardinals, free algebras, White head problem, and transversals, Israel J. of Math., 21 (1975), 319-49
[13] S. Shelah, Incompactness in regular cardinals, Notre Dame J. of Formal Logic, 26 (1985), 195-228
[14] S. Shelah, Remarks on squares, Around Classification Theory of Models, Lec ture Notes 1182, Springer, Heidelberg, 276-9
[15] S. Shelah, Iterated forcing and normal ideals on ω_{1}, Israel J. of Math., 60 (1987), 345-80
[16] S. Shelah, Gap 1 two cardinal principles and omitting type theorem for $L(Q)$, Israel J. of Math., 65 (1989), 133-52
[17] S. Shelah, $U P_{1}(I)$, large ideal on ω_{1}, general preservation, in Proper and Improper Forcing, Springer Verlag Prospective in Mathematics (to appear)

