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§ 0. INTRODUCTION

The main aim of this article is to make propaganda for [S 1];
hence novelty is not the intention; there are many explana-
tions, definitions and theorems and few proofs. No pre-
vious knowledge of stability is required, but then you have to
take some statements on faith. We have in mind mainly those
who are interested in algebraically-minded model theory, i.e.
in generic models, the class of e-closed (= existentially closed)
models and universal-homogeneous models rather than ele-
mentary classes and saturated models. So our main point is
that though stability theory was developed for the latter con-
text, almost everything goes through in the wider context
(with suitable changes in the definitions). We also examine
some specific algebraic theories (). An exact list of the theo-
rems from [S 1] which generalize or do not generalize, will be
included in the Ph. D. thesis of M. Abramsky.

At this stage I will define stability theory as an attempt to
give a classification of, and structure/non-structure theorems
for elementary classes, and other related classes. An ideal
structure theorem is a characterization (up to isomorphism) of

(*) T would like to thank Paul HengagD for his hospitality and for his
endless efforts to organize the conference. | thank also Makowski, WILKIE,
Hopges, CuERLIN and Makowski again, for writing notes on my lectures,
on which this paper is based.

This research has been partially supported by the Israel Academy
of Sciences.

(') It seems that we get new information on the number of modules over
a fixed ring (see 8.7).
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each model in the class, by invariants, which are cardinals or
sets of cardinals etc. (e.g. the dimension for algebraically
closed fields, or the Ulm theorem for countable torsion groups
(see [Fu]), or the theory of one equivalence relation (a model
M = (IM|, E) is characterized by the function f, f(A) = [{a/E:
la/El=A}).

An ideal structure/non-structure theorem is the characteri-
zation of the classes which have a structure theorem, together
with a proof of the complexity of the other classes. More ex-
plicitly the problem presents itself as determining the pos-
sible functions I(A, K) = the number of models M & K, of car-
dinality A up to isomorphism. We have now a complete solution
only for the family of the classes of W -saturated (¥) models

-4

of a complete theory (the theorem essentially says that any T

A
which does not satisfy I3, T) = 2, is like some Ta; Ta has

equivalence relations E; (i < o) where E; refines E; when i < ).
N laf
Notice that the question may degenerate when 2 =2 +

)]
2 °, which may hold for every W .
a

We consider a classification meaningful if (but not only
if) it helps in proving theorems not mentioning it, or has
applications or appears in a characterization .For example W,-
stability helps in proving Morley's categoricity theorem and
also in dealing with the differential closure of a differential
field of characteristic zero. Stability helps to investigate Keis-
ler's order ([K 1], [S 4]), to prove the uniqueness of prime dif-"
ferential closure of fields (8.7), to characterize {A: K has a
homogeneous-universal [saturated] model in A } and so forth.

Notice, that it is usually not hard to find properties implying
complexity or simplicity; the point is to have both. For exam-
ple R,-stability is a very strong property; but there are theo-

(®) This notion is slightly stronger than N,-saturated. It means that every
type almost over a finite set is realized, see § 6.
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ries T which are not W,-stable, but IAT) < 22“", and have
a structure theorem (the example is due to Morley). Hence we
use superstability or stability more than R,-stability, When
we deal with |T|*-saturated models stability is more interest-
ing; but for elementary classes superstability is better. By § 8
we can have a structure theorem for the class of R-modules,
iff the theory of the class is superstable; but if we assume
| R|*-saturation, or compactness of appropriate kind, we can
have it in general, as all modules are stable.

A non-structure theorem is a little vague; specifically we

A
are proving I(A, K) = 2 . However this does not a priori ex-
clude the existence of a complete set of invariants. The main
non-structure theorem of [S1] is for K = Mod T when T is
not superstable and it is Presented in [S3]. However from
this proof it follows that we should use invariants of the form
A/DA (where A is regular, A c }, DA the filter on A generated

by the closed unbounded subsets of 1) and even this is not
sufficient (e.g. when V = L) (explained in [S 2] for separable
reduced p-groups).

Eklof [Ek] devised a more rigorous version of the thesis that
there is no structure theorem here, by Feferman-Sabbagh
generalized x-functors. Note that in general, the Lm)-theory

of models (of cardinality 1) does not characterize them
up to isomorphism when T is unsuperstable, A > W, is regu-

5. . . 3
lar (%); and if L<k(T) (n regular) also Loo,l, G 1§ not suf

ficient (G(u) is the game quantifier (...Vx Jy | ).
a a a<<p
We can apply the non-structure theorem itself; but usually
we have to check directly that the appropriate construction
works. This is done in [S 2] for reduced separable p-groups and
in [MS] for universal locally finite groups which are not ele-

(®) Added in Proof June 76: Meanwhile it was proved also for singular

A= Ax".
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A
mentary classes). Usually we get the existence of 2 models,

no one embeddable in another (the kind of embedding is de-
termined by the kind of formulas exhibiting nonsuperstability).
The problem of many non-isomorphic models is closely related
to the existence of rigid models; [M is rigidiffa * beM =
(M, a) # (M,b)] so we can apply the method to (complete)
order and (complete) Boolean algebras (see [S3]) (improving
previous partial results [Jn] [Lz] [Mc] [Mm]). Another related
problem is indecomposability. Here unsuperstability of the
theory of modules over a ring R gives us for each regular
A> |R|, an R-module M of cardinality A which is not the free
sum of modules of smaller cardinality (see 8.6).

We could have looked at the problem differently: instead
of building models from sets, i.e. cardinals, we could build
then from ordered sets; e.g. to characterize a real closed field
by its order. Unfortunately we know essentially nothing in
this direction. We can reinterpret the problem as classifying
the unstable theories by complexity. The concrete problem we
have is the classification of countable (first-order) theories
by Keisler’s order (see [K 1], [S 4)).

Here the theory of linear order is maximal ([S 1], VI), the
stable theories are classified ([S4]), and the problem is to
classify the unstable theories without the strict order property;
(see [S5] §4, [S1] II §4, 11T §7, VI). There are at least two
classes, and it is clear they should have some positive proper-
ties exemplifying their simplicity.

Another related problem is e.g. categoricity over a predi-
cate (see [G 1], [G2]; this is quite complicated, (see [S 6]).

Notation: L will be a first-order language; T a first-order
theory in L; g, y, 4 formulas; ¢(X) means all free variables of ¢
arein¥X.

We identify, L with its set of first-order formulas.

Let A, ®, ¥ be sets of formulas o). Let ANd = { A ¢:
i=1

¢ = ®} etc, and eg. I A® = I (A ®). Sub @ is the set of
subformulas of ®, including the formulas of . M, N are mo-
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dels, |M| the universe of M, 3, b, ¢, d elements, 7, ... finite
Séquences. We write T & A instead of Range (3) € A; do not
differentiate between 7T and its range, and write T & M instead
of 3 & [M].

[} a> g <% "
Let A={f:f:a—>l}, A= Ui, = ¥ A

Sketch Proof of the Nonstructure Theorem (A regular)

First Approximation: Unsuperstability gives us many types

®
P_over a small set. In fact for each there is a tree A, points
n
w> w
{a :ve 1}, {b ‘M€ i} and formulas 9 (n<w) such
v n

that for each n the formulas {¢ (x, a ):ve& "} are pairwise
n v

(]
inconsistent but [= ¢di;a ) me A). (we have a and
n'n  qfn n
not a , for notational simplicity only).
n
w
The types p = {op (X,a  ):n<o} me 3 are mutu-
n n " nln
! w
ally contradictory and there are A of them. If we take Skolem
Hulls of various sets of the {b } we can hopefully realize
n

various collections of p’'s while omitting others, and so get
i

many non-isomorphic models. How shall we do this ?

Second Approximation: Our problem. would seem simpler

W=
in the unstable case, where the tree ) would be replaced

by a linear ordering containing all the points b . Then we
n

could build Ehrenfeucht-Mostowski models over the {a } and
v
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some of the {b }, and try in this way to realize some types
1

and to omit some others. What we must do here is:

1. Develop a theory of trees of indiscernibles and Ehrenfeucht-
Mostowski models over such trees.

This can be done in a very natural way and then p is realized
"

0>
in the Skolem Hull of {b :q e X} U {a :ne A}liffye X
n |

Now we start again with a tree of indiscernibles

w> L]
{a :ve A}U{b :ne LA} We will restrict our attention
v n

w
to sequences n & A which are increasing, and we let

w>
B = {b :limnm) = a}U{a :ve A}
a n — v

for @ a limit ordinal. We will build Ehrenfeucht-Mostowski
models over sets of the foom B = | B for X S a set
X aeX «a
of limit ordinals. Let My = EM(Bx) (an Ehrenfeucht-Mos-
towski model). We would like to have the various models My
non-isomorphic. This requires more care,
Third Approximation: All we have to do now is:

2. Choose the sets X so that the models My are non-isomor-
phic.
The trick is to use stationary subsets of A.
Fact (Solovay [S]]) (A regular). There are A disjoint stationary
sets S S A (a <<A).
a

Fact (Solovay [Sl]). For A regular, each stationary set can be
partitioned into 1 disjoint stationary sets, hence there are dis-
joint stationary S < {y <Ai:cf Y = W} (a<<)p).

13

e et 450 etm g i et
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Now for W < i let Xew = U{S :ae W}, then the
[+

various wa are non-isomorphic (this should be proved more

carefully.)
R
Fourth Approximation: But if % °>1 then Iwal >,

hence for each y<Mk cfy = R,; choose an increasing 7
Y
converging to vy, and redefine B as
a

w>
{b }U{a ive A}
n v

a

Now we summarize the content of each section.

§ 1. Here we review the results from [S 7] on stability for
homogeneous models including the stability spectrum theorem,
and the equivalence between unstability and order. A worth-
while new theorem proved here is

Theorem 1.13: There is a 9-homogeneous model of cardinality

<A
Mifh =% +|D| or D is stable in A (remember that 9 is

<k(2)
stable in A iff A = A(QD) + 4 ).

This generalizes a similar theorem for saturated models
(formulated in [S5] by combining results of Morley and
Vaught [MV], Shelah [S 7], Harnik [H 1] and Shelah [S 1]. So-
me specific instances were proved by: Eklof and Fisher [EF]
(abelian groups), Boffa [Bo1], [Bo2], [Bo3] (infinite generic
skew fields).

§ 2. Here we discuss two additional assumptions, which
make the stability theory more like that of an elementary
class; prove that a class of infinite generic models satisfies
one of them; generalize this; and show that the more general
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cases are not so far from the main example. This provides us
also with a tool to construct examples of classes of infinite
generic models.

Historical Note: The contéxt 2.1-2.5 is of Robinson [Rb2]; a
generalization to infinitary languages L is due to Wood
X’ 0
[W 3], and a definition and investigation of K® is in Cherlin
[Cr] (for the category of embeddings), sketching the generali-
zation to infinitary languages LA i S0 in 2.6-2.10(1) there is
x

nothing essentially new. (4 '

§ 3. Here we define appropriate ranks, prove some of their
properties, and use them to investigate the spectrum of sta-
bility. »

As the treatment of Morley [Mr] of ranks and types is re-
lated to Boolean algebras, our treatment is related to lattices
(see Simmons paper in this volume).

H. Priestly [Pr] develops the right kind of Stone space for
lattices. Fisher, Simmons and Wheeler [F S W} and McKenzie
and Shelah [McS] prove some model theoretic results essential-
ly equivalent to the fact that countable lattices have < W, or

2 W ultrafilters (in [FS W] this is done for the number of
theories of e. closed models of T, finite-generic models of T, and
infinite generic models of T, T countable; in [McS] for the num-
ber of ep-types realized over a countable set in appropriate
N ;-homogeneous models.

§ 4. Here we deal with ¥-prime models. We describe the
natural way to construct prime models, prove their existence.
They are unique when our class is R,-stable. The most im-
portant theorem is that for a countable stable T, if over A
there is a strictly prime model, it is unique; we prove it for
Al < Wy only.

§ 5 Here we show that Morley's categoricity theorem gene-
ralizes easily. '

(*) Added in proof June 76: Independently, W. Forrset generalized some
theorems on Nq-stable theories to the context of assumption II (see § 1).
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§ 6. In the context of assumption II(i.e. infinite generic model
for a universal T with the amalgamation property) we develop
«forking» and prove its important properties.

Some of this, mainly the symmetry lemma, was developed
later and independently, from a different point of view by
Lascar (see this volume and [Ls]). He concentrates on super-
stable T and complete types over models.

§ 7. We deal with some «negative» results. We quote Macin-
tyre that any infinite field with an W,-stable theory is alge-
braically closed; and then prove that W;-categorical division
rings are fields, using Baldwin theorem (ap << w). We then show
how our general results include a theorem of Boffa [Bo 1],
[Bo 2], [Bo 3], (on {%: there is an infinite generic division ring
of card 1}) and solve one of his problems (on the number of
non-isomorphic infinite generic division rings).

Historical Note: (Lemma 7.5 (1) is from Macintyre [Mc 2]
and 7.3-7.6 are from letters to Macintyre distributed in sum-
mer 73. Later Baldwin and Saxel [B S] reproved 7.5. There exist
papers of Zilberg on W,-categoricity of rings, partially over-
lapping Cherlin and Reineke [CR] ().

§8. We mainly deal with modules. They are always stable
(Baur [Br] Fisher [Fi]) and we characterize k(T), and in parti-
cular superstability. We also give essentially, a structure/non-
structure theorem for the class of R-modules over a fixed R,
and show that formulas in this theory are not too complicated
(8.3).

We also deal with differential fields and with separably
closed fields and conclude with a criterion for an operation
on models to preserve stability,

§ 1. HOMOGENEITY.

We shall deal in this article with four kinds of classes, for
which we have stability theory. They are essentially:
Kind I: Elementary classes.

®) Added in Proof June 76: Zilberg also proved independently that
Nj-categorical division rings are fields.
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Kind II: The e.c. (existentially closed) models of an universal
theory with the J.E.P. (joint embedding property)
and the amalgamation property.

Kind III: The e.c. models of a universal theory with the
J.EP.

Kind IV: The elementary submodels of some (9, 4) — homo-
geneous model. (%)

More complicated cases, like the class of models of some
Ye Lw o OF abstract elementary classes will be dealt with

v

elsewhere. In kind II (but not I1I) we can deal with the class

of models of T. ()

In kind I embeddings are elementary.

Kind I will be the subject of the book [S 1}, and kind IV
was the subject of [S 7]; the other two constitute the (small)
novelty of this article. Here we shall review the necessary
facts from [S 7], in order to use them and to see how restric-
ting the context adds to the information. We shall also note
that kinds IT and III can be replaced by a somewhat more ge-
neral condition. Some of the results will be reproved in the
context of kinds II and III.

We prove here one new theorem: there is a (9, 1) — homo-

<i
geneous model of cardinality A jff A = )  + [D| or D is
stable in A (for good 9).

Definition 1.1.

We define the A-type of the sequence & (usually finite) in
M over A by
P, EAM) = {¢X5):be A ME ¢35, X V) = A}

() We assume there is a (2. M)-homogeneous model of cardinality > A
for every A.

() Note that in kind I, for every model M of the theory, the type
of every 3& M in any universal - homogeneous model N, MEN, is
uniquely determined iff M is e-closed; whereas in kind II this holds for
any M. Hence it is natural in kind II to deal with the class of models
of the theory and in kind III with the e-closed ones.

L R
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When A is L(M) = the set of first order formulas in the lan-
guage of M, we omit it.

Definition 1.2,

The finite diagram of M, DM), is {tp 3 @, M):3eM,
(@ finite) }.
Let 9 denote such sets,

Definition 1.3,

M is A-homogeneous if for every aybye M, i <a<1 and
a & M such that
[¢3

tp (<a;: i <a>, @, M) = tp (<b;:i<a>, @, M)
there isa b e M such that
a

P (<ai:i <> 2, M) = tp(<b:i<a>, 2, M.

Defini tion 14,

Mis (9,4 — homogeneous if it is j- homogeneous and

IM) = 9. M is 9- homogeneous if it is (9, M) — homo-
geneous,
Assumplion I. € is some fixed (9,1,)- homogeneous model,
for a fixed 9 and 1, sufficiently large. All models are elemen-
tary submodels of ¢, all elements, sequences of elements and
sets (a,...,3, ..., A, ...) are from 6. Satisfaction = will mean
«in €»,

Definition 1.5.
S';D(A) = {tp(:’;‘,A, €):aes¢g /(E) = m} (If AcM< ¢,

S‘“g) (A) depends only m, M, A and 9.
Lemma 1.6.
(1) A set p of formulas with parameters from A is in SEB (A)

iff:
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(i) the variables are ¥ = < Kot eeey Xy >
(ii) p is complete finitely satisfiable
(iii) for each B e A, {¢ XV:e@b eplew
(2) M is (9,4) — homogeneous iff whenever Ac M, (A
<hand p e S?D (A) then p is realized

(3) If M, N have cardinality 4, DM) = 9(N), and M, N are
homogeneous then M = N, If only M js % — homogeneous,
N can be elementarily embedded into M.

Lemma 1.6, (2), stresses the similarity of homogeneity and sa-
turation.

Definition 1.7.
(1) D is A-stable iff m < o and |A| < 1 implies |S2(A)| < A
(2) 9D is stable if it is A-stable for some 1.

Definition 1.8,

9D has the - order property if there are (i < }) and ¢ (%, ¥)
such that

Eo@,T) iff i <j,

Theorem 1.9, (Stability vs. Order)

(1) If 9D has the \-order property for all ) then 9 is unstable
(in all }). '

4 %
(2) If 9 is not \-stable, A = ) -+ o2 » # 2 |L| then 9 has

the - order property.
ILI +
(3) If 9 has the x-order property for every » < 3(2 )
then 9 has the x-order property for all x.
Remark: Essentially this theorem says that unstability and
order are equivalent. See [S7], [S8].
Theorem 1.10. (The stability spectrum theorem).
Always (1) 9 is unstable

'

e e et e e e L

or (2) there exist cardinals KD, A (D < (2,L,) +
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<K(@) <x B
such that: 9 is \-stable iff \ = MD) + 4 LA = g A
w<n

Remarks: (1) In (1) we stipulate M) = k(D) = oo, in (2) if
we demand «k (9) is regular» then x(9) is unique.

(2) In [S 7] we prove more; that if there is a (9, A+) — ho-
mogeneous model of cardinality > A+ and 9 is »- stable then
there are (9, x) — homogeneous models for all «,

(3) For theories, and even for kind III, ¥ (9) < |T|+ and

x(@)szm.

Definition 1.11.

Let I be a set of Séquences of fixed (finite) length from €,
I is indiscernible over A iff for all distinct Fel(in), -
tp(@™... AT, _y, A, €) is fixed,

Theorem 1.12.

(1) It D is A-stable, |A| <4 < I1], I a set of sequences from
€, then there exists I' C I, IT| = A%, I indiscernible over A.
(2) If 1 is indiscernible over A, for any a there is J c 1,
| <x(9D) such that 1— is indiscernible over A U J U 3.

Remark.

By 1.12 (2) for any indiscernible set I@ael=s /@ = m),
I1| 2%(9), and A, we can define
Av(LA) = {9 ®B): for k(D) a's in I hm(aTB)}ss;)(A).

For theories and even kind II it suffices to assume [ is in-
finite. Question: what about kind III and IV ?

Theorem 1.13. (Homogeneity spectrum theorem). (%)

There is a (9D, 1) — homogeneous model of cardinality ) iff

<A
A=21  +|D| or D is stable in 1.

(®) In fact, it suffices to assume on 2 that there is a (2, A)-homogeneous
model of cardinality > A and replace «2 stable in A» by «M stable in i».
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Remark.

Naturally this should have appeared in [S 7] but I did not
know it at the time. The reader can skip it easily.
Proof. The proof is split into cases.

<h
case 1: A = % + |9|
It is easy to prove the existence (by the classical [MV]).
case 2: A< |9|.

The non-existence is trivial.

<A
case 3: A<<A , @ unstable.

See [S 7], 6.5 (2), using the order property.
case 4: 9 stable in A.

If A is regular the proof is trivial.

So assume A is singular. Now we start using [S 7] notions
and theorems heavily,

) <k(@)
As 9 is stable in A, A = A hence x(9) < cfA.
We define an increasing sequence M; (i < 1%, |M;| = A
such that each qe Sz) (M;} is realized in M;,; and Ma =

.U M for limit o.
i<8

Let A, M).2' |A, ]| <A po € S“'Q (A;) and we should prove
that p, is realized in MAS'

Let pSpe SZ)(MM)' and choose C& M., |C| <x(9D)

such that p does not split strongly over C (see [S7]§4). As
cf A 2k(9) for some a, <A, CC M%. As 9 is stable in A,

D does not satisfy (* ) (see [S 7], Def 2.3 (1) and Th. 2.6, 2.7),

hence |[{i<A:p! M}.(i +1) splits over MM}|<1, hence for

some B, a, <f <A% and p I‘Mﬂ + does not split over Mﬁ'

Now we shall prove that p does not split over Mﬁ+l' Other-
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wise suppose b, T e M}.ﬂ' tp(B,M[3+ ) = tp(@ MB+A)' (X D),

A

“19(X,T)  p. As before there is vy, <y<<B + A such that
tp(b, M + ) does not split over M* (A > w as A is singular).
Y+w

i i 1] ' 7 [
Choose En e My+n+1 which realizes tp(b, MY+n) so by [S7]

p. 83, {15n :n<<w} is indiscernible over M).' and so are
{Bn n<w} U {b}, {15n :n<<w} U {c}. Hence p splits strongly
over M ; hence over C, contradiction. So p does not split over
M Y

B+

For each v,f +A<<y<<l: choose EY e My+1 realizing

pry, hence, again by [S7] p. 83, = {ay:ﬁ +A<y<at}

is indiscernible,
ForeachT e M).S I_ = {@ e 1:arealizes p [ T} has cardinality
[

A, hence lI—-I_cl <k(9), hence p[ A, = p, is realized by

some § 1,
Y

Before treating the final case, we prove

Lemma 1.14. Suppose A € B, and each p € S?D(A) (m < w)

; No IAI'*‘NO
is realized in B. Then |I'| < IUS"‘Q)(A)I < | 9|

whereI' = {p:p e S“:G)(B), m < w, p does not split over A}.

Remark: This improve [S 7], 2.5.
Proof: For each p €T we define by induction a‘p(i<x(.@))

such that tp(aiJ B U {E’p 1 j <1i} extends p and does not split
over A.

This is possible by [S7] 2.2.(2), and I, = {E:, i<k(D)} is
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indiscernible over B. Now
(*) if b e B, tp(b;, A) = tp(b, A), q = tp(E"E;,A)

then |{i <x(D):q * tp(B 7, A)} <x(9).

(because we can define af, (D) < i<k(9D)*) such that
tp(i:) ,B U {a!p :j<i} U b)) extends p and does not split over

A. Again this is possible and I' = {'é:, i<k (D)t} is indiscer-

nible. Clearly for i>x(®), tp(b~3;, A) = tp(~7, A) =
tp(b_"a;,A). So [faeTl:q = tp(6;*T A)}| >«(D); hence,
by 1.122), {FTeT:tp(E*a, A) * tpB, T, A)}| <x(D). So
(*) follows.).

So if p # qe&TT, there is no automorphism F of €, with

F[A = the identity and F(@) = 7, (i <w(9). Hence
tp(<§; H<k(D)>,A) = tp(<§; 11<k(9) >, A) hence by
the indiscernibility tp(<§:) 1i<eo>, A) #+ tp(<atl ri<o>, A).
Simple computation gives our result.

Continuation of the proof of 1.13.

Case 5. 9 is not stable in A, but 9 is stable, 1 > |D| and

<k
1 S

K@

<K(2)
If A > 1, this is easy by [S7] §6. So we assume A =

<K(D) n
A . Similarily we can assume that 2 >} implies not
(*n), and let A, (D) be the first cardinal p such that not (*u);

<A (D)
so 2 < b We can also assume |A| <A implies [Sm(A)]
9
<A

Suppose M is a (9,1) — homogeneous model of cardinality 2,

so by hypothesis |S® (M)| >A Let M = U M, M, is
) i<cfl

increasing, [M;j| <A. Now each p S“{‘D (M) does not split over
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some M; (If A is regular because A*(Q)) < A; if A is singular

choose for each i<cfA @, b; € M, tp(d, M) = tp(b;, M;) but
G(XT)A T@X,b) €p. Now let A = U I b <S|M|,
i<cfr

so |A|]<\and plAe S?D(A) is not realized in M; contra-

diction.)
So for some a <cfh, m<o,I' = {pe S"‘Q(M): p does not

split over M } has cardinality > A As | U S=(M)| < A
m<ao

(because [M;| <A and the assumption), by lemma 1.14, we

N
have necessarily thati > A; hence by assumptionx(9) = W,.
Let a;(i < o) be defined as in lemma 1.14. for each p& I’

with Ma for A and M for B. Sop = qe T’ irni)lies that for
some n, tp(<:§ip 1i<n> M) # tp(<€1iq (i <m>, M;). Now we
define'by induction on i € o, 'B,i, € M for each p & I" such that
() tp(<bi:j <i>, M) = tp(<a :j <i>, M )
(@) If tp(<al:j<i>, M) = tpEL 1§ < i>, M) then

B, = b for j < i.
Clearly this is possible (as A> W, by the hypothesis

I8 ) )
,and p # q implies b, * b, because there is a mi-

<
A<<a
nimal n < o such that tp(<@,:j < n>,M ) = tp(<a':j <n>,
a
M ), hence '5:, = B: for j <n but forr = P q
o

w
tp(<&H A~ ... ~F T > M) = tp(<a:j<n> M)
a a
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w
So we get a contradiction: A > |M| = |{b,:p e I'}|>1
Similarly we can prove

Theorem 1.15.
Suppose M; is (9),1) — homogeneous, i <b, cf Z k(D)
A (D) €1 M increasing. Then ,Léa M; is (9,4 — homoge-
1

neous.
The categoricity theorem is

Theorem 1.16,

Suppose the class {M:M < €} is categorical in one > |L|.
Then there is ., < 3 ,|L|,* such that

(1) the class is categorical in every A > A;; moreover M < ¢,
M|l = 1, implies M is {-homogeneous.

(2) For every y, |L| <u <A, the class is not categorical in
u; moreover there is a non — |L|* — homogeneous model
M < € of cardinality .

Remark: See [S7] for better results, i.e. applicable to more
cases. But we do not know whether the bound on A; can be
improved. Related questions: suppose there is a (D, A*) — ho-

L
mogeneous model of cardinality ;is A < 2l | ?

+
For kind IV, can x(T) be > (2|L|) ?
For which A does the existence of a (9D,2) — homogeneous
model imply the existence of a (9, u) — homogeneous model
for every n? ()

§ 2. GENERIC MODELS

Now we can state more exactly what extra assumptions we
use in kinds II, III, and explain why the generic models satisfy
them.

(°) Notice that 1.14 has new consequences concerning the question of
Keisler and Morley, on the number of homogeneous models of T in
cardinality A, when G.C.H. fails.
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Assumption for kind II1I: there exists a set ® of formulas such
that (where €, 9), are as before)

(i) if py p: are distinct m-types in 9, then there are
@1 (X) € py, 92 (X) € ps which are in ® and are conltradic-
tory, that is € = 71(3%) (91 (X) N @2 (X))

(ii) any set of formulas from ®; with parameters from €, of
cardinality << ||€|| which is finitely satisfiable in €, is
satisfiable in €.

Assumption for kind li: as the previous one, when we add
(iii) every ¢ (X) € ® has a negation in O, that isa ¢ (X) & ®
such that € = (VX) (9X) = "1y (¥)).

Remark: In the assumption for kind III, we can assume @ is
closed under existential quantification, and for kind II, under
negation. In any case we can assume it is closed under con-
junctions and disjunctions.

We deviate from the assumption of § 1, by letting M be any
submodel of €, such that for any formula ¢ (X) which is in
sub®, 3IeM = C=qd & ME ¢[da]. M is called ®-clos-
ed; or M < ¢).

sub @

In this section we prove that the assumptions defined above
are satisfied by the appropriate kinds.

We let now T denote a fixed universal theory with the JEP.

(0]
Definition 2.1. (A) T is the unique class of models of T such
that

w
(1) T is cofinal in T i.e. in Mod(T) (= the class of models of
T); that is every model of T is embeddable in a model of

w o0
T (the usual notation is Gr, Cherlin [Cr] uses T ).

(] [ .
{2) T is model complete, i.e. if M;, Me € T and M; € M;, then
M; < M,.

w w
@) IfM<M:eT, then MeT.
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w
Note that T is closed under unions of increasing chains.
w
Definition 2.1. (B) M is infinitely generic (for T)if M e T .
Definition 2.2,
(A) .(DA(T) = {tpA(E, G,M):T€ M, M a model of T},
Dr = Dy (T).
B) M <AN ifa3eM, g A, implies M k= ¢[d] & N k= ¢[3]
and M € N.

(C) In Q)A,tpA, etc., when A is the set of existential, positive-

existential, quantifier-free, atomic formulas, we write in-
stead of A, e, ep (= pe), qf, a resp. and denote A itself
by @, @, O, O, resp.

Lemma 2.3. (1) If M is a model of T, a an ordinal,

tpe(<ay: i <>, M) © tpo(<b; : i < a>, B, M)
then for every a & M there are N and ba € N such that
M &N, and

tpe(<a:i<a> I, N tpe(<b; :i < a>, G, N)

We can replace < by = (for the types).

(2) For any model M of T and %, there is a model N, M € N
such that

(*) For any a; bye N (i <a <=x) such that

tpe(<a:i<a> @, N) = tpo(<b;:i <a>, &, N)

forany a €N thereisb N such that
a a

‘tp.,(<ai i Cl>, @, N) = tpe(<b] i (1>, g, N).

() If in (2) in M every p e Do(T) is realized, then (*) is
equivalent to "N is (De(T), x)-homogeneous'' where De(T) =
{tp(d D, M) :d € M,}, where M, realizes every p € 9,(T)
and satisfies (*).
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w
(4) Every (9D=(T), R,)-homogeneous model belongs to T .
(8) If T has the amalgamation property, we can replace in
(1) - (4), e by qf.

Conclusion 24. 9(T) satisfies the assumption for kind III
(with ®,). If T has the amalgamation property, then DT), Dy
satisfy the assumption for kind II.

Proof: Easy.

Remark: Note that by using €, the existential type of each T
is determined. Note

w
Claim 25. M e T iff M<N for some (2#(T), \)-homoge-
neous models iff M) € De(T).

* * »

We can present genericity in a more general way.

Context: let L be a language, and K a category of L-models

such that

(1) the morphisms are some functions from one model to
another

(2} direct limits exist

(3) for every atomic R €L and 3 M € K there are d,

Ne€K, g:M—N such that for all g :N—>N' in K, the

truth value of R(g' g(3)) (in N') is the same.

We say K has the IM P (joint mapping property) if for every

M;, M; € K there are g/ :M/-—>N (/ = 1,2) in K.

Definition 2.6. Let ¥ be a set of formulas from L closed
o0,

under subformulas, and let ¥ = {9 € ¥ :9 has quantifier
a
depth < a}.

a a
We define full subcategories K (= K (¥)) of K, and for
each M€K, ¢ (X) € ¥, when M ||-9 3] (If ¥ is not men-
tioned, welet ¥ = L ),
o0,
(1) fora = 0, M e Kul iff for each atomic formula R(X) and
g:M—>Nin K, and 3 M, MER[3] & N = R(g(a))
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(2) we define M ||- ¢ [a] by induction on ¢, where M €K,
ges¥ acM
(A) for atomic ¢, M |
g:M—>M, in K
(B) M ||- /\ ¢ iff M ||-g; for each i
(C) M ||- 3x ¢ [x, a] iff there is b & M such that M ||

@ [b, 8]
(D) M ||-"1¢ (a) iff there are no g : M — N in K such that

N||-9lg @&)]
a
(3) M e K iff for each cpe‘l’a, aeEM MEg[a] & M|
|I- o [a]

w
(4) K is called the class of K-generic models.

-q[a] iff M, = ¢[g(a)] for each

Lemma 2.7.
o
(1) K is decreasing.
a
(2) Each K is unbounded in K, i.e. for every M € K there is

o a
g:M—>NinK, Ne K . Also each K is closed under di-
rect limits.

@) ig:M—>NisinK, aeM, M||-¢]a] then N ||-¢ [a].

(4) 1f K has the amalgamation property, ¥ closed under nega-
tion then for every 9(x) € ¥, acMeK, K||-Tgx
orK |- 11 ¢ (x).

a

Remark: We could do the same for ¥ C L but then K is

o0, %
closed only for direct limits of cofinality > «.

Definition 2.8. (A) Let T be a theory in L, ® a set of L-for-
mulas. K(T, ®) will be the following category:

(i) M e K(T, @) iff M is a model of T (an L-model, of course)
(ii) g:M—>N is a morphism if p(x) €®, a& M, ME ¢ [a]
implies N = ¢ [g(a)] (in short g is a ®-morphism) (*)

(*) Note that M < N is not equivalent to he identity on | M | being a

®-morphism into N.
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a a
(B) K (T, ®) is K (sub ®) where K = K(T, 9).

w
Definition 2.9. O(T, ®) = {tp(F, &,M): ac M e K (T, ¥)}.

Lemma 2.10.

(1) K(T, @) satisfies the assumptions before definition 2.6 when
(A) TS V3. '

(B) @ is closed under subformulas except possibly the sub-
formulas of a negation of an atomic subformula.
(C) For every atomic R(®), R(X) € ® or TIR (%) = .

(2) If in addition K (T, ®) has the JMP, then & = ) (T, )
satisfies the assumption from § 1, which corresponds to kind
IV,

(3) Assumption Il is satisfied in 9 (T, ®) for 3 A .

(4) If K(T,®) has the amalgamation property, T universal,
@y = @, then in (3) we can replace 3 A ® by ®,, and
assumption Il is satisfied. ,

(5) For a universal theory with the JEP, 9(T) = YT, 1)

w ()
T =K (T, ®q). If T <& V 3®y, T, Tz have the same uni-
/

a
versal consequences, then for each >0, K (T, o, =

a
K (Ta @qr). (1)
Remarks: Having proved that kinds II, III satisfy the appro-
priate assumptions, we will now prove conversely that any
example (of kind IV) which satisfies assumption II or III is
essentially of kind II or IIL. In 2.11 by changing the language,
we get to «infinite positive forcing», and in 2.12 by also adding
more elements we get to «infinite forcing».

Theorem 2.11. In assumption III we can restrict ourselves to
9T, @,) for a universal-negative T with the J M P, K(Te, d,)
having the amalgamation property. More exactly, let €, ® be
as in assumption I11, and let

() We can prove it as before, or add names for the appropriate
formulas.
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@ L* ={R ® :@(X) € @} where R ® is a predicate with
¢ ®

/ (X)-places and Ry. (x1, V1) is X, = 1.
S % *

¢ ¢
(i) €* = ([@1,...,ch ) where R = (3 € €: €= qla]}

(iif) T* is the negative universal theory of ¢*,

Then

(1) €* is 9(T* ®,)-homogeneous, K(T* ®,) has the JMP.

(2) tp@@ 3, €) = tp(b, @, €) iif tp(3, T, €*) = tp(b, T, €*).

(3) A < |€| is the universe of a (9), ))-homogeneous elemen-
tary submodel of €, iff it is the universe of a (D(T*, ®,, \)-
homogeneous elementary submodel of ¢*,

(4) 9, ® satisfy assumption II iff 9(T*, ®,), ®, satisfy assump-
tion II.

(5 If ® = 3 N ®,, we can replace €* by @’1" = (¢,...,R ,

) co If, in addition, 9 = (T, ®,) as in lemma 2.10 (1),
9
1

H * * g *
then €T A < 3/\4:@ iff @1 rA<e,,@1 iff G* I‘A<ep@ .

Theorem 2.12. In 2.10 (1) the case «T universal, ® = @,» is a
particular case of «T universal, ® = ®,», except that equality
is not standard. More exactly, let T be universal, & = ®,,
D = (T, ®), € is (P, \,)-homogeneous (», = |€|). We de-
fine €+ as follows:
(i) €| =|€| X1 U{<F R,>:RX) is an atomic for-
/(X
mula, €= R3], T @ A} Uk, (remember , = {a:
a<i,})

e+
(ify P = [€]| XA, (a one place relation)

e+
(iii) PR = {<gGRT>:€ER@), T ‘@ A} (a one place

relation)
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€+
(XV) QR = {<<a<n >y ey <8yoy 0.1 >, < <8y ..y 8p-1>,

R,a>> :a/ <k €CER[Ay vy @r-1], T = <0gy oo, tp_1>}

(v) let T* be the universal theory of €+,

Then (1) €+ is (9(T+, ®,), A,)-homogeneous
(2) for ;b =|€|, tp(a J,C) = tp(b, B, §) iif
tp(a*, &, €*) = tp(b*, J,€*) where a* = <a, 0>,
and <a,, ...>* = <al ..>.
(3) for A © €+, the following are equivalent
() €+TA<EH
B) A" ={a:<a,a> = A for some u<}i, and ac=€}
is the universe of an elementary submodel of €
and if a;' = <a,0> €A, €= Rla,...] then

<<a, ...>, R, T> & A for some Tand < < a,,
..>, R, &> = A implies a,, ... € A,
(4) In (3) we can replace < by <, in (o) and <,, in (f).

w
Remark: Hence we can give examples for K (T, ®,) instead

(V]
K (T, @), and almost always the relevant properties are pre-
served (except e.g. categoricity).

Remark: Normed spaces can be treated in this context. Let
Tys say that under + the model is an abelian group, and letting
R®(x) to mean a < [x| < b, and F_(x) be ax (scalar multipli-

cation) (a, b real numbers) that the natural conditions hold
(e.g. R*(x) A R: (v) —>R:+b(x + y) and [a, b] = [ay, by] U [as, be)

implies R?(x) = R '(x) V R?2(x)). Then the normed spaces are
1 "2

essentially K°(Tys, ®,). For the class of L,-spaces we get sta-
bility (by an unpublished result of Krivine), and «forgetting
completeness», categoricity for Hilbert space.

However, for Banach spaces, we should look only at, essen-
tially, algebraically closed models, and replace cardinality by

T R e e R R TR T Yo
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density character; and then for L,-spaces we get R,-stability.
Somewhat more complicated is the case of injective hull. Those
variations will be dealt with in Abramsky Ph. D. thesis. Notice
that (9(Tys, ®,), W)-homogeneous models are Banach spa-
ces.

Remark. Note that if T, ® (/ = 1, 2) satisfies the hypothesis
{

of 2.10 (1), (2), and @, € ®s, then: if D(T, D) is stable in A,
then 9(T, @) is stable in A. So if (every completion of T) is
A-stable, O(T, @,) is A-stable.

§ 3. Ranks and Stability

We work here in the context of assumption IIl, so L, €, 9, ®
are given and are fixed.
We let ¢(X;7) denote a pair <g,(X;¥), ¢:1(X; 7)> where

'4
¢n ¢ € ® are contradictory. Let Xy =9 ,(XY) for

/
/ = 0,1and M = ¢ [a, b] mean M k= g, [a, b].

Let A denote a set of pairs 9. A A-m-type is a (onsistent)
set of formulas @(X,3)t(te {0,1}, X = <x, ..., Xn.>>) Let
o = {g:qal e ®! contradictory, / = 0,1} (%).

Definition 3.1. We define the rank R™(p, A, 1) as an ordinal
or oo or — 1, where p is an m-type (or a set of m-formulas),
and A a set of pairs ¢ and A = 2 is a cardinal or c. We stipu-
late —1 <<a<<oco for any ordinal o, and define the rank as
follows:

(i) R™(p, A, ) = 0 iff p is consistent, or equivalently finitely
satisfiable in €.
(i) R*(p,A,N) 28 (® a limit ordinal) iff for any « <)
R®(p, A/ }) 2 a.
(iif) R™(p, A, 4) 2 a + 1 iff for any finite ¢ S p and any p <A
there are A-m-types r;(j < u) such that:
@ RMq U r;, Al 2 a

(*!) For kind II there is no need for ®!, and we do not distinguish strictly

between it and ®. :
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and (b) the 1; are pairwise explicitly contradictory, that is
for any distinct i, j < p there is ¢' € r; such that ¢!t e 1.

Remarks. (1) j € p occurs in (iii) (rather than j <<p) so that
A = 2 (and not A = 3) is the first interesting case.

(2) The most important cases for A are A = @ (all possible
pairs) and A finite or with one pair (which are essentially
equivalent). The latter case is interesting because the splitting
types r; will consist only of instances (using different para-
meters) of finitely many formulas of ®, and hence we can
apply compactness arguments.

(3) The most interesting cases for A in what follows will
be A = 2 and A = oo, When we assume Kind II (section 6,
on forking), A = W, is interesting too. Notice that in these
cases the definition is absolute.

Lemma 3.2. (1) If p; € p; [or even p; ~ py; i.e. for any finite
q: S p: there is a finite gs € pe such that € = (V ¥} (Aqz—
Aqi)] and A; 2 A2 and M < ke, then R®(py,Apd) 2= (R®(peAzide).
(2) For every p,A A there is a f{inite q & p such that
R%(q, A, 4) = R®(p, A, A).
Proof. (1) Check the definition.
(2) If R®(p, A,A) = oo, choose q = . If R?(p, A, }) = —1,
p is inconsistent, so choose some finite inconsistent q € p. So
let R™(p, A, \) = o << oo; then R®(p, A, ) # a + 1, hence by the
definition there is a finite ¢ € p for which there are no suita-
ble’ r;'s. As q is a finite subset of q, also R®(q,A,A) Z a + 1;
but, by (1), R®(q, A, A} = R®2(p, A, 1), so the conclusion follows.
We note the following trivial but important claim:

Claim 3.3. If R"(p,A,2) = a<<oo, then there is no EEA
and @ such that R™(p U {9(X;3)'},A,2) = a for t = 0,1.

Remark. This claim explains why the rank for A = 2 is impor-
tant. The extension property (i.e. for each p which is realized
and A, there is a complete type q over A such that R®(p, A, 4)
= R™(p U q,A,A) and p U q is realized) fails in general, but
it holds for A finite, A = oo, or (as noted by Hinkis) for

A= W, p a ®-m-type, when 9, ® satisfy assumption II. If we
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waive the demand «p U q is realized in €», there will be no
problem, but not much interest too. Notice that for d-types,
being consistent is equivalent to being realized.

Remark. There are quite accurate results specifying when
R™p,A/d) 2 « = R"(p,A,A) = o and when R™p, AN =
R"(p, A, u).

Lemma 3.4. For every finite p, R"(p, ¢, 2) = n iff there are

)n(/):

n> n
d (n€  2) such that for any ne 2, p U {¢(X T
N - n

I/
!/ <n} is consistent (notice we write ¢ for {E})'

)n( /
nl /

now prove that R™(p ,¢,2) 2 n— /(n) by downward induc-

)
Proof. &= :let P, =P U{opx a :{ < {(} and

tion on / (n).

4
= :merely define @ by induction on / (n) such thatne 2
"
implies R™p ,¢,2) 2 n— /().
"‘] ———

Remark. The requirement that p be finite can be eliminated
by a compactness argument when p is a ®-m-type.

Lemma 3.5. It R™Q, 9,2) 2 w, then 9 is unstable (in every
cardinal A). -
o]

®
Proof. Let p = min{p:2 >1}, so 2 <A
(o) met
n(a

n
Let FP« = {o(X ;7 ) m&€ 2, a<u} Now I' is finitely
- W

1[a

satisfiable in € as it is sufficient to check each I' , which is
n

consistent by the previous lemma and the hypothesis. () Let

p> M
A = U{¥ :me 2}, and then the X (n € 2) realize differ-
| n

() As T is a set of ®-formulas, some assignment satisfies it.
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e

ent types over A (in ¢). Now |A| < 8, I 2' '<a<
a<<p
uw

< . < m

<lipl Ay e 2} < [sv (A
Theorem 3.6. The following are equivalent:
(1) 9 is stable,

L
(2) 9 is stable in every ) = Al | .
(3) For every ¢ R™J, 9 2) <o,
if(n <m)

(4) There are no ¢ and F, such that = q;[a,,, &l where

0 when n<m

ifn<m) = {1 otherwise.

kemark. Only after this theorem stability makes sense: as by
(1), (2) it is not an accident (i.e. «a priori» it is possible that
9 is stable just in one cardinal, and this will not give enough
information), (3) enables us to prove theorems on stable 9,
and (4) on unstable 9.

Proof. (1) = (4) = (2): by 1.9.
(2) = (1) : trivial
(1) =(3) : by the previous lemma

L

(3) = ) :Suppose |A| <2 =i '. For each pe SZ)(A)

and ) choose a finite p & p such that R"(p , ¢, 2) = R™(p, ¢, 2).
¢ = X

Let p* = U p , so |p* I [L|. Clearly for every @ R"(p, ¢, 2)
’ A
= R™(p* o 2)

Now suppose p, q Sm (A), p = g, then there is & € A such ‘

that plT # q[a hence p; * q; where p; = {9, V) :
eX,a) eplq = {9(X,¥) : (X, @ € q}. So there are contra-

dlctory Q / € ® such that Po(X, Y) € P 1(X, ¥) & ps. So letting

2 = <eX7)igE7)>, ¢kx 3)° € p, gk 3)' € q Hence, by
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claim 3.3, it is impossible that p* = q* Hence |S"‘Q A)| <

N I
l{p :pESg)(A)}I\IAI <A = A

We can prove similarly
Theorem 3.7. The following conditions are equivalent:

L
(1) 9 is stable in every A = 2I ',

¥,
(2) D is stable in some A, A >},
(3) R®(Q, ®, o0) < o0,
If 9 satisfies any of the above, it is called superstable.

Theorem 3.8. The following conditions are equivalent when

IL] <2
(1) 9 is stable in every i > [L|,

1]

[}

N
(2) 9 is stable in some A <2
(3) R2(2,®, 2) < oo,
If 9 satisfies (3), it is called totally transcendental.

§ 4. Prime models

We again work in the context of assumption III.

Définition 4.1.

Let K be a class of models M C €,
We call M K-prime over A if
1) AcMeK
(2) If A M K then there is an embedding f: M— M’
such that f[ A is the identity and f is elementary in €
(that is can be extended to an automorphism of €).

Remark

The natural way to build a prime model over A is to add to
it elements a; one-by-one, so that each a; realizes over A; =
A U {a;:j <i} a type which is realized in every M, A; S M &
K. In the tractable cases this will be an isolated type.
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There is an axiomatic way (see [S 1] ch. IV) to describe the
construction of a model M over a set A, by adding step by
step, each time one element realizing a type of a specific sort
(usually isolated in a proper sense).

Tractable interesting cases here are e.g. the e.c. models of
T (T from § 2), the infinite generic models, the (9¢(T),1)-homo-
geneous models, the A-3J,-compact structures (i.e. the set of
models M, such that any 3,-type of cardinality <A over M,
is realized in M). To prove existence, uniqueness etc., we have
to assume usually, some stability assumptions.

This axiomatic treatment not only includes all previous ca-
ses and in it we can prove the known results (even the uni-
queness of the constructed model) and see what hypothesis is
needed for which theorem, but also shows that we can re-

place isolation by e.g. definability (e.g. the anti-prime models),

See remarks to 6.10 (*).
Definition 4.2.

Let p be a type over A. We say that a formula ¢ (X; D) isolates
Pife(®; D) € pand = (V%) (¢ ®:B)—>y) forally e p.
We say p is isolated if some formula isolates it.

Lemma 4.3.

Suppose 9 is totally transcendental. Then, for each ¥ (*)W

for every B, b B and 9 € L, if k= (3 x) ¢ (x,D) then there is
¢ (x,5;) (91 € @b €B) and a* such that = (I x)[p(%, b)
A @1 (x, by)] and ¢ (x, D) A ¢4 (x, by) - tp@ (a*, B).

Proof,
Choose ¢ (x, by), a ®-formula, such that

(**) Added in proof (June 76): This can be applied also to the following.
Let M be an e.c. group such that: if H € L, K are finitely generated
subgroups of M, the free product with amalgamation L * K is a subgroup

of M. Let N be a group, all whose finitely generated subgroups "appear”
in M. We can find a “canonical” (e.g. unique) closure of N to a group

L -equivalent to M, by the above method.
00,
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() = (3% [p(x,B) A ¢ (x, by)] _
(ii) relative to (i), « = Rl(g, (x, by), @, 2) is minimal.

By 3.8 @ < %, and by 3.3¢ (x, b) A ¢, (x, by) isolates some type
tpq)(a“, B). .

Definition 4.4.

Let A € B. Let ¥ < L be closed under subformulas, ¥ = 3 ¥,
By a W-isolating sequence of B over A, we mean a sequence
<<a;9; (x,b;)> :j < a> such that B = AU {a:j<al,
byjSAj = AU U a and ¢ (x,b) is a W-formula such that

_ i< — —
®j (x, by) = tpq)(a,, A) and = g¢fa;, by) (equivalently ¢; (x, ;)
isolates tp (ay, A;), since tpq) (8 A;) determines tp(a;, A))).

We say M is strictly W-prime over A if M has a W-isolating
sequence over A and M is W-closed: i.e. for every ¢X) € ¥
= Sub ¥, M = ¢[a] © € k= ¢[d] for each 3 € M.

M is W-prime over B, if it is prime among the W-closed models.
Y = 3 A® we omit it

Theorem 4.5. (The existence of prime models)

(1) If M is strictly W-prime over A, then it is W-prime over A,
i.e. prime among the ¥-closed M C .

(2) If D is totally transcendental, then over any A there js
a strictly W-prime model.

(3) In (2), it suffices to assume that (*)wof 4.3 holds.

Proof,

(1) If <<ayq(x,B)>: <> is a W-isolating sequence of
M over A, N is W-closed, A S N, then we define ¢; e N,
by induction such that tp(<g;:j<i> A) = tp(<c; :
J S i>, A). If we have defined for each i<i, by = b~
<aja) oo >, T)} €A, jl,/<i, choose ¢ to satisfy

Pi (xv-Eily CiG,1)1 +++)
(2), (3) Use 4.3 (*) repeatedly.
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Lemma 4.6.

If L is countable and ¥ = 3 A® then (*)‘I’ in lemma 4.3 is

actually equivalent to:
(**)‘p over every A there is a ¥-prime model of T.

Proof,
("')w = (“)‘P essentially this is the previous theorem.

o * . *  _fai = (5
( )‘I’=>( )‘y.suppose()w fails and B, (x,d) @B, o€ ¥)

is a counterexample; that is no ¢ (x, by is suitgble. So for

every ¢y € ¥, by € B, = 71(3 x) [g1 (%, b)) A 9(x,b)] or there

are 9,9 = @,8,3 = B such that k= (3 x) (p(x,B) A gi(x, by)

Ad (x,3,))(/ =12 and ¢ ,(x,d ,) (/ = 1,2) are con-
/ / / /

tradictory.

By a Léowenhein-Skolem argument, we can assume B is coun-

table.

Suppose M is W-prime over B, so M is countable.

LetI' = {tp(p (a*,B):a* € M, a* & B, = g(a* b) }.

It is easy to find a ¥-closed model M;, B € M;, in which no
p €T is realized.

Lemma 4.7.

If M is strictly W-prime over A then
(1) For every €& M, there is an (3 A ¥)-formula v (X, 3),
(& = A), which isolates tpq) (& A) and which T satisfies.

(2) We can find a W-isolating sequence of M over A of length
M.

Remark.
For 9 totally transcendental we can characterize the W-prime
models as in [S 9], hence
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Theorem 4.8.

For 9 totally transcendental ® € ¥ = 3 ¥ closed under sub-
formulas, the ¥-closed prime model over A is unique over A.
fL=& =Y |L| = R, 9 is stable (so 9 = 9 (T, L)) then
we can prove uniqueness when there is a strictly W-prime
model, but we have no characterization. But even for coun-
table theories (ie. 9 = 9(T, L)) which satisfy 4.3 (*), we do
not know if uniqueness necessarily holds (**). We think the
answer is negative, and the following proof may give us an
idea how a counterexample might look. The situation is the
same for uncountable T.
Aid.

The proof of the next theorem will use stationary sets. The
main facts we need are as follows.
Let » be a fixed cardinal of cofinality > W,. Then X C x is
closed unbounded if » = sup X and for each a <x,a = sup
(X N o) implies a € X.
We call S € x stationary if S meets every closed unbounded
set.

Fact A: The intersection of two (or even A <<cfx) closed un-
bounded subsets of %, is closed and unbounded.

Fact B: If X € » is closed unbounded and F : X — % is normal
(i.e. strictly increasing and continuous), then the set of fixed
points of F (i.e. {a:F(a) = a}) is a closed unbounded set.
Fact C (Fodor's Theorem): If S is a stationary subset of x, and
F:5—>« is regressive (i.e. « € S = F(a) <) and x is regular
(i.e. cf x = %) then F is constant on some stationary S* C S.
(See e.g. Juhasz [J 1]). We use those facts freely.

The Uniqueness Theorem 4.9.

Suppose L is countable, 9 is stable and ® = L. If over A there
is a strictly prime model M, then any prime model over A is
isomorphic to it.

(*%) Added in proof June 76: There are countable (complete) theories T,
which satisfy (*);, but the uniqueness fails.
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Proof:
We prove it only when |A| < W, If |[A[ < ¥, then Vaught's
argument works. Henceforth let |A] = W, and let <<a;,

@; (X, 8;)> :j <©,> be an isolating sequence for M over A, and
let N be prime over A, so we can assume A & N & M. Let
M; (i < w;) be countable models such that U M =M
i<wy
There is a closed unbounded X € w; such that for eachi € X
i Mi<MMNN<KN
(11) Mi n {aj 1j<0)1} = {a, :]<1}
(iii) j<i implies T, € M;
(iv) for each €€ M;, q = tp(T A) is isolated by some @(X) €
ql (A N M.

We define

S, = {ieX:for somebeN, q=tplb, AU NNM) is
not isolated}.

Case 1: S; is not stationary.
We shall show that in this case, N is isomorphic to M over A,
There is by assumption a closed unbounded set X; disjoint
from S,. Hence there is a closed unbounded X* € X; N X,
such that for each i, je X*, i<j and beNNM;, q =
tp, A U (N N M) is isolated by some ¢ %) €dq, Te
(AN M) U (NNM).
We shall define, by induction on i & X*, elementary maps
Fi:A U (N N M)— A UM, such that:
— F; ' A is the identity
— i<<j;i, j € X* implies that F; extends Fi
For i a limit (in X* F; = U F;. Now suppose i, j & X*, j the
1S
sucessor of i in X* and F; is defined. We shall define F;, just
by Vaught's argument, because M; N N, M; are prime over
M; N A) U (M; N N), (M; N A) UM, resp.. For the first i € X*
we define F; similarly.
Clearly U F; gives the required isomorphism from N onto
i<o
M over A.
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Case 2: S, is stationary

We shall show that this implies a contradiction. For all i Su,
there is b; € N such that tp(b, A U (N N M;)) is not isolated.
However, since M has an L-isolating sequence, for each i € S,,
q = tp{by A U M)) is isolated by some ¢i(X, @, C) € q; where
d; € A, T € M,. By Fodor's theorem there are a stationary set
Se S Sy, a formula ¢ and a sequence € such that for each
i€ Sy, ¢y =gand T =T,

Choose i, <ij; <... <iy <... (k < w) in Ss such that ay, b‘k =
Mik+1'

For each n<w we can find TreNN M*n such that tp(‘C:,

AU U b ) = tpc AU U B, ) (if we replace A b
/<n [/ /<n / Y

AN Min, this holds as M;n is strictly prime over A N Min;

and the same T* is good by the choice of X, and as S; © S

n

< X).
Now note.

First Fact: If k < n then k= (p[b—ik,ak,‘c’:].

This holds by the choice of C:

Second Fact: If k> n then k= _Icp[B}k,Eik,T::]. As in case 1,
there is an elementary map F, Dom F = A U Mik' FlTA =
the identity, F maps B}/, <(/<n) to E/, ?:': (/<n)
and F maps Mik onto M'k'

Hence ¢(Z%, Eik, c“;) isolates a complete type over AUMik. So if

= (p[B'ik,Eik,T;] then it isolates tp(Ek, AUM,) hence tp(bi,
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AU(NNM,)), contradicting the choice of T)'ik
From the two facts we infer that for k, n < o, I=(p[‘5ik,3ik,?::]

iff k < n. We get a contradiction. (9) is stable by hypothesis,
but we just proved it has the order property (see 3.6)).

§ 5. Categoricity

We work in the context of assumption III.

We prove the parallel of Morley's categoricity theorem
which is quite similar to the standard case. We could have
used 1.15 to shorten the proof. For simplicity, we restrict our-
selves to countable L.

Definition 5.1.

(1) Let K be a class of structures and A a cardinal. K is A-ca-
tegorical (or categorical in 1) iff any two structures in K
of cardinality A are isomorphic

(2) ¥ is categorical in ) if the class of W-closed models is
categorical in A (where ® C ¥)

Theorem 5.2. Let L be countable. If ¥ is categorical in one
A> W, then it is categorical in every L > W,; assuming ¥ =
Sub ¥ = 3V,

Proof: we prove the theorem in three steps:

Step 1: 9 is W,-stable.

Step 2: In every A there is a (9, 1)-homogeneous model

Step 3: If there is a W-closed model of cardinality 4> W,
which is not (9),4)-homogeneous, then in every
u > W, there is such a model.

We can conclude that every W-closed model of cardinality

A> R, is (9, M-homogeneous. By 1.6(3), it follows that ¥ is

categorical in A.

Step 1.

The idea is the following: first build one model of cardinality

A in which there are few types realized over each countable

subset. If Dy is W,-unstable, we build a second model of cardi-
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nality A in which there are many types realized over some
countable set. This contradicts the A-categoricity, so 9 must
be W,-stable.

We will first build the second model, which is easy: If 9 is
W,-unstable, this means there is some countable subset A of
¢ and € realizes > W; different types over A. We may choose
an elementary substructure M of € satisfying:

IM| = A and M realizes > W, types over A < |M]|

Next we will build a model N of cardinality A which realizes
just countably many types over every countable subset of N.
We use Ehrenfeucht-Mostowski models EM(I) generated by
a sequence I of indiscernibles. We will review this notion in
more detail after finishing the proof.

We expand € to €® by adding Skolem-functions. Because
K' = {M|ME Th€3 M is W-closed} has models of arbitrarily
large cardinality, it is possible to find a structure in K' gene-
rated by indiscernibles I (because K' is definable in L

N
@ °)N,
this requires an argument based on the Erdés-Rado theorem
and compactness). Replacing I by the ordinal A and taking N

to be the corresponding Ehrenfeucht-Mostowski model N =
EM(\) we see that N has cardinality 4, and we claim:

(*) for any countable subset A of N, N realizes only coun-
tably many types over A.

The argument proving (*) may be reconstructed from the ob-
servation that the ordered set ) realizes only countably many
types over any countable subset.

Now M, N cannot be isomorphic, contradicting the A-categori-
city. Thus M cannot exist, so 9r is W,-stable.

Review of Ehrenfeucht-Mostowski Models:

Whenever A € €% we define the hull H(A) as the closure of
A under Skolem functions in €83, considered as a submodel of
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€. Then H(A) is determined by A and the types of n--tuples

of elements of A in €.

If I is a sequence of indiscernibles in €5, then we write EM(J)

instead of H(I}). EM(I) can be reconstructed from

1. the order type of I;
2. the types p, of increasing n-tuples from I (there is one

pn for each n). The set {p, :all n} is called the character
I

If I is a sequence of indiscernibles in €% with character I" and

if J is any ordered set, we may construct an Ehrenfeucht-Mos-

towski model EM!(J, I') generated by J as a sequence of in-

discernibles of character I', and let EM(J, ') be its L-reduct.

Obviously the models EM(J, I') are infinitely generic {Once

indiscernibles have been comnstructed, they may be taken to

lie in €).

Step 2.

Obvious by 1.13.

The main point is:

Step 3.

If A, 22> W, and we have a ¥-closed non-9-homogeneous

model M; of cardinality A; then we can find such a model in

M.

Proof: This is a Lowenheim-Skolem theorem. We will shrink
M: to a model M, and expand M, to the desired model M,.
Fix any M; of cardinality A, which is not (9r, As)-homogeneous.
Fix a subset A; © |M;| of cardinality less than A; such that
some type pg in S 2 (Ag) is not realized in M,

Going down: We will make a countable structure M, resem-
bling Me. By the W,-stability of 9 and 1.10, 1.12, there is in M
an indiscernible set Iz of cardinality (W, +|Az|)* over As. Let
M, be ¥-prime over AsUIs and embed M;, in Ms. In particular

M;' omits ps. Thus:

(") There is no ¥;-formula ¢ with parameters in A; U I;
which isolates ps. (¥; == I A W),

oA v e mers
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That is:

(**) for every ¥;-formula ¢ over A:UI, there is a formula
pes® ¢' ep: andg A ¢° is consistent.

We may choose countable sets A, € A, I, € I; such that the
type p, = pq | A, satisfies the analog of (**), hence of (*),
and I, is infinite. Of course, 1, is indiscernible over A,. Let
M, be W-prime over A,UI,. Then M, omits p,. The next task
is to expand M, to a large model omitting p,.

Going up: We assume that A,, I,, p, are countable and satisfy

(*). Let I; be a set of indiscernibles over A, such that I, € I;
and |I;] = M. Let M; be W-prime over A, U I;. We still have:

(**)' There is no ¥;-formula ¢ with parameters in A, U L
which isolates p,.

Hence M; omits p,. Since A, is countable, M; is not even
(9, Ry)-homogeneous. This proves the lemma, and completes
the proof of the Lo$' Conjecture.

Remark.

To see that this theorem is interesting, we will give some ex-
amples of theories T such that Er (the class of e-closed models
of T) is categorical in W; without being elementary. We want
three such examples:

1. Er categorical in W, and not in W;
2. Er categorical in 8, and not in Wy;
3. Er categorical both in ¥, and W,.

Example 1. (Macintyre)

We consider models which consist of pairs of algebraically
closed fields F, € Fy, of fixed characteristic. The existentially
complete models are pairs (F,, F; in which F; has transcen-
dence degree 1 over F,. Clearly this is an example of type 1.
It is also an example of a complete inductive non model-com-
plete theory.

Example 2.
T is the theory of undirected graphs without cycles. The exis-
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tentially complete models are the connected graphs without
cycles having infinite branching at each point.

Example 3.
Adjoin to example 2 a function symbol f(xi, Xz X3). We want
f(a;, ag x) to be an automorphism fa1a2 of our graph carrying

a; to ap. Take as a further axiom:

(A) fup, fus, = fu

183"

K! = K!'(T, ®,) = Ep consists of connected graphs without
cycles having constant infinite branching at each point. Be-
cause we have axiom (A), the function symbol f does not af-
fect the number of isomorphism types. The computation of Er
requires some care,

§ 6. Forking

In this section we work in the context of assumption II,
assume 9 is stable, and for simplicity let ® = ®,, hence
tpq (T, A) determines tp(a; A); so here a type will mean a q.f.
type (though many theorems are true more generally). The
important and positive notion will be «not forking over» which
is closely related to «definable over», and sometimes plays a
role similar to «isolated».

Forking was invented to deal with
A. A union of an increasing elementary chain of x-saturated
models is x-saturated, when the cofinality of the length of

the sequence is = x(T).

The difficult case isx(T) <z < |T]|.

Another use of it is in proving the stability spectrum theo-
rem. For 1.10 we can use also strong splitting, but it is
essential for

R,
B. M) is |D]| or 2

Another use is
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C. Constructing anti-prime models [S 1] (ch. IV). See remark
to 6.10.

D. Proving that if a countable T has only universal models in
R;, then it is categorical in W, (affirming a conjecture of
Keisler).

The relation of forking and ranks is determined in [S 1, III,
§ 4] and has applications to ranks.

If T is superstable, we can, in some cases ,use ranks instead
of forking (when p is complete over B, A € B). This is natural,
as «p does not fork over A» is equivalent to «p and p [ A have
the same rank R(—, L, o0)»; and there are equivalent formula-
tions.

All theorems here are from [S 1], most of them from ch. III.
See also Lascar [Ls}, and this volume.

The notion of «tp(a, B) does not fork over A, A € B» is si-
milar to «the free algebras generated by A, B, A U {a} are
freely amalgamated in €», and many times in algebraic con-
texts this is what we get by explicating.

«Forking» was invented as a version of strong splitting (see
[S 7]). However it can be developed only under more restricted
assumptions.

Definition 6.1. A type p forks over A if there exists a set of
indiscernibles I; = {5.1a la<<ow} over A and qf. formulas g

such that p - V [((%3,) & — (X )],
j<n

When A = O, we omit it.

The notion is not interesting for unstable theories with this
definition.
Example: Let T be the theory of an equivalence relation E; p =
{xEa} does not fork if E has finitely many equivalence clas-
ses, otherwise yes.

Theorem 6.2,

(1) If & p (or even p + q) are types and p does not fork
over A, q does not fork over A.
(2) If p is over B and p does not fork over A, we can com-
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plete p to a q.f.complete type over B which does not fork
over A, (This we call the «extension property» of (not-
forking) types).

(38) If p is over A, p does not fork over A. (Remember 9r is
stable).

Proof of (3). (as a sample proof)

Assume p forks over A. Thenp = V [¢(x, 30 & Tloy(x. 3]
’ j<n

Let {g;:j <n}<S A, A finite. By stability we have R2Z(p,
A, ¥,) < o. Extend p to a q.f. complete type q over AU U &

m,j m

of the same rank. So there is a j such that (w.l.o.g.) p

@i (%, af,) AT qJ,(x,,'aT{). By stability again [R®(p, A, W,) <o is

enough] g; divides I; in two sets, one big and one small. W.l.o.g.

for most a€l;, —g;x,8 €p. Now for all m,<w,p U
if (m=m,)

{@;(x;, alm) :m € w} has the same ranks as p, which

contradicts the definition of rank.

Remark: we need quantifier-free for completing p preserving
the rank.

Definition 6.3.
¢(X, q) is almost over A iff {¢(X, F(3)) : F is an automorphism of
€ over A} has cardinality <|€| (here this amounts to being
finite).
Examples: 1. Algebraically closed fields, A = .

x2+ 17x—3 = 0 is over &

x? + ix —3 = 0 is not almost over &

7 3
x*+ vV 3x— / 7 is almost over &
(in fact it has 21 twinbrothers)
2. E is an equivalence relation with finitely many equi-
valence classes. Then x Ea is almost over &.

T et o i e TR
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Definition 6.4.

P is stationary over A iff

(i) p does not fork over A and

(iff p has no two contradictory extensions which do not fork
over A,

Definition 6.5,

The strong type stpy(s, A) = {¢(X,b) : = 9(3, ) and @(X, b) is
almost over A and ¢ is gf}.

(There is no cardinality problem in the definition: we can
choose representatives for equivalent formulas in stpy(a, A);
there are <|A| + |T| such equivalence classes).

What we want to understand is: what are the possibilities
of type extensions which do not fork; how much do we need
for a type to be stationary ?

Theorem 6.6. (The finite equivalence relation theorem)

A strong type stpy(3, A) is stationary over A.

Intuitively this says: for each equivalence relation ¢(x, v, b),
b € A, with finitely many equivalence classes, stpy(3, A) says
to which class it belongs i.e. to the class of a.

Hence

Conclusion 6.7. If tpy(d, B) does not fork over ACB; b
€ € B, stpy(d, A) = stpy(T; A), then

@D, A) = tpy@A T, A).

Theorem 6.8. Let BC'A, a a Sequence, p = tpy(a; A); p does
not fork over B iff stpy(T; A) does not fork over B,
Proof (& easy) Suppose stpqt(&, A) does fork over B. As strong

types are closed under conjunction some ¢(%;b) = stp(§, A)
forks over B.

Hence ¢(X,B) = V ¢i(x, &) & Tq(x, &) and @, /<o)
}J}n v

indiscernible over B.
Let ¢(X; Fi(b)) § <k < w) be all «sisters» of 9(%, b) up to equi-
valence, where F; is an automorphism of € and F; [ A = id,4.

Then p - V (X, Fy(B)) ,\g [i(x. F; (8) & Toi(x, F; @)
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and {F; @ ) ! <} is indiscernible over B,
So tp (& A) forks over B, a contradiction.

Lemma 6.9. If p is a complete qf-m-type over A, it is station-
ary over B © A iff it is stationary over A and does not fork
over B,

Remarks:

(1) For complete types this amounts to being stationary.
(2) If M is existentially closed, tpqat(a, M) is stationary.
Some important facts are summarized by

Theorem 6.10.

() If B S A, tpy(T ~ b, A) does not fork over B, then tpat(b, A)
does not fork over B.

(i) (Symmetry) tpy( A U {b}) forks over A iff tpy(b, A U
{&)) forks over A.

(iii) (Transitivity) Let C S B C A. If tpy(T A) does not fork
over B and tpy(a, B) does not fork over C, then tpu (@ A)
does not fork over C. (Also the converse holds).

(iv) Let B S A. Then tpy(T~ b, A) does not fork over B iff
tPat(d, A) does not fork over B and tpy(b, A U {T}) does
not fork over B U.{7}.

Proof (i) trivial
(if) Define by induction on i < w sequences a, b;.
Fori = 0,3 = &b; = b; for i>>0, choose & ~ b; such that
stpt(@~b, AU U §~b)) does not fork over A and extends
1<1

stpu(@~ b, A). Suppose tpy(@ A UTB) forks over A but
tpy(b, A U 3) does not fork over A. v
By 67 if j<<i then tpu(& ~B;, A) = tpyu(&, ~ by, A).
By 6.6 if j > i then § ~ b; realizes _
tqu(éiAbi,AU U a~b )
e<i @ a
Easily for all j<<i, tpu(a ~ B, A) = tpu(@~ b, A).
Similarly if j=>i>> 0tpy(a ~b;, A) = tPat(d; ~ Bor A)
= tput(@ ~ Do A) * tpy(d, ~ by, A)

i
%1
1

ki o e YOS
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(as tpg(@ , , AU{D,}) forks over A iif !/ = 0).

4
This shows 9 has the order property, contradiction.

(iii) There is @' realizing stpy(T; C) such that stpy(d, A) does
not fork over C (by 6.6, 6.8). i
So stpy(d; B), stpq(d.B) extend stpy(d@ C) and do not fork
over C; hence they are equal. By trivial monotonicity proper-
ties stpy(d’, A) does not fork over B, so similarly stpy(3', A) =
stpu(@, A), so the latter too does not fork over C; so we finish.

(iv) = : So suppose tpy(@ ~ b, A) does not fork over B.
Then by (i) tpu(d A) does not fork over B. Let T= A, then
tpe(8,~b, B U {T}) does not fork over B (by monotonicity of
forking) hence tpy(c;B U {a~b}) does not fork over B (by (ii)},
hence over B U &, hence tpy(b, B U @ U T) does not fork over
B U a (by (ii) again). As this holds for every T, tpqr(b, A U @)
does not fork over B U a.

& : So assume tpu(d A), tpu(d A U3) does not fork
over B, B U T respectively. Let bi(i <i,) be a maximal list
such that i = j = stp,(b, B U @) # stpy(b; B U ).

We can find (by a simple version of 6.2(2)) B;,a' such that

stpg(@ ~ ... *b'~ ..., A) extends stpy(@™ ... A~ ..., B) and
i q

does not fork over B (i.e. every finite subtype satisfies this).
Then wlo.g. @ = & hence for some i, stqu('B:,B ua =

stpy(b, B U @), and as stpq,('ﬁ;,A U3d) does not fork over

BUa (by the "only if part” of (iv)), they are equal, so
stp(@ ~ b, A) does not fork over B.

Remark: If 9 is stable, then for every A there is a model M
(say existentially closed) with A & [M|, such that for every
a € |M|, tpy(d, A) does not fork over some finite subset of A.
If 9 is superstable, the above is trivially true: every M does it.
This helps us to show that for unsuperstable T, A = |T| + Wy

A
IA,T) = 2, and to build models with absolute indiscer-
nibles. The facts from the theorem above fit well into an
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axiomatic treatment of prime models. This is done in chapter
IV of [S1].

Definition 6.11,
k(9) is the first cardinal % such that there are no A i<u)
with A; g A; for i <j) and tpy(&; Ai,1) forks over A; (cf. the

k (9) in theorem 12).

Theorem 6.12. ()9 is superstable iff k(D) = W,
(i) For stable 9 and p over A there is a B S A with |B|
<k(T) s.t. p does not fork over B.
Forking is defined only for stable theories. For unstable theo-
ries there are troubles in defining it generally, at least it
doesn’'t make sense. But if we have Skolem-functions, the fol-
lowing lemma may well serve as an alternative definition.

Lemma 6.13. p does not fork over M iff p is finitely satistfiable
in M (though p is not necessarily over M).

This lemma, as a definition for unstable theories, is useful
in the following problem: how can we show that there are
A-universal but not At-universal models for some unstable
theory. If we are not interested in the sharp calculation of
this 4 (i.e. if Ay <1; we are happy with A;-universal but not
As-universal) an ultrapower construction with Erhenfeucht-
Mostowski model will do. If we are interested in the sharp A,
we need forking as defined by the previous lemma.

In particular, for every T we have either

T
(i) T is categorical in all A> |T| after adding 2I | constants

(and hence all models are saturated and hence universal},

IT|

A
(i) for all A, p, p 22,422 ', T has a A-universal but not
A*-universal model of cardinality p.
From this one deduces, answering a question due to J. Keisler,

or

Theorem 6.14. If |T| = W, and every model of T of cardi-
nality R, is universal then T is categorical in R,.

A natural question is whether restricting ourselves to kind
II is merely incompetence.
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Lemma 6.15. There is a countable universal T, such that 9 =
9 (T, ®,) is superstable and there is a countable A € € such
that for each a € €, tpy(a, A) splits strongly over &, i.e. there
is an infinite indiscernible set IS A, and b, ce1 and qf ¢
such that &= ¢ [a, b] A "19¢la, c].

Remark: By 2.12 we can find such an example for 9 =
9(T, ®), i.e. infinite generic models.

Proof. Let us define a model M. Its universe |M| is the set

of functions f such that (i) Dom f = [n, ] = {m <o|n < m},
Range f S o
(ii) f is eventually zero

The relations are P, = {f:Dom f = [n, c0]}

R, = {<f, ;> :f,f€ P, [ [n+1,0] = ] [n+1,00]
and fi(n) * f(n)}.

The functions are G,, defined by Gu(f) = f[ [n, oo].

Let T be the universal theory of M.,

Now if 9 = 9 (T, ®,), €a (9D, 1)-homogeneous model, then
for any a, b € € for some n, m

Gn(@) = Gn(b).

The rest is left to the reader.

§ 7. Algebra: non-structure theorems

The problem here is to show that various algebraic theories
are unstable etc... In § 7, §8, for simplicity we concentrate
on assumption I. Notice that by [S1], e.g.

Theorem 7.1.

A
(1) If T is not superstable, A > W, + |T|, then I}, T) = 2.

In most cases this is true for pseudo-elementary classes, and
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A
we get 2 models, no one elementarily embedded into another.

(We can omit “elementarily” e.g. if the formulas showing un-
superstability are q.f..)

(2) If T is countable (for simplicity) but not W,-stable, then

A N
for each A\> W,, T has min {2 ,2? '} non isomorphic
models, no one elementarily embedded into another.

(3) If T is W,-stable not W,-categorical then I(W ,T) =
o

la + 1|
(4) (Baldwin [Ba]) If T is categorical, ay = R(QD,L, ¥,) <o,

Note: Bokut asked on the number of e.c. algebras (associa-
tive, non-associative) over a field F. This class is unstable, so

A
for A 2 |F| + W, the number is 2 . Similar results holds of
course for division rings. For e.c. groups Ziegler proved that
for each e.c. group M, there is N = M in each cardinal

0,
2 [M|l; we improve this to: for each A > |[M| + 8, there

A
are 2 such N's (both results should appear in Springer Lec-
ture Notes by Ziegler).

FIELDS

Theorem 7.2,

(Macintyre [Mc2]) The only infinite fields with W,-stable
theory are the algebraically closed fields.
We still do not know whether there are stable or superstable
fields or W,-stable division rings except the algebraically [or
separably] closed fields (discarding the finite ones). (See 7.2,
8. 9) There is a small hope (hope, because then we can apply
theorems on stability to such fields).

Macintyre, using 7.5 and elaborations of |Mc 2] proved: if
a field F is superstable then for each n it has finitely many
extensions of degree n. (%)

(**) Added in Proof June 76: Note that if F is the algebraic closure of

the field F, then Th(F) is A-stable iff Th(F, F) is A-stable.
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Theorem 7.3:

The only infinite division rings with W,-categorical theory are
the algebraically closed (commutative) fields

Claim 7.4

Suppose T = Th(M). Suppose t(yy, ... YnZ) i8 a term in the
language of T; b, G, are sequences of elements of M, ;(x, &)
is realized by infinitely many elements of M and:

n
ME (Vyu o Y ¥l o v° A wlyn® A

n n
'Alcpi(yj, @) Aty oot Yu B) = t(y, ..., y", B) = 1{\1 i =Y
]n: =

then: n < ar = 4 RYJ, L, R,)
Proof: Easy by induction on n

Lemma 7.5 Suppose M = <|M|, o,R,...>>, M is infinite,
<|M|, 0> is a group, T = Th(M), and X, <|M| are definable
subgroups (with parameters). then:

1) If X, o X,,; for each n, then T is not W,-stable;
==

2) If X, 2 Xs,1, (Xn:Xy41) i infinite, then T is not supersta-
ble;

) If X, € Xpo1o (Xnot1:Xy) is infinite, then T is not Wi-cate-
gorical. If in addition T is totally transcendantal, ap = o.

Proof: Let ¢,(x) define X, (we ignore the parameters).

1) Let Ex(x,y) = @u(x'y) A @olx) A @o(y). Ex is an equiva-
lence relation over X,, because X, is a group and x € X,,
z € X, implies E,(x, xz). Clearly E,,, refines E, as X,,; ©
X, Now for each n, and a € X,, there are b, ¢, aE,b, aE,c
but not bE,,c. For choose x € X, — X,,,; then aE,ax, but
not aE,, ax (as a—'(ax) & X,.); so choose b = a, ¢ = ax.
So we can define by induction on / (n), a71 € M for each
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w>
ne 2 such thata €X,, and if /(y) = n,
n
a E a E a but not a E a :
n n A<0> 1 gA<L1> NA<0> n+1  nA{1}
w>
Let A = {a :ne 2}
1
[i\]
For each ne 2, p = {xE a :n<e} is consis-
n n yA<n>

tent and is over A and the pn's are pairwise contradictory.

So |S(A)| =2 °

2) Similar to 1). Only note that if M is A-saturated then for
each n, and a € X,, there are b; € X,, i <A\ such that
aE,,b; but not biE,H,lbj fori =+ ]

3) By 7.4 and 7.1(4).

Claim 7.6:

If D is a division ring, T = Th(D) is W;-categorical and ¢(x,3)
defines in D an infinite sub-division ring R, then, looking at D
as a (say right) vector space over R, its dimension is finite. (In
fact it suffices to assume D is a ring with no zero divisors, but
we do not gain as any such stable ring is a division ring)
Proof: Immediate by 7.4, 7.1(4)

Proof of 7.3: If D has an infinite center C, then by 7.6 [D: C]
is finite, by 7.2, C is of course algebraically closed, hence by
well known facts from algebra D = C, so we are through. So
assume that C is finite. Suppose now that a € D, and C(a) is
infinite (C(a) — the sub-division ring of D generated by C and
a).

Let D* = {b e C:a, b commute}. Then D*'s center is infinite
(2 C(a)), hence as in the previous argument D* is an alge-
braically closed field. So by 7.6 [D:D*] is finite, hence D is
isomorphic to a ring of matrices of elements of D* (but this
embedding is not cannonical on D*}, hence D satisfies an iden-
tity, hence by Kaplansky's theorem [D: C] is finite, but also C
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is finite. Hence D is finite, contradiction. If there is no such
a, assume w.lo.g. D is W;-saturated.

Then for some n, a" = a for every a € D, so D satisfies an
identity and we finish as before.

So we finish 7.3

Rings

The results on stability and W,-categoricity (7.7 - 7.9) are sum-
med up in Cherlin and Reineke [CR] (see (1), (2), (3)), which
contains more material. Macintyre and Rosenstein [MR] clas-
sifying the W,-categorical rings with no nilpotent elements,
Baldwin and Rose [BR] proving (4) (on R,-categoricity), give
alternative proofs for some results of [CR], and some other
results. Theorem 7.7-7.11 summarise some of their results,
Baur, Macintyre and Cherlin, [*1], have characterized W,-cate-
gorical W,-stable theories of rings and groups with ar<<e (e.g.
they are abelian by finite). Felgner, [*2], characterizes R;-cate-
gorical semi-simple rings which are not necessarily commuta-
tive; in [*3] and [*4] he makes considerable advance for W,-ca-
tegorical stable groups.

Let J = J(R) be the Jacobson radical of R.

Theorem ?7.7:

If R is a ring with at least one non zero divisor, and R is (A)-
stable, then R has a unit, J is nilpotent, and R/J is a finite
product of matrix rings of the form M, (D), D a (A)-stable divi-
sion ring.

Theorem 7.8:

Suppose R is a commutative noetherian ring, with at least
one nonzero divisor, then R is (A)-stable iff J is nilpotent and
R/J is a finite product of (A)-stable fields.

Theorem 7.9:

Suppose R is a commutative ring with at least one non-zero
divisor and R/J is infinite; then R is Wi-categorical iff R =
R'@ H where:
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i) H is finite

ii) R" is a noetherian local ring (local meang having a unique
maximal ideal M), this ideal M s nilpotent and R'/M is an
algebraically closed field,

Remark:

(1) If R has characteristic zero, R stable, then R/J is neces-
sarily infinite.

(2) The case R/J finite is open, but if jp addition R is stable
and noetherian, then R is finite,

Theorem 7.10:

Suppose R is noetherian, with at leqst one non-zero divisor.
Then R is W,-categorical iff R is finite,

Theorem 7.11:

Suppose R has 1 and no nilpotent elemen;. Then R is N,-cate-

gorical iff R is a finite direct product [ g . here each
ISi€a

R; is of the form
C=CKXF:X..X,, Fi...F) where:

i) X is a Boolean space with finitely many isolated points, F
Is a finite field, X;... X, are closed subsetg of X, Fy..- Fa
are subfields of F,

ii) C is a ring of continuous funcﬁ'or/z{s f:X-F such that £(Xi)
C F; and the dual structure (X, X,, ,,,5‘(") (in the sense of
Stone duality) (a Boolean algebra With ideqlg 321 32,,) is
W,-categorical. (Those structures are classified in [MR].)

Generic division rings

Let T be the (universal) theory of division rings. Cohn [CO]
prove the JEM (for a fixed characteristic) anqg the amalgama-
tion property. Boffa [BO1], [BO2], [BO3] want to find in which
cardinal T has a universal homogeneouyg model. By 1.13 it
suffices to note that 9(T, ®y) is unstable (which, in fact, he
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does). He asked for the number of infinite generic division
rings, so 7.1 solves his problem (in cardinality A > W, there

A
are 2 non-isomorphic ones)

Question:

Suppose D is a division ring, and T is the universal theory of
(D,a) <D’ and it has the JEM. In which cases is the class of
a

infinite generic models of T stable ? superstable ? R,-stable ?
W, categorical ?

§ 8. ALGEBRA AND STRUCTURE THEOREMS
Algebraically closed fields

It is well known that for each p, the theory of algebraically
closed fields of characteristic p is W;-categorical. In fact this
was the motivation of Lo$ 'conjecture.

Modules.

For each ring R, we consider (always left) modules over R
as additive groups with one-place functions F, for each a € R.
Let R be fixed, L = Ly the corresponding language and T = Ty
be the theory of such modules. By |[R| we mean |R| + W,.
The first order theories of abelian groups were classified by
Szmielew [Sz]. Macintyre [Mc 1] classified the W,-categorical
theories of abelian groups. Sabbagh [Sb 2] reproved Smielew's
theorem as well as Eklof and Fisher [EF] who further found in
which cardinals a given complete theory of abelian groups has
a saturated model. By 1.13 (and as mentioned in [S5]) they
essentially classified abelian groups by stability. In particular
every abelian group is stable.

Theorem 8.1. (Mycielski [My], Sabbagh [Sb2]) If M is |R|*-

saturated, M < N, or even M < N, then M is a direct sum-
ep

mand of N,
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Remark. In fact, we prove M is atomically compact (see e.g.
Taylor [T 1]).

Proof. It suffices to show there is a homomorphism from N
into M, which is the identity over M (as N = M @ Ker f).
For this it suffices to prove:
(*) If T is a set of ep-formulas, with parameters from M, fini-
tely satisfiable in M, then T is satisfiable in M.

(Because let |[N| = {a; :i<a}, T = {CP(Xil- ey ) g

is gf, NE ¢ [ai,, ..., @ ,...] and a ... € M}).

Clearly for proving (*) it suffices to prove it for I' with one
variable (replace variables appearing in I' by elements in M
one by one; in limit stages remember that «finite satisfiability»
has a finite character; for a variable x let

n
I'={3y) AN eux,¥):9:(x,}) €'} and apply the assump-
i=1

tion),
So let I' = {gi(x) :i <a} and let, w.lo.g.
n(i)
i(x) = (Iy1... Ya) A 2 rmy + rmx = aim where
m<m(i) j=1 § i

r‘j-m, rmeR, ame M. (¢ j could have a disjunction inside,

but by extending I' we can get rid of it). Let us call Pictyr Pi@
similar if n(i(1)) = n(i(2)), m(i(1)) = m(i(2)), r;‘”'“‘ = r§(2)’"‘,
ri®m = (@.m Clearly similarity is an equivalence relation,
so let ¢ (i <o, € |[R| + W,) be a set of representatives. So
Fo = {@(x) :1<a,} is finitely satisfiable in M, |T,| < |R|;
so there is a b, realizing it. We shall show that b, realizes I
For (pﬁ there is i < a, such that g (p[3 are similar. So letb e M

, 8 .
satisfies cpﬂ A @;. So we can find yy, ... and yy, ... such that:

n(ﬁ) Blm ﬁ f-’);m ﬁ,m

(i)'Eirj yj-i—r b = a for m <<m(B)
J=
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n{p) fm i f.m im
M T r y+r b=a for m < m(3)
j=1 i
(remember the similarity), Substracting, we get
n) fm B i f.m im

2 y —y)=a —a
j=1 i i i

B i
Hence if y; (1 <n(i)) exemplifies @i (bo), then y; + Yi—Y;
exemplifies (pB (bo).

Theorem 8.2. (Baur [Br], Fisher [Fi1] [Fi2])
Every module has a stable theory; so clearly also 9 (Tr, Oy)
is stable.,

Proof. If not, there are R-modules MMz, A S M, c My, | Al =

i

[{tp(a, A, M,) :a e Mz} > [My]. W.lo.g, M; is |R|*-saturat-

ed ,and A = IM{], M; < M, M, is |R|*-saturated too. Now
[/

by Feferman-Vaught if a; , a» ,... e M,, f:M;—>M, is a

homomorphism, fI M, = the identity, M, = Ker f, and f(ail)
= f(ai?), tp(<...,ai1——f(a:), > GM,) = tp(<..., a2——'f(a?),

e >, D, M), then tp(<..., al, ...> O, M) = tp(<..., af, c>,
2, Ms). So we get a contradiction easily. The seccnd part is

left to the reader.
The following lemma is much related to Sabbagh [Sb 3]:

Lemma 8.3. Every formula in LR is equivalent (modulo T'R)
to a Boolean combination of pe-formulas where L;{ = LR u
{ci:i<<|R| + W,}, T;z is a Ily-theory in L'R, extending TR,

such that every Lg-model of Tr can be expanded to a model
of T;{.
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Proof, Left to the reader, remembering

Claim 8.4. (1) Let ¥ be a set of atomic formulas in Lg, ¥, the
set of first-order formulas whose atomic subformulas belong
to ¥ and their quantifier depth is < n. Let th,(M) = { ve VY, :
M= v} and note |¥| < W, = |W¥,| < W,. Then for each n
there is k(n) < o such that : if M = @I M; (free sum of mo-
ie
dules) then th,(M) is determined by the truth value of the fol-
lowing statements : for each t which is a formally possible
thy(N) and cardinal A, 1 <{0,1,...k(n)} U {R§,}, «Hiel:t
= th,(M) }| = M.

(2) Part (1) can be generalized to similar classes (as abelian
structures of Fisher [Fi 1]).

Remark. For such theorems see Feferman-Vaught [FV], Galvin
[Ga]. Eklof and Fisher [EF] proved : th(M;) = th(N;) =
th(® M;) = th(® Ny) and Barwise and Eklof [BE] had similar
results for infinitary languages (which we can too). The case
A = W, is needed above, for if B; are Boolean rings, @ B;
i<a

has one iff « < w. See also Waszkicwicz and Weglorz [WW].

The following theorem characterizes k:(Tg) except when
K(TR) = 30.

Theorem 8.5. The following conditions on R, » (where cf »>
W,) are equivalent
(1) » <k(Tr) (Where k(Tg) = sup {~(T) : T a completion of
Tk},
(2) For each n <, every submodule of r(R") is generated
by <« elements.
(3) Every ideal of R is generated by <« elements. (')

Proof. (2) = (1). Essentially just like 8.1, 8.2 (M will be #-com-
pact). In the proof of 8.1 we have to show that we can re-

(*) It seems that (2) = (1) does not work, so 8.5 is proved with qf-un-
stability in (}). But 8.7 can be generalized for charactering x< x (7).




Sh:54a

66 SAHARON SHELAH

place I' = {@i(x) : <y, n(i), m(i) <k} (k < w) by a subset
of cardinality < x, which is easy by our assumption,
not (2) = not (1). (Here cf x > R}, is not used). We can find

a o a a
n<w and § = (@1,...,8,) Rn (@<<x) such that T does

p
not belong to the submodule of R» generated by {@ :8 <q}.

*®
For each 1, let MA be the module generated by: Yn/ me A

a
/ =1,..,n), z (ve Aa<x) and subject only to the restric-

tion: whenever v is an initial segment of N oae,

n o
3 a

Y = z . It suffices to show that
1 (7 v

/

a

n
2 a8,y =2z holds iff v is an initial segment of 7.
(=1 {7y v

Suppose n,, v is a counter-example, and let h be the following
endomorphism of M, where
o®
a = min {a:n,(a) + v(@}:mn € A v an initial segment of v,:
* / /
@) foree & ol (@+1) = vi@+1), h(YQ ) = Yo
1
. " / /
(i) foree A ol (@+1) = vi(@+1), h(Y9 ) =y
Mo

>
(i) foree Aol (@+ 1) =vl@+y, h(zg) = “nl /e

Tl £
Clearly h is a projection onto the submodule generated by

(iv) forg = n>k,gf(a+ 1) = vl («+ )bz ) =2

Yn , Yn (/ =1,..,n) subject to the conditions:
1

(1]

/ (for B < q).
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Easily this contradicts the assumption on E'Y (v <.

(2) = (3). Trivial.

(3) = (1). We prove by induction on n, R*+! = R @ R, so if
M is a submodule of (R"*!), then R @ M/R (considering R as
submodule of R"*!) and M N R® are < x-generated; from this
the conclusion follows.

Remark. Here we get the unstability by qf-formulas. In fact

we proved (we can even refine 8.5 by adding in (2) / (a) = n,

and restrict (2) to n,):

Theorem 8.6. The following conditions on x are equivalent
(when cf «x> R):
<x IRI
1) 1 A =122, |A| <}, ACSMETg then
H{tpu(@ A, M) : T M} <)
(2) For each n < w, every submodule of y(R") is generated
by <=« elements; and when » > N,
(3) The conditions of 8.4.

Remark. We can infer now that if R is not noetherian, Ty is not
superstable (which can be inferred from «not artinian»); more-
over, there are qf-formulas, hence (by 7.1) for every regular

A
A > W, there are 2 R-modules, no one embeddable in another.
Of course this conclusion holds under more general conditions.

Theorem 8.7. The following conditions are equivalent:

(1) Tg is superstable, -

(2) not: for every regular 1> IR| there is an R-module of
cardinality A which is not the direct sum of R-modules
of cardinality <},

(3) every R-module is the direct sum of countably generated
R-modules,

(4) if M < N then there is a projection from N onto M,

ep

(5) every ep-1-type over M which is finitely satisfiable in
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M, has an equivalent finite subtype, or equivalently jg
realized in M,

Note: It seems that the number of e.g. |R|*-saturated modules
13

in R is <2' ', s0 we have a structure theorem.

Remark. Fisher [Fi] generalizes this (to abelian structures) and
strengthens it to having a unique decomposition, *9)

Proof (5) = (4). Just like the proof of 8.1,

(4) = (3). This is a standard fact. Indeed (4) means that every
R-module is pure-injective, hence that every module is pure-
projective hence that every module is a direct summand of
a direct sum of finitely presented R-modules (see for all those
implications Warfield [WI]). A classical theorem of Kaplansky
concludes the proof.

For completeness, let us prove that every R-module M is the
direct sum of R-modules of cardinality < |R|. We prove it
by induction on |[M]|. For IM|| < |R]| there is nothing to prove,
Otherwise let [M| = 4> IR|, and we define by induction on
a <A an increasing continuous sequence Ma <M, HMa | <A,

UM =M, and projections h from M onto M |, (We

a<A o a
define by induction on o, M and then h using (3)). Let N =
- a a [£3
Ker h [M ,soM =M @N ,henceM = 3 N ;
a+1 a+1 a1 a a a<l «

so using the induction hypothesis on 1 the conclusion of
(3) follows.

(3) = (2). Trivial.

not (1) = not (2). Easy by the construction in [S3] 1.1, see
here §0,7.1.

not (5) = not (1). So there is an R-module M and ep-for-

N

a
(*) In a proper sense. We can add: (6) I(n , Tp) < 2 for some
a

IR|
> ITRl, B In, 7)< lal? (and we can get the exact value; see
o a

[S 1], IX, § 2).
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mulas @,(x) = @,(x, ai, e a,i‘) (a'/ € M) such that M =(3x)

A ¢ (x) but ME (3x) (A o (x) A7 ga(x)). By notational
/<n /

f<n f
i
changes we can assume X = Iy vim) A 2 rl,-y,- +
i<k(n) j=1 '
1
$X = a; and that for each n, ME @A A 3
. i<k(n j=1
r,?b;'+ Si¢n = a;. For notational simplicity let k(n) = n,

i
Let us find M*, ¢ b; (j <u) such that M< M* = ¥ rlp, +
=t
sic* = a;. Now for each A, let N be an R-module generated by

n " o w>
X y/, zme hve ) ¢ <uw) subject only to the fol-

© i n n
lowing conditions: when ne i, N2 r‘,y, +sx =
i<k(n) j=1

zZ . Clearly N = X ,2 y e 2 , and it is suffi-
nli Y (pn(n nfo nl‘k(n))

w
ficient to prove that if ne A n<a, v = nlnA <a>, nn)

]
¥ o, then N T, (x , 2z fo'™ zv). Suppose 1, v are a
v

counterexample, and we shall define a homomorphism h from
N into M*:

W 111
() if e A, n'Tn+1) = v then h(x ) = c¢* and
111
h(y;) = by
w 1‘1
() if n'e€ & w'lm+1) = v then hix') = ¢, and
nl
h(y; ) = b; for j < k(n),

o nt
(i) if n'e Lyl +1)=1yv j> k(n), then h(y; ) = b,
(iv) ifoe™ m<norolm+ 1) = v, thenh(ze) = am

w
(v) for other ¢ & ™, choose any n'€ A ¢ = n''m and

R A O




Sh:54a

70 SAHARON SHELAH

m i Y 3t
let h(z ) = .21 5 hiy; ) + s, h(x ).
e i= :
The contradiction we get is clear (by the choice of v, v,
n
NFE@.i(x,z ro,...,z ), so as h is ep-formula, M* =
v b4

Pa+1 (Cy A, ..., a5,4) contradicting the choice of c,.
Sabbagh noticed that our results imply that if R is commu-
tative and countable, then Tk is superstable iff Ty is W -stable,
P
Differentially closed fields,

A differential field is a natural generalization of g field: we
add to the theory of fields of characteristic P a one-place func-
tion D, and the axioms D(x+vy) = Dx + Dy, D(xy) = (Dx)y
+ x(Dy), and get Tgf. Using Seidenberg [Si], Robinson [Rb 1]

showed that T‘(’" has a model completion Tgo (the theory of

differentially closed fields).

Blum (B] 1] gives a nice axiomatization: if Py, P, are differen-
tial polynomials with one variable y, of orders my, mg, my >
my, P; not identically zero, then: there is a solution for P, = ¢
A Py # 0, and for P, = 0, *)

Later Wood (W1] (w2, again using [Si 1], proves similar
results for T?ic' P >0, when we add the p-th root as an opera-

tion; i.e. we add the axioms: r(x) = 0> r(x)r = g, rx) =
0 (Vyyr # Y (note that x = YP—=Dx = 0) and we get
the theory of radical fields de and its model completion the
theory dec of the radically differentially closed fields.

Blum [BI 1] shows Tgc is W,-stable: quite naturally, the Mor-

ley rank of a I-type is < the minimal m such that it implies x,

{(**} Meanwhile S, Fakir in a mineograph asserts there is a mistake, and
suggests a correction,
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is a root of a differential polynomial of order m, and w if there
is no such m; hence by Morley [M 1], over any differential
field there is a prime differentially closed field, hence by [S 9]
(here 4.5), it is unique up to isomorphism (but it is not minj-
mal, see [K13] [Rs 1] [S 10)).

Shelah [S10] and Wood [W 2] prove, independently, that
over any radical differential field there is a prime radical dif-
ferentially closed field. In [S 10] it is proved that 'I‘fdc is stable

(it is not superstable as noted by [S 10] from a proof in [W 1]
that it is not R,-stable), .

Hence by 4.6,

Theorem 8.8. Over any radical differential field (in fact a
field such that Dx = 0 — (3y) y* = x), there is a unique pri-
me radical differentially closed field.

We should note that though T‘;c is W,-stable, by [S 10] it has

the dimensional order property (e.g. by adding the cardinality

>N
quantifier 3 ° we get long orders in some models), hence
it has non-structure theorem,
Macintyre and Shelah note

Theorem 89. If F is a separably closed but not algebraically
closed field, then Th(F) is stable but not superstable.

Proof. In some cases it follows from the theorem on the stabi-
lity of TI’rdc (S 10]) and always similarly. The unsuperstability

follows from 7.5(2) as P*" is a strictly decreasing sequence of

definable additive subgroups and Fe"/pe"*! is infinite (quotient
as additive groups).
C. Wood, [*5], has written the proof in details. It seems that

those theories has the dimensional order property, hence 2
modules in each A > N,
Operations preserving stability.

For a wide class of operations on models, we can prove
that they preserve stability
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Lemma 8.10. If Op(..., M;, ...)_< i8 an operation on models
1I<a

(i) preserving elementary equivalence (i.e. Mi=N= Opl...,
M, ...) = Op(..., Ni...),

(ii) for each 1, it preserves A*-saturation (i.e. if each M; is
A*-saturated then Op(..., M, ...) is),

(iii) if each M; is aA,-stable model then Op..., M, ...) is,

then Th(M,) is A,-stable for each i implies Th Op (... M;, ...).<
i<a
is A,-stable.

Proof. Trivial (in fact, (i) is not needed).

The simplest application is that reducts Preserve stability,
Similar theorems hold for stability of classes we discuss here
(generic, @-homogeneous, etc...). The proof of the hypothesis
is in many cases easy by Feferman-Vaught [FV], or maybe
the refinements to autonomous systems of Galvin [G1].

J. Wierzejewski [Wr] used a particular instance of 8.10 (for
products using the lemma of J. Waszkiewicz and B, Weglorz
[WW] that finite products preserve saturation). So he proved
R -stability, superstability, stability and also the negation
of the finiteicover-property, the negation of the independence
property, and the negation of the strict order Property.

He also proved in [Wr] that the negations of those proper-
ties are not preserved even by Squares. The author found
when M = M, + M;, M is stable iff M, and M; are stable; and
similarly for the other properties,

REFERENCES
[Ba] J.T. BALDWIN, ar is finite for Nj-categorical T, Trans, AM.S. 181
(1973), 37-51.
[BE] J. BARWISE and P. ExLoF, Infinitary properties of abelian torsion

groups, Annals of Math, Logic 2 (1970), 25-68.

[BL 1} L. BruM, Generalized algebraic structures, a mode] theoretic ap-
proach, Ph. D. Thesis, M.I.T. 1968.

[Bo 1] M, Borra, Corps d-clos, C.R. Acad. Sc. Paris, sér. A 275 (1972),
881-882.

[Bo 2] M. Borra, Sur I'existence des Corps universels homogénes, C.R.
Acad. Sc. Paris, sér. A 275 (1972), 1267-1268,



Sh:54a

[Bo 3]
[Br]

[BS]

[Co]
[Cr]
[CR]
(EF]

[EHR]

[Ek]
[EM]
[Fi 1]

[Fi 2]
(Fu]

[FV]

G 1]
[G 2]

[Ga]
{Ha]
J1]
[In]

K 1]

THE LAZY MODEL-THEORETICIAN'S GUIDE TO STABILITY 73

M. Borra, Generic skew fields, Logical semester in Warsaw,
1973, preprint.

W. Baug, N,-categorical modules, J. Symb. Logic, 40, (1975), 213
220.

J.T. BALDWIN and J. SaxeL, Logical Stability in Group Theory,
J. of the Australian Math, Soc., XXV (Ser. A), Part 3, May 1976,
267-276.

PM. Conn, The embedding of firs in skew fields, Proc. London
Math. Soc. (3) 23 (1971), 193-213.

G. CHERLIN, The model-companion of a class of structures, J. Symb,
Logic 37 (1972), 546-556.

G. CHERLIN and J.M., REINECKE, Categoricity and stability of com-
mutative rings. Annals of Math. Logic.

P.C. EkLoF and E.R. Fisuer, The Elementary properties of abelian
groups, Annals of Math. Logic, 4 (1972), 115-171.

P. Enpnés, A. HajNAL and R. Rapo, Partition relations for cardinal
numbers, Acta. Math. Acad. Scientarium Hungaricae 16 (1965),
93-196.

P. C. ExLoF, Categories of local functors, ROBINSON Memorial
Volume, Springer.

A. ERHENFEUCHT and A. Mostowski, Models of axiomatic theories
admitting automorphisms, Fund. Math. 43 (1956), 50-68,

E. FisHER, Powers of saturated modules, abstract, J. Symb. Logic,
37 (1972), 777

E. FisHER, Abelian Structures.

L. Fucss, Infinite abelian groups, Vol. I 1970, Vol. II 1973, Aca-
demic Press, N.Y. -

S. FEFERMAN and R.L. Vauchr, The first order Properties of alge-
braic systems, Fund, Math., 47 (1959), 57-103.

H. Garrman, Operations and relations on structures, functors and
classes, 1, Proc. of the Tarski Symp. Berkeley 71. Proc. of Symp.
in Pure Math. vol. XXV, ed. L. Henkin, A.M.S. 1974, 21-41,

H. GarFman, Definability and many sorted logic, mimeographed
notes of a lecture given at the Robinson memorial Coll. at Yale
1975,

F. Garviy, Horn sentences, Annals of Math. Logic 1 (1970), 389-
422,

V. HARNIX, On the existence of saturated models of stable theories,
Israel J. of Math.

I. Junasz, Cardinal function in topology (in collaboration with
A. VERBEEK and S. KROONENBERG), Math. Cenir. Trans. 34.

B. Jonsson, A Boolean algebra without broper automorphism;
Proc. AM.S. 2 (1951), 770-776.

H.J. KEisLER, Ultraproducts which are not saturated, J. Symb.
Logic 32 (1967), 23-47.




Sh:54a

74

(K1 2]
(K1 3]
(Ls]
[Lz]
IMA]
Mec 1
Mec 2]

[McS]

IMM]

[MR]
MS]
MV]

[My]
[Pr]

[Rb 1]

RS 1]
[Rt]

[Sb 1)
[Sb 2]
[Sb 3]

[Sc]

SAHARON SHELAH

EK. KovrcHy, Differential algebra and algebraic groups, N.Y,,
Academic Press 1973 (Pure and Applied Math. 54).

E. K. KoLcHin, Constrained extensions of differential fields, Ad-
vances in Math., 12 (1974), 141-170.

D. Lascar, Ranks and definitability in superstable theories; Isrge]
J. of Math.

FEW. Lozier, A class of compact rigid o-dimensional spaces, Ca-
nadian J. Math, 21 (1969), 817-821,

K. Mc Avroon, Les algébres de Boole rigides et minimales, C.R.
Acad. Sc. Paris sér. A 272 (1971), 89-91,

A. MACINTYRE, On Nj-categorical theories of abelian groups, Fund.
Math. 70 (1971), 253-270.

A. MACINTYRE, On N;-categorical theories of fields, Fund. Math.
71 (1971), 1-25.

R. McKenzie and S. SHELAH, The cardinal of simple models for
universa} theories, Proc. of Berkeley 71 Symp. in honour of
TARSKI seventieth birthday; Proc. Symp. in Pure Math., Vol.
XXV, AM.S. 1974; 53-74.

Hungary, 1973,

A. MACINTYRE and J. RosENsTEIN, No-categorical rings without nil-
potent elements, and Boolean Structures, J. of Algebra, submitted.
A. MACINTYRE and S, SHELAH, Uncountable unijversel locally finite
groups, J. of Algebra., submitted.

M.D. MorLey and R.L VavucHT, Homogeneous universal models,
Math. Scandinavica 11 (1962), 37-57.

J. MyciELskr

H. PrIESTLEY, Ordered topological spaces and the representation

of distributive lattices, Proc. London Math. Soc, 24 1972), 507-530.
A. Rosinson, Forcing in model theory, Actes duy Congreés Inter-
national des Mathématiciens, Nice 1970. Gauthier-Villars 1971,
245-250.

M. RoseNLICHT, The non-minimality of differential closure, Pacific
J. of Math,

J.F. Rrrr, Differential algebras, Amer. Math. Soc. Colloquium
Publ,, 33 (1950),

G. SaBBacH, Sur la pureté dans les modules, C.R. Acad. Sci. Paris -
sér. A 271 (1970), 865-867.

G. Saseacu, Aspects logiques de la pureté dans les modules, C.R.
Acad. Sci. Parig sér, A 271 (1971), 865-867, :
G. SasBacw, Sous-modules purs existentiellement clos et élémen-
taires, C.R. Acad. Sci. Paris sér. A 272 (1971), 1289-1272,

G. Sacks, Saturated model theory, Benjamin, Reading Mass., 1972,



Sh:54a

(Sd]
S 1]
(52

(53]

[S 4]

(S 5]

(S 6]
IS 7]

S 8]

(S 9

(S 10]
(s1]
{T]
W 1]
w2
fw 3]
wi

(Wr]
wwj

[*1]

(*2]

THE LAZY MODEL-THEORETICIAN'S GUIDE TO STABILITY

75

A. SEIDENBERG, An elimination theory for differential algebra,

Univ. California Publ, Math, (new serie) 3 (1964), 31-66.

S. SHELAH, Stability and the number of non-isomorphic models,

North-Holland Publ. Co., in preparation.

S. SurLaH, Infinite abelian groups, Whitehead Problem and some

Constructions, Israel J, of Math, 18 (1974), 243-256.

S. SHELAH, Why there are many non-isomorphic models for un-
superstable theories, Proc. of the 1974 International Congress of

Mathematicians, Vancouver.

S. SueLAH, Saturation of ultrapowers and Keisler's order, Annals

of Math. Logic 4 (1972), 75-114.

S. SHELAH, Stability, the f.c.p. and superstability; model theoretic
properties of formulas in the first order theory, Annals of Math,

Logic 3 (1971), 271-362.

S. SHELAH, On categoricity and stability over a predicate, in pre-

paration,

S. SHELAH, Finite diagrams stable in power, Annals of Math. Logic

2 (1970), 69-118,

S. SHELAH, A combinatorial problem, stability and order for
models in infinitary languages, Pacific J. of Math. 41 (1972}, 247-

261.

S. SueLaH, Uniqueness and characterization of prime models over
.sets for totally transcendental first order theories, J. of Symbolic

Logic 37 (1972), 107-113.

S. SHeLan, Differentially closed fields, Israel J. of Math, 16 (1973),

314-328.

R.M. Sorovay, Real-valued measurable cardinals, Proc, of Symp.
in Pure Math., XIII part 1, Ed. D. Scott, A.M.S., Providence RI.
W. TavLon, Some constructions of compact algebra, Annals of

Math. Logic 3 (1971), 395-346.

C. Woob, The model theory of differential fields of characteristic

P # 0, Proc. Amer. Math. Soc. 40 (1973), 577-584.

C. Woop, Prime model extensions for differential fields of charac-

teristic p # 0, J. Symb. Logic.

C. Woob, Forcing for infinitary languages, Z. Math, Logic und

Grundlagen Math. 18 (1972), 385-402.

R.B. WaRFIELD, Purity and algebraic compactness for modules,

Pacitic J. Math. 28 (1969), 699-719,

J. WIERZEJEWSKI, On stability and products, Fund. Math,, to appear.
J. Waszkiewicz and B. WEGLORzZ, On @ -categoricity of powers,

Bull. Acad. Pol. Sci. sér. de Math., Astron. et Physique.

W.BAuR, G.CHERLIN and A. MACINTYRE, On lotally categorical

groups and rings, to appear.

U. FELGNER, Ni-kategorische Theorien nicht-kommutativer Ringe,

Fund. Math.




Sh:

54a

76

[*3]
[*4]

[*s]

SAHARON SHELAH

U. FELGNER, No-categoricity of extra-special P-groups, this volume,
U.FELGNER, On the structure of -categorical stable groups, to
appear in the '76 Logic Coll., Oxford,

C. Woob, Notes on the Stability of separably closed Fields, pre-

print,



