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Incompactness for chromatic numbers of graphs

Saharon Shelah*

0 Introduction

We have proved the singular cardinal compactness theorem ([12, 13]).
A special case of it is that if G is a graph of size a singular cardinal A
such that every subgraph of power less than A has colouring number less
than or equal to w, then G has countable colouring number. We asked
in [12] if this held for the chromatic number. Komj4th showed in [10]
that it is consistent that there exists a counterexample of size R,,. In
this model the continuum is X, ;;. Answering his question, we show
that such a counterexample is consistent even with GCH (Section 1) and
show that similar examples exist in V = L (Section 1).

P. Erd6s and A. Hajnal showed that under GCH there is a graph G
of size R, with Chr(G) = X; such that every subgraph of size N; is
countably chromatic. They asked in [5] if a similar example which is
Ny-chromatic exists. The consistency and independence of this state-
ment were shown by Baumgartner and Foreman & Laver, respectively
([2], [6]). Whether or not similar examples exist under V = L was an
old problem. We show that this is the case and much more (Section 3):
for every regular non-weakly compact k there is a graph G on «, with
Chr(G) = «k, such that every smaller subgraph is countably chromatic.
We notice that our earlier proof with just Chr(G) = w; was published-in
[4].

Galvin [9] observed that it is not obvious whether or not an N3-
chromatic graph should contain an N;-chromatic subgraph. Komjith
showed that this is in fact independent ([10]). Here we show that, e.g.
under V = L, no counterexample of size X, exists.
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Under GCH, P. Erd6s & A. Hajnal showed that for 0 < k<n<wo
there is a graph of size X, with chromatic number with X all subgraphs
of size N,_; being < X;_;-chromatic. In Section 5 we show that it is
consistent (relative to a supercompact) that every R,-chromatic graph
(0 < n < ) contains an X, -chromatic subgraph of power less than 8, .*

Notation _
A graph is a pair G = (V,E), where EC [V ] ={xCV:|x| =2}. E
and G are sometimes confused. Chr(G) is the chromatic number of G.
tp(A) is the order type of A.

1 Incompactness in singular cardinals via forcing

Theorem 1 (GCH) If A > cf(A) = w,, then there exists a cardinality,
cofinality and GCH-preserving partial ordering which adds an ¥,-
chromatic graph on X such that every subgraph of power less than A is
countably chromatic.

We can, of course, replace w; by any regular cardinal.

Proof The proof is broken into a series of definitions and lemmas. Let
{k, : @ < w1} be an increasing, continuous sequence of singular cardi-
nals converging to A and let A, = x,/. Fix a sequence {D, : @ < w,} of
disjoint sets with [D,|=A,, D=U{Dy:e<w;} and E, =
U{Dg:B<a}. For A,BC D we use the following convention:
A, =AND, and B, = BND,.

Definition p = (A,X) e Pif AC D, |[A,| <A, fora <w; and X is a
graph on D with

(2) XN[D,]* = &;

(b) if {x,y} € X,y EE, and x € D, then x € A;

(c) forx € A, the set {y € D—A: {x,y} € X} is finite and is included

inE,;
(d) for x € A, and B < a, the set {y € Eg : {y,x} € X} is finite;
(€) Chr(X) < w.

Next we define extension.

Definition g = (B,Y) = p = (A, X), that is, (B, Y) extends (4, X), {f
f) BDAand Y D X ,
(8) ifx € A,, then{y € E,: {y,x} €Y} = {y € E,: {y,x} € X};

* We thank Peter Komjath for rewriting the paper.

S

Incompactness for chromatic numbers of graphs 363

(h) if x € B,—A,, then {y € A: {y,x} € Y-X} is finite and is inclu-
dedin E,.

Notice that the second clause of (h) follows from (g). It is a trivial
calculation to check that the partial order is transitive.

Definition (B,Y) =, (4,X) if (B,Y) =(4,X), BNE,,, = ANE,,,
and YN[E,;1]* = XN[E,.;1% Similarly (B,Y) >*(A4,X) denotes
that (B,Y) = (4,X), BN(D~E,,;) = AN(D—E,,,) and

YN[D-E,1)* = XN[D~E, . T%
Obviously <, and < are transitive suborderings.

i ¢ '
Lemma 1.2 If 0 <k,.y and {p;: <6} form a continuous.. S
increasing sequence, then they have a common <, -extension. ‘

Proof Put p, = (A%, X%). We take A = Uids:£<6} and X =
U {X%: £ < 6}. We show that (A, X) is a condition and that (4, X) =,
(45,X%) (£ < o).

Everything is trivial except that Chr(X) < w. As every Dg B=<a)is
independent in X (i.e. there is no edge of X joining two vertices of Dg),
E, ;1 is certainly countably chromatic. The vertex set of X on D — E,
is the union of an independent set, D—A, and A-E, ;=
U{a*"'-A*~E,.;: £<6}. X on A**! s countably chromatic, and
from every vertex in A**'—A¢ only finitely many edges go to Af. This
implies that Chr(X) < w. O

Lemma 1.3 If q=p and a < w,, then there are r and s with
PSar<fgandp <*s <, q.

Proof If ¢ = (B,Y) and p = (A, X), put r = (C, Z), where Cg = Ag for
B <a, Cg = Bg for B > a and
Z=XU{{x,y}EY:xE Dy, y€ B, (B<vy,a<y)}.

Similarly for s. O
Lemma 1.4 Assume that « < w,, p € P and p I+ ‘v is a name for an
ordinal. Then there exists a q =, p and a set A (|A| < A,) such that

@@ qtTe A,

() if ¢ =<gq*, ¢* decides a value for 7 and g <®r <, ¢*, then r

decides a value for 7.

Proof We let {r;:£<A,} enumerate the possible restrictions
(ANE,,1,XN[E, 1] for (A,X) € P. By transfinite recursion on ¢
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we construct an <,-ascending sequence p; with py = p such that
pe+1Urg decides a value for 7 if there exists a ¢ =, p with gUr, decid-
ingr. O

Lemma 1.5 Cardinals and cofinalities remain.

Proof As usual, it suffices to show that if « is a regular cardinal in the
ground model, then 8 = cf(x) < « is impossible in the enlarged model.
As |P| = A*, no problem arises with k =A™,

Assume first that A, < k < Ag41, p IF ‘S C & is cofinal and |S| = 6’
and 6 < k. By Lemma 1.4 there is a ¢ =p and a T with |T| =
0+, < k such that g I ‘T is cofinal’ with T in the ground model: a
contradiction.

If @ < w;, @ a limit and k = k,’, then (as , is singular) 6 < k,, 50
that 6 < kg for some B < a. Again, we get that cf(k) < Ag < « in the
ground model. Assume, finally, that x = AT. Then @ < A, for some
@ < w; and we may proceed as in the previous case. O

Lemma 1.6 GCH survives.

Proof As P is w,-closed, it suffices (by Silver’s theorem) to show that
2% — §* holds in an enlarged model for every regular cardinal 6. There
is no problem for 6> A; so assume that x, <8 <K, and that
p I+ ‘T, C 6 are different (< 6""y. By Lemma 1.4, there is a g, as
there, and a partial function F(r,£,{) such that if r = (A4,X) with
ACE,;and X C [E,+1]%, then rUg forces either that { € T; or that
{ & T according to whether F(r,£,0) is 0 or 1. As the number of dif-
ferent r’s is A, , the number of F(r, -,¢) functions is < (A ) =", and
so there are &, # & with F(r,£1,0) = F(r,&,{), that is, g I ‘T, = T,
a contradiction. O

Lemma 1.7 P forces that the generic graph is countably chromatic on
every set of size less than A.

Proof Assume that p I ‘r C D with |r| < A,’. There is a ¢ =, p such
that g I ‘r C F’, where |F| <2A,, by Lemma 1.4. Extend g to an
r = (X, A) with F C A; then we are done by (e). O

Lemma 1.8 The generic graph is R;-chromatic.

Assume that p I “f: A = o is a good colouring’. We let pp =} and,

by induction, define p,, x, and a, with p, = (A", X"), p, < pn+ and -

a, < ay4; for n <o and such that either p,., I ‘f(x,) =n and
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x, € D, ., —A", or else p,41 I ‘fx,) # n and x, € D, , —A"-E,
and for every x € D—A"—E,_ we have h(x) # n’. This can easily be
done. Put g = (B,Y), where a = sup(a,), y € D,—U{A} :n<w},
B=UA"U{y} and Y=U{X":n<o}U{{x,,y}:n<w}. Obvi
ously, g is a condition and g = p,, for n < w. If r = q forces f(y) = n,
then r forces a contradiction. O

That completes the proof of Theorem 1.1. [

2 Incompactness in singular cardinals under V = L.

Theorem 2.1 (V = L) If k = cf(x) is not, weakly compact, ® <6 <«
and A > cf(\) = k, then there is a 0% -chromatic graph of power A in

-

which every subgraph of power less than A is < 6-chromatic. for, @

Definition If f and g are functions on a common domain, a set of ordi-
nals of limit type, then f <* g denotes that there is a B € Dom f such
that f(8') < g(B') holds for every 8’ > B.

Lemma 2.2 ([16]) (V = L) Assume that A; (i < p) is an increasing con-
tinuous sequence of singular cardinals. Put

I = {f: Domf = u, fl) <A} (<}

Then there is a <*-increasing, <*-cofinal sequence {fy: & < }t:[} inI
such that for every £ < A} the system {f;: { < £ can be disjointed, that
is, there is a function g:£—> p such that if (<3 <& and i>
8(%0),8(&1), then f; (i) < f;(i) holds.

By the result of in Section 3, there is a graph G on « with
Chr(G) = 6 and Chr(G }a) < 6™ for @ <, and if, for i <k, G() =
{j <i:{j,i} € G}, then G(i) is either empty or of type 6. .

Let {A;: i < «} be a continuous, increasing sequence of singular car-
dinals, converging to A, with Ag > «. Put A; = {i} xA;"xk. We are
going to build a graph H on U {4; : i < «} such that, for every x € 4;,
there are g, and h, defined on G(i), with g.(j) < A and h(j) <k,
and the vertices in U{4;:j<i} joined to x are H() =
{(,8:()), B (i)} : j € G()}. As there is a natural projection of H onto
G, mapping A; onto i, Chr(H) < 6" is obvious. We stipulate that
h.(j) > i holds for x € A; and j € G().

Definition X C A; is large if, for every £ <A;" and v < k, there is an
(i,¢,v') € Xwith ¢ > & and v' > .
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We add the following stipulation on H. Let {f{: £ <A/} be a <*-
cofinal sequence, as in Lemma 2.2, for G(i) # &. So Dom fE = G()
and fg(ﬁ <A

(a) For x E A; there are y, < 8, < A;" such that fi <*g <* f, and

the intervals [y,,8,] (x € A;) are pairwise disjoint;

(b) if, for j € G(@), B; C A is large, then

{xe A;: Hx) c U{B;: j € GO}}

is large.

This selection can be made by an obvious transfinite recursion. The
graph H is already constructed: we first show that Chr(f) = ot If
F: U{A;:i < «} — 6 is a good colouring, by recursion on i < k we can
choose a large X; C A; such that

(c) Fon X; is constant;

() ifx € X;, Hx) C {X;: j € GG}
One only needs to notice that the union of  non-large sets is not large,
either. By (c), we have a @-colouring on G and so we are finished by
Chr(G) = 6™.

We finally show that every B C U {4;: i < x} with |B| <A spans a
subgraph which is 6-chromatic. Let |B|=<A;. The graph on
BNU{4;: j<i} ¢ U{4;: j < is 6-chromatic by our assumptions on
G (using the projection). Assume now that B C U{4;:j> i} (and
that |B| <A;). For every j > i, there is, by Lemma 2.2, a disjointing
function £, (x € BNA;) for g,. Decompose the edges of H } B into two
classes: {y,x} € Hy if y = {j,g.(j), k() if j < & and {y,x} € H, oth-
erwise. Now H; has the property that there is a well-ordering (the
ordered sum of A;NB (j > i)) such that every vertex is joined to less
than @ smaller vertices. As is well known, this implies that Chr(H;) <
6. It suffices to show that Chr(H,) <. If {y,x} € H;, y € A4,
x € A;, j<iandify = (j,8.()),h()), then, given y and i, there is at
most one x, and i < h,(j). Therefore, every vertex has not more than 6
edges ‘going down’ and less than x edges ‘going up’. So every con-
nected component is of size less than k. By the properties of G, every
component is < §-chromatic. Thus so is H,. O

Note Even (), |[BNA;| < \; implies that Chr(G } B) < 6
i(
3 Large gaps in regular cardinals under V = L

Theorem 3.1 (V = L) If « is a cardinal then there is a graph G on k*
such that Chr(G) = ™ but, for every a < k, Chr(G }a) < w holds.
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Proof We use the following principle deduced from V = L in [1].

(KJ) There is a sequence (Cs, M5 : 8 < «*,limit) such that
(a) Cs C 6 is a club;
(b) if @ C Cj then C, = CsNa;
(c) M; is a model on §;
(d) if a € C5, then M, < Mj;;
(e) if M is a model on k™ with vocabulary < «, then

{8 < k™ :tp(Cs) =k, M5 < M}

is stationary.
We assume that for every limit §,. M5 = (8, f5), where f; is a function
from & into k. We deﬁne for every & < k" (8 a limit) g5: C5 — k" as
follows. Let B = {6 <k*:tp(Cs) = x} and, for 8 € B let h*(3) =
min Cz. Then
(f) ifa € Céa then 8a - 855
(g) if tp(Cs) = é+1 and € = max(Cj), then

gs€) = min{7: 7 € B, h*(r) = ¢, f3(1) = &

if such a 7 exists and is undefined otherwise.
To define G we join every 8 < k" with tp(C;s) = « into the vertex set
{g5(6) : £ € C3}.

We show that Chr(G) = k. Assume that f: k* =« is a good
colouring. Select a 8 as in (e) Then, for every § <« with E; =
{h*(5): 6 € B, f(5) = & unbounded (in k*), g5(¢) is defined and so
f(8) = ¢ is ruled out by construction. If E, is bounded, then this bound
is less than #*(8), and so f(8) = ¢ is impossible again.

We now turn to the proof of the other property.

Definition F: @ — o is suitable if it is a good colouring and, for every
limit 8 < a, |w—{F(gp¢): £ € C3}| = w.
The following claim clearly suffices for the proof.

Claim If B < a, tp(Cg) # «, F is a suitable colouring of B and F' is a
colouring of a finite subset of [B,k™) such that FUF' is a good colour-
ing, then there is a good colouring on a, compatible with FUF".

Proof of the claim (by transfinite induction on «) If @ = a'+1, add o’
to the domain of F' and apply the claim.

Assume that « is a limit. Enumerate C, as {y;: £ <tp(C,)} and
suppose that v, < B < v;41 (o =01s assumed). As F is suitable on B,
A = 0—F(g,(ae)): ¢ < ¢} is infinite. Select k* € A. Applying the
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claim we can extend F from B to y;,4¢, from y;4; to ¥, and so on, but
colouring vertices g,(v,e) (v; < € € C,) only with the colour k*. For a
limit ordinal ¢ < tp(C,), {F(ga(Ywr)): @r < & contains only one ele-
ment of A. The inductive step is possible as g,(y,,) is connected by an
edge to no ordinal less than or equal to h*(g,(y,,)) which is greater or
equal to y,,. O

Theorem 3.2 (V = L) If « is an inaccessible, not weakly compact cardi-
nal, then there is a graph G on x with Chr(G) = k, but for a <k,
Chr(G }a) < w.

Proof Similar to the proof of the previous theorem, only we use the
appropriate principle with
(e*) if M is a model on x with vocabulary < k and p < «, then

{6 <k:tp(Cs) = pu, M5 < M}
is stationary. O

Remark It is easy to modify the construction to get graphs as in
Theorems 3.1 and 3.2 with arbitrary chromatic number less than |G|.

4 Non-spanned subgraphs

Theorem 4.1 (V = L) If G is a graph on A = cf(A) > w with Chr(G) =
0 = w and, for every a < A we have Chr(G Ma) < 8, then there exists a
subgraph G' of G with Chr(G') = 6.

Proof We are going to use the following consequence of V = L, proved
like the proof of {» by R. L. Jensen. Let L, C L, C L. be extensions
of ZF vocabulary by finitely many new symbols. M?(8) denotes a model
of L, and similarly for M 58), etc.

Lemma 4.2 (V= L) If A = cf(\) > @, M® is a model on A and ¢ is a
first-order sentence in L, then there exist models

(M£(8) : € < €5, 6 < A limit)

such that
(a) M£(S) expands M? }§;
(b) for & # ¢, ME(®) My # MS(®) Moy
(c) if M° expand M? satisfies ¢, then there is an N D M 3 satisfying
¢, such that for a closed unbounded set of & there is a ¢ < €5 with
M{@) = N© rs.
If AN¥ holde we ran tale c. = &
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Definition Let C and D be closed, unbounded sets in A = cf(A) and
(@) = min(C—(a+1)) for @ < A. Then

A(C,D) = 7(0)UU {[a,7(e)): @ € D}.

Lemma 4.3 If I has the property that for every club C there is a club D such
that A(C, D) € 1, then X is the union of countably many elements of I.

Proof Let Co=A and let C,y satisfy A(C,,Cyey) €L I
a & UA(C,,C,41) and @, = max(aNC,), then a =g >a; > --+: a
contradiction. O

In order to prove the result, we try to formulate the fact that no sub-
group G' of G has Chr(G’) = 8. Chr(G’) < 6 means thaf thefe is an
F: A — 0 good colouring of G’. On the other hand, given F, we may
assume that G’ consists of the edges {a,B} with {a,8} € G and
Fla) # F(B). So the property can be translated as follows. For every
F:A— 0 thereisao < @ and an H: A — o with

(d) if {«,B} is in G and F(a) # F(B), then H(a) # H(B).
We now let M* be G, L, = L,U{F,6}, L. = LyU{H} and ¢ the sen-
tence in (d).

If 1 is the collection of subsets of A spanning subgraphs with chromatic
number less than 6, then by Lemma 4.3 and the fact that Chr(G) > ¢
(otherwise we are done), there is a club C such that, for no club D,
A(C,D) € I holds. Enumerate CU{0} as {y,:a <A}. We construct
an F: A — 0 by recursively defining F My, , Yo +1)-

If there exists a £ such that M{(y,) ML, = (M* 8, F }y,,6), then the
range of H in M{(y,) is bounded (in 6) and ¢ is unique by (b). For
Yo =T < Y441 We then put

B(r) ={B<1v,:{B,7}isin G, and no B’ < B has {B',71 €EG
and M{(8,) F H(B') = H(B).}
|B(r)| < 6 as RangH is bounded (in ). Now define
F(1) = min{6— F"B(7)}.

If no such £ exists, any extension works.

Havingsoonstructed F:A— 60, by our indirect assumption there is
H:A— o <8, a ‘better colouring of G’, determined by F. So, by
Lemma 4.2, there is (a possibly different) H such that, for a closed
unbounded D, if 8 € D there is a £ with MS(8) = M. 8. We assume

that v —
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Claim Chr(G }A(C, D)) < 6.
Clearly this claim gives the desired contradiction.

Proof of the claim As Chr(G }a) < 8 for every a < A and cf(A) > 6,
there exists a o < 6 such that Chr(G }a) <o (@ <A). From this,
those edges joining vertices in the same interval of A(C, D) can get a
good colouring by not more than o colours. It suffices to show that H
is a good colouring for the edges between different intervals. Otherwise
there is {r',7} € G with ' <y, <7< 7v,,; (Yo € D) and H(7') =
H(r). Fix 7 and take 7' minimal. Then F(r') # F(r) and so H(r') #
H(7): a contradiction. O

5 Compactness is consistent

We mention that Foreman & Laver showed, from an almost huge cardi-
nal, the consistency of GCH and the statement that every graph with
power and chromatic number N, contains a subgraph of power and
chromatic number X;. See also [7, 8, 15]. We use the following result.

Lemma 5.1 (Ben-David & Magidor [3]) If the existence of a supercom-
pact cardinal is consistent, then so is ZFC+ GCH and that for every regu-
lar A > w,, there is an ultrafilter D on A such that R/D = X, for
0 <n <w, and there are A; € D (£ <)) such that, for a < A, the set
wo = {é: a € A} has power less than R,,.

Theorem 5.2 In the model of Lemma 5.1, if 0 <n < w, G is a graph
such that every subgraph of G of power less than N, has chromatic
number not exceeding N,,, then Chr(G) < R,,.

Proof We may assume that the vertex set of G is A, a regular cardinal
(otherwise we may use A*). By assumption, there is a good colouring,
fa. W, > @,. For £ <A, let gé(a) = [,(é) and, finally, define h: A —
w; /D by h(¢) = g¢/D. This h is a good colouring of G by w, colours.
[It is a good colouring because, if we assume that £, <A, {£,{ €EG
and h(¢) = h({), then
{a: gla) = gla)} = {a: £u6) = f.(O}

Cc {CI': {§$ g’} g Wa} "

= {a:a&AE ora&‘:Ag}

Cla:a& AN EA}=T (modD).
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Hence g./D # g;/D. The number of colours is X, because, as
lw /D| = R, the function h has the right number of colours.]
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