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COLLOQUIA MATHEMATICA SOCIETATIS JANOS BOLYAI
10. INFINITE AND FINITE SETS, KESZTHELY (HUNGARY), 1973.

NOTES ON PARTITION CALCULUS

S. SHELAH

§0. INTRODUCTION

We deal here with some separate problems which appeared in the
problem list of Erdés and Hajnal [1].

In §1 we consider problem 3 of [1] asked by Erd&6s, Hajnal and
Rado, which was the only open case (for infinite cardinals) of A~ (,u'_].“;_.
and we solve it affirmatively. Thus if N < M@ o <) <

then = 2 "~ A5, }2. We prove a canonization lemma for it.
n<w

In §2 we deal with problem 32 of [1] asked by Erdés and Hajnal,
which asks whether there is a graph G with R, vertices and with no
[Ny, 8,11 subgraph for which ¥, -» (G, G)*>. We provide a wide class
of such graphs, assuming CH.If V=1L is assumed we show that N, =
- (G,G)? iff G has coloring number < Ny.

In §3 we deal with problems 48, 50 of [1] (asked by Erd&s and
Hajnal): partition relations concerning coloring numbers.




In §4 we deal with problem 42 of [1] asked by Erd6s and Hajnal
(part A, B) and Gustin (part C). We get compactness and incompactness
results on the existence of transversals and on property B. We also find
sufficient and necessary conditions for the existence of transversals.

§1

Canonization Lemma 1.1. Suppose «, A, (i<k) are regular,

_—  def ;
i<j>N<X\ and N=ighj‘(‘)<7\r Suppose |A;l=X\, and F,

(i<x) isan ngplace function from A= U A, into x, 2X** <),
i<k
so 2xXtK < A

Suppose that for every B, S A, (i<a<k), |B;|<u@i) and a,€EA
(w<i< k) and CEAR, |Cl=A, thereis B < C, |B, | <p, such
that P ({B;: i<a), {a;: a<i< k) holds, for specified properties i

i

Then there are af € A;,, B, S A, such that

(1) forany a,,...€ U B, b,b'€B , ¢,c'€B, (a<pP) and
i i<a . & p

i<x
(1A) Fb,ay,...)=F®' a,,...);
(1B) Fyb,c,ay,...)=F(b',c,ay,...)=F(b',a},a,,...);
(2) forany a<k, P ((B;: i< ), a}: a<i<k)).

(3) If F; is three-place, 2X** < cf[u(i)] forevery i, P, hereditary
for the B/s for subsets of the same cardinality then:

a,a' €B,, b,b'EBg, c,c'EBT, a< pB<y<«k implies

Ffa,b,c)=F(a',b',c').

Remark. We could refine the lemma along the lines of [7] §35, but
there is no application of it. We can assume that the range of F, is 2%,

Proof. We may assume without loss of generality that the set of func-
tions F; is closed under permutations and identifications of variables.
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Define for any BS A, a€ A, tf(a, B) as the following set of equations
{Fi(f,!;)=c: i<y, P}(E,5)= ¢, bEB, cEX}.

Clearly |{tf(a,B): a€ A}| < 2'81*Xx_ Hence for every a< K, any
BI.EA‘. (i<a), |B;I<u,,

|{tf[a,l_ya B,):ac 4 }| <

x+_Z#(f)
2 ise  gox. [T o gy,
i<a

Now the number of such (B;: i<a) is 7 7\,'.‘(") = AT,

i<a
So the set C, of a€ A, such that for some B, S A4, (i<a),
| B;| < p(d), l{a' el i i (a’, iy{x B;’) = tf [a, iya Bf]} | < A, is the union
of <N -A*< A, sets each of cardinality < A,; hence is of cardinality
<A,- Choose af'€ 4, — C; for each i< k. Now define inductively

B, S A;, |B;|<u(i). Suppose we have defined B; for i<a. As a}¢
&C,, the set

By={ac4,: tf(a, U B)=tf(a, U B}

has cardinality A . As {tf (a, y B,VU{af: i< K}): ac Bi} has cardi-
<o
x+ 2 p(i)+«
fighty ' g2 5o <A, = IBi |; there are Bi SBL, IBil = A, and
t, such that for every a € Bz
t, =tf [.,:I,I.E{_JQ B,U{a’: i< K}] .
Now by assumption there is B, c Bz such that |B | < p(e) and
P ((B;: i<a), af: a<i<a)) holds.

Now clearly (2) holds by the choice of B . (1A) holds as B - Bé;
as for (1B), B, Cc Bz implies that Fi(b,a;, " N— Ff(b',a;,al, N Bl
and B, QB; implies
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F(b,c,ay,...)= Fyb,ap,

al,...)=Ff(b,c’,al,...),

Fl.(b',c,al,...)=F‘.(b’,a;,al, - _)=F,.(b’,c',a1,..‘),

and combining the equalities we get (1B). In order to get (3) we should
replace the B_ by a subset of the same cardinality.

Theorem 1.2. If k- (k)3, k=cfA, (2¥: p<\) is not eventually
constant, but is eventually > k, then

x= o 2+ 3
p< A

(and in fact even x—> (\, A\, w)?).

Proof. Let f be a function from [x]* into 2={0,1}. Choose
@ <A (i<k) such that ; u(i)=A and 28 g strictly increasing

K
and 2¢() >, and let A = (24D)* and 4= {a Unsa< N} I
for some i<k thereisa BS A, |B|> A such th;t f is constant on
[B]z, then we are ready; so assume there is no such B. As (by [4]) A~
~ (A, u(D)? and N> (u(),\)? hold for every A;C A4, |Ajl =N,
there are sets B, 4,8, , C A, of cardinality u(i) such that f has the
constant value 0 (1),011 B; (Bl.‘l). Define P ({B;: i< a), a':

a<i<k) (B, =B, UB, . f hasthe constant value O (1)on

Ba,U (Ba:,l)’ and IBQ‘OI = iBa,l | = w(o)].

So by Lemma 1.1 there are B CA, |B,|=p@), and (by (1B) in
the lemma) there is a two-place function g from k to {0, 1} such that
fla,b) = g(i,j) for a€B,, bEB, i<j. As k> (k) thereis ISk,
|I| =k and &€ 2 such that for any i<jel, g(i,j)=256. Let B=
= U B, ;- Then clearly |B|= fé u(i)= A, and f has on [B]? the

acsl]
constant value 6.

Corollary 1.3. If 8, <2*"@ <M< . then 2 27"
n<w
> (R, 8 )%

Remark. This answers problem 3 of [1], and Theorem 2 completes
the answer to the question “when A - (,u)%” for infinite A, p.
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., " . H 2 5‘\.
Conjecture 1A (Hajnal). If 8 <2 n0) < 2"* V) < | then
N . :
o 2 9P
N w

Remark. For all previously known proved cases of A— (u, p)? also

A- (u, 4)° holds; on the other hand = %1 s (€ 5)3.

n<w

§2. NOTATION

Notation. For a graph G, let V(G) be its set of vertices, and E(G)
its set of edges. We write ¢ € G instead of ¢ € V(G), etc.

Definition 2.1. \ - (G,)? (A= [G,)%. ) (G, graphs) if for every

i<a i<a
a-colouring f of A (i.e.afunction f: [?\]3 - {i: i<a}) thereisan i< «
and a one-to-one function F from V(G,) into A such that a# b€
€ G, A{ab} € E(G,) = f(F(a), F®)) = i, ((F(a), F(b)) #0).

Definition 2.2. V, (4, G)=|{a€G: |{bE A: a,b are connected} | =
= A}

Theorem 2.1.
(A) (CHY= R, =+ (G)} If V, (4,G) =R, for some countable
ACSG.

(B) (2* =A%) At = [G,)7.,+ ifforevery i thereis A, such that
Vi(4;, G) =2+ where A, S G, 14;1=\

Proof. Clearly it suffices to prove (B). Let {{o;, Fy): i, i< 9 oAl
be a list of the pairs (o, F), where a< At and F is a one-to-one func-
tion from A4 into AY; we may assume without loss of generality that
the range of F, is C §jf<2it.

7o R - il 4y E LRt o +

Let I(_(_ra‘__] = {af.. j<A"} and Bf. = [f*i(a‘ﬁ}. a; € A“;" BT,
(', ) € E(G, )}, We may choose the enumeration of V(G,) so that

I ;]
]B}I = A holds for limit j.

Now we define by induction on i the coloring f on [i]>. For

i.,j <\ we define fUi,j) arbitrarily. Suppose [ is defined on [i]2.
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Now we define f(i,j) for j<i. It is well-known that if {C J< A}
is a family of A sets, |C;l =\, then we can find pairwise dlS_]O].nt C c
c Ces IC | = A, hence we can define fU, @) such that if j,g<i, !Bfl
= ], B’ C i then

i, ): veBl}=i={(y: y<i}.

Now the coloring f is defined. Suppose F is an embedding of G,
into A* contradicting our claim, then for some i< A%, a=o;, F;=
=F1t A, and for some limit & we have LA<E< Xt ag EA =>B<6
and ﬁ< 6+ F(aﬁ)< 6. But then ﬂF(a LB # a<§ for every b EB‘
contradicting the deflmtlon of f.

Corollary 2.2, There exists a graph G with R, vertices which does
not have a subgraph of type [[By, 8,11 (bipartite graph) but B, — (G, G).

Remark. This answers problem 32 from [1] affirmatively.

Proof. Let A, e w;} be a set of subsets of w such that
a#( implies |4 n A1 <8,. G will have w; as the set of vertices,
and o, B are connected iff a<w<6, o:EA Then by 2.1 N, -
—> (G)z, but G satisfies the other requn'ements by the constructmn

Definition 2.2. The coloring number of a graph G, cl (G) is the
minimal cardinal A such that we can list its set of vertices {a;: i< Iy}
such that each a; is connected to < A a; g lor 724

Theorem 2.3. If G has coloring number B, and <\ vertices
then A\ - (G)f, for every n< ﬁ :

Proof. By [3] we can assume the set of vertices of G s {a;: i< pu},
where u <A, such that each a; is connected to < 8, a; s with j<i.

Let f: [\)*>{0,...,n—1} bean n-coloring of A.

Let D be a uniform ultrafilter over A and define g(o) = the
i€ n such that A, ={8<A: fla, B) =i} €D. (g is well defined because
if }\—A U...u4d, _1» the ASs are disjoint, and so A; €D for ex-
actly one i<n. ) Let ig<n be such that {a< \: g(o) = iy} €D. Now
define b < X by induction on j, such that g(b )=y, flb, bf) = s
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if @, a; is connected, and k #j = b, # bf. If for k<j, b, <\ is de-
fined, let Bl .0 k,} be the set of k <j such that a,a; are con-
nected in G. Then Akl’ --.,A4, €D hence Akl Qrndy €1,

[ m

hence it has cardinality A so there is bj By M0 4, -— {b,: k<j}.
1 m

Clearly a; > b, is the embedding we seek.
Theorem 2.4 (V= L).

(A) If G is a graph with 8, vertices which has coloring number
> NO (that is 8,) then Rl —r+(G)§.

(B) If each G, (< w;) has 8, vertices and coloring number
2
>R, then &1 — [Gi]i<w1'
Remarks.

(1) T first claimed the theorem incorrectly without V = L, and A.
Hajnal and A. M4até, who tried to reconstruct the proof, also proved
this theorem.

(2) We prove only (A). The proof of (B) is similar.

Proof. (A) We may assume without loss of generality that w; is
the set of vertices of G. We first show that

(%) theset JC w; of a< w; such that, for some j= j,=2a j
is connected to infinitely many B< a is stationary.

In fact, assuming the contrary, let CC w,; be closed and unbounded
and disjoint to /, and write C = {c;: i< w, } (c0 = 0). Now, for each
i< w,, rearrange [c,, ;1 1) in a sequence of type w; this rearrange-
ment shows that G has coloring number Ng, which is a contradic-

tion. So (*) holds.

Clearly, we may assume that if a€l then a is limit and l=a
holds. By Jensen [5] there are functions F,: a>a, (@€l such that
the set {a€l: Fla= F_} is stationary for every function F: W, > w;.
We are about to define the coloring function f: [wl]2 = {0,1}. We de-
fine f{i,j) by induction on max {i,j}. f is defined arbitrarily on [w]?.
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If f is defined on 812, B< w;, then define f(B,i) for every i<§p
such that {fiB, F,(/)): a<p, a€ I, and j€A_}=1{0,1}, where 4, =
= {y< a: {y,a} € G} (note that A, is infinite).

Assume that F: w, > W, is an embedding of G into w,; such
that if i and j are connected then AEW, F(j)) = & for a fixed 5
(=0 or 1). Clearly, C={a<w,;: F(j) < a iff j< a} is closed and
unbounded. By the definition of the Fa’s, the set {¢€l: Fta=F_} is
stationary; hence there isan a€ CNJ such that Fta=F,_ . Then the
definition of f with B = F(a) shows that there are 7, 4 < « such that
{v,a}, {7,a}€G and f(F(a), F(7))= 0 and fiF(e, F(¥')) =1, which
contradicts our assumption on F, completing the proof.

Conclusion 2.5. (V= L). For graphs G with 8, vertices, 8y
— (@)} iff G has coloring number < ;.

§3.

Definition 3.1. (A, u) = (k, X) holdé if every graph G with A ver-
tices all whose subgraphs spanned by a set of <u vertices have colouring
number < k has coloring number < X

See [7] for more material on this. Just as Erd&s and Hajnal [2]
notice that V = L implies a positive anwer to problem 42¢c of [1], we
can notice:

Lemma 3.1 (V=1L).

(1) Assume \ is regular. Then (LN > (B, Bg) iff N\ is weakly
compact.

(2) If \ is not weakly compact, then there is a graph of cardinality
N showing (A, N) = (B, Ny) that has chromatic number R, and eve-
ry subgraph of smaller cardinality has chromatic number R.

Remark. In fact we can replace ¥, by any p<X\; this partially
answers 48A [1] (when p is regular).
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Proof.

(1) If A is weakly compact, it is immediate that (A, A) (_2%0, NO)
(formulate a suitable set of Lh’h-semenoes such that every subset of power
<)\ has a model by the assumption of (A, N = (8, Ng)s and a model
of it gives the conclusion).

Suppose now A is not weakly compact. By Jensen [5] there is a
stationary CE N, Q€ C= cfa= w, and we may assume that <&,
o€ C=p+ w<a, but for every limit ordinal <X, CN & 18 not sta-
tionary. Choose A, C o for a€ C such that the order typeof 4, 18 @
and sup 4, =& Define a graph G with set of vertices {a & < \} and
set of edges {(i,@): i€ A, &€& C}. Now we prove by induction on &
that the restriction of G to {ii<a} has coloring number No- For
o=0, or o successor it is immediate; and if o is limit, choose a con-
tinuous increasing unbounded sequence &; <a i<cfa, ¢ C. By the
induction hypothesis the restriction of G to [ %, ) has coloring num-
ber ®,, SO let <; bea suitable order. Define an order <* on [0,a):
a<*b iff a<a‘.€b for some [ Of aiéa,b<ocf+l. a<;b for some .

For any a< @, let oy,<a <0y qs then
(b<*a:a,b are connected} =
={b<o:a, b are connected} U {b: @, b are connected,
b<,;a, ai<b<mf+l}={b<ai: beA,, ac CYUJU

U {b: b<;a, aiéb<o¢i+1, a,b are connected} .

Both sets are finite (the first one since A4, has order type w and & & C,
the second by the definition of <;). Hence the coloring number of G
restricted to {i: i< a} is N;.

Suppose the coloring number of G is < 8. By [3] there is an or-
der <* of {o: a<A} of order-type A such that {§<* a: B, are
connected in G} < No for every o. Itis well known that S={a<A\:
p<a=p <*q forany B<A} isa closed unbounded subset of A, hence
there is a€ SN C, and so A C{B: p<t a}; a contradiction.
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(2) By <>.x of Jensen [5], there are partitions (B%: n< w) of
o such that the set {a<X: cfa=w, Vn< w[B, Na= By} is station-
ary for any partition (B,: n< w) of A. Choose A, in the construc-
tion above so that if By is unbounded in «, then A, N BY #¢.

Definition 3.2, Col (A, u, k, X) holds if every graph G with |V (G)| =
| V(G)I = A, cl(G)>u, containsa [[k, X]] subgraph.

Theorem 3.2 (G.C.H.). The following are equivalent:

(A) not Col (¥ N, Rl, No)

w+1?

(B) not Col (¥

w+1?

8,8, Ny

©) (B, . 85) = (R, R))

w+1?

(D) there are a stationary set CE {a< R,y cfa= N, } and sets
S So tp(S,) = w,;, supS, = @, such that o,fEC, a+p=

= (8, N S,1< N,

Remark. This gives a partial answer to problem 5.7 of [3], which is
between (A) and (B).

Proof.

(D) = (A). Define G by V(G)= R+ E(G)={(a,p): a€ Sy,
B€ C}. Suppose 4 X B S E(G), [A41=R,, |Bl=8,. As |A|#|B|,
we may assume A< B (i.e. a€A,bEB=>a<b) or B<A. If A<B
then choose b, # b, € B, so Sb1 ﬂsz 2 A is infinite, a contradiction.

If B< A, the contradiction is similar. So G does not have an [[8y, 8,11
subgraph.

On the other hand, trivially, ¢l G < ¥,, as the natural ordering of
ordinals shows. Suppose cl (G) < R,, and <* is an order of R 4
confirming this; we may assume by [3] that <* has order-type 2 I
It is well known that {§ < w1 V(< §=a<* §)} isaclosed and
unbounded subset of W, 41> S0 some 6€ C belongs to it, hence it is
connected to NI of its predecessors, a contradiction. Hence ¢l (G) = N,,
but we have proved that G has no [[¥y, 8,11 subgraph, so (A) holds.
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(A) = (B). Trivial.

(B) = (C). Suppose G shows (B), thatis | V(G)| = Hw o cl (G) >
>N, but G hasno [[¥,,8,]] subgraph; so by [3] 5.5, every subgraph
G' of G with <R  vertices has coloring number < N,. Hence this
G shows that (C) holds. :

(C) = (D). Let G show (C), and assume V(G) = &w+ + For any

a<®  ,;, choose A7, nyw A2 ={i:i<a}, |[A7I<R,, and let
Flo)< ® ., be the first ordinal such that if n<w, BSA, and

c(B,A,)={y<B_,,: (Va€A,)(a )€ EG)=a€c B])

has cardinality < Nw then ¢(B,4,)< Fla), and if |e(B,A )= Nw+ L
then c¢(B,A4,) N {i: i< F(e)} has cardinality N ; and also if a<aq,
A={b<a: (b,a)€EEG)}, |AI<V_, B CA, |eB,A)I<RV __.,, then
c(B,A)< F(a). Now let C; ={6< L R 6> Fla)< 8}, We may
assume that if 6€ C; and [{a<d: (a,0) € E(G)}| = cf & for some
c>8, then |wa<?¥b: (a,d) € E(G)}| = cfé.

By our choice, for every G' S G with | V(G')| < ®R; we have
cl(G') < ®,, hence it is easy to see that G has no [[®;,8,]] subgraph.
Soif [{a< o (a,c)€EEG)}H =R, then c< F(o).

Let C={8€C;: |[{a< 8: (a, 8)€ E(G)}| = N, 1.

Let us show that C is stationary. If not, let C, c C,; be closed, un-
bounded and disjoint to C, and let

G, =46, 1R 4y F

Clearly for any i, the subgraph of G spanned by [§,,6;, (), G;
has coloring number < Z’*‘\l. By our construction and definition of C,,
if a€[6;,86;,,) then [{c:c< 6;, (c,a)€ E(G)} < K,. So it is easy
to see that cl(G) < §,, a contradiction. So C is stationary. For 6 € C
let S, ={a<3d: (o, 8) € E(G)}.

By definition of C, |8, = 8,. If for some a< 5,8, =8, O {E
i< «} has cardinality N,, then for some n, |A5 N S1> 8, hence
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6 < F(a), contradicting C< C;. So |S,|=R,, and tp (S5) = w,,
and sup S, =8, so cfd= ;. Suppose 6, <§, € C, Se.,1 ﬁSaj is in-

finite. (Note that cf 51 = 62 = w,.)
Let a=6,, A=S;, , B=§, NS, ; thenby the definition of F,
1 1 2

F(8,)> 6,, a contradiction. So C and the S ’s show that (D) holds.

Lemma -3.3. If the coloring number of G is < pu, then there are
no sets A,B of vertices such that:

|B|>|A|= u, and for every bEB
[{a€ A: (a,b)E E(G)} = .
Proof. Easy.

This enables us to eliminate G.C.H. from some results in this section
and from similar results after suitable changes.

84,
Definition 4.1. Let At > k.

(A) PT (A, k) holds if there is an indexed family S of A sets, each
of cardinality < k, such that S has no transversal, but every §' &S,
| S| <A has a transversal.

PT*(A, k) is defined in the same way except that A € 5= | 4| = k;
A= k. A transversal of S is a one-to-one function f such that for any
AES, IA)EA.

(B) PB (), k), PB* (A, k) are defined similarly replacing “‘has a
transversal’” by having property B. A family S has property B if there is
aset C suchthat A€S=2ANC#¢, A—C+#49¢.

(C) PD (A, u) hold if there is a graph G with A vertices such that
G does not have the property D(u), but every subgraph with <\ ver-
tices has. G has property D(u) if we can direct its edges so that the
number of directed edges emanating from any vertex is < pu.
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S

These properties arise from problem 42 [1] (A=1R, there); PT
from a question of Gustin; PB, PD from questions of Erd6s and
Hajnal. We give partial answers.

Lemma 4.1.
(A) PT* (A, k) implies PT (\,k*); PB* (\, k) implies PB (A, kT).
(B) If A\>«k then PT™ (A, k) iff PT(\, k).

(C) PT (m,p*), PT* (x*, k), PB* (2%, k), and PD (k*,k) hold,
but PB (A, NO), PT (A, NO), PT* (k, k), PB* (k, k), PD (k, k) do not
hold.

(D) If Kk, 2K, then PT (A, k) implies PT (A, k,); PB (A, Kky)
implies PB (A, K,).

(E) PT (A, k)= PT (\*, k) forregular \, hence PT (R, ,.8.)
holds.

(F) If k is singular, then PT (k, k).

(G) If cfA<cfu then PD (A, ) fails.

Proof.

(A) Immediate by the definitions: use the same family.

(B) Let the family S exemplify PT (A, k*); we may assume that
the elements of each A4 € S are ordinals. Let

S ={kU(AX{a}): AE€S, a<k'}.
It is easy to check that S’ exemplifies PT* (A, k)
(C) For PT (u,u") take

S={p}v {{a}: a< p},

for PT* (k*,k) take S={a: k<a< kt} (these examples are well
known). For PB* (2%, k) take a maximal family S of subsets of k of
power 2* such that A#B€S=>A%ZB, and S is closed under com-
plements (there is such family of power 2%, and we can extend it to a
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maximal one). For PD (k*, k) take the complete graph with x* ver-
tices.

It is easy to show that PT* (k, k), PB* (x, k), and PD (k, k) fail.
PT (A, B,) fails by Hall’s theorem, and PB (A, N,) fails by compact-
ness arguments.

(D) Immediate by the definitions (use the same family).
(E) See[9].
(F) Let k= 2 K, u<kyg<wk; <..., k, = U «, for limit 8.
i<p i<é
Let
S={{a}: a<k, a#k;, forany i<pu}u

Uffa: i, <a<k, b i<plu{{k;:i<pl}.

(G) Immediate.

Lemma 4.2. Assume V=L and let \, u be regular, \> i Then
the following are equivalent:

(A) A is not weakly compact.
(B) PT* (\, )

(C) PB* (A, p)

(D) PD(A\, )

(E) If A\ isinaccessible there is a family S exemplifying PB (\, \)
(and also PT (N, X)) such that no two members of S have the same car-
dinality.

Remark. Erdés and Hajnal [2] already noticed (A) = (B) and
the proof of 3.1 is similar to it. Therefore, we only give it here concisely.
Parts (B)-(D) give answers to problem 42 [1]. (E) is a privately commu-
nicated problem of Erdés.

Proof, Clearly if A\ is weakly compact then (B)-(E) fail. So suppose
A is not weakly compact. Then by Jensen [5]if u= Ry, and by a
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slight improvement of A. Beler otherwise, there is a stationary CCS
Cla<: cfa=cfu, B+p<a for B<a} such that for every 8 <A,
Cn & is not stationary. For each a€ C, choose 4, Ca, supd, =aq,
tpA, = u; then S§={A4,: a€ C} proves (B). Let G be a graph whose
set of vertices is A, and its set of edges {(a,f): a€ A 13}; this proves
(D). Now by Jensen [5], there are sets T* C a such that for any

A S\ of cardinality A, {¢€ C: AN a= T*} is stationary, and |T%|=
= |a). Choose A* € T*, |A%|=pu and then {4%*: a € C} proves (C).
Now (E) is proved by S= {T%: o€ C, a isa limit cardinal} (any §' &S,
|S'1< |S| has property B because S' U S (which is # §', as it is an in-
dexed family) has a transversal by [9]).

Notation. For a family S, and sets A4, B
S(4)={C: Ce S, CS A}
S(4,B)=84={C—B: CES, CE 4, CLB}.

Definition 4.2. Define m(S, k) recursively, where S is a family of
sets of cardinality < k, as follows:

Case 1. |S|< k, then m(S,x) is O if S has a transversal, and
—1 otherwise.

Case Il. A= 1S|> k is regular. Then m(S, k) is — X if there is a
continuous increasing sequence of sets 4, a< A 1A4,1<A, and

AeS=AC<S U A, and C; or C, is stationary where
a<A

¢, ={o 84~ U S(4,) # ¢}

C, = {a: m[S(4 A,), k] < 0}

at+1?

or | y A, I<A; and m(S, k) = 0 otherwise.
a<< A

Case 111. A= |S|= k has cofinality RO, )\=b§a+ﬁ, where k=N _
and 0<f< w,. Then m(S, k) = 0.

Remark. The definition is interesting only if k is regular k= N -
LIRS A
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Lemma 4.3.

(A) If for some A, m(S(A),k) <0, then S has no transversal.

(B) If F fsa transversal of S, and m(S4, k)= —u then {b€ B:
for some C€ Sy, F(C)=Db)} has cardinality u.

Proof. Immediate.

Theorem 4.4. Suppose k=R isregular, |S|< Ea+wl. Then S
has a transversal iff m[S(A),k]=> 0 for every A.

Proof. The only if part is 4.3 (A). So we now prove by induction
on |S| that

(#) if for every A, m[S(4),k]= 0, then S has a transversal. Note
that if |S(A4)|> 14|, S(4) has no transversal.

Case 1. |S|< k, there is nothing to prove, by definition.
Case II. A= |S| is regular.

We may assume that S is a family of subsets of A and |S@BI<A
for B<\. Let

C, = {a<\: there is A€eS, ACa supAd = «}
C, = {a < \: there is ASA aC€A4, |[AI<A
such that m(Sf,K)<O}_

If C, is stationary, put A, =o; then m[S(\), k] = — A, a contra-
diction.

If C, is stationary, define A_ by induction. If A, =a€(,,
A, isthe 4 mentioned in C,, otherwise A, = B where B is
the first ordinal bigger than any y€ A and than « Ay =9, A=

= U A4, for limit 8. This shows m[S(\), k] = — A, a contradiction.
a<b

Hence there is a closed unbounded C € \ disjoint to C; U C,. Let C=
= {ofi); i<A}, S;=8UV. As €nC, =9, S= U {A: A -, €S}

andas CNC,=¢ for every A, m[S;(A4), k] = 0. So by the induction
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hypothesis each S{. has a transversal FI., and F defined by F(A)=

=F(A-a) if ASq, ,, A%q isa transversal of S.

Case III. |S|= N N, o=k clb=w, 06<w,.

at+é?

We may assume that § is a family of subsets of 8 __,, and let
3 "
A, < NM_&, L 7\’! = 8,5 It suffices to prove

n<w

(##) forany A, €N . with [4 /<N
with AOSAIQNM_E, A 1<B,

we have m{.S":f, k] = 0.

e there is an A1

such that for any 4, € R

& a+f

Indeed, assuming this, define A(n) (n < w) recursively such that
|A(n) | < Nc:—?—ﬁ’ 7\“ C A(n), and for every A, m(Sﬂ("}, k)= 0. Then
by the induction hypothesis S[A4(0)], S[4(n + 1), A(n)] have transver-
sals, and combining them we get a transversal of S.

Suppose that A(} contradicts (##), and let u= IAO | + k. Define
Aa, a< u*t by recursion so that IAE | < p. A0 is already defined, and
Ay, = U A, forlimit 8. If A is defined, then, by the definition of
i<é
A

thereisan A with |4A|< Y m[S4 ,k]1<0, and, as is easily
o

0}
seen, with A QAQ, and choose such A with minimal cardinality. If

|A| > p, then we get by definition 4.2 that m(S4 ,k)=— |84 |<
o o]

atd?

<—|A|<—u, and so, by Lemma 4.3 (B), S(A) has no transversal, but
|S(A4)| < 8_, ;. so by the induction hypothesis we get a contradiction.
Thus |A| < u; let A=Al Now clearly r,\“s[.'S‘(AmJr 124,),K) <0,
hence m[S(AMJr ), k] = — u*, a contradiction. So (#+) holds, completing

the proof.

Corollary 4.5. If B is limit, 0<B<w,;, k< Naﬂi then
PT (N‘Hﬁ, k) does not hold.

A similar theorem is

Theorem 4.6. If A is a strong limit cardinal of cofinality NO, K< A
then PT (A, k) does not hold.
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Proof. We may assume that S is a family of subsets of A of car-
dinality < k such that each §' €S, |S'|< A has a transversal. We must
have |S(A)I< A forany A S X, |A|<X (as N is strong limit), hence
| S(4)| < | A|. Similarly to the proof of 4.5, it suffices to prove

(s+%) forany A S\ with |A|<\ thereisa B,ASBCA, and
a transversal F of S(B) such that if C is the range of F then the
family S'={D - C: D€ S, D & S(B)} satisfies: for every s"Ccy,
|S"1 <A, 8" has a transversal.

Suppose A €A, |A| <A\ is given. If taking B = A, there is a trans-
versal F of S(A) satisfying (»»+), then we are ready. Otherwise, for
each transversal F of S(A4) there is a subfamily S, of §— S(4), such
that |Sp1< A, and S}r ={C—Range F: C€ §;} has no transversal. Let

A= 2 A,s A, <A, and S" = U{Sp: F is a transversal of S(4),

n< w

|Sz1<A,}. Clearly |8"|< 2414+ A, <\, solet F" be a transversal
of S" U S(4). Let B be the smallest set with A S B such that we have
F*(C)eB=CCB forany CES and n< w. Clearly B exists and
|IBI<1A4l+ k+ Ro < A, hence S(B) hence a transversal F,, and let

F, be its restriction to S(4), and let A > ISFl |. Now we shall show

that S},l has a transversal F, and so we get a contradiction: if C€ SF1

and C¥B, then let F(C— Range F,)= F"(C) (which € B) and if
Ce S‘,;.1 and CC B, thenlet F(C— Range F,)= F;(C) (note that

C % Range F £ ) It is easy to check that the F is a transversal, a contra-
diction. So (#++) holds, and the proof is complete.

Open Problems.

(A) In 4.4, what can we say about singular cardinals A of cofinality
e

(B) In 4.6, can the strong limitness of A be dropped?

(C) Can we generalize the definition of m(S, k) to all possible |S]
so that 4.4 holds?

We can deal with PB as with PT and prove, e.g.
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Theorem 4.7. If cfA= NO <\, A is strong limit or A= Na—l-ﬁ’
0<pB< w, then PB (\, n) does not hold for any K <\

Added in proof. The answer to all questions is yes; the proofs will
appear in [10]; there we defined m(S, k) = 0 whenever | S| was singular.

We noticed long ago that there was a trivial solution of problem B:
in case A= |S| issingular, m(S, k)= — A ifno 'S S with |S—58'1I<
<\ has a transversal, and m(S, k) = 0 otherwise.
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