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THE SOLUTION TO CRAWLEY'S PROBLEM

ALAN H. MEKLER AND SAHARON SHELAH

In this supplement to our paper, ω-elongations and Crawley's prob-
lem, we show that if (V = L) every Crawley group is a direct sum of
cyclic groups.

A simple argument completes the work begun in [MS] and allows us

to show if that if (V = L) then every Crawley group (no matter what its

cardinality) is a direct sum of cyclic groups. (See [MS] for definitions and

conventions.) We first note that in Theorem 2.2 of [MS] we prove

something stronger. Namely

THEOREM 1. Assume (V = L) and let G be a group of cardinality at

most ttγ such that pωG — Z(p). A separable group A is a direct sum of

cyclic groups iff for every ω-elongation H of Z(p) by A there is a homomor-

phismffrom H to G such thatf(pωH) Φ 0.

LEMMA 2. Suppose A is a separable group of length ω. There is an

ω-elongation H of Z(p) by A and a group G such that pωG — Z(p),

\G\ < 2S°, and there is a homomorphism f from H to G with f(pωH) Φ 0.

Proof, Choose B c A a basic subgroup and write B = Bo Θ Bλ where

Bo is countable with elements of arbitrarily large order. Let A* be the

closure of Bx (i.e. A* is the maximal subgroup of A so that A*/Bτ is

divisible). The subgroup A* + Bo = A* θ Bo. Choose Ho an ω-elongation

of Z(p) by Bo. Let Hλ = A* Θ Ho. Finally choose H an ω-elongation of

Z(p) by A containing Hv Since H Ό A*, we can let G = H/A*. Let t

generate pωH. We have the sequence (/ 4- ^4*) >-> G -» A/A*. Since t £

A*, to complete the proof we only need to note that A/A* is separable

and \A/A*\ < 2*°. Both of these claims are easy to establish by first

choosing an independent set of generators of Bo and then identifying

A/A* with a group of formal sums of multiples of these generators.

THEOREM 3. Assume (V — L). Every Crawley group is a direct sum of

cyclic groups.
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Proof. Suppose A is a separable group which is not the direct sum of

cyclic groups. By Lemma 2 we can choose an ω-elongation H of Z( p) by

A and a group G such that pωG ~ Z(p); \G\ < 2 X ° ( = ^ i ) ; and there is a

homomorphism f\ H -* G with f(pωH) Φ 0. But by Theorem 2.2 there

is an ω-elongation Hf of Z(p) by A such that there is no homomorphism

g: H' -> G with g(pωHr) Φ 0. Hence A is not a Crawley group.
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