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Abstract It is well known how to generalize the meagre ideal replacing Rg by a
(regular) cardinal A > Rq and requiring the ideal to be (<))-complete. But can we
generalize the null ideal? In terms of forcing, this means finding a forcing notion simi-
lar to the random real forcing, replacing R by L. So naturally, to call it a generalization
we require it to be (<A)-complete and AT-c.c. and more. Of course, we would wel-
come additional properties generalizing the ones of the random real forcing. Returning
to the ideal (instead of forcing) we may look at the Boolean Algebra of A-Borel sets
modulo the ideal. Common wisdom have said that there is no such thing because we
have no parallel of Lebesgue integral, but here surprisingly first we get a positive =
existence answer for a generalization of the null ideal for a “mild” large cardinal A—a
weakly compact one. Second, we try to show that this together with the meagre ideal
(for A) behaves as in the countable case. In particular, we consider the classical Cichon
diagram, which compares several cardinal characterizations of those ideals. We shall
deal with other cardinals, and with more properties of related forcing notions in sub-
sequent papers (Shelah in The null ideal for uncountable cardinals; Iterations adding
no A-Cohen; Random A-reals for inaccessible continued; Creature iteration for inac-
cesibles. Preprint; Bounding forcing with chain conditions for uncountable cardinals)
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0 Introduction
0(A) Aim: for general audience

The ideals of null sets and of meagre sets on the reals are certainly central in mathe-
matics. From the forcing point of view we speak of random real forcing and Cohen
forcing. The Cohen forcing has natural generalizations (and relatives) when we replace
Z(N) by £ (1), or the set of the characteristic functions of subsets of A, for a regular
uncountable cardinal 1, replacing finite by “of cardinality <A”. But we lack a gener-
alization of random real forcing to higher cardinals A, replacing reals by A-reals, e.g.
members of *2. It has seemed that this lack is due to nature; the reason being that on
the one hand the Baire category theorem generalizes naturally (when we are allowed
to approximate in A-steps and information of size <A instead finite; all this for regular
A), but on the other hand we know nothing remotely like Lebesgue measure.
Surprisingly, at least for me, there is a generalization: not of the Lebesgue measure,
but of the ideal of null sets, i.e., the ones of Lebesgue measure zero. This is done here
(i.e., in this part) for a mild large cardinal A: weakly compact. The solution for more
cardinals will be dealt with in a continuation (at some price). The present definition
should be examined in two ways. First, we may list the well known properties of
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the null ideal (and of random real forcing) and try to prove (or disprove) them for
our ideal. Second, random real forcing was used quite extensively in independence
results; in particular for related cardinal invariants, so it is natural to try to generalize
such applications.

The first issue is dealt with in Sect. 2 (assuming Definition 1.3 and intended for
wider audience) and then Sects. 3—8 here. The second is treated in the continuation.
Whereas success in the second issue should be easy to judge, concerning the first
issue the reader may first list what are reasonable hopes and compare them with the
discussion and description in Sect. 3. This is not done in the present section in order
to help the reader to make a list of expectations independent of what we have done.

A set theoretically uninitiated reader may read the rest of Sect. 0(A) to see what
are those large cardinals, look casually at Definition 1.3, just enough to see that the
definition of QQ,, the parallel of the family of all closed subsets of [0, 1]g or “2 which
are not Lebesgue null for « strongly inaccessible, is natural and simple, then jump to
Sect. 2 to see what we hope for and what is done.

Let us describe for the non-set-theoretic reader, what are these “large cardinals”.
Note that 8 is parallel in some respect to 8¢, whereas X is “the first infinite cardinal’;
the number of natural numbers; R is the first uncountable cardinal, and is the number
of countable ordinals (that is, isomorphism types of countable linear well orderings).
Also both are so called regular: the union of less than Ry sets each of cardinality < Ry
is < Ny. But 8 is strong limit: k < Rg = 2 < 8y whereas R is not. We can
prove that there are strong limit cardinals: let 3y = R, 3,11 = 23 3, = > 3,

n<w
now 3, is a strong limit cardinal but alas is not regular. We say a cardinal A is

(strongly) inaccessible when A is regular and strong limit, it is called “large cardinal”
because we cannot prove its existence in ZFC but, modulo this, it is considered a very
reasonable, small one. Similarly, the weakly compact ones which we now introduce: an
uncountable cardinal is weakly compact when it is strongly inaccessible and satisfies
the analog of the infinite Ramsey theorem: every graph with A nodes has a subgraph
with A nodes which is complete or empty (alternatively, it satisfies the generalization
of Konig lemma). So weakly compact cardinals are more similar to 8¢ than other
cardinals, so it is not unnatural assumption when trying to generalize the null ideal.

0(B) For set theorists

In the present paper we prove that for a weakly compact cardinal X there are (naturally
defined) forcing notions adding a new € *2 which have not few parallels (replacing
“finite” by “of cardinality <)”) of the properties associated with random real forcing
(and we define the relevant ideal). It seems natural to hope this will enable us to
understand better related problems, in particular cardinal invariants of A; on cardinal
invariants for A = R, i.e. the continuum see Blass [2]; in higher cases see Cummings
and Shelah [5]; in particular on strongly inaccessible see Rostanowski and Shelah
[19-21,23] and also [27].

In Sect. 1 we show for A weakly compact that there is a (non-trivial) A-bounding
At-c.c. (<A)-strategically complete forcing notion and even a A-complete one, see
0.4. We also generalize the construction for adding a member of [ [, _, 6;.
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In the second section we discuss desirable properties of the ideal. In Sects. 3-8 we
try to deal systematically with parallels of properties of the null ideal.

The ideal id(Qy) (of subsets of “2) determined by our forcing notion Q, is intro-
duced in Sect. 3. There we also study the properties of k-Borel subsets of “2 related
to this ideal.

Cardinal characteristics of the ideal id(Q,) and their relations to b, 0, and the
characteristics of the k-meagre ideal are investigated in Sects. 4 and 5. We present a
parallel of Cichori Diagram in Theorem 5.9.

In Sect. 6 we compare Q, and Cohen,.. We note that forcing with one makes the
set of ground model k -reals small in the dual sense. We also investigate the class Sawc
of all inaccessible cardinals x for which Q, adds a Cohen real.

In the next section we introduce a parallel to “amoeba forcing”—a forcing notion
Q2™ adding a generic condition p, € Q.. And then, in Sect. 8, we investigate «-
Borel and «-stationary-Borel sets and show that some relations associated with Q,
are absolute.

We shall continue in successive papers, things delayed for various reasons. In partic-
ular in Cohen and Shelah [4] we shall eliminate the assumption “A is weakly compact”
and in [24, §1] we will investigate non-inaccessible case. A work with Baumhaver and
Goldstern (see [28]) will deal with consistency results complimentary to the ZFC impli-
cations (i.e., inequalities) here. In [24, §1] we investigate adding many “A-randoms”.
Further research concerning consistency results using iteration of creature forcing will
be presented in [25]. We will also consider there constructions starting not with Cohen
but other nice forcing notions and more.

0(C) Preliminaries

Definition 0.1 (0) We say 7 is a A-real when 1 € *2.
(1) We define when B C *2 is a A-Borel set naturally (see [38]), thatis X € *2is a
basic A-Borel set if there exists v € *>2 such that X = (*2)[" = {5 € *2 : v<n}. The
family of A-Borel sets is the closure of the basic ones under unions and intersections
of at most A members, hence also by complements.

Note: actually B is an absolute definition of a subset of 2 so BY, “B as interpreted
in the universe V”, is well defined for suitable V.
(2) “F is a A-Borel function” is defined similarly.
B3)BC*2isa Ell(k)-set when B = {(n(2a) : @ < A) : n € By} for some A-Borel
set By.
(4)B C *2isa A-stationary Borel set when for some A-Borel function F : *2 — 22(1)
we have n € B < F(n) is stationary.
(5) A set X € *5()) is A-nowhere stationary Borel iff there is a A-Borel function
B from *.7 (1) to (1) such that for every n € *7 (1) we have: n € X iff F()
is a nowhere stationary subset of A (see 0.6(2)). The complements of such X are
A-somewhere stationary sets.
(6) Similarly replacing > 2 by other trees with A levels and A nodes.

Definition 0.2 (1) We say that a set B C *2 is A-closed when:
e ne’2A(Ma<A)@veB)(nla=via) = ne B,
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equivalently

o for some sub-tree T C *>2 we have

B =1im, (T) &ef {n : n asequence of length A such thate < A = nla € T}.

(2) Let Q be a family of subtrees of *>2 (or a quasi order with such set of elements).
We say that B C *2 is a Q-basic set when B = lim;, (p) for some p € Q.
(3) Similarly replacing *>2 by other trees, as in 0.1(6).

Definition 0.3 (1) We say that a forcing notion IP is «-strategically complete when the

player COM has a winning strategy in the following game oy (p, IP) for each p € P.
The game Oy (p, P) involves two players, COM and INC. A play lasts & moves;

in the B-th move, first the player COM chooses pg € P such that p <p pg and

vy < B = g, <p pp and second the player INC chooses gg € P such that pg <p gg.
The player COM wins a play if it has a legal move for every 8 < «.

(2) We say that a forcing notion P is (<X)-strategically complete when it is o-

strategically complete for every o < A.

Remark 0.4 The difference between “IP is A-strategically complete” and “A-complete”
isnotreal, i.e., when we do not distinguish between equivalent forcing, those properties
are very close (as in [34, Ch.XIV]), and here the difference does not matter, see
e.g. 1.5(2).

Definition 0.5 (1) The A-Cohen forcing is *>2, <).

(2) A forcing notion Q is A-bounding or *A-bounding when IFg “for every function
f from A to A there is g € ()‘A)V such that f < g,ie, 0 <A = f(o) < g(a)”.

(3) We say that a Q-name 1 € “g8 is a generic of Q when for some sequence (1, : p €
Q), T, an absolute function definable in V (or even a (|a| + |B])-Borel one) from ¢
into {0, 1} we have I “p € G iff 7,(n) = 1".

Definition 0.6 (1) Let Sjhac be the class of all (strongly) inaccessible cardinals and
let S . = {0 : 9 < « is inaccessible}.

(2) We say “S is nowhere stationary” when S is a set of ordinals, and for every ordinal
8 of uncountable cofinality, S N § is not a stationary subset of §.

(3) For a set p of sequences of ordinals and n let p!"l = {v € p : v < norn < v}

and p=" = {v e p:p Q).

Definition 0.7 For an ideal T of subsets of X, including all singletons for simplicity,
we define “the four basic cardinal invariants of the ideal”:

(a) cov(l), the covering number is min{0: there are A; € I for i < 6 whose union is
X},

(b) add(l), the additivity of I is min{0: there are A; € [ fori < 6 whose union is not
in I},

(c) cf(l), the cofinality of I is min{6@: there are A; € I fori < 6 such that (VA €
D@EHA < Ap},

(d) non(l), the uniformity of [is min{|Y|: Y € X butY ¢ I}.
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Remark 0.8 We may use, e.g., cov(meagre, ) and cov(Cohen, ), they denote the same
number.

Observation 0.9 For any ideal 1

(a) add() < cov(l) < cf(D),
(b) add() < non(l) < cf(l)

1 Like random real forcing for weakly compact «

We consider the following question.

Question 1.1 (1) Is there a non-trivial forcing notion which is AT-c.c., (<A)-
strategically complete and which does not add a A-Cohen sequence from *2?

(2) Moreover is A-bounding?

Recall that for A = Ry, “random real forcing” is such forcing notion but we do
not know to generalize measure to A with A-completeness or so, whereas for Cohen
forcing and many other definable forcing notions which add a Cohen real we know
how to generalize.

We have wondered about this a long time, see [27] and some papers of Rostanowski
and Shelah [18,19,21,23]. Up to recently, we were sure that the answer was negative.
Surprisingly for A weakly compact there is a positive answer, a posteriori a straight-
forward one.

We will define a forcing notion QQ, by induction on the inaccessible . Now, for «
the first inaccessible Q is the x-Cohen forcing. In fact, if « is inaccessible but not a
limit of inaccessible cardinals, then Q, is equivalent to the x-Cohen forcing. If « is
a limit of inaccessibles, the conditions are such that the generic n € “2 satisfies for
many inaccessibles 3 < «, that ]9 is somewhat 3-Cohen, e.g., if (% : 9 € S) is a
sequence such that . is a dense open subset of 2 and § = {9 < « : 9 is the first
strong inaccessible in (o, k) for some « < «}, then for every large enough 0 € S we
have n[d € .%y.

At first glance this may look ridiculous: 7 is made more Cohen-like, but still in the
end, i.e., for k weakly compact, it has an antithetical character.

1(A) Adding an 7 € 2

Notation 1.2 (1) Here 0, « will denote strongly inaccessible cardinals.
(2)For 7 € 2andne®2let 7 ={v:v<dnorn<dve T).
(3)For .7 C %2 letlims(.7) = {v € %2 : (Vo < &) (| € T)}.

Definition 1.3 We define a forcing notion Q, = Q% by induction on inaccessible «:

(A) p € Qy iff there is a witness (o, S, A) which means:
(a) p is a subtree of “~ 2, i.e., a non-empty subset of “~2 closed under initial
segments,
(b) () S C « is not stationary, moreover
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(B) for every strongly inaccessible d < « the set S N 9 is not stationary,
(y) every member of S is (strongly) inaccessible,
(c) o = tr(p) is the trunk of p which means:
(@) 0 €72,
(B) a <tg(o) = pN*2={oa}, hence tr(p) € p,
(y) both 0"(0) and o"(1) belongs to p,
(d) if o < € p then n™(0)., 7°(1) € p,
(e) [continuity] if § € «\S is a limit ordinal > £g(o) and 1 € °2 then

nepiff Va <8)mla € p),

() (@) A=(Ay:0¢€S),
(B) Ajyisasetof < 9 dense open subsets of Q,
(g) ifd € Sand § > £g(p) and n € 92, then
(@ pN?2eQy,
(B) nepiff (Vo <d)(nla € p) and (VI € Ay)(3g € S)In € limy(q)].
B) Qe E“p=q”iff p2gq.
(©) (a) Let S, = {8 <« : 8§ > Lg(tr(p)), § is a limit ordinal and —(Vn € ) e
p < (Ya < 8)(nla € p)l},so S, C S when (tr(p), S, A) is a witness.
(b) We say (tr(p), S, A, E) is a full witness for p € Qg if (tr(p), S, A)is a
witness for p € Q, and E is a club of « disjoint to S and to [0, £g(tr(p))),

Claim 1.4 (1) For any « and n € “>2 we have (“>2)!" is a member of Q, with
tr((>2)l) = 9.

(2)If p € Qc and Lg(tr(p)) < d < k then p N ?>2 belongs to Q.

(3)If p € Qc and n € p then p" € Q¢ and p < p" and tw(p™) is y if Lg(n)
Lg(tr(p)) and is tr(p) otherwise.

(4) ©= 2 is the minimal member of Q.

(5) If (tr(p), S, A) is a witness for p € Q and Lg(tr(p)) > sup(S) then p =
(K>2)[tr(p)].

v

(6) Any triple (0, S, A) is a witness for at most one p.

(7) If (0. S, A) satisfies clauses (c)(«), (b)(@), (B). (¥). (f)(@). (B) of Definition
1.3(A) then there is one and only one p € Q, which it witnesses.

(8) If (0, S, A) witnesses p € Qy, then also (o, Sp, Z_\[Sp) witnesses it recalling
Definition 1.3(C)(a).

(9) Forevery p € Qy there is amaximal antichain % to which p belongsand q, # q» €
I = lim, (q1) Nlim, (q2) = W hence {qg € Qx : p <q, q orlim,(q) Nlim,(p) = ¥}
is dense open.

Proof (1) Let S = . Then (n, @, <>) is a witness.

Q) If (tr(p), S, (Mg : 0 € S)) witnesses p € Qy, then (tr(p), SNI, (Ag : 0 € SNI))
witnesses p N 272 € Q.

(3)-(8) Easy, too.

Q) Let & = {(*>2)lPl: p e *>2\pand < Lg(p) = pla € p} U {p}. o

Claim 1.5 (1) If p € Q and p € p, then there is n such that p < n € lim,(p).
(2)If p = (pi : i < &) is a sequence of members of Q,, p is increasing or at least
i <j<d=tr(pj) € pi (tr(p;) : i <) is J-increasing and
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(©) a <& = min (Sp,\sup{g(tr(p;) +1:i <8}) >3,

then ps = ({pi :i < 8} isa <q,-lub of p.

(3)If 8 <k, pi € Q is <q,-increasing with i <, (n;, S;, A, Ej) is a full witness
for p; satisfyingi < j <8 = E; C E; Amin(E;) < £g(tr(p;)), then the sequence
(pi 11 < 8) has a <q, -upper bound.

(4)If p € Q¢ and .7; is a dense subset of Q. fori < i(x) andi(¥) < kT andp € p
then there is n such that p <n € lim,(p) and (Vi < i(x))(3g € Z;)(n € lim,(q)).
(5) In (2) we may replace the demand (©) with

(®) (a) sup{lg(tr(pi)) =i <8} & Sp, fora <4,
(b) if {tr(p;) : i < &) is eventually constant, say p, then min (Spa\(ﬁg(p) + 1)) >
8.

Proof We prove by induction on the inaccessibles « that the five parts of the claim
hold.

(D Let(tr(p), S, A) be a witness for p. By 1.4(3) without loss of generality p < tr(p).

Case 1 In S there is a last member 0 and 0 > £g(tr(p)) > Lg(p).

By 1.4(2), p1 = p N 9>2 belongs to Qy. Apply the induction hypothesis 1.5(4) for
3 with p N 922, Ay here standing for p, (%; : i < i(x)) there to find o such that
p <o € pnN?2 Now plel = (<>2)lel by 1.4(5), so the rest should be clear.

Case 2 sup(S) < Lg(tr(p)).
By 1.4(5) we know that p = (<> 2)lw(P)],

Case 3 Neither Case 1 nor Case 2, i.e., sup(S) > £g(tr(p)) and S has no last element.
Let 6 = cf(otp(S)) and let (as : € < 0) be increasing continuous with limit sup(S).
Without loss of generality g = £g(tr(p)) and e < 0 = a1 € S and we < 0 =
Uwe & S; recalling that every member of S is strongly inaccessible and S is nowhere
stationary this is clear. Now we choose ne € p 0“2 by induction on ¢ < 6 such that
no =tr(p)and § <& = ng I 1.

If & < 0 is limit, then we let ne = | J{n; : ¢ < €} and we note that it belongs to p
by clause (A)(e) of Definition 1.3 (because e ¢ S).

If e = ¢+ 1 < 0, then we use the induction hypothesis of part (4) for 9 = «,
because oz € S, a set of inaccessibles.

After the inductive construction is carried out, if 0 = k, i.e., sup(S) = k then

no = Ume : € < Kk} is as required. If 0 < «, i.e., sup(S) < k then ng := J{ne :
e < 0} € p NP2 (remember Definition 1.3(A)(e)) and again by 1.4(5) we have
plmol = (<=2l 50 we can easily finish.
(2) Let (i, Si, A;) be a witness for p; € Q, fori < 8, without loss of generality
S; = Sp;, see clause (C) of Definition 1.3 or Claim 1.4(8). By our assumptions the
sequence (n; 1 i < 8) is <-increasing and let ng =\ J{n; : i < 8}. Now ifi, j < 8 and
i < jthenn; =tr(p;) € piandif j <ithenn; I n; = tr(p;). Hence n; € (\{p; :
J <8} = psforalli < 5. Consequently, recallingi < § = min(S; \ sup{£g(tr(p;))+
1:j <&}) > 6, wegetns € p; foralli < & and thus ns € ps.

Let S := J{S;i : i < §)\(Lg(ns) + 1) and A = (ANig:0€S;)andford e S
let Ay = J{Aig :i < S8and d € S;}. So clearly Ay is a set of < |8] - 0 dense
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subsets of Qy. Also d € S = 9 > § because if d € S then for somei < §, 0 € §;
and by an assumption min(S;\ sup{€g(tr(p;) + 1 : i < &}) > § hence 9 > 6. It
follows that |Ay| < 0. Now one easily shows that ns, S, (Ay : 0 € S) witness that
ps = (Wpi 1 i < 8} belongs to Q,; being a <q, -lub of p is obvious by the definition
of =Q-

(3) Without loss of generality § is a limit ordinal. The assumptions on p;, E; imply that
ni < njwheni < j<38and$ < sup{lg(n;):i <8} €()y—s Ea- Consequently,

min (Spa\sup{ég(tr(pi)) i< 8}) > sup{lg(tr(p;)) :i <8} >§

and we may apply part (2).
(4) Without loss of generality p < tr(p) (recalling 1.4(3)) and i (x) = k.

First, if k > & := sup{0d : 0 < k inaccessible} then by part (1) which, for k, was
already proven there is n € p such that £g(n) > 84, £g(tr(p)). Then p <q, plnl =
=) and p"' <o ¢ = q = (">2)[tr(q)]. Consequently, the claim becomes a
case of the Baire category theorem for ©2.

So we assume that 8, = «k and by induction oni < k we choose p;, n;, Si, Aj, E;
such that:

(a) pi € Q¢ and (n;, S;, A, Ep) is a full witness for this,
(b) p=<poandi < j <k = pi <qQ, Pjs
(c)i<j<k = E;j CE; Amin(E;) < lg(tr(p;)),
(d) foreveryi < «, for some q; € 9; we have q; < p;.

Why can we carry out the induction? At stage § of the construction we use part (3)
which we have already proved to find an upper bound q to {p; : i < 8} U {p}. Then,
as s is dense, we may pick qs € Js stronger than q. Let 0 < k be an inaccessible
cardinal larger than £g(tr(gs)) and sup{min(E;) + 1 : i < &}. By part (1) which we
have already proved there exists n5 € qs N °2. Now it should be clear that we may
choose ps, Ss, As, Es such that (ns, Ss, As, Es) is a full witness for ps € Q. and
gs < psand Es C (), _s Ei.
Having carried out the induction, n := \J{tr(p;) : i < k} is as required.

(5) It can be easily reduced to part (2), but let us elaborate. Without loss of generality
8 = cf(8) and let v = J{tr(p;) : i < 8}. Foreach i < 8, we have j € (i,8) =
tr(p;) Jtr(pj) € pjand j <i = tr(p;) € pj, so together we have tr(p;) € (\{p; :
J < 8)}. Hence, remembering (®)(a), we have v € (\;_s pi. If (tr(p;) 1 i < &) is not
eventually constant, then 1g(v) > cf(8), and hence (®) of part (2) holds and we are
done. If (tr(p;) : i < 8) is eventually constant then also (©) of part (2) holds so we
are done too. By the last two sentences we are done. O

Claim 1.6 Assume

(a) a < B <k,

(b) n €2,

(c) (tr(pi), Si, A;) witness p; € Q, fori < a,
(d) t(p;) I n € p;,

(e) S=ULSi:i <af\(lgn) +1),
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(f) ford € Swelet Ay .= |J{Ais:0 € Si} (soitis aset of < 3 dense subsets of
Qa)-

Then ﬂ{plm 11 < o} € Qg isa <q,-lub of{plm 11 < «} and has the witness
(m, S, (Ap 19 €S8)).

Proof Should be clear.
O

Observation 1.7 1. If p,q € Q. and Q, = “p £ q” then for some r, we have
q <, ¥ and r, p are incompatible (so lim, (p), lim, (r) are disjoint).

2. If p1, p2 € Qy then the following conditions are equivalent:
(a) p1, p2 are compatible,
(b) the sets lim (p1), lim, (p2) are not disjoint,
(c) tr(p1) € p2 and tr(p2) € p1,
(d) tr(py) Qtr(p2) € prortr(py) Jtr(py) € po.

3. If p € Q, then there is a maximal antichain above p of cardinality k.

4. The Qc-name n,, = \J{tr(p) : p € G, } is a name for a k-real which is generic
Jor Qy, ie., G@K is computable from n, over V.

Proof (1) As p £ g, by the definition of <g, we have ¢ ¢ p, so we can choose
veqg\p. Letr =¢, sog < rby1.4(3). Since tr(r) = v ¢ p, we are done by (2).
(2) First, (a) = (b) as letting » be a common upper bound of p;, p» we have
lim, (r) C lim, (p1) N lim, (py) and recall r € Q, = lim, (r) # ¥ by 1.5(1).
Second, (b) = (¢) asn € lim,(pe) = tr(pe) InA{nla:a <k} C py.
Third, (¢) = (d) trivially.
Fourth, (d) = (a) as without loss of generality tr(p;) < tr(p2) € pi, hence

Etr(p 2)], p2 are members of Q, with the same trunk so are compatible by 1.6. As

p
Qe = “p1 < p"P" we are done.

(3) Letn e lim,(p) and for @ € [£g(tr(p)), «) let vy = (nfa)"(1 — n(«)). Then
{plel : « € [Lg(tr(p)), k)} is as required.

(4) Should be clear.

Claim 1.8 (1) Qy is k-strategically closed.
(2) Qy satisfies the kT-c.c.

Proof (1) Immediate by 1.5(3).
(2) Obviously

(*)1 “~2 has cardinality « (recall that « is inaccessible), and
(x)2 if p1, p2 € Qy have the same trunk then they are compatible.

Together we are clearly done. O
Claim 1.9 (1) If « is weakly compact then Q, is k-bounding, i.e. for every f €

i)Vl there is g € (k)Y such that f < g, that is, & < k = f(a) < gla).
(2) Moreover, if p IFq, “f € “k” and B < « then for some B and q € Q, we have:
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P =q
p_ﬂﬂ32=qﬁﬂ32,

B = (B(i) : i < k) is increasing continuous, B(0) = B, (i) < «,
ifv e g NPUEDL then g forces a value to f(i).

Proof (2) Let pI-“f e “k”. By induction oni < « we choose p;, B(i), 0i, Si, A
and E; such that

(1) Di € @K?
(i1) (B(j) : j <i) is an increasing continuous sequence of ordinals < «,
(i) po = p and B(0) = max {8, £g(tr(p)) + 1},
Gv) (0i, Si, A, E;) is a full witness for p; € Qy,
(v) if j < i then
(@) pj <q; pis
(B) pj NPD=2 = p; NPUIZ2 (hence o; = 0o), and S; N (B(j) +1) = S N
(BG) + 1), Aj1(BG) +1) = A 1(BG) + 1),
(y) B() € Ej,
(8) E; C Ejandifi is limit then E; = (,_; Ea.,
(vi) ifi = j + 1and v € p; NP2 then p!”! forces a value to f(j).

For i = 0 choose a full witness (09, So, Ao, Eg) for p, and use clause (iii) to define
po, B(0).

For a limiti < x work as in the proof of 1.5(2).

Forasuccessori,sayi = j+ 1, we shall use the definition of “k is weakly compact”.
Let (g, : B < B(x)) be a maximal antichain of Q, such that g; g I- “f(j) = y”
for some y = y; g and q; g is <g,-above p; or lim, (¢ g) Nlim,(p;) = ¥, recalling
1.4(9). Since Q, satisfies the k T-c.c., see 1.8(2), we know that B(x) < k, so by 1.7(3)
withoutloss of generality B(x) = k. Recalling each S, , is nowhere stationary, clearly
there is a club E of k such that

Bp<38€E = 5€Ej\S,andhencealsod ¢ S),.

By the weak compactness there is a strongly inaccessible cardinal d(j) > B(/j) belong-
ing to E such that {g; g N 9D>2: B < 3(j)} is a pre-dense subset of Qa(j)- Let

 ={q € Qy(j) : for some B < 3(j) we have (g;,4 N 9()>2) <Qag) q}.
Clearly, .# is a dense open subset of Q). Let
2 ={nep;n®2:(38<d())(neqjpn?P2)}.
For each p € Z thereis r; , > p; such that tr(r; ,) = p and r; , forces a value to

f (7). Indeed, there is B < 9(j) such that p € g g N 372, so by our assumptions on

the g g’s necessarily p; < g, g, so q}pg canserveasr; ,.Let (o, Sj p, 1_\/-,/7) witness

ri.p € Q. Lastly, we let
@ pi=Ulrjp:0e 2},
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(b) B(i) = min (E;\(3(j) + 1)),
(¢) S; =S/ US"U{d(j)}, where

Si=U{S, o e (i n?PDN@G)+ 1) and S =5, N (),

(d) A; =(A;y:0€S;), where
(@) AjaisAjsifd e S, and
(B) AigisU(Ajpo:pepinN®2andd e, }ifo e S,
(v) Aiagyis{F),
(e) Eiis E\(B(i) + 1) orjustaclub of k whichis € E;\B(i) and is disjoint to S;; |
forevery p € 2.

It should be clear that the objects defined above have the desired properties.
So we can carry out the induction on i < k. After it is completed we define

G og=pi i <k}
(2 §=ULSi i <«
(%)3 A =(Ay:0 € S)where Ay = | J{Aiy:i <« satisfies 9 € §;} and
(%)3 E={6 <k :8= (5 is alimit ordinal such thati < § = § € E;}.

It easily follows from conditions (i)—(vi) that:

(®)1 g € Q has trunk 0o,

®)2 (00, S, A, E) is a full witness for g € Qs,

(@)3 p <g, gand pNF=2=¢qnF=2,

(@)4 ifv e g NPUFDL then ¢!V forces a value to ().

(1) Follows from (2) proven above: ()4, that is the last bullet in 1.9(2), suffices
for defining a function g € V such that g forces that it bounds f, we are done. O

Conclusion 1.10 (1) If « is a weakly compact cardinal then there is a (<k)-
strategically complete, k™ -c.c., k-bounding forcing notion (hence not adding a
k-Cohen), and of course, adding a new n € 2.

02 Infact, the forcing is k-Borel and is k -strategically complete and it is equivalent to
a (<k)-complete forcing notion (which necessarily is k T-c.c. k-bounding adding
a new subset to k). Also, the forcing is definable even without parameters.

Proof (1) See above.

(2) Note that when « is not weakly compact, Q, is not x-Borel because “nowhere
stationary” is not. However, if we replace the conditions by full witnesses of conditions
with the natural order, this becomes easy. O

1(B) Adding a dominating member of [], _, 6.

Here we present a variant of the forcing from Sect. 1(A), this time dealing with
sequences from [, _, 0, instead of *2 and we have an |¢|*-complete filter D, on
0. for ¢ < A. The main case is D, = {a C 6, : |6:\a| < 6:}, so we write only
this case, but the changes needed for the general case are minor. This is also true for
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0y, Dy :ne T)yand T ={v:e < Lg(v) = v(e) < b,}. So our starting point,
e.g. the forcing for the first «, is not the k-Cohen forcing but Q of [27], which is the
parallel for « of the forcing of [32] for A = Ny.

Note that Definitions 1.12, 1.13 are used in [28], too. Also note that Q5 is the “one
step” forcing on which we shall build later.

The reader may ignore the version with 2, i.e., use the default 22, = 2(H (k)).

Remark 1.11 For = (6, : o < k), Q5 = Q,l( was designed to make the old k-reals
k-meagre, we still have to expect it to behave like random real forcing and do this
indeed.

Definition 1.12 (1) Recall the weakly compact ideal on A is [} = {A C A: for
some first order formula ¢ (X, Y) and B C 57 (1) we have (VX C S\ (L) =
@[ X, B]) but for no strongly inaccessible x € A do we have (VX C 57 (k))(F (k) =
¢IX. B A ()]}, )

2) s, [¥e means that some A = (A, : @ € S4) is an 1;'°-diamond sequence, which
means: for every A C J#(A) the set {x € Sy : AN (k) = Ac}is # ¥ mod 1Y,
B)Wesay P = (Py 1o € Sy) is IY*-positive when S, € (1) and (P, a, €)
and (Z(w), a, €) have the same first order theory, and moreover (a) = (b) where

(a) ¢(X,Y) is first order, A C J2()) satisfies X C Z(0\) = (M), €) E

plX, Al
() @k € SHIANA (k) € P and X C (k) = (H(k), €) = ¢[X, ANk]].

(4) The default value of & is (2 (H (k) : k € Se)-

Definition 1.13 (1) We say ¢ is a 1-ip when ¢ consists of:

(A) a weakly compact cardinal A,
(B) asequence @ = (0, : ¢ < A), where

<l => 2<6, <Ry V(e <b =cf(0:) <)),

(C) astationary set S; C A of strongly inaccessible cardinals satisfying

§<K€S;:>l_[9€<lc,

e<¢

(D) (a) <>Sp s i.e. diamond on S; holds even modulo the weakly compact ideal, or
just
(b) &P = (P S P(H(x)) :k € S)is [}*~positive, see Definition 1.12(3)
above, so necessarily Sy € (I)YVC)+; the default value is &, = P (H (k)),
(E) S;* := {k < A : k weakly compact and S; N« € (I'°)* moreover the sequence

Z[(Sy Nk) is I-positive (see 1.12(3))}.
Q) Ifk € S;‘ we may say “k is x-weakly compact”.
(B)Let & = (h, : ¢ < A) be as in clause 1(B) (we will fix it for this sub-section).
Define Ty = [[,_, 6: fora <X and T, = (J{Tg : B <} fora < A.

e<uo
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Convention 1.14 For this subsection

(0) r is as in Definition 1.13.

(1) Let «, 0 denote members of S;.

(2) Always p is a subtree of T, for some x < A, typically it belongs to Q}( for some
k <iandforne pletp" ={vep:v<norn v}

Definition 1.15 We define the forcing notion Q}( by induction on k (so k € S;) as
follows:

(A) pe Q}( iff some § C « N S, witnesses it, which means

(a) pisasubtree of T,

(b) p has trunk tr(p) € T, thatis
o B <tg(tr(p)) = pNTp = {tr(p)[B} but
o (o) (tr(p) (@) € p),

(c) ifn € pALg(tr(p)) <Lg(n) < B <« then Qv)(n <v € p N Tg), follows
from the rest,

(d) if n € pand lg(tr(p)) <Lg(n) <k then!
o if Oyg(y > Ro then (Vi < Oge(p))[n”(i) € pl,
o if Bg(y) < No then (Vi < Bgep) (0 (i) € p),

(e) if 8 € ¥\ S is a limit ordinal and n € Ts :=[]
thenn € p & (VB <8)(n|B € p),

(f) if 9 € « N S hence 9 € S; so is strongly inaccessible, then p N T € Q},

089

e<s$

and for some predense subsets .#; of Q}i fori < i, < 0, [if we have P also
S € P] forevery n € Ty we have:
e nepiff (VB <d)(n[p € p)and (Vi < ix)(3q € £)(VB < ([P €

9,
(g) § € kNS, is not stationary in any inaccessible d < «, even if 9 ¢ Sy (yes

also for = k), equivalently for any limit § < « as S; is a set of inaccessibles
and § C §,.

B) <q! is the inverse inclusion.

Claim 1.16 (1) T, belongs to Q}( and

b plel( = Q,I(':“T<K§p”,a”ld
enepeQ = p=<g p"eq.

(2) For p € Q}( and a < « the set {p!" : n € p NTy} is predense in (@,1( above p.
3)Ifp e Q}( and Lg(tr(p)) < 0 < k then pNT_y € Q},. Moreover, if py € Q,I(,
Lg(tr(pe)) < 0 <k forl = 1,2, then

p1 =g P2 = P1NT<y =g p2N T,

and

p1Lgr p2 = piNT<y Lot p2NTa.

I Remember “v*°; < 6” means “for all but boundedly many i < 6”.
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(4) Q}C is a forcing notion and it satisfies the k¥ -c.c. Moreover; it is kT -centered as

ifp,q € (@,1( have the same trunk then p, q are compatible, in fact, p N q belongs to
Q}( and is a 5@ -lub with the same trunk.

(5) Suppose that v € T, and p; € Q}(, tr(p;) = v fori < i(x) and assume that
(L) eitheri(x) <y, or

(Ve)[lg(v) <e <k ANbOg = Ro = i(x) <] and i(x) <min(S;\(Lg(v) + 1)).

Then p = ({pi : i < i(*%)} belongs to Q}C, has the trunk v and is a EQ}(-lub of
{pi:i <i(x)}

(6) p,q € Q,lc are incompatible iff tr(p) ¢ q vV tr(q) ¢ p.

(7)IfveT,, pi € Q,l(, and tr(p;) < v € p; fori < i(x) and (1)) of part (5) holds,
then p = ﬂ{plm ti < i(x)}isalub of{plm i <i(x)}in Q}( and has trunk v.
(8)n= Ulte(p) 1 p € Goilisa QL -name of a member of T, _, 0

(9) va € [1.~. b then H—Q1 “for arbitrarily large ¢ < k we have n(s) # v(e) and
for every ¢ < k large enough 0, > Rog = n(a) > v(e)”.

(10) n is a new branch of T, and is generic for QK ie.G={pe Q,lc : nis a branch

of p}.
(11) Q,l( is (< k)-strategically complete.

Proof (1), (2), (3) Straightforward (for the second sentence of (3) use part (6)).

Concerning parts (4), (5) and (6), see more in 1.18 and 1.19.
(4) By (7) and the number of possible trunks of p € Q}( is |[To| = «.
(5) By (7).
(6) Clearly if tr(p) ¢ g then p, g are incompatible, and similarly if ¢ ¢ tr(p) so
the implication “if”” holds. For the other direction assume tr(p) € g A tr(g) € p,
and we shall prove that p, g are compatible. By symmetry without loss of generality
Lg(tr(p)) < Lg(tr(g)), let v = tr(g). Now pl"l and ¢ = ¢! have the same trunk, so
we are done by part (4).
(7) Let S; be a witness for p; € Q,{, and let S = (J(S; : i < i(x)}\(Lg(v) + 1). We
shall prove that S witnesses that p = [\{ pl.[ 10 < i(x)} belongs to Ql then we are
done as obviously i < i(x) = p C p,m by the choice of p.

Ifo < {lg(v)thend NS = @ and if £g(v) < 0 < k, then each S; N J is not a
stationary subset of d for i < i(x). Also i(x) < 9.
[Why?Ifi(x) < £g(v)clear,ifi(x) > £g(v),then SN[£g(v), i(*)] = ¥ by assumption
as 0 > £g(v) clearly i(x) < 9.] Together also S = [ J{S; : i < i(*)} is not stationary
in 9; that is, clause (g) of 1.15(A) holds.

Now obviously p is a subtree of T, i.e. (a) of 1.15(A) holds. Also obviously
a < Lgv) = pNTy = {vla} and p N Trgy+1 S V() 1 ¢ < Oy} To
prove clauses (b), (d) assume that n € p N T, and v < 7. If 8, < Ry then clearly
n <6 Ni <i(¥)= n"(n) € p;hence {n"(1) : v < b} C pNTy+1 so equality
holds. Hence clause (d) holds in this case, and for ¢ = £g(v) so n = v then v is indeed
the trunk of p and 1.15(A)(b) holds.

If 0, > R then Opg(y) = cf(Opg)) > i(x). Now, foreachi < i(¥) thereist(i) < 0,
such that {n~(t) : ¢ € [t(i),0:)} € p; and hence ((x) = sup{t(i) : i < i(x)} < 6.
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Thus {n™(t) : ¢ € [t(*),0:)} € p and again clause (d) holds in this case, and for
e =4{g(v) son = v,clearly tr(p) is well defined and equal to v, so 1.15(b) holds.
The proof of clause 1.15(A)(c) follows from the rest.
The proofs of clauses (e), () are straightforward and clause (g) holds by the choice
of S.
(8)—(11) Left to the reader. O

Observation 1.17 If p =ql 4 and S is a witness for g and tr(p) = tr(q) then S is a
witness for p.

Definition 1.18 Let « € S;.
(1) For y < « let S}(“;r be the set of sequences ((pa, g, Eq) : @ < y) satisfying?
(@ po € Q,l(,
() ¢o € QL.
(©) B<a=gp <q! Pa:
(d) Eg is aclub of « disjoint to some witness for gg € Q}( for every 8 < «,
(e) Pa S(@}( da
(0 £g(tr(pa)) = a,
(2) €g(tr(pa)) € (Ep : B < a}.
() Fory < letSPY, = J(S)'G : B < y}and 8P = SP, .

(B)Fory <« let SETV be the set of sequences ((po, 9o, Eo) : @ < y) such that

(@) Pa,qa € QL have trunks tr(pp),
(b) E, is aclub of k disjoint to £g(tr(po)) such that for every 8 < «, E, is disjoint

to some witness of gg € Q}(,
(c) min(Ey) > « is increasing (for transparency),
) po <) da-
() gp =q|! Pa when 8 < «,
() if B < a then gg N Tiin(ey) < Pas
(g) if § < y is a limit ordinal then

ps = ﬂ {po @ <8} and ps N Tmin(Ey:a<s)) S gp for B € [8,y).

W SEo, =UIS) 5 B <yrand ST = UISY, v <«

Claim 1.19 (1) For every p € Q}( the sequence ((p, p, k)) belongs to Sf(ncr.

(2) S,i(ncr is closed under unions of <-increasing chains of length < «.

(3)Ifx = {(pa>qa, Eq) 100 < B) € S,ij‘crthﬂforsome pg we have: o < B = qo <
pg and if pg < qp and Eg is a club of « disjoint to some witness of qg or just of pg
or just of q, for every y < B then X"((pg. qp, Ep)) € S,i(“cr.

Proof (1) For y = 1 we have ((p, p,«)) € S}(ni,r (note that clause (d) of Definition

1.18(1) is trivially satisfied) and Si"S € S}

2 May add: (h) if § < y is a limit ordinal then ps = N{py : @ < 8}, we do not use this.
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(2) Obvious.

(3) If B is a successor ordinal this is easier, so we assume S is a limit ordinal. Let
vy = tr(qy) for @ < B hence (v, : o < B) is a <-increasing sequence of members
of T, and £g(vy) > a. Hence vg := U{vy < B} € T<, haslength > 8. As B < «
and « is regular, necessarily £g(vg) < k so vg € Toi. Alsorecall @) < a2 < 8 =
Lg(ve,) € Eq,, but Ey; isaclub of k hence a; < B = €g(vg) € Eqy;. Asag + 1 <
ay < B = vy, € go, and E, 4 is disjoint to a witness for g, and by the previous
sentence £g(vg) € E4 +1 we can deduce vg = | J{ve, 1 a2 € (o1 + 1, B)} € gq,- SO
clearly vg € (), - g 4o hence <q(£”“ Voo < B) is an increasing sequence of members of
Q}( with fixed trunk vg oflength> Basa < 8 = £g(vg) > £g(vy) = Lg(tr(ge)) > a,
see 1.18(1)(f). So by 1.16(5) we have pg = ﬂ{qa[tv‘g] a < B} e @,1{ has trunk vg
and is equal to (({ge : @ < ﬁ})lv"]. Let Eg = ({Eq : @ < B} and clearly pg, Eg
are as required. O

Claim 1.20 (/) For every p € Q,l( the sequence ((p, p, «)) belongs to S .
2)Ify <k andX = ((pysqu, Eq) 100 < y) € ngy then there are (py, E) with E a
club of k and p, = ({pa : @ < y} such that:

ifpy <q,,B<v = qp ngmin(EV) Cqyand E, C E isaclub of k,

then X" {(py,qy, Ey)) € sPr
( 3[') )r The union of a <-increasing sequence of members of Sy of length < k belongs to
Sk -
(3A) If (Xg : B < 0) is J-increasing, Xg = ((Pa,qa, Eo) 1 @ < yg) € S and
(v : B < 8) is <-increasing and y := \J{yp : B < 8} < k then ((pu, qa. Eo) 1 a0 <
v) € Sky.
(3B) If in (3A), y = « then p, = ({p« : @ < K} belongs to Q}( and is a §Q}(—lub of
{Pas o 10 <k}

Proof Straightforward. O

Crucial Claim 1.21 Ifx = A or justk € S;‘ (see 1.13), v < k, X = ((Pa> > Ea) :

oa < y) € SETVH and T is a (@,i—name of a member of V then we can find

(Py+1, qy+1, Ey11) such that

(@) X((Py+1,qy+1, Ey41)) € S¥,
(b) ifn € gy+1 N Trin(E, ) then q)[ﬂl forces a value to t.

Proof Let

(%) & ={tr(p):pe Q,l( forces a value to 7 and tr(p) has length > min(E,)}.
For n € & let p; exemplify n € %/, i.e.

(*)2 tr(p;’;) = n and p; forces a value to 7, necessarily £g(17) > min(E,).
Clearly

(*)3 () & CT..,
b) ifpe Q}( then for some n € % we have tr(p) < n € p.
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By Convention 1.14, there is 9 € S; N« N E, but > min(E,) such that letting
%y = % N'T_y we have

(%4 (a) Lg(tr(py)) < 0,
(b) if p € Q) then {n : tr(p) I n € p}yN %y # 0,
(c) recalling 1.13(D)(b), {(n,v) :n e Z NT_yandv € p: NT_.y} € P.

Define:

o pyr1={nep,iflg(n) =dand{nfe:e <d}N¥ # Pand{ < J is minimal
such that n[¢ € % thenn € p;fé}’

® gdy+1 = Py+1

o £y € ENN\(0+ 1)isaclub of k such thatif n € g, 41 N Ty then Ey, 4 is
disjoint to some witness for p;.

Clearly (py+1,qy+1, Ey41) is as required. O
Claim 1.22 Ifk € S; then Q}( is k-bounding, i.e. H_QL ““i)V¥is < jpa-cofinal in K.

Proof By 1.21 and Claim 1.20. O

2 What are the desired properties of the ideal

Our original aim was to disprove the existence of a forcing notion for A having the
properties of random real forcing equivalently, finding for an uncountable cardinal A, a
A-complete ideal on 2 (*2) parallel to the ideal on null sets on 2. Having constructed
one raises hopes for generalizing independence results about reals to *2, so deriving
independence results on A-cardinality invariants.

In this section we try systematically to go over basic properties of the null ideal
(and its relation with the meagre ideal). This results in a list of possible test problems
for our ideal. Some of these questions are addressed in the present work, some are left
for further research. The case of Q5 = Q}( (of Sect. 1(B)) is similar and we intend to
comment on it in Part II, i.e. [29].

On the meagre and null ideals (for A = 8g) see Oxtoby [14]. On the measure
algebra and random reals see Fremlin’s treatise [6] or Bartoszynski and Judah [1].

How do we measure success? The main properties of the null ideal which come to
my mind are:

H (a) an Rj-complete ideal (with no atoms),
(b) the quotient Boolean Algebra satisfies the c.c.c., i.e. there is no uncountable
family of non-null pairwise disjoint Borel sets,
(c) the forcing is bounding: this means the quotient Boolean Algebra is (R, 00)-
distributive, thatis if for each n, (B, x : k € N) is a Borel partition of a non-null
Borel set B then for some function f : N — N, the set (), U< y(s) Bn.k s
not null.

A priori, for the set theoretic purposes, generalizing (a), (b), (c) was the aim. But for
the ideal itself, a prominent property of the null ideal, and a very nice one, is

(d) the Fubini theorem: foraBorelset A C [0, 1]x [0, 1] the following are equivalent:
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(i) for all but null many x, for all but null many y we have (x, y) € A,
(i1) for all but null many vy, for all but null many x we have (x, y) € A.

But alas, this fails, see Claim 6.6.
Maybe it is helpful to stress, that

X we are looking for AT -complete, A" -c.c., ideal with no atoms.

Below we make a list of statements generalizing the null ideal case, including the
natural analogs of the properties listed above, delaying a try on some further properties.
A reader who goes first to this section can note just that

@ (a) the forcing notion Q) is a set of subtrees of *>2 representing A-closed subsets
limy (p) of 22, where lim;, (p) =1{n € (Ve < M) e p)}, parallel to
the closed subsets of [0, 1]r with positive Lebesgue measure, partially ordered
by inverse inclusion,

(b) *2 is the set of functions from A to 2 = {0, 1}.

Definition 2.1 Let A be an inaccessible cardinal and let Q; = @i be the forcing
notion introduced in Sect. 1(A).

1. Forn € *2 and .# C Q;, saying 7 fulfills .# means (3g € .#)(n € lim; (q)).

2. For & C Qy let set(.#) = {n € *2 : n fulfills .#} and for a set A of subsets of
Q; let set(A) = ({set(F) : I € A}.

3. We define id(Qj) = {A C *2: there are i (*) < A and dense open subsets .#; of
Q, fori < i(x)suchthatn € A Ai < i(x) = n does not fulfill .#;}.

4. A A-realisn € *2.

Convention 2.2 X, 9, x vary on inaccessibles.

We have consulted several people on additional properties to be examined. For
instance T. Bartoszynski suggested (P), (S), (U) of the first list below.

2(A) Desirable properties: first list

In this subsection we list various desirable properties and questions and sometimes
give a relevant reference (in this paper) but we do not prove anything (whereas Sect. 3
on contain proofs).

(A) (o) The ideal id(Q);,) is AT -complete, i.e. closed under union of < A sets.

(B) The forcing notion Q, is A-complete (or at least A-strategically complete,
depending on the choice of the order).

(y) The Boolean Algebra of A-Borel subsets of *2 modulo the ideal id(Q;)
satisfies the AT-c.c., see 3.9(2). Note that modulo id(Q;), Q;. is dense in
this Boolean Algebra, this is (E) below.

(8) The forcing notion Q,, is A-bounding, see 0.5(2), Sect. 1, when A is a weakly
compact cardinal.
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(B) The definability of Q;, i.e., Q) is nicely definable (with no parameters), see the
definition by induction in Sect. 1; if A is weakly compact then Q) is A-Borel,
the ideal is similarly definable, see 8.1; for other inaccessible cardinals A the
“nowhere stationary” is X 11 (1) but by a somewhat cumbersome definition giving
an equivalent forcing it is A-Borel, see the proof of 1.10.

(C) Generalizing “adding (forcing) a Cohen real makes the set of old reals null”, see
6.3.

(D) Generalizing “adding (i.e. forcing) a random real makes the old real meagre”,
see 6.1.

(E) Modulo the ideal id(Q);,), every A-Borel set is equal to a union of at most X sets
of the form limy (p), p € Qy, see 3.9.

(F) Can we define integral? We do not know; may we replace [0, 1] as aset of values
by some complete linear order, e.g. by “nice” ordered fields? Are symmetrically
complete real closed fields relevant (see [39])? If we waive linearity does it help?

(G) Modulo the ideal, every A-Borel function can be approximated by “‘steps function
of level «” for many (so unboundedly) many o < X; where “step function” is
being interpreted as: f (1) [« is determined by [« for n € *2, see 3.10.

(H) The Lebesgue density theorem, see 3.13, (it means: if the A-Borel set B C )
is id(Qy)-positive, then for some B; € id(Q,) for every n € B\B; for some
o < A we have (*2)"1“\B € id(Qy)).

(I The Fubini theorem, symmetry, unfortunately fails, see 6.6. However we intend
to present some weak versions of symmetry in a continuation.

(J) The translation invariance, see 3.7(1).

(K) The permutation invariance (i.e. for permutations of 1): this works only for a
variation on our forcing.

(L) Generalizing “if A is a Borel subset of [0, 1]g x [0, 1]r of positive measure
then A contains a perfect rectangle (even half square)”. But what is perfect? Not
a copy of *2 but A-closed set, e.g. the A-limit of a A-Kurepa tree, actually one
with “little pruning in limit levels”; specifically it is lim, (p) for some p € Q;,
so A-closed.

(M) Generalize the random algebra on X2 for x possibly > A. This will be addressed
in a continuation, see [24, §1], [25].

(N) Generalize “modulo the null ideal every Borel set is equal to a union of < A
sets, each A-closed” see (E) above and see 3.9.

(O) Generalize “the set of reals is a union of a null set and a meagre set”, see 3.8.

(P) Generalize Erdos—Sierpiriski theorem: if 2 = A™ or suitable cardinal invariants
are equal to A" then there is a permutation of *2 interchanging the null and
meagre ideal.

In fact, this is not hard now:

(%)1 Assume that for £ =1, 2:
(a) Jy is an ideal of subsets of I,
(b) Jg is |I]-complete and generated by a family of < |I] sets,
(c) if A1 € Jg then for some Ay € Jp we have |Ax\A1| = |I], and
(d) thereis A € Jj such that I\A € J5.
Then there is a permutation of / interchanging J; with J;.
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()2 If 2* = A% and I = 72 then the A-meagre ideal and id(Q)) satisfy (a)—(d) of
()1.

[Why? Clause (d) here holds by 3.8.]

(Q) Generalize the Borel conjecture: though not connected to random. Now consider:
(o) the equivalence of the “for every (g, : n) the set is covered by |, 1, I, is an
interval of length < ¢, and “the set can be translated away from any meagre

set”,

(B) the g,’s version has an obvious generalization,

(y) try shooting through a normal ultrafilter

(R) The dual Borel conjecture might be adressed in Part II. Now the question is:

(*) Weare given anold set X of A-reals of cardinality AT, say X = {vy : & < AT}.
View Cohen,, as adding a A-null set: e.g., for p = (p, : 7 € *>2), pn € Qu,
tr(p,) = 7, and clearly p, is a nowhere-dense cone, but we shall need more.

(S) (Selectors) Every Ell-relation have a reasonably definable, e.g. A-Borel, choice
function on a positive closed set even in any positive Borel set.
(T) The Hausdorff paradox and even Banach-Tarski paradox hold for R3. Do they

hold for #2 x #2 x *2?

(U) We know that “for every meagre set A there is a meagre set B such that: every
< A translates of A can be covered by one translates of B”, but fail for null, even

for “Z. Generalize to A.

On raising further problems see [29], concerning characters, differentiability, mono-
tonicity (of functions) and going back to the case A = Ry.
We have not looked at clauses (L), (Q), (S)—(U).

2(B) Desirable properties: second list

Next we consider generalizing results more set theoretic in nature, related to forcing
(maybe (B)(c), (d) from Sect. 2(A) should be here; from the problems listed below,
(A) is treated here, on the others see part II, if at all)

(A) Cichort’s Diagram

This diagram sums up the provable inequalities between the basic cardinal invariants
of the null ideal, the meagre ideal, 0 (the dominating number) and b (the unbound-
ing number). The basic cardinal invariants of an ideal are the covering number, the
additivity number, the cofinality and the non(= uniformity) of the ideal, see 0.7.

The diagram gives the provable inequalities among any two invariants (and two
equalities each on three invariants). Moreover, under 2% < R, there are no more
connections. Here we generalize the ZFC part (for A inaccessible limit of inaccessi-
bles), but the situation is different, e.g., there are more inequalities connecting 3 of the
cardinal invariants, see 5.9.

We will deal with the complementary consistency results (about inequalities of any
pair) in continuations, [28] and others.

(B) Generalizing the amoeba forcing
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The amoeba forcing is the one adding a measure zero set including all the old ones;
the conditions are closed subsets of [0, 1]g of measure > %

This is natural as the amoeba forcing has been important in set theory of the reals
and is closely related to measure, see Sect. 7.

(C) The consistency of “every A € Z(R)M Rl is Lebesgue measurable” (from x > A
inaccessible).

Solovay [47] classical work proved for A = R that if we Levy collapse the first
inaccessible cardinal to being N1, this holds.

The problem is: we have names n of A-reals such that Levy(A, <x)/ n is not
Levy(X, <x) when A is uncountable. Another formulation of the problem: there are
Levy(A, <x)-names 11, 12 of A-Cohen reals and no automorphisms of the completion
of Levy(X, <x) mapping one to the other.

This certainly occurs for A-Cohen reals and probably for any other; that is we may
add a A-Cohen 7 € *2 and compose it with a forcing shooting a club through 5~ {¢}.

A possible avenue is to consider only “nice Levy(X, < x)-names”, i.e. such that the
quotient is Levy(A, < x). In this case there is a “positive” set of A-reals such that for
subsets of it our aim is achieved. We can even define this set of reals. The question is
whether we consider this is a “reasonable” or a “forced, artificial”’ solution?

Alternatively we may replace A-Cohen by another forcing (or ideal) and/or change
the collapse; in particular should check the failure for ;. We also may change the
notion of a A-real, e.g. replace it by A/(the non-stationary ideal) or use a filter generated
by < A subsets of A! All this is delayed for later parts. We should also check what
occurs to sweetness in our present case (see [16,17]).

We may consider {5 € *2 : nis (Q, n)-generic over V such that every subset of A
from V[n] which is stationary in it, is also stationary in V}, or more. A related question
is the complexity of maximal antichains, see 8.4, maybe use measurable cardinals.

What about £ (1) for A singular strong limit of cofinality R¢?

(D) Can we characterize Cohen; and Q; among (nicely definable) A-Borel ideals?
Recall Solecki—Kechris characterization of Cohen and random (for the ideals).
We have not looked at it; there are limitations even for A = Ry, see e.g., [15].

(E) In [33] we showed that: for any Suslin c.c.c. forcing, if it adds an undominated
real, it adds a Cohen real.

Subsequently some works show relatives (for other properties), on this see [35,40].
Related to this, by Shelah [38], the only “nice” c.c.c. forcing commuting with Cohen
is Cohen itself. Do we have a parallel?

For a broader generalization of the case of 8 we may consider forcing, ultrafilters
and forcing notions definable from ultrafilters.

(F) We know much on ultrafilters on N. Also we have considerable knowledge about
A-complete ultrafilters on A or higher cardinals when X is a measurable cardinal.
After the seventies there were set theoretic advances on non-regular ultrafilters,
but not much set theoretic work was done on regular ultrafilter. However, in
recent years there were studies of reasonable ultrafilters in [41], Rostanowski and
Shelah [20,22] and recently on ultrafilters related to saturation of ultra-powers
and Keisler order, see Malliaris and Shelah [11,12] on cuts and p = t.
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On characters of ultrafilters on N see Brendle and Shelah [3] and later [42], [44]; for
an ultrafilter D on A recall that x (D) is the character = minimal cardinality of a subset
generating it, 77 y (D) pseudo-character = minimal cardinality of 2/ C [A]* such that
(VB € D)(3A € &/)[A C B], note that A € &/ is not necessarily in D! As in [20,22]
dealing with the so called reasonable ultrafilters we may consider the Borel version
(i.e. the minimal number of Borel subsets of D which generate it) and A-real version.
Then as in “reasonable ultrafilter”, can we show CON(for every uniform ultrafilter D
on A, 7 g —real (D) = AT < 2%)?

What about the ultrafilter forcing? Can reasonable ultrafilters on A be generated by
< 2* sets? We can force a creature condition diagonalizing a uniform ultrafilter on A.

(G) Related is Galvin—Prikry theorem which says that for any Borel (or even Ell)
subset B of ZZ(N) for some set A € [N]%0, the set [A]™ is included in or disjoint
from B. Concerning a relative using a group from [30], generalizations to A are
considered by the author in some later works: [36,37,45,46], see also [7,43],
less related [8—10]

(H) The consistency of Moore conjecture; so we should consider a topological space
X which is A-first countable (analog of first countable). Of course we can prove
it using Dow lemma which holds for adding many A-Cohens, so not clear how
interesting.

(I) Preserving “n is Qj;-generic over N” parallel to [31, Ch.XVIIL§3], [31,
Ch.VL§3].
(J) (a) Try to connect cf(Q;) and Cichon’s diagram and number of reasonable gen-
erators of an ultrafilter, see [41].
(b) Note that for the number of generators of an ultrafilter we have the following
bounds.

Claim 2.3 (1) Letting ;. be the Qj.-name of the generic, for @ < X we have that |-q,
“there is G' C Qy, such that: G’ is a generic subset of Q;, over V, V[G'] = V[G]
and 0, [G'] = 0, «[G]” where 0y 4 € 2 is defined by:

17)\(1') ifi <«

T (i) = {1 —m(@) ifi € o, A).

(2) Similarly when for some A € Z()\)Y

oo o iea
D=1 =) ifi € M.

(3) kg, “17;\ [A #JAbd iafori =0,1forany A € ([A])‘)V”.
(4) x(A) := min{gen(D) : D auniformultrafilteron )} is > cov(Q;), cov(Cohen, ).

But we can still hope to find a relative of Qy, such that adding A** such A-reals
(e.g. asin [28]) we get a universe V| with 2* = ATt 4 there is a uniform ultrafilter D
on A with x (D) = A ™.
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(K) Here we start with A-Cohen forcing (for x inaccessible not limit of inaccessibles).
We can start with Q; 2, OF with other definable A" -c.c. forcing; see part L.

3 On Qy, k-Borel sets and id(Qy)

In this and the following sections we analyze the ideal id(Q, ). A general frame includ-
ing 2.1 is the following.

Definition 3.1 (1) Letid(Cohen,) be the family of all k-meagre subsets of “2, i.e., it
is the collection of all A C “2 such that A C [ J{lim, (.%}) fori < «}, where each
7; is a nowhere dense subtree of ©~2, i.e., (72, ).

(2) Wesayi= (x,Q, n) = (xi, Qj, nj) is an ideal case when:
(a) « is a regular cardinal, i
(b) Qs a forcing notion not adding bounded subsets of «,
(c) nis a Q-name of a member of 2,
(d) (@) each p € Qis a subtree of (“>2, <I) and let B, =B, = lim(p), and
p IF“n € By, p”, or at least
(8) we have a mapping p B, = B; , such that
e B; , is a k-Borel subset of 2,
e p<g = Bj, 2Bj,, and
o pl-“neBi,”;
so really the function p — B p is part of i.
Below leti = («x, Q, ) be an ideal case.
(3) Weletid] = id; (i) be

{A C X2 : for some k-Borel set B we have A € B and IFg “17 ¢ B},

we may omit the 1.
(4) For a subset .# of (Qj, we say that n € “2 fulfills .# when (3p € #)(n € B)).
(5) We define idi2 = id, (i) to be the collection of all sets A C “2 such that there are
pre-dense subsets .%; of Qj for i < « such that

AC {77 €2 : forsome i < «, n does not fulfill fl}

Claim 3.2 Leti be an ideal case.

(1) Bothid; (i) and id> (i) are k*-complete ideals on “2. Also 2 ¢ id| (i) and ifi is
Kk-complete then® 2 ¢ id, (i).
(2) In Definition3.1(5) we can replace “pre-dense” by “dense open” or by “maximal
antichain”.
(3) If Qj satisfies the k+-c.c. then id> (i) C idy ().
1. A sufficient condition for id; (i) C id» (i) is:
(x) (a) if p,q € Qj are incompatible then B; , N B; , = ¥, and

3 Recall Prikry forcing.
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(b) if B is a k-Borel set then
{peQi: plrg “neB”orB,NB € ida(i)}

is a dense open subset of Q.
(3) Let k be strongly inaccessible and Q, and n be as defined in 1.3 and 1.7(4),
respectively. Then the triple i =i, = (k, Qc, 1) is an ideal case and id; (i) =
ida (i). B
(4) The triple i = iEOhen = (k, Coheny, n) is an ideal case and we have id| (i) =
ido (i) and it is closed under translations ( cf3.7).

Remark 3.3 1f in Definition 3.1(2)(d), B, is just a Borel set, then 3.2 still holds.

Proof (1), (2) Obvious by the definitions.
(3) Assume A C “2 belongs to id; (i). Then by (2) we may find maximal antichains
Z; C Qj (for i < k) such that

neA = forsomei <k, n does not fulfill .7;.

Since we are assuming that Qj satisfies the k T-c.c., . has cardinality < « for every
i <k.Let(pir:e <ég)list ¥, e <k.Then

AcB:=|J (Kz\ Bip, e < s,-}) .

i<k

Clearly B is a «-Borel set. Also, since each .#; is a maximal antichain, for all i < «
we have

Ik, “ #i N Gq; # ¥ and hence n € B; ,, for some ¢ < g;”,

and hence g, “n ¢ B”. Consequently B € id; (i) but A € B hence A € id (i), so we
are done. .

(4) Assume B is a k-Borel set and it belongs to id; (i). We shall prove B € id; (i),
clearly this suffices.

Let .# = {p : p forces n € B or forces B, N B € id,(i)}, so by the assumption
(%)(b) the set .# is an open dense subset of Q. Let .#’ C .# be a maximal antichain
andlet /7 = {p € ' : p g, “n € B”}. Since we assumed B € id; (i), necessarily
I = ¥’ . Soforeach p € .97, B;ﬂB € ida (i) and there is a sequence (¥, ; : i < k)
witnessing it. Without loss of generality if i < k, p € #” then .#,,; is a maximal
antichain of Q; and for every ¢ € .#,; we have (p < q) V (p, g are incompatible).
Fori < « let

I = {g € Qi: forsome p € #” wehave (p < q) Aq € )}

Clearly, each .#' is a maximal antichain. Easily {.#" : i < «} witnesses B is included
in some member of id; (i), so we are done.
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(5) For being an ideal case, in Definition 3.1(2), clauses (a), (b), (c) are obvious
(remember Claim 1.8 and Observation 1.7(4)) and clause (d) is easy, too. It suffices
to prove that id, (i) € id (i) and id; (i) € id>(i).

Concerning “id,(i) € id;(i)” note that Q, satisfies the k¥ T-c.c., so by 3.2(3) we
deduce the inclusion.

Let us argue that id; (i) € id»(i). Suppose that B is a x-Borel subset of “2 and
o, “n ¢ B”. We may find .7 and B such that

(®) (a) 7 is asubtree of ®~« with no infinite branch,
(b) forevery p € .7, either suc 7 (p) = @, or suc 7 (p) = {p"(0)} or suc 7 (p) is

i_nﬁnite,
(c) B= (B, : p € ) is asystem of xk-Borel subsets of “2,
(d) By =B,

(e) if p € .7 and sucz(p) = ¥, then for some i, < « and ¢, < 2 we have
B, ={ve“2:v(i,) =cpl,

(f) if p € 7 and |suc 7 (p)| = 1, then B, = “2\B ),

(g) if p € 7 and suc 7 (p) is infinite, then B, = ({B, : 0 € suc7(p)}.

Then by induction on £g(p) for each p € .7 we choose .#, and ¢ so that for each
peT:

(®) (a) ., is a maximal antichain of Q¢ and 7” = (t), : p € .#,), t,, < 2 for each
p €Iy,
(b) if, = 1, then p IF“n € B,” and if t, = 0, then p |-y ¢ B,”,
(c) if suco(p) =¥ and p € 7, then £g(tr(p)) > i, (see (®)(e) above),
(d) if [sucz(p)| = 1, then .F, = Sy gy and 1), = 1 — 1}, O tor p e 7,
(e) if sucz(p) is infinite, p € .#, and tﬁ = 0, then p I-*n ¢ B,” for some

Q € Suc«?(lo)7
(f) if p <0 € 7 and g € ., then there is unique p € .#, such that p < ¢.

Now let Y = ﬂpey set(.#,) (see 2.1(2)) and note that “2\Y € id>(i). By induction
ondp(p, J) we are going to argue that for p € J:

(), foreachv €Y we have
veB, <<= (@{peSL)Welim(p) A t,’,’ =1).

Case 1 sucg(p) =0.

Since v € Y there is unique p € %, such that v € lim(p), recalling that for
p.q € Q¢

(p, q are incompatible ) = (tr(p) ¢ q Vtr(q) ¢ p) = lim,(p) Nlim,(q) = 0.

We know that B, = {v € “2 : v(iy) = cp} (see (®)(e)) and Lg(tr(p)) > i, (see
(®)(c)), so

veB, < tu(p)ip) =cp <= 1, =1.
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Case 2 |sucz(p)| = 1.
Let p be the unique element of %, = 7,0y such that v € lim, (p). Then

veB, < v¢ By t;,ﬂo):() — tﬁ:l.

Case 3 suc g (p) is infinite.
Let p be the unique element of ., such that v € lim,(p).
First, assume t,‘; = 1. Thus p II—“7~7 € B, =\{B, : 0 € sucz(p)}”. Suppose that
0 € sucy(p) and let q be the unique element of %, such that v € lim, (q). Then, by
(®)(f), p = q and hence q I-"n € B, S B, ", so tg = 1. By the inductive hypothesis
we get v € B,. Since ¢ € suc g (p) was arbitrary we conclude that v € (|{B, : 0 €
suc7(p)) = B
Second, assume tﬁ = 0. By (®)(e) we know that p H—“y ¢ B, for some ¢ € suc 7 (p).
Let q € F, be the unique element such that v € lim,(q). Then p < q and hence
t,? = 0. By the inductive hypothesis we get v ¢ B, and hence also v ¢ B,,.

Finally note that our assumption “I n ¢ B” implies that té) = 0forall p € 9.
Therefore, (V) implies Y NB =, so B € id;(i).
(6) This is similar but easier. m]

Definition 3.4 (1) Foriasin 3.1, we define cov(i), add(i), non(i), cf (i) as those num-
bers for the ideal id (i), see 0.7.

(2) If «j, nj are clear from Q; we may write Q instead of i and write id(Qj) etc. In
particular we will be using this convention for Q, from Sect. 1 and for Cohen,.

Recalling i . = {9 : 9 < « is inaccessible}, note that for low inaccessible «’s, Q;
is like k-Cohen, that is,

Claim 3.5 (1) If k > sup(Si,.) then for some open dense subsets .y, .9 of
Qy, Cohen, respectively, we have Q, [.#] = Cohen, [.%.
(2)If S € S}, is bounded in k then Qs satisfies the conclusion of part (1), where

Qx,s is naturally defined as Q, [{p : Sp € S}.

Proof (1) Let . = sup(Si; ), so i < k.

Let 4 = {p € Q¢ : Lg(tr(p)) = u}, let #5 = {n € Cohen, : £g(n) > u} and
F: 9 — S be F(p) =tr(p).
(2) Similarly. O

Claim 3.6 (1)id(Qy) is a kT-complete ideal on “2 and also id(Cohen,) is.
(2) I k is weakly compact and %, C Q, is pre-dense for o < oy < k™ then the sets
J 5 are dense open subsets of Q, where

I ={p € Q« : forevery a < ay there is & < « such that
[n e pn?2 = pl is above some q € ﬂa]}.

and

I3 ={peQ:lim(p) < ﬂ set()}

<oy
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(see 2.1(2)).

(3) Assume k is weakly compact. Suppose that p € Q, as witnessed by (tr(p), S, /_\p),
a < k and let B C ¥2 be a k-Borel set. Then there is g € Q, such that:

(i) p =g, tr(p) =tr(q), .

(ii) Sy Na =S8, Na, Apla = Ayla and
(iii) for some B € (o, k), if v € g N B2 then
either ¢!+ “n € B” and lim,(¢""!) C B,

or ¢WVIF“n ¢ B” and lim, (")) "B = @.

Proof (1) By 3.2(1).

(2) By 1.9(2), pedantically by its proof.

(3) We prove this by the induction on the depth y of (the x-Borel representation; see
the proof of 3.2(5)) of B.

Casel y=0so0B={ve“2:v(i) =c}forsomei <k,c<?2.
Obvious.

Case 2 B is the complement of a k-Borel set By of depth < y.

Obvious by the phrasing of (3)(iii).
Case3 B = ﬂa<a(*) B, where a(x) < k and By, are k-Borel sets of depth < y.
Let fal = {q € Q¢ : q satisfies (3)(iii) for B and a with B = B4« < k}. By the
induction hypothesis ﬂal is dense open in Q. Let

SH = {q € Q : either g+ “n ¢ BX[QK]”for some o = a(q) < oy
or gl-“ne BV[QK]”}.

Clearly %, is dense open. Let
31 = {q €Siql-*n¢ By, andq e fal(q)} i

Then for g € 731 we have (AB)(Yv € g N £2)(lim, (g™ N Bug) = ¥) and hence
lim, (q) N Byg) =D forq € F31. We let

30 =1g € Q¢ 1 ¢ IF*n € B” and lim, (q) < B}
and finally we set 93 = 931U H3 5.
Next consider:
() for every qy € Q there is g € S5 above qq.
Why is (%) sufficient? First note that for every q € 93 the demand (3)(iii) hold for
the pair (g, B). Indeed, by the definition of 73 we have to check the two possibilities:
q € S1andq € S3.1fq € 3, thena(q) is well defined andlim, (q) "By (g) = 9,

so B = 0is as required. If g € 932 then also B = 0 is as required. Now we may use
(%) and 1.9(2) to get q € Qy satisfying (i)—(iii) of (3).
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Why does () hold? Let qy € Qy be given. We may find q; above qo such that
either q1 - n € B or q; |- n ¢ B. First assume that the latter is true. Then for
some a < a(x) and qo > q1 we have q> |+ 1 ¢ By. By the inductive hypothesis
there is g3 > qo satisfying (3)(iii) for By and a. Since q3 |- n ¢ By, this implies
lim, (q3) N By = ¥ and therefore g3 € 931 C H3. B

Second, assume q1 IFn € B, i.e., q1 IF“n € By for every o < a(x)”. Let

Hora = {r € Q : r is incompatible with g1 or q| < r and lim, (r) C Ba};

by the inductive hypothesis it is an open dense set. By 3.6(2) we may find q4 > q1 such
that

(ch < oz(*))(EIB < K)(n EqsN 2 = (q4)["] € ﬂ3,2’a).

Since (q9)" € 32,4 implies lim, ((g2)!™) € By (as g4 > q1), we conclude
lim, (g4) C By for all o < a(x). Hence q4 € J32 C 93. O

Claim 3.7 Considering “2 as an Abelian Group (with addition @& modulo 2, coordi-
natewise), the ideal id(Qy) is closed under translation, i.e. if B C “2 and n € “2 then
Becid(Q) © n®Beid(Q) wheren®B:={n®v:v e B}

Proof Straightforward. O

Claim 3.8 If« is an inaccessible limit of inaccessibles, then “2 can be partitioned to
two sets Ay, Ay such that Ag is in id(Coheny ) and Ay is in id(Q,).

Proof Let (k; : i < k) list the inaccessibles < « in the increasing order and let
Iirr = {a € Quy, 2 £g(tr(q)) > k; and tr(q) [[k;, £g(tr(g)) is not constantly zero }.

Clearly, .#,,,, is an open dense subset of Q,,,. Now, for n € 2 let p,, € Q, be
witnessed by (n, {«;j41 : ki > £g(M}, (Awiyy : ki > £g(m))) where Ay, = { Iy, )
Then

(a) py indeed belongs to Q,

(d) tr(py) = n,
(c) py is a nowhere-dense subtree of “~2.

LetAg = U{lim,((pn) :n €72}, A| =2\ Ap. Letus argue that they are as required.
First, why does A belong to id(Qy)? Clearly A; is k-Borel and for p € Q, we
shall prove p ¥ “n € A7, this suffices. Let v = tr(p), hence p, p, are compatible so
let ¢ € Q, be a common upper bound. Then ¢ I+ “n € lim,(g) € lim,(p,) € Ag =
K2\A”.
Second, why does A¢ € id(Cohen, )? Because it is the union of |“~ 2| = x nowhere
dense sets (remember clause (c)). O

Claim 3.9 (1) [k weakly compact] Any k-Borel set B is equal modulo id(Qy) to the
union of < k sets, each is k-closed and even Q,-basic, see Definition 0.2(2).
(2) Borel, /id(Qy) is a k T-c.c. Boolean Algebra.
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Proof (1) We have id; (Q,) = id2(Q,) by 3.2(5). As Q, satisfies the ¥ T-c.c. it is
enough to show that for a dense set of p € Q,, we have that lim, (p) C B or lim, (p)
is disjoint from B. But this easily holds by 3.6(3).

(2) Should be clear. O

Claim 3.10 (« weakly compact) Assume F' is a k-Borel function from “2 to “2.
For a dense set of p € Q, the function F can be read continuously on lim, (p), i.e.
for some club C of k and h = (hy : o« € C) we have:

(i) hg : pN%*2 — %2,
(i) ifn e pN2,ve pNP2 n<vandfa, B} C C then hy(n) < hg(v),
(iii) if n € lim, (p) then F(n) = U{ha(]a) : @ € C}.

Remark 3.11 This is parallel to “every Borel function F : [0, 1] —> [0, 1] can be
approximated by step functions, that is functions such that for some finite partitions
of [0, 1] to intervals, it is constant on each interval”.

Proof By 1.9(2), the set
S = {q €Qr:Ma<k)@B<k)Vvegn 52)(61[”l forces a value to F'(n) [a)}
is an open dense subset of Q.

Let us fix ¢ € .#. Then by the definition of .# there are an increasing sequence
(B(g, ) : o < k) of ordinals below k and a sequence (g(g, @) : o < x) of functions
such that for each @ < k we have

g(g,a):P@®2 59 and vegnPevy = GV “F(n)le = g(g, a)(v)”.

Let E;, = {6 < « : §is alimit ordinal and (Ya < 8)(B(g, o) < 8)}; clearly itis a club
of k. For § € E; we define a function h, 5 : g N 82 — g N2 by:

hgs() = U {g(q,a)(v[ﬁ(q,a)) o< 8} forv e g ne2.

Clearly, forevery § € E; and v € 82 we have
®) g"MIF<Fs= U FEmla) = U gg, 0)n1Bg, @) = hys(0) .

a<s a<s
Foré € E; and v € 92 consider the set
Y5 ={n€limc(q) :v <y and F()]8 # hqs(v)}.
It is a k-Borel set which (by (X)) belongs to id; (Q,) = id2(Qy). Hence
Y= | J{¥.:6 € B and v €2} €1d(Q).
Let ¢* > ¢ be such that lim,(¢g*) N Y = @ (exists by the proof of 3.9(1)). Then

q*, Eq, (hys : 8 € E,) have the properties required in (i)—(iii) and the Claim follows.
O
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Remark 3.12 For k which is not weakly compact we may get a weaker result for
id; (Qy) = id2(Qy). For each o < « let .#, be a maximal antichain of Q. such that

q € Sy = q forces a value to F(n)[a.

Without loss of generality
(¥ a <BArgeIp=3peIy)(p=q)

Let (go.; : i < i(a) < k) list ., and let vy ; be such that gy ; IF“F(n) [ = vo;i”.
Then clearly tr(qq, ;) < tr1(ge,i) € go,j < i = j. Let Yy = Ui<i(a) lim(gy,;) and
note that:

(*%)1 (@) Yy =%2 mod id(Q,) decreases with «, and
(b) (lim,(ga,i) : i < i(e)) is a partition of Y.

Define H, : Y4 —> “2by Hy (1) = vg,; if n € lim, (gq,;). Then

()3 (a) Hgy is continuous on Y, in the sense that H, (n) is the value of H),(n[j) for
every large enough j < «, where
(b) welet H, : ¥72 — ¥>2 be

roy ) vai ifr(gei) IV € gai,
Hy(v) = { {(0)) if there is no such i.

Now consider

(¥)4 (@) Y =)y~ Yo and note ¥ =*2 mod id(Q), and
(b) let H : Y — “2 be defined by H(n) = lim(H,(n) : « < k).

Concerning Lebesgue Density Theorem:

Conclusion 3.13 (« weakly compact) If X C “2is k-Borel, then for someY € id(Qy)
for every n € X\Y for every a < « large enough (2)"1N N X includes lim, (p) for
some p € Q.

Remark 3.14 So this holds also for the complement of X.

Proof By 3.6(3) there is a maximal antichain (p; : i < i) of members of Q, and
S Ciysuchthati € § = lim(p;) € X andi € i,\S = lim,(p;) N X = @. Then
ix <ktandletY = 2\ Uflim, (p;) 1@ < iy}, soclearly Y € id(Qy). If n € X\Y,
then by the choice of Y for some i < iy, n € lim,(p;) and necessarily i = i(n) is
unique and i € S. Let a(n) be £g(tr(p;(;))). Clearly we are done. O

Claim 3.15 If & C Qy is dense open and W C k = sup(W) then for some p =
(pp : p € Q) we have:

(a) 2 C*>2, moreover 2 C [ J{*2: e € W},

(b) p, € F < Qx has trunk p for every p € Q,

(c) ifp<1v € p,thenv ¢ L,

(d) {pp : p € R} is a predense subset of Q,, moreover is a maximal antichain,
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(e) letting (pp, Sp, 1_\,)) witness p, E_QK We_have: ifp1,020 € Qandlg(p1) <a =
£g(p2) then Sy, = Sy \(@ + 1), Ap, = Ap, [Sp,-

Proof LetQ = {tr(p) : p € S}andforp € Q) choose pé € ﬂsuchthattr(p})) =p
and let (p, S}), 1_\})) witness p}) € Q, with min(S/l)) > £g(p). Note that

pE 2 /\pﬁvep}):ute

because .# is open dense. Let S, = U{S)) : p € Q1} and note that S, is a nowhere
stationary subset of k. Let A = (A : d € S,) where

Ay = LJ{A)})’3 : p satisfies p € 2, N%>2and 9 € 5;1;}-

Easily, if 9 € S, then Aj is a set of < 9 dense subsets of @3.
Next, for p € 2 let plz, € Q be witnessed by (p, Sx, A). Now we define Q2 4 by
induction on & € W such that

Qz,a:{pe"‘Z:pteandifﬁeWﬂaAgeQz,ﬂ/\quthenp¢pZ}.

Lastly, let @ = U,y 2.0 and p, = p3 for p € Q. Now check. |

Claim 3.16 Assume that « is inaccessible limit of inaccessibles and W‘ri C k=
sup(We) for ¢ < k are pairwise disjoint. If A € id(Qy) then for some (S, A), p, I

(@) p=(pp:p€*2), py € Qis defined by (p, S\(£g(p) + 1), A[(S\(£g(p) +
D)),

(b) I =(Is: e <k),

(c) e S {pp :p €72 Nlg(p) € W} is a predense set and even a maximal
antichain of Qj,

(d) ACJ{2\set(S) 1 e < «}.

Proof Follows by the proof of 3.15 but we give details. Let A € id(Q,), hence there
are amaximal antichains .#; of Q. suchthat A C | J, _, (" 2\set(f£)). As Q, satisfies
the k T-c.c. clearly | 7| < k.

Recalling k = sup(S;,,.) hence without loss of generality each p € .7, is nowhere-
dense (see the proof of 3.8) and hence |Lfg| =«.Let % = {pe; i < k} and suppose
that each p,; is defined by (1, Se.i, Ae;). Without loss of generality 0 € S, ; =
Lg(ne,i) < 0. Let

(x)1 S={9 €S, forsomee,i <3 wehaved € S ;}.
Clearly,

()2 S is a nowhere stationary subset of St .

Let

(x)3 A =(Ay:9d e S)whereford € S we let

Ay ZU{A&M:S <9,i<0andd € S}
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Clearly,

(#)4 (), S, A) defines a condition p, € Q,, as S C « is nowhere stationary and if
0 € S then Ay is a set of < 9 pre-dense subsets of Q.

Lastly,

(%)5 (a) for p € *>21let p, = (p, S\(£g(p) + 1), A[(S\(£g(p) + 1)),
(b) fore <« let

I ={pp :forsomei <k wehavei,e < £g(p) € Wy and n.; I p € pei}.

Then

(x)¢ foreache < «
(a) #/ is a predense subset of Q,, and
(b) set(.#)) C set(&).

[Why? For clause (a), if ¢ € Q, then some p € %, is compatible with ¢ and hence
there is r > ¢, p. Let i < « be such that p = p.; and let p € r be such that
lg(p) > &,i,Lg(tr(r)) and £g(p) € We. Now, p = p.; < r implies n.; = tr(p) <
tr(r) < p € r € pe;. Hence p, € #/ has trunk p and hence it is compatible with
r, so also with g. Concerning clause (b), assume 7 € set(.#,) C *2. Then for some
p € “72 we have p, € #/ and € lim((p,). By the definition of .#/, for some
i </lg(p)wehaven,; < p € p.;.Hencetr(p,) € p ;. By the choice of p,, clearly

lime (pp) C lime (pf)) S lime (pe.i) S set(F), so we are done.]

To get “.; a maximal antichain” we choose 2, ; C J2 by induction on j €
We\(e + 1) by:

(K)7 Q4 = {,o €J2: forsomei € WeNj\(e+1), nei < p € pe;butfornoij €
W, N j\(e + 1) and v € ¢, do we have p € p,}.

Then let

()8 (@) 26 = (e, 1 j € We\(e + D},
(b) I ={pp:p € Q.

Now (S, A), (py : p € Q) and (I : € < k) are as required. O

4 On add(Q,) and cf (Qy)
Definition 4.1 (1) Fora <«,v e€®2, p e Qc,n € pN*2 welet
plvl = {p: p < v orfor some o we have n°0 € p A p =70}
(2) For # C Qy, @ < k and a permutation 7r of 2 let

gleml = Lplnvl s pe 7 npe pn®2andv = ().
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(3) Let A be a collection of subsets of Q, and let @ < x. For a permutation v of *2
we let

ATl = ( glenl . g7 e A},
We also define
Al = (717 7 g 4 permutation of %2 and .7 € A)

and Al=?1 = [ J{AIP]: B < a}, here we allow o = «.

Claim4.2 (1) If @ < k and & C Q is open/dense/predense/maximal antichain/of
cardinality < « then so is %7V in Q,.
(2) If e < k and A is a collection of subsets of Qy, then
o (A1) = Alel gng [l < [A]+ 22 48y < |A] 4k,
o (Al=)l= = pl<el gpg |Al<el] < [A] + 222" : B < a} < |A] +x.

Proof Easy. O

Definition 4.3 (1) For an inaccessible cardinal « let Pr(x) mean:
there are predense sets I, < Q for e < k such that

if p € Qc then lime(p) € (), _, set(F).
(2) Let S’Pfr ={0<k:0€S8 A Pr(d)}and

mac

nst = nst, or = {S C S, : S is nowhere stationary and § C SSr}'

Observation 4.4 (1) If « is inaccessible but it is not a Mahlo cardinal, then Pr (k).

(2) If k is weakly compact, then —Pr(k).

(3) If k = sup(Si,,.), then k = sup(Sl’;r).

(4) If k is Mahlo, i.e., S . is a stationary subset of k, then S’Pfr is a stationary subset
of k.

Proof (1) First assume 6 = sup(S{;,.) < «.For e < « define
S = {(">2)[VA(O>] v EeET2 A Lg(y) > 8}.

It should be clear that each .7 is a predense subset of Q, and we claim that they
witness Pr(«). So suppose that p € Q, and pick v € p of length greater than 6 and
than £g(tr(p)); note that then p["! = (*>2)[" Let n € ¥2 be such that v <1 7 and
n(i) = 1fori € [£g(v), k). Clearly, n € lim,(p) but n & set(.%) for e > £g(v).
Second, assume k = sup(Si’;aC) but it is not Mahlo. Let E be a club of « disjoint
from S andlet (; : i < k) be the increasing enumeration of E. For & < « let

I = {(">2)[UA<0)] veEN2 A d>el

Clearly, each .#; is a predense subset of Q.. We will argue that they witness Pr(x).
Let p € Q¢ and fix ¢ such that o, > £g(tr(p)). By induction on i € [¢, k) choose
v; € 2N p so that
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o ife < j<i<kthenv;"(1) <.

(Itis clearly possible; at successor stages remember 1.5(1) and at limit stages remember
the choice of E.) Then n := | J{v; : € < i < «} € lim, (p) does not belong to set(.7;).
(2) Remember Claim 3.6(2).

(3,4) Follow from part (1). m]

Question 4.5 For which inaccessible cardinals k do we have Pr(k)? See [28].

Claim 4.6 The following are equivalent for k :

(a) —Pr(x).
(b) If A is a set of < k maximal antichains of Q, and a < k, then there is p € Qy
such that tr(p) = (), Sp Na = P and lim,(p) C set(A).

Proof (b) = (a) Straightforward by Definition 4.3(1).
(a) = (b) Suppose that Pr(x) does not hold.

Assume A is a set of < x maximal antichains of Q.. Let A = Al<¥1 (see 4.1).
Then A; = (A1) and |A1] < « (remember 4.2). Since Pr(x) fails, there is a
condition ¢ € Q, such that lim(g) C set(A1) and £g(tr(g)) > o, Sy N = 0.

Let S, = S, and ford € S, let Ay = Ay . Put A = (Ay : d € Sp) and let p be
the condition determined by ({), S, 1_\).

Note that if n € ¢ NP2, B < «, then for every v € #2 also ¢! satisfies
lim(g!""1) C set(A1) by the choice of A 1. Therefore we also getlim(p) C set(A) C
set(A), so p is as required. O

Claim 4.7 Suppose that p € Qy, £g(tr(p)) < oy < By < k. Then there is g € Q
such that

(a) p <gq,tr(q) =tr(p) and
(b) Sq\(Ol*, Bs) = Sp\(Ol*, By) and y € Sq\((){*, By) = Aq,y = A[J,y:
(c) Sq N (o, Bs) € Sgr'

Proof We prove this by induction on S.

Case 0 ay = Byora,+ 1= B,

Trivial, as then (o, By) = 0.

Case 1 By = sup(Bx NSp) + 1 but sup(B, N S)p) ¢ S,,\S’Pfr.

Let vy = sup(B« N Sp). Use the inductive hypothesis for p and (o, yx) to get a
condition q. It will satisfy the demands for (o, By) as well as either y, ¢ S or else
Vs € Sgr.

Case 2 By > sup(B«NSp) +1

Use the inductive hypothesis for y, = sup(B« N S)) + 1, proceeding like in Case 1.
Case 3 By = sup(Bs N Sp), so By is limit

Pick an increasing continuous sequence & = {(«; : i < cf(B,)) such that ay = s,
actp,) = P and a; ¢ Sy, forall 0 < i < cf(By). By induction oni < cf(By) choose
qi such that

(a) qo = p, tr(q;) = tr(p),
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(b) Sg\(@o, ;) = Sp\ (o, a;) and y € Sy \(@o, @) = Ng;.y = Npy,
(c) if j <i, thengj < qi, S¢;\(aj, ;) = qu \ (aj, ;) and y € Sg;\(aj, ;) =
Agiy = Ngjy»
(d) ifi = j+1, then Sg; N (aj, ;) C Sl’;r.
There are no problems in carrying out the inductive construction. Then qct(p,) is as
required.
Case4 B, =0+1,0¢ SP\SI’;r and 0 > oy
Here we use 4.6 for Qy, Ap 5 and the ordinal . So there is p, € Qy such that

o tr(px) = (),
o S, C (a4, 0), and
o lim(p,) C set(Ap ).

Now we define a condition q1 by letting:

e tr(g1) = tr(p),
o Sy = (S\OD U S,
o Aypis
- Npoifo € SH\Sp,,
= Moo if0 € $,,\S),
- NpgUAp gif0 €85, NS,

Then we continue as in Case 1 with qy, cty, By (as 0 & Sy, ). |
Conclusion 4.8 For any o < k, the set {p € Q, : S, C Sl’;r\a} is dense in Q.

Note that if ¥ > sup(Si’;ac), then id(Q, ) = id(Cohen,.). Therefore:

Hypothesis 4.9 For the rest of this section we assume that k = sup(S};,.) (so also
K= sup(Sgr), remember 4.4(3)).

Definition 4.10 (1) Let add(nstY') be the minimal cardinal x such that there are S; €
nst} for { < p with the property that there is no S € nsty satisfying

{<pu = 8 <SS mod bounded.

Dually, cf (nst}') is the minimal cardinal x such that there are S; € nst; for
¢ < p with the property that for every S € nsty thereis ¢ < u satisfying S € S¢
mod bounded.
(2) For § C Sf . we define:
(a) Q,”;’ ¢ s the subforcing of Q, consisting of all conditions p € Q, satisfying
SpCS.
(b) id[(@zy ] is the collection of all A C “2 such that for some j =(fr:¢<
k) we have
(i) each Z; is predense subset (or maximal antichain) of Qy,
(i) 7 < Q,”;’S for each ¢ < «, and
(iii) A C U, (“2\set( 7)),
(c) add(id[Q} 1. 1d(Qy)) = minf{le/| : & Cid[QF g1 A U ¢ 1d(Qo)}.
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(3) Addy, = min {add(id[Q} (], 1d(Qy)) : S € sty }.

pr,x
Claim 4.11 (/) add(Q,) = min {add(nst{), Adds;,  }.
(2) cf(Qc) > cf(nsty).

Proof (1) (Step 1) add(Q,) < add(nst}").
Let S; € nst} for ¢ < add(nstgr) be such that

Sensty = \/x = sup(S;\S).
¢

For 0 € Sgr let A} = {ff : & < 0} witness 9 € Sgr (see Definition 4.3(1)). For
¢ < add(nst)) let*

B, ="2\{n €"2: (V™3 € 5;)(nl9 € set(A}))}].

Clearly B, € id(Q,). Now it suffices to prove that B := {Bg 1< add(nstgr)} ¢

id(Qy). So suppose towards a contradiction that B € id(Qy ) and let (S, A, P, 5 ) be
given by Claim 3.16 for B. Next,

(%) ife <k, <k and n € *2, then there are 3, v, p such that
(a) a < B <k,
() n<vef2,
(c) pp€Feandp Jvandv € p,,
(d) if 0 € SN (a, B] then v[d € set(Ay).

[Why? Consider the triple (1, S\(e + 1), (Ay : 3 € S\(«x + 1))). It defines the
condition p, € Q, and we know that ., is a predense subset of Q. Hence for some
p €72, p, € F and the conditions p,, p, are compatible in Q. Then there is
v € “Z2such that tr(p,) < v € p,, tr(p,) < v € p,. By the definition of p, above,
Lg(v), v, p satisfy all the requirements.]

Now,

(¥)2 Fore <k let F{, Fj : “72 — “>2 be such that for each € “~2, the triple
(B, v, p) given by B = Lg(F{(n)), v = F{(n) and p = F5 (1), is as required
above in (x)1 for € and 7.

()3 Let Ey = {8 <k : 8 alimitordinal and (¢ <& A 5 €%>2) = Fi(n) e 8>21.

By the choice of (S; : ¢ < add(nst}')) there is ¢ < add(nst}') such that S;\S is
unbounded in «. Easily we may choose an unbounded set S C S\ S such that

e the closure E of S’ is disjoint from S, and
o ifyp € E, y1 = min(E\(y + 1)), then (yo, y1) N E1 # 0.

Let (y; : i < k) list E U {0} in the increasing order (so y;11 € S;\S and y; ¢ S;
remember yp =0 ¢ S C S ). By induction oni < x we choose n; € ¥2 such that

4 Recall that “v>°3 € S” means “for all but boundedly many d € S”.
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(@) j<i<k = n;<n, ‘

(b) ifi = j + 1 then n; ¢ set(A%,) and F{ (n;) < ni,

(¢) if 9 € SN (y; +1),i > 0, then n; [0 € set(Ay),

(d) if j < i then sz (mj) dn; € Prio (follows from (b)+(c) and (x)2).
2\

If we succeed in carrying out the induction, then we may let n = J and note

that

i<ic Mi

e 1 belongs to B, because nly; ¢ set(A*}ji) for all successor i < k by clause (b),
e 1 does not belong to B by clauses (¢)+(d).

Consequently, n witnesses B, ¢ B, a contradiction.
Why can we carry out the induction?

Fori = 0 itis trivial.

Foralimiti <« weletn; = J;_; n;.

Leti = j + 1. First, Fj I(n ;) satisfies the requirements on 7; except that £g(F; I(n )
isnot y; (and so “n; ¢ set(A*i)” from (b) is meaningless): it is < y; by the choices of
E;and E.

Second, we use the definition of S, C Sl’;r and y;j 41 € S¢\S for the condition with
trunk Flj (n;) and (A : 9 € (¥}, yj+1) N S) and the choice of A;j[,.

This completes the proof of “add(Q,) < add(nstgr)”.
(Step 2) add(Qy) < Addpr -
It should be obvious that if § C SK then add(Q,) < add(id[(@:’ 51, 1d(Qy)).
(Step 3) min {add(nstY), Addpw} < add(Qy).
Why? Assume A; € id(Q,) for i < i < min {add(nst}"), Add’  }. For each i let

(Si, Aj, f_i, pi) be given by Claim 3.16 for A;. By Conclusion 4.8 (and the proof of
3.16) we may also require that S; € nstY forall i < iy. Asi, < add(nstgr) there is
S € nst? such that

i<iy= S CS modJM
Then easily A; € 1d[@* S] for every i < i,. Since i, < Add¥ prac We also have

iy < add(id[QF sl 1d(QK)) and hence UKZ* A; €id(Qy) and we are done.
(2) In order to show cf(Q,) > cf (nstK ) let us assume towards contradiction that

w = cf(Q) < cf(nst)). Let By : ¢ < ) witness u = cf(Q,) and let S¢, 1_\;,
pe = pcp i p €2y and S = {I; 1 i < «} be given by 3.16 for B;. Let
S € nst? be such that
¢ <pu = k =sup(S\S;).
Foreachd € Slet A} = {fga 1 & < 0} witness 9 € Sgr (see Definition 4.3(1)) and let
={ne’2:3*e8He <d)(nld ¢ set(fsa))}.
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Clearly B € id(Qy), so for some { < u we have B g_B;. Let E C « \ S; be aclub
and let p € Q, be a condition determined by ((), S¢, A¢). By induction oni < « we
choose «; € E and n; € “2 N p so that

(i) (o; 1 i < k) C E is increasing continuous,
(1) (n; :i < k) is <-increasing continuous,
(iii) foreachi < «, for some p € “~2 we have p < n;4+1 and p; , € I,
(iv) foreachi < « thereis d € (a;, j+1) N S such that n; 4119 & [~ set(fga).

It should be clear how to carry out the construction. At the end, the sequence 1 :=
(Ui = ni € “2belongs to B (by (iv)) but it does not belong to B, (by (iii)), contradicting

the choice of ¢ < . O
Claim 4.12 [f k is Mahlo and there is a non-reflecting stationary set S < S, then
(1) add(nsty) < by,
(2) above we actually have add(nst, s) = b,
1. 0 < cf(nstd).
Proof Straightforward, as for S’ C S we have:
S’ € st} if and only if S’ is non-stationary. o

5 The parallel of the Cichon diagram

As before, A, d, k vary on inaccessibles.
We have a characterization of k-meagre sets similar to the one for the case of x = RNy.
(Note: here « inaccessible is used.)

Observation 5.1 (1) If X C “2 is k-meagre and A C « is unbounded then there is
an increasing sequence & of members of A of length k and n € “2 such that

X C Xya:={ve’2: foreveryi < « large enough, nle;, oti+1) € v}.

Moreover, if A contains a club of «k then the sequence a above can be increasing
continuous.

(2) Ifn € “2 and & is an increasing sequence of ordinals < Kk of length k then the
set X g defined above is a k-meagre subset of “2.

Proof (1) Let X C [J{lim, (%) : i < «k} where .7} is a nowhere dense subtree of
“>2. For every infinite « € A let ((Ng.e, iae) @ € < 2121y Tist *2 x «, and then we
choose vy ¢, Ba,s by induction on & < 212l such that:

(a) Ba.e = PB(a, &) < k is increasing continuous with &,

(b) Vg e € F@2,

©¢<e= Va,¢ D vges

(d) na,sAva,s-i-l ¢ %mg-
Why we can? For ¢ = 0, let vy, = (), for limit € let vy o = (J{va,c : ¢ < &} recalling
(by 2.2) that ¢f (k) = k > 2%l > g and fore = ¢ + 1 use “Tiv. is nowhere dense
subtree of ©~2”.

Now by induction on i < x we choose («;, v;) such that:
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(e) «; € A isinfinite increasing with i, o; minimal under these restrictions,

(f) v; € %2 is <-increasing,

(g) ifi = j+1landy = 2%l theno; = minfe € A : @ > oj +€g(vy;,y)} and v;
is a member of %2 such that vaaj,], < ;.

There is no problem to carry out the induction and (¢; : i < k), n := [J{vi : 7 < «}
are as required.
(2) Should be clear. O

Remark 5.2 The ideal id(Cohen, ) is an ideal of subsets of 2. It has a natural relative
on “k—the ideal of meagre subsets of “«. The two ideals are isomorphic in a suitable
sense and they have the same cardinal coefficients, cf [13, Section 4].

Claim 5.3 (/) add(Cohen,) < b, < non(Cohen,).
(2) cov(Cohen,) < 0, < cf(Cohen,).

(3) cf(Cohen,) = max{0,, non(Cohen,)}.

(4) add(Cohen, ) = min{b,, cov(Cohen,)}.

Proof Our arguments are similar to those for k = Ny.

(1) We will show that add(Cohen, ) < b, (the inequality b, < non(Cohen, ) should
be clear; remember 5.2). Let u = b, and let {gy : @ < u} € “k exemplify this. For
eacha < u let

Ey = {8 < « : 8 is alimit ordinal and (Vi < 8)(g«(i) < 3)}.

Let ,8_a = (Bu.i : 1 < k) list Ey in the increasing order and let 1, € “2 be constantly ¢
fort = 0, 1. Then {Xm, 5, (L < 2 and o < p}isacollection of © many x-meagre sets.
Assume towards contradiction that their union A = U{Xn“ B, L < 2and o < u}
is meagre. Hence, by 5.1, there are 7 € “2 and an increasing continuous 8 € “k
such that A C X, p-Letg e “k be defined by g(j) = Bj+1. Then for some o < p
we have —(gq ]bd g).If Bj < Bui < Bjt1,then j < B; < By, and hence
8a(J) < Bai < ﬁ]+1 = g(j), so the set

S={j <k:8j,Bj+11N{Bui:i <k} =0}

is of size k. Choose a subset Sy € S of size k such that j € So = j+ 1 ¢ Sp. Let
v € “2be such that v[[B;, Bj+1) = nllB;, Bj+1) for j € Sp and v(i) = 1 whenever
i ¢ UBj, Bj+1) 1 j € So}. Thenv € X, 2 \ X, 5, contradicting A € X, 3

(2) Wewill show thato, < cf(Cohen,). Solet,u = cf (Cohen,) andlet (Aq : o < u)
list a cofinal subset of id(Cohen, ). For each @ < u we can find (v, ,80,) asin 5.1 such
that A, C Xva,ﬁa' Let

Eq = {8 <« : & is a limit ordinal such that (Vi) (Bs,i <8 < i <8},

it is a club of . Towards contradiction assume 9, > . Then there is a club E of
k such that sup(E4\E) = « for all @ < p. Let v € “2 and the sequence S list E
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in increasing order and consider the x-meagre set X, 5. For some o < p we have
X, 5 S Ao € X, 5 - Easy contradiction to k = sup(E \E).
The inequality cov(Cohen,) < 9, should be clear (remember 5.2).
(3) Recall that non(Cohen,) < cf(Cohen,) by 0.9 and 0, < cf(Cohen,) is proved
in (2) above. So we are left with:

cf(Cohen, ) < 0, + non(Cohen,).

Let 4 = non(Cohen, ); now

(H) thereis {og : B < u} € “« such that for every v € “«k for some B < u we have
sup{i <k :08(0) =v(@)} =«.
[Why? For p € “2let v, € “k be such that for i < «, v,(i) is y,,; when y, ; < k is
the minimal y < « such that, if possible, p(i + ) = 1 (and if there is no such y then
itis 0). Let o € “k be constantly 0. Now if A C “2 is non-meagre of cardinality p
then recalling 5.1 the set {v, : p € A} U {1} € “« is as required.]

Let(E, : y < 0,) beasequence of clubs of « such that for any club E of «, for some
v, E, C E, thisis a variant of the definition of 0. Fory < 0, letay, = (@) : i < k)
list £, U {0} in increasing order.

Let (p; : j < «) list U2 1 i < j < k) and for (B, y, &) € 0 x 0 X 0, let

Ap.ye = Xop,.a from5.1 where:

(©) forp < pandy <o, letog, €“2besuchthatog, [[oy i, 0y i41) is equal to
Pos i) if Pog(iy € 1ri+#ri+1)2 and is constantly zero otherwise.

So o/ ={Agy.;n 1 B < U Y1 <V, ¥2 <0} is asubset of id(Cohen,) and has
cardinality < p 4+ 0 + 0 = max{u, 0}. Hence it suffices to prove that <7 is cofinal in
id(Coheny ). To this end let A € id(Coheny ), and let n € “2 and increasing & € “« be
such that A € X, 4 (remember 5.1).

Now, E := {a < « : aislimitand (Vi < a)(a; < @)} is a club of «, hence
there is ¥ (1) < 9, such that E 2 Ey ). Then A € X, 4 € Xy4,,,- Leto € “«
be such that i < k& = nlloy1),i» 2y1),i+1) = Peq) and let B < p be such that
B ={i <« :0(i) = 0p(i)} is an unbounded subset of «. Pick y(2) < 0 such that

Eyo) € {a € Eyqy : aislimitand (Vi < o) (1), < )}

and [a, (2),i, &y (2),i+1) N B # @ for every i. Now clearly it suffices to prove:

() A S Apy).y@)-
Why does () hold? Fix v € A and we shall prove that v € Ag , (1), (2)- By the choice
of (n, @) we know v € X, g, so fori < « large enough v[[e;, aj41) Q n.Leti* <«
be such that v[[e;, otj1) € n foralli > i*.

Leti € [i*, k). By the choice of y(2) we can fix i; € B such that a,(2); < i1 <
ay(2),i+1. Then, by the definition of B, we have o(i1) = 0g(i1) and by the choice of ¢
we have pp(i)) = Pog(in) = N1ty 1).irs Ay (1).i+1) € loy .- @y .1+ By the choice
of 0g,y(1) in (@) we have

D) o,y ey y,ivs yy,i+1) = Il 1,0 0y (1,0 +1)-
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Since E, (1) € E, we may find iy < « such that [o;,, oty 1) S [0ty (1),i15 Qy(1),iy41)-
Then necessarily ip > i > i* and hence we have

vldiy, @iy+1) # nlletiy, @iy+1) = 0.y (1) [y, Ain41),

and consequently v[[ay (1), @y(1),ij+1) # OB,y [y (1),i1> Ay (1),i;+1). Since
Ey@) € {a <k :aislimitand (Vj < a)(ey(),; < @)}, we know that

®D) [oy (1y,ips oy 1), +1) S Loy )iy 0p2),i+1) and thus v[[oy, @), 0y 2),it1) #
08,y (O ety 2),i oty 2),it1)-

Now we easily finish concluding that v € Xy, ) &, = AB,y(1),y(2), as desired.

(4) It follows from 0.9 and 5.3(1) that u := add(Cohen, ) < min{b,, cov(Cohen,)}.
In order to show the converse inequality assume towards contradiction that u <
min{b,, cov(Cohen,)}. Suppose that &/ = {A, : y < p} is a family of members of
id(Cohen,) (and we will argue that | J </ € id(Cohen,)). For y < u let (n,,, ;) be
asin 5.1 and such that A, C Xny,By and let

E, ={a <« :aislimitand (Vi < a)(By,; < a)}

(it is a club of k). As < b, we may find an increasing continuous sequence f =
(Bj 1 J < k) of ordinals below « such that for each y and every sufficiently large
J we have B8; € E,. Then X y By c ang. Since u < cov(Coheny ), by an easy
dualization of (H) of (3), we have

(H)" there is v € “2 such that for every y < u the set

Z, = 1{j <y lB). Bj41) = vIBs. B+1)}

is of size k.

Using i < b, again, we may find an increasing sequence & such that

(Vy < w)@Fio < k)(Vi > ig)(Zy, N e, ajt1) # D).

Then letting §; = fo, (fori < «) we will have X, 5 C X, ;5 for each y and the
desired conclusion easily follows. O

Claim 5.4 (1) Ifk = sup(S{,.) then cov(Cohen,) < non(Q,).

(2) If k = sup(Sj,,.) then cov(Q,) < non(Cohen,).

Proof Both follow by 3.7 and 3.8.

(1) Let Ap € id(Cohen,), A; € id(Qy) be a partition of “2 (see 3.8). There is
X =1{ne : ¢ < u} € *2 where u = non(Q,) such that X ¢ id(Q,). Now, “2 with
addition & modulo 2, coordinatewise, is an Abelian Group and both ideals id(Cohen, )
and id(Qy) are closed under translations (see 3.7). Thus {n. @ Ag : € < u} is a family
of < u members of id(Cohen, ) and it suffices to prove that | J{n.® Ao : ¢ < u} =*2.
Soletv € “2. Since {n, : ¢ < u} ¢ id(Qy), also {n: ® v : ¢ < u} ¢ id(Q,) and
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hence it is not included in A{. Thus for some ¢ < u, n. ®v € Ag, hence v € 1, ® Ag
as required.
(2) Same proof, just interchanging Ag and Aj. O

Claim 5.5 If b, > cov(Coheny), then cov(Q,) < cov(Coheny).

Proof If k > sup(Si';aC), then cov(Q,) = cov(Coheny).

So suppose « is an inaccessible limit of inaccessibles and b, > cov(Cohen,).
Assume towards contradiction that cov(Q,) > cov(Cohen,) := u.

Using the assumption b, > u = cov(Cohen,) and Observation 5.1 we can easily
find an increasing sequence 6 = (0, : ¢ < «) and a family Y C [],_, 6, such that
(%*);1 0 <6, <k foreache <k, |Y| = and
(#)2 (Y €[] 0:)3p € T)(Y¥e < k) (p(e) # v(e)).
Next, by induction on € < k, we choose inaccessible cardinals 9, such that:

(x¥)3 0 > 0, + qu d; and 9 > sup(ds N Si5. ).
For each ¢ < « fix a partition (S, ; : i < 6) of 9, into stationary sets and

e for0 <i < 6, define A;; = {n € %2 :the set {a € Se,i : n(a) = 1} is stationary
but for each j < i the set {@ € S, ; : n(a) = 1} is not stationary}, and

o let Ao = %2\ Ujcprg,) Aei-
Note that (A, ; : i < ) is a partition of 92 guch that
(¥)s ve®>2 = {ne A.; v <n}¢id(Coheny,).
Now, for p € Y and o < « let

Tpa = {p € Qy : Lg(tr(p)) > o and for some & < «
a < 9, < Lg(tr(p)) A tr(p)loe € Ag,p(g)}.

It should be clear that each .7, , is an open dense subset of ( (remember that
dg > sup(dg N S ) and use (x)4).

K
mac
As we are assuming towards contradiction that cov(Q,) > pu, the set

mpeT ma<x Set(jp’a) is not empty. Let n € mpeT mot</( Set(jp’a) and let v e
[T~ O be such that
€ <Kk = nraa € Ag,v(g).

By the choice of n, for every p € T we have sup({fe < k : n[de € A p(e)}) = k.
Hence

(Yo € TY@%e < k) (v(e) = p(e)),

a clear contradiction with (x);. O
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Conclusion 5.6 Assume that either

K

(a) k > sup(Sj,..), or

(b) b, > cov(Coheny), or
(c) there is a stationary non-reflecting set S C Sgr.

Then add(Q,) < add(Cohen,).

Proof If k > sup(k NS, .) then Q, is equivalent to Cohen,, and moreover id(Q,) =
id(Cohen, ) (see 3.5(1)) and so add(Q, ) = add(Cohen,).
Let us assume b, > cov(Cohen, ). Then, by 5.3(4),

(e); add(Cohen,) = cov(Cohen,)
and by the Claim 5.5
(®)2 cov(Q,) < cov(Cohen,).

Hence (first inequality trivial, holds for any ideal, e.g. see 0.9, the other two by (e)2
and (e)1)

(o) add(Q,) < cov(Qy) < cov(Cohen,) = add(Cohen,).

Finally, if b, < cov(Cohen,) but there is a stationary non-reflecting set S C Sgr,
then by 5.3(4) we have add(Cohen, ) = b, and by 4.12(1) + 4.11(1) we get

add(Q,) < add(nst)') < b, = add(Cohen,).

So we are done. O

The following result is dual to 5.5.

Claim 5.7 If 0, < non(Coheny,), then non(Cohen,) < non(Qy).

Proof If k > sup(Sj,,. N«) this holds trivially as in the proof of 5.6, so from now on
assume k = sup(Sj,. N«). Forevery 6 = (0 : ¢ < «) with 1 < 6, < k we choose
0 = (05,16 <k), S5 =(Sge; i <b), Aj,=(Ag,,; i <0) asin the proof

of Claim 5.5. That is, 59-, 5'9-’5, Aé,s satisfy for ¢ < k:

(@)1 95, < Kk is an ina’(ccessible cardinal such that 95, > 0, + >, _, 95, and
aé,e > Sup(aé,s A Sinac)’

(®)> (Sé, et < ) is a partition of 9, into stationary sets, and

(@®)3 for0 <i < 0O, Aé,s,i = {n € %2 : the set {a € Sé,s,i : n(a) = 1} is stationary
but for each j < i the set {« € Sé’g’j :n(a) = 1} is not stationary}, and

(®)4 Aé,s,O =%2 \ Uie[l,(%) Aé,s,i'

Amapping“2 > n > v, € [],_, 0 is defined by the condition n[9; , € Ag . v, (&)
’ ’ Y]
foreach ¢ < k. .
Choose Y C “2, T ¢ id(Qy), of cardinality non(Q,). For any 6 as above let

Y5 ={vg, : n € T}. Then clearly
@®)s Y €[l 9 and Yj has cardinality < non(Qy).
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Dually to arguments in 5.5 we will argue now that
(@®)¢ forevery p € [[,_, e, thereisv € T such that (3% < «)(p(g) = v(e)).
Why? Suppose p € [[,_, 0¢. For o < « let

Iy = {P € Q : Lg(tr(p)) > « and for some ¢ < «
@ <, <Lg(tr(p)) A tr(p)0, € Aj, o)}

Clearly, each ., is an open dense subset of Q, (remember 95 , > sup(dg , N S ,0))-
Since YT ¢ id(Q,) we know that Y N[, _, set(F) # B.Letn € YN[, -, set(F).
Then (A% < K)(I)H"n(é‘) = p(¢e)). Thus (d)e is justified.

o <K

Easily by definition of 9, we may choose a family {og : § < 0.} such that

(®)7 (@) ag = {ag e : € < k) is an increasing continuous sequence in « (for each
& < 0y), and
(b) if (@; : i < k) is an increasing sequence of ordinals below «, then for some
& < 0, we have

(V¥ <) Fi < k)(ge < @ < A1 < U o41).

Now, for each £ < 0, let 9_5 = (g 1 ¢ < k), where 0z , = |leg.e.z.e41)2| - Also,
for each &, ¢ fix a bijection 7z ¢ : 0, —> [%#%e+2 and for v € [[,_, Oz (for
& <d)setxg, =, e s (v(€)) € “2. Consider the set

%:{xs,uzé<bk A veTéE}.

We claim that
(®)s 2 ¢ id(Cohen,).

If not, then for some n € “2 and an increasing continuous sequence & = (o; :
i < k) €k wehave 2 C X, 5. Let £ < 9, be given by (@)7(b) for & and let
p* €[], -, 0sc besuchthat e o (0™ (€)) = nllag e, 2g o+1) foreache < k. It follows
from (®)g that for some v € Tég we have (3% < k)(p*(e) = v(g)). This implies
that (Eloos < K)(xs,v[[ag,g,ag,gﬂ) = n[[otg,g,otg,g_s_l)) and hence (remembering
the choice of &) we get (3% < «)(xg[[ai, ai+1) = nl[ai. @it1)). Consequently
Xe,v ¢ Xy, a contradiction.

It follows from (6)g that 9, < non(Cohen,) < | 2| < non(Q,)+0, and therefore
non(Cohen, ) < non(Q,). O

Conclusion 5.8 Assume that either

(a) k > sup(Sf,.), or
(b) 0, < non(Coheny), or
(c) there is a stationary non-reflecting set S C Sl’;r.

Then cf(Cohen, ) < cf(Qy).
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Proof The proof is similar to the proof of 5.6.

If k > sup(Sf,.) thenid(Q,) = id(Cohen,) and cf(Q,) = cf(Cohen,).

If 9, < non(Cohen,), then it follows from 5.3(3) that cf (Cohen, ) = non(Cohen,).
Also, by 5.7 and 0.9(b), we have non(Cohen,) < non(Q) < cf(Qy). Together
cf(Cohen,) < cf(Qy) (under present assumptions).

If 9, > non(Cohen, ), but there is a non-reflecting stationary subset of Sgr, then we

use 4.12(3) to get cf (st ) > d,. Now. 5.3(3) implies cf (Cohen, ) = 0, and 4.11(2)
gives cf(Qy) > cf (nstflrst). Together we conclude cf (Q,) > cf(Cohen,), as desired.
O

Now we may summarize the results of this section in the form of diagrams.

Theorem 5.9 Assume that k is an inaccessible cardinal and k = sup(S}; ). Then the
inequalities represented by arrows in the following diagram hold true:

cov(Q,) — non(Cohen, ) — cf(Cohen,) cf(Qe) — 2

I v

| be > % |
t t ’
kT — add(Qy) add(Cohen,) — cov(Cohen,) — non(Q,)

plus the dependencies

e add(Cohen,) = min{cov(Cohen,), b},
e cf(Cohen, ) = max{non(Cohen,), 0,},
o cov(Qy) < non(Qy) (see 6.6(3)).

Moreover, we may add that one of the following four diagrams holds (where each
arrow — represents the inequality < and 1 # represents the strict inequality <).

Case 1
cf(Qe) — 2

non(Cohen, ) = cf(Cohen,) — non(Q,)

t T #
b — 0y
T # t

cov(Q,) — add(Cohen,) = cov(Cohen,)

kT — add(Qy)
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Case 2

cf(Qr) — 2¢

cov(Q,) — non(Cohen,) = cf(Cohen,) — non(Qy)

T T #
b/( - (%
l T

kT — add(Q,)  add(Cohen,) — cov(Cohen,)

Case 3

non(Cohen,) — cf(Cohen,) cf(Q,) — 2%

T l
b, — [
t# T
cov(Q,) — add(Cohen,) = cov(Cohen,) — non(Q,)

kt — add(Qy)

Case 4

cov(Q,) — non(Cohen, ) — cf(Cohen,) cf(Qe) — 2
t I

by — L

l t
kT — add(Qy) add(Cohen,) — cov(Cohen,) — non(Q,)

Remark 5.10 (1) In a later work we prove that add(nst)’) < 9, and b, < cf(nst)).
Consequently, by 4.11, add(Q,) < 9, and cf(Qy) > b,.
(2) Remember that by 5.6 and 5.8, if k > sup(S};,.) or there is a stationary non-

reflecting set S C Sgr, then add(Q, ) < add(Cohen, ) and cf(Q,) > cf(Cohen,).

6 Q. vs Cohen,
6(A) Effect on the ground model

Claim 6.1 If k is an inaccessible limit of inaccessibles, then in V& the set (<2)V is
K-meagre.

Remark 6.2 (1) The dual is 6.3.
(2) The assumption is necessary by 3.5.
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Proof Let (0; : i < k) list in increasing order the (strongly) inaccessible cardinals
below «. We claim that

g, “if v e (*2)Y then for every i < « large enough n[(3; + 1, 9;+1) € v,
moreover o < dj4+1 = nl(a, di41) V.

This clearly suffices by 5.1(2). Let p € Q, and we shall fix v € (*2)Y and we shall
find ¢ and iy, < « such that p <g, ¢ and ¢ |- “if i > i, then n[(9; + 1, d;41) € V™.

Let i, be such that £g(tr(p)) < 9;, and let (o, Si, A) be a witness for p € Q. Now
let S = {0j4+1 :i > iy} andif 0 = 0;+1 € S» and o € (0;, 9;+1) then we let

Iya = {r € Qy : Lg(tr(r)) > a and tr(r)[[er, £g(tr(r)) € v}.

Clearly, .9 o is a dense open subset of Q. Now let S’ = S| U S, and note that S, is
nowhere stationary, so S’ is too. Next, for 3 € S’ put

Ay if9 e S\,
Ay =3 Ay U{Iy o€ (8,041} ifd=2041 €8N,
(Fya o€ (0,041} if 0 =0; 1 € $\51,

and let A’ = (A} : 9 € §'). Easily the triple (tr(p), §’, A’) is a witness for some
q € Q and this g is as required. O

Claim 6.3 If « is inaccessible limit of inaccessibles and V1 is an extension of V (e.g.
a forcing extension) then Vi = “(“ Y e id(Qy)” provided that at least one of the
Jfollowing holds (each implying « is still an inaccessible limit of inaccessibles in V1):

(a) Vi = VCohenw) soe Definition 0.5(2).
(b) In Vi, k is still inaccessible and there are sequences 1 = (ny : 0 € S), & =
(ay : 0 € S) such that
(@) S C « is unbounded in «,
(B) 0€S = ag=sup(S§NI) <0,
(y) S isa setof inaccessibles (in Vi hence in V),
(8) na € 22, really just ny | (e, d) matter,
(e) ifn € (“2)Y then for unboundedly many 9 € S we have n|(ay, 3) C 3.
(c¢) In 'V, k is still inaccessible limit of inaccessibles but H k)Y #* P A
(d) Like clause (b) but
(B)' S is unbounded nowhere stationary in «,
(8) A= (Ay:9d¢€S), Ayaset<0ddense subset of Qy,
() ifn e (<2)V then for unboundedly many d € S, n1d does not fulfill Aj.

Remark 6.4 Of course, if k is inaccessible not limit of inaccessibles then the conclu-
sion of 6.3 fails because Q, is equivalent to Cohen,, see 3.5.

Proof Clause (a): It suffices to prove that the assumptions of (b) holds.
Clearly the forcing preserves inaccessibility. Let n € “2 be the name of the «-Cohen
real and let: B
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S1 = {0 < k : 0 inaccessible in V| or V, those are equivalent},
S={0e€8:0>sup(S1 NI},

Ny =10,

ay = sup(S; N a) fora € S.

Clearly clauses («), (y) of (b) are satisfied by S7 and by S and clause () is satisfied
by the «5’s and S. Also recalling n € “2, it is the k-Cohen real, the derived sequence
(ny : @ € S) satisfies clause (8) by our choice above. Lastly, clause (&) holds as
Cohen, = (*>2, <), so all the assumptions of clause (b) hold indeed.

Clause (b): We work in V.
Fora < 0 € S let

IS0 = {p € Qs : for some B wehavea < B < 9, B
< £g(tr(p)) and tr(p) [(, B) & ma}-

Easily .7 , is a dense open subset of Q; and let
S = {p € Q, : forsome y < x wehave S\y € S,andd € S\y = Ja*’aa € Ap,g}.

Clearly .7 is a dense open subset of Q, and p € .# = lim,(p) N (*2)Y = @, so
VN 2 e€idy(Q,) and we are done (remember 3.2(5)).

Clause (¢): Let S| be the set of inaccessibles in V| which are < k. Let @ < « and v

be such that v € (*2)V1 but v ¢ (@2)V.
Now let

e S={0€S81:0>aandd > sup(S; NI},

e 7y ={p € Qy: for some B we have 8 + o < £g(tr(p)) and {tr(p)(B+1i) :i <
o) =v}ford €S,

o Ay ={F}foraesS.

Why is % a dense subset of Qy for every 9 € S? Let p; € Qy and we shall find p,
such that p; <q, p2 € #5. Let pr € Q, be such that p; <g, p> and £g(tr(p2)) >
o + sup{f : 6 < 9 is inaccessible}. (Why such p, exists? As d € § implies that 9
is (strictly) above the ordinal on the right). But this implies S,, = @ hence there is
p3 such that pp <qg, p3 and (tr(p3))(a + £g(tr(p2) + i) = v(i) for i < « hence
p3 € ¥y. Hence the assumptions of clause (d) hold, so the result follows.

Clause (d): Like the proof of clause (b). m]

Remark 6.5 1If « is inaccessible not limit of inaccessibles and V| extends V and
A )Y # (k)Y then (<2)V € id(Cohen,)V! and (<2)V € id(Q)Y'.
Claim 6.6 Assume « is inaccessible limit of inaccessibles. Then

(1) lFg, VN*2 €id(Qy).
(2) Q is asymmetric; that is, if Vi € Vo C V3, np € (2)Ve+1 is (Q, gK)-generic
over Vy, for £ = 1, 2, then ny is not (Qy, ni)-generic over Vi[n2].
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(3) cov(Qy) < non(Qy).

Proof (1) Let (0, : & < «) list §{  inincreasing order and let § = {0g41 : & < k}.

Forn e “2and d € S let A, 3 be a family of < 9 dense subsets of Qy such that
set(Ayp) = {,o €92 for arbitrarily large ¢ < d we have p(¢) # (9 + ;)}.
Define
Ay ={v e 2:(v®0 € S)(v]d € set(Ay )}
Clearly, the set A is k-Borel. Note that

{PeQc:(S\Lgtr(p) SSp A (Y0 € S)(Ug(tr(p) <3 = Ay S Apa)}

is an open dense subset of Q. Hence,
()1 forevery n € “2 we have “2\ A, €id(Q,).
We are going to argue that
()2 IFg, VN Ay = .
So let v € “2. Suppose that p € Q, and § < «. Choose d € S such that 9 >
&, £g(tr(p)) and then pick p € p N ?2. Now o = p"(v[d) € p and
Pl kg, 13 ¢ set(Ay ).

By standard density arguments we conclude that

o, (39 € S)(v]d ¢ set(Ay,))

and thus lFg, v ¢ A,,.
(2) Assume that n1is (Q,, n)-generic over V and 13 is (Q,, n)-generic over V[n].
It follows from (), of part (1) that

)3 Vin,mlEm ¢ A772'

Therefore, by ()1, 11 is not (Qy, n)-generic over V[n2].

(3) LetS,Apsand A, ford € S, n € ¥2 be defined as in 6.6(1). Then ¥2 \ Ay €
id(Qy). Forv e “2let A” = {n € “2 : v € A,}. The argument in the end of part (1)
shows that for each £ < « the set

{peQc:(30€8\&) (Y €lime(p))(v]d ¢ set(Ay))}

is open dense in Q,. Hence A € id(Qy).
Now suppose that X € “2 is such that X ¢ id(Q, ). We claim that then

L2\ A, ine x) ="2.
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So suppose v € “2. Let n € X \ A” # . By the definition this implies v ¢ A, and
we are done.

In [28] we note that generally for a nice enough i asymmetry implies cov(i) <
non(i). O

6(B) When does Q, add a Cohen real?

Definition 6.7 Let S,y be the class of inaccessible x such that (awc stands for “anti
weakly compact™) in V& there is a Cohen «-real over V; equivalently:

(%) there is a sequence (% : & < k), Zy € Q, such that’ for every p € Q, there
is o« < k such that:
for every B € (a, k) and ¢ € [*#)2 there is ¢ such that

P =Q 9

e if y € [, B) and o(y) = 1 then ¢ is above some member of .7,,,

e if y € [@, B) and o(y) = O then g is incompatible with every member of
Iy

Claim 6.8 If k is (strongly inaccessible but) not Mahlo then k € Sayc.

Proof 1Tt is similar to 4.12(2), but let us elaborate. Choose a closed unbounded subset
E of « disjoint to S .. Let A be E or any unbounded subset of « such that 9 €

mac’

S = 3> sup(ANd).

1mac
Define functions Fy : “"2 — ““2and F; : Q. — Q. and F; : Q. —> Cohen,

by
e Fy(n) isthe v € “~2 of length otp(€g(n) N A) and

oa<flgmAaeA = viotp(aNA)) =n(x)

(forn € ©=2),
o I1(p) ={Fo(n) : n € p} (for p € Qy),
e F2(p) = Fy(tr(p)) = tr(Fi(p)) (for p € Q).

Now,

(%) if p € Q, and Cohen, &= “F>(p) < v” then for some g € Q, we have
Qc E“p =q”and F2(q) = v.

[Why? By the choice of A and we prove this by induction on £g(v) as in Sect. 1.]

()2 If p € Qy then Fi(p) = {p : p D Fo(tr(p)) or Fy(tr(p)) < p € “72}.

[Why? As in Sect. 1 or the proof of 6.9.]

(#)3 if Qc = “p < ¢ then Cohen, |= “F2(p) < Fa(q)".

[Why? Obvious.]
Together we are done O

5 S0 .7, is not necessarily dense and not necessarily open; without loss of generality .#, is an antichain
(but not necessarily maximal). Of course the g later is not necessarily constant.
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Claim 6.9 (/) Assume that W C Sgr (see 4.3) is stationary but not reflecting. Then
forcing with Q, adds a Cohen «k-real.
(2) Above also Pr(k) holds.

Remark 6.10 We can replace the assumption of 6.9(1) by

(%) there is a sequence F = (J; . i < k) of dense open sets such that for no
d € S¢ and p € Qy do we have . |9 is predense in Qy above p for every

1mac

i € [Lg(tr(p)), d) where .7 [d = {p N ?>2: p € .7 satisfies £g(tr(p)) < d}.
That is, if (x) holds true, then Q, adds a x-Cohen real. We intend to return to it in
[29].

Proof (1) Let W C Sl’,fr be a non-reflecting stationary set. Choose a sequence p =
(py : d € W) such that:

(0)) e W = pyeh=2
(e)2 foreach p € ““2 theset{d € W : py = p} is stationary.

For every 0 € W we fix open dense sets ﬂga C Qjy (for ¢ < 9) such that:

(e)3 if p € Qy then limy(p) & M., set(F).
Then for 0 € W we define

(®)4 Ay =2\, _yset(FD).

Clearly,

(o)s Ay €1d(Qy) but limy(p) N Ay # @ for every p € Q.
Now,

(e)¢ for 8 € W we can find a partition (AL, A%) of Ay such that: for every p € Qy
we have limy (p) N Ag # (I for £ = 1, 2, equivalently for every 2~ € id(Qy) and
p € Q. limy(p) N Af # P for € = 1,2.

[Why? Since Q; has cardinality 27 and id(Qy) is generated by 27 sets, it is enough to
prove that for every p € Qy and 2~ = ) \ set(j ) € 1d(Qy), where Zisa sequence
of  maximal antichains of Qj, the set .2 Nlimy(p) N Aj has cardinality 2%. Without
loss of generality (Sy, Ay, Py, #9)isasin3.16. Given p and 2, i.e. (Sy, Ay, Py, o)
we let E be a club of 9 disjoint to S, S5 and W and to [0, £g(tr(p)). So consider the
tree T = (UaeE “2)U*2.Recall pN 7 is areally closed subtree and for each ¢ < 9,
(pN Ty : p e Fy,)is asequence of closed subtrees with no maximal nodes such
that limy (p) = lim(p N .7,,) are pairwise disjoint. The rest should be clear.]
We let {5 be a Q-name for an element of {0, 1, 2} such that

(0)7 IFq, “Cy = Liff n[d € Ay fore = 1,2 and Irg, “Cy = Oiff n[d ¢ Ay

Lastly, let v be (the Q,-name for) the concatenation of (py : d € W and £5 = 2). We
will argue that I-g, “v is Cohen over V”. To this end we will prove that:

(@) if peQ,deW,d > Lg(tr(p)) then there is T € p N ?2 such that:
(a) T € A2, equivalently pl™ |- “¢5 =27,
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(b) if6 € WN 3,60 > Lg(tr(p)) then 7|6 ¢ A2, equivalently pl™) I £4 is O or
is 17
Why is (H) enough? Recalling 5.1, let (1, &) be as there, and we shall show that
IFg, “v ¢ X;.a”. Let p € Q, j <k and let v, be the concatenation of

{os:d €W, d<tgtr(p) and tr(p)[d € A3}

Let p, € “~2 be such that for some i € [, k) we have
(e)3 v ps has length > ;4 and it does include 1 [[o;, oj41)”.
Clearly it suffices to prove that for some g:
(8)o p <@, g and g IF “v"p, Q"
By the choice of p, theset W = {d € W : 9 ¢ S,, 9 > £g(tr(p)) and py = p4} is
a stationary subset of «. Pick 9, € W' and then choose T € p N %2 as in (a), (b) of
(8). Let g = plTl.
So the conclusion of 6.9 follows and (E) is indeed enough, but we still owe:
Why (H) is true? Let p € Q, as witnessed by (tr(p), Sp, Ap),andletd € W, 9 >
Lg(tr(p)). Put
tr(q) = tr(p),
Sqg =S8, U(WnNa),and
if6 € S;\ Sp, then Ay g = {F : & < 6}, and
e if0eS,N(WNJ),thenAyg=AppU{Il e <0}

This determines a condition ¢ € Q, stronger than p. It follows from the definition of
A4 and S, that

(8)10 if £g(tr(q)) <6 € WN, theng N2 Cset(Agp) €92\ Ap.

Anyhow by (e)¢ we are done.
(2) Let A} for 9 € W be as in (1) above such that

(®)11 n € A% implies that {o& < 9 : n(a) = 1} is stationary.

For o < « define

Sy = {p € Q : Lg(tr(p)) > a and for some 9 € (a, £g(tr(p)))
NW we have tr(p)[d € A%}.

Clearly each .7, is a dense open subset of Q,. We will argue that (.%, : « < k) wit-
nesses Pr(x), that is we show that for each p € Q, we have lim, (p) g ﬂa<K set(4y).

Let p € Q, be witnessed by (1, S, A) and let « = £g(n). We will show that
lim, (p) € set(Fy41). Towards this let E be a club of k disjoint from S with min(E) =
o = Lg(tr(p)) and

min(E) <o € EAa >sup(eNE) = «is singular.

Let (o; : i < k) be an increasing enumeration of E. By induction oni < « we choose
n; so that
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()i (@) ni € pN @2,
(b) j<i = n;<n Ani(e) =0,
(c) if 3 € W N (o, o], then 1; [9 ¢ A3,

This is enough as letting n = |, _, n; we will have n € lim,(p) \ set(Fo41).
Why can we carry out the induction?

Fori = 0 we put ng = tr(p),

for a limit i we put n; = Ui<j n; noting that if ; € W then »; is not in Ail_ by
()11,

for a successori = j+ 1 we proceed as in the proof of (H) of the first part recalling
o ¢ W. O

Claim 6.11 (1) The assumption of 6.9(1) holds when V = L and « is Mahlo not
weakly compact.
(2) When the assumption of 6.11(1) or of 6.9(1) hold for «, then

cov(Qy) < cov(Coheny) and cov(Q,) < non(Cohen,) < non(Q,).

Remark 6.12 (1) So when 6.11(1) applies, the Cichori diagram for id(Cohen, ) and

id(Qy) is very different than the k = N case, i.e., we have additional inequalities.

(2) In 6.11(1), note that if « is inaccessible not Mahlo then the conclusion of 6.9(1)
holds by 6.8.

Proof (1) Since « is Mahlo not weakly compact, by a result of Jensen we know that
every stationary subset of k contains a non-reflecting stationary subset. So we may
use Observation 4.4(4) and argue that again we are in the case of 6.9(1).

(2) It follows from 6.9, that there is a (Q,-name @ such that for some Borel function
B :“2 — “k we have -

()1 IFq, “g is ak-Cohen real over V and ¢ = B(1)”.
Hence
(x)2 cov(Qy) < cov(Cohen,)

Why? Let i = cov(Cohen,) and let (X, : { < u) be a sequence of k-meagre «-Borel
sets with union “2. Let B, € id(Qj) be such that

ne“2\B, = B() ¢ X;.

We claim that then |, _, B, = “2. If not, then we may pick n € “2\ U, ., B;. But
now, for every ¢ < u, B(n) ¢ X¢, so U§<u X # “2—a contradiction.
Similarly,

(%¥)3 non(Cohen,) < non(Q,).

Why? Let {n; : £ < pu} € “2be aset not belonging to id(Q,). Then {B(n;) : ¢ < u}
exemplifies non(Cohen,) < .
Also,

(%)4 cov(Q,) < non(Cohen,).
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Why? By 5.4(1), noting that its assumption “k = sup(S;;,.)” follows by our present
assumptions. O

Claim 6.13 IfV = L, then an inaccessible k satisfies Pr(«) iff k is not weakly compact
iff Q¢ adds a k-Cohen.

Proof We prove this by considering possible cases.

Case 1 « is not Mahlo.
Then

(a) « is not weakly compact,
(b) Q add a k-Cohen real by 6.8,
(c) Pr(x) holds by 4.4(1).

Case 2 k is Mahlo not weakly compact.

By 4.4(4), Sgr is a stationary subset of k. By a result of Jensen there is a stationary
W C Sl’;r which does not reflect. Hence by 6.9 the forcing notion Q, adds a k-Cohen
real and Pr(k) holds true.

Case 3 k is weakly compact.

Then Qy. is k-bounding hence does not add a k -Cohen by 1.9 and Pr (k) fails by 4.4(2),
i.e, 3.6(2). O

7 What about the parallel to ‘“amoeba forcing”?

Definition 7.1 (1) We say that _# C Q is nice if /[O"”] C 7 forevery o < k and
a permutation 7 : 2 — %2 (remember 4.1(2)).

(2) We say that a family A of subsets of Q, is nice when: A%l C A forevery a < «
(remember 4.1(3)).
(Equivalently, if £} € A, % C Q,, o < «x and fl[a’”] = %, then %) € A).

(3) For p € Q¢ letnb(p) = {p!"" : n e pN¥2, v € %2 for some o < k}.

Claim 7.2 If A C {7 : & C Qy is predense} has cardinality < k then so is Al=K]
and it is nice.

Proof 1t follows from 4.2. O

Claim 7.3 (1) If p € Qi then nb(p) is a predense subset of Q.
(2) If p € Qy then nb(p) is nice and

set(nb(p))={n € “2: there is v €lim, (p) such that (Vo < r)(n(e) =v(a))}.

(3) [k weakly compact] If X € id(Qy) then for a dense set of p € Q, we have
set(nb(p)) C “2\ X.

Proof (1) Clearly forevery p, g € Q, we can choose @ > max{lg(tr(p), £g(tr(q))}
such that @ < « and then choose n € pN%2,v € g N%2 and w € Sym(*2) such that
7(n) = v,s0q; = p"! € nb(p) and g1, ¢ have a common member v which is of
length > £g(tr(q1)), £g(tr(gq)), hence g1, g are compatible.
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(2) Should be clear.

(3) There is a family A of < x maximal antichains of Q, such that X Nset(A) = @.
Without loss of generality A = Al<“] and hence the set Y = “2\set(A) € id(Qy)
satisfies:

e ifn;,m €“2and k > sup{a < k : N1 () #m(a)}, thenn € Y & m €Y.

Now, as Y € id(Qy) by 3.6(2) for a dense set of p € Qy, lim, (p) is disjoint to ¥, but
by the choice of Y this holds for any p’ € nb(p), so we are done. O

Definition 7.4 Let Q%™ be the following forcing notion:

(A) a member of Q™ has the form (o, p, E) with @ < «, p € Q,, E aclub of «
disjoint to S, and tr(p) = (),
(B) the order on Q2™ is: (a1, p1, E1) < (a2, p2, Eo) iff
(a) a1 < ao,
() p1 <q, P2
(©) ptN@2=p,nen2,
(d Ey 2 Eyand E1Nap = ExNaj.
(C) The generic of Q™ is Pe = UlpN¥=2: (a, p, E) € Ggan).

Claim 7.5 (1) Q¥ js a «-strategically complete k™t -cc (nicely definable) forcing
notion and p, is indeed a generic for Qi™.

(2) lFqum“pi € Q.

(3) Assume k is weakly compact. If S is a predense subset of Q (in V) then I-gam
“set(#) 2 set(nb(py))”.

(4) Assume k is weakly compact. Then IF@am ““2\set(nb(py)) € “2 is a member of
id(Qy) including all the old k-Borel sets from id(Q,)”.

Proof (1) Easy. B
(2) Recall that for every p € Q, there is a canonical witness (tr(p), Sp, Ap) (see
1.3(C)(a)). Let us define some Qi™-names:

(01 (@ E=({E,:peG},
(b) S=U{Sp: peG},
(c) forevery d € S, Ay = UJ{A .5 : p € Gsatisfies d € Sp},
(d) A=(Ay:0€8),
(e) ois ).
Now,

(%), forevery B < «k, the set
Ig:={(e,p,E) € Q%" :a > B}

is a dense open subset of Qi™.

[Why? If B < « and (a1, p1, E1) € Q¥ then (a1 + B, p1, E1) € Qi™ is above
(@1, p1, E1) and belongs to 7.]

(x)3 IF“Eisaclubof A”.
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[Why? Unbounded as for every 8 < « and (cp, po, Eo) € Q¥", let @1 = min{$ €
Ey:8 > ap,§ > B} so (a1 + 1, po, Ep) is above (xo, po, E¢) and forces § € E.
Being closed is easy, too.]

(¥)4 IF S is a nowhere stationary subset of S, .

[Why? First, for every 8 < «, by (x)2 for a dense set of («, p, E) € Q™ we have
a > B.Since (o, p, E) IF “SNa = 8§, Na”, we get that § N« is nowhere stationary
and hence S N B is nowhere stationary. Second, |- S is not stationary” because |- “E
is a club of « disjoint to §” by the definition of Q3™. Together we are done.]

(x)5 IF“Ajy is aset of < 9 predense subsets of Q for d € S”.

[Why? Given (o, po, Eo) € Qi™, without loss of generality «p > 0 and hence it
forces Ay is Ap, 5 if 0 € §p,, not defined (or §) otherwise; the rest is clear. |

()6 I-“(0, S, A) witnesses p, € Q.

[Why? Read 7.4(C) and (x)3—(*)5.]
(3) It suffices to prove the following:

(%) ifa <kandn € *2,v € *2 then
lFgam ““if n € pe N2 then lim(p™"!y C set(.#) ™.

Now,

(%) fixing o, without loss of generality for every 7 € Sym(%2) we have .#[%7] =
A,

[Why? Let % = {p € Q: for every m € Sym(“2), p is above some member of

Fleml ) Clearly:

e .71 C Q, is predense,
o %™ = 7 for every 7 € Sym(©2),
e set(f) C set(5).

Hence we can replace .# by .#] so finishing the proof of (x);.]

So
(¥)3 in (¥)1 + (%)2, without loss of generality v = 7 so P,[(v’”] = pe.-
Let

(%)4 (a0, po, Eo) € Q™ and n € *2.

We shall find (a1, p1, E1) € Q3™ above («g, po, Eo) and forcing that n ¢ p, or
forcing the statement in (x);. First, by (%), of the proof of part (2), without loss of
generality £g(n) < agp; soif n & po then («g, po, Eo) IF “n ¢ p,” and we are done.
So we can assume n € py. }

. < _ .
As  is weakly compact for some 9 € S5 . which is > ap we have:
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(*)5 the set
Sy =1{qn 9>2 .4 € 7 and £g(tr(q)) < a}

is predense in Q3.
Next,

(x)g for every v € set(Fy) N po choose g, € # such that £g(tr(g,)) < 9 and
v € limy(g, N ?>2) equivalently v € g, N 2.

Let

(#)7 (@) 8" = [U{Sg,\0 : v € set(F) N po} U Sp, U {3},
(b) for 6 € S let Ay be:
(@) U{A: A=Ay, andv €set(Fy)Npoandd € S;,\d  or A = Ay
and6 € Sy} if6 € S\,
B) AppoU{ I} ifO=0Ad €Sy,
(¥) (S} ifO €A ¢Sy,
(®) Apyo ifO €S, No.

Let p; € Q, be defined by

()8 (), 8", A) will witness p;, where
e §'is from ()7,
o A= (Ay:0 €8, see ()7,

and let oy = ag and E; C Ey be a club disjoint from S’ and such that E; N 9 =
Eo N 3. Now one easily verifies that (o1, p1, E1) € Q™ is a condition stronger than
(xo, po, Eo) and it forces that

nﬂvegkﬂaz = (Elqef)(tr(q)qveq/\y,[("]gq).

(4) Follows by part (3). O

8 Generics and absoluteness

Recall from Definition 0.1 that we say that a set B C “J7(«) is

e ak-stationary Borel if for some «-Borel function F : “ 7 (k) —> Z(«x) we have
n € B & F(n) is stationary,

e i-nowhere stationary Borel if there is a k-Borel function F : “.27 (k) —> (k)
such that for every n € “# (k) we have: n € B iff F(n) is a nowhere stationary
subset of k.

Claim 8.1 1. “p € Q.” is® a k-nowhere stationary Borel relation (see 0.1(5)), also
it is 1 (k).

6 Using coding it does not matter whether we use ¥2 or (k) or © 7 (k) or 2 (A (k)), etc.
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2. Both “p <q, q” and “p,q € Q are compatible” are k-Borel relations (but
pedantically there are k-Borel relations whose restrictions to Q, are the above
relations).

3. Ifk is weakly compact, then “being k -nowhere stationary Borel” is equivalent to
“being k-Borel”.

4. If k is weakly compact then “{p; : i < k} C Qy is predense” is k-stationary
Borel.

5. Changing the definition of Q,, we may get that the relations “p € Q,”, “p <q, q9”
as well as “p,q € Qy are compatible” are k-Borel and for every limit § < k
there is an 5-place k -Borel function giving an increasing sequence of length & an
upper bound.

The change does not affect the generic and the derived ideal.

Proof (1, 2) Straightforward. Note that for “p € Q,” the main point is “there is a
club E of « disjoint to §),”, as for § C « statement “(Yar < «)(S N is not stationary)”
is k-Borel.

(3) Let F : “H(k) — P(k) be k-Borel and let X = {A C (k) : F(A) is
nowhere stationary}. To show that X is k-Borel it is enough to note that

A C k is nowhere stationary if and only if A does not reflect.

So the assertion should be clear.
(4) We define F : “(Q,) —> (k) as follows. For p € “(Q,) let

F(p)={d € S

1mac

{piN 9>2:i < 9and tr(p) € 9>21 is predense in Qa}.

Clearly, F is a k-Borel function (well, replacing “2 by “(Q,)) and we have:
(x) {pi i <k} S Qy is predense iff F(p) is stationary in .

Why? First, if {p; : i < «} is not predense let ¢ € Q, be incompatible with every
pi which means (tr(g) ¢ p;) Vv (tr(p;) ¢ q), so easily for every 0 € (£g(tr(q), k),
g N2 witnesses @ ¢ F(p). Second, if {p; : i < «} is predense, use the proof of “Q,
is k-bounding”. So we are done (replacing “ (Q, ) by “2 via coding).

(5) We define Q. as the set of all quadruples ¢ = (04- 8¢ 1_\q, E4) such that
(04, 8¢, Ap) is as in Definition 1.3(A), for a unique 7, = T|[g] a subtree of “~2
and Ej is a club of « disjoint to S,\(£g(gq4) + 1)) such that £g(o,) € E,. We let
q1 < g iff:

@) 04, D045 Sqy 2 Sq;\(g(02) + 1),

(b) 3 € Sy \(lg(e2) +1) = Ay9 S Agy.as
©) Q¢ = Tlq1] = Tlg2],

(d) Eg 2 Eg,,

(e) if g1 # g2 then o4y # 04,

[Why the choice of (e)? The motivation is that otherwise an increasing sequence
p = (pa 1 @ < 8 < k) with tr(py) constant may have no upper bound because
Uy <s Sp, may reflect in some 9 > £g(tr(py)). But by the present definition: if p
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is eventually constant this is trivial; if not then p = (J; _str(py) has length which
belongs to (), _s Ep, and we can finish easily.] O

Observation 8.2 Assume « is weakly compact. For a set X C “«k we have (a) < (c)
and (b) < (d), where

(a) X is k-stationary Borel,

(b) “k \ X is k-stationary Borel,
(c) X is Z];(K),

(d) X is I (k).

Remark 8.3 Note that the family {X C X :Xis le(lc)} is closed under (3Y C «)
and unions/intersections of < k elements.

Proof Clause (a) implies clause (c):
Let F be a k-Borel function from “x to (k) such that X = {n € “k : B(n) is
stationary}. Without loss of generality

(*)1 Fp is defined by the sequence ]_31 = (B4 : @ < A), B1 4 a Borel subset of “«
such that F1(n) = {a : n € By o).

Let M, < (J£(2%)T, €) of cardinality « be such that [M,]~* € M,, Fi € M,
(necessarily k + 1 C M,). Let (M, : @ < k) be <-increasing continuous with union
M, such that | My || < |a| + N and F1 € My (necessarily k € M)).

Let £ = {u : u < « is strong limit cardinal such that M, N« = pu hence
M, NHk) =) and o < u = |[My|l < p}. Clearly E is a club of «. For
u € E let N, be the Mostowski collapse of M, and let 7, be the isomorphism from
M, onto N,. Let Fj} = 7, (F1) and B, = (B, o : & < 1) = 7,,(B1). Now,

(x)2 for u € E (only inaccessible interests us) we have F;l Hu— P,
(x)3 for n € “k the following conditions are equivalent:
(@) neX,
B) Uy == {0 <k :nld € 93 and Fal(nfa) is a stationary subset of 9} is
stationary in «,
(y) the tree .7, has no k-branch, where .7, = |
of p € “k such that:
e p is an increasing continuous sequence of cardinals from E,
o2 n[p(B) € "Pp(p),
o3 (Fpl(ﬁ)(n [B) : B < Lg(a)) is increasing, i.e., if B1 < B2 = £g(p) then
Fé(ﬂl)(ﬂ Fﬂl) = F,;(/gz)(n f,32) N ;31’
o Fpl(ﬂ)(n [B) is a non-stationary subset of p(f),

w<i In.o Where T;) 4 is the set

(8) for a stationary set of 8 < «, the tree .7, N 9>9 has no d-branch.

This suffices because by («) < (y) in (%)3, clearly X is defined by (y) and this can
be expressed by a H%-formula.

Why does ()3 hold?

(o) = (B):

Let M; be like M but {M;, M, n} € M and let M’ = (M, : & < k) be like M
for M; and {M,,, M, n} € M) and E’ C E is like E for M’ and also N}, 7, (a € E').

@ Springer



Sh:1004

A parallel to the null ideal for inaccessible A: Part I 379

Easily € E' = my(BJd) = 7)(By[y), etc. Soforaclubof d < &, Fi(n) Nd =
Fal (n19d) and we are easily done.

B) & (¥):

Easy, too.

(y) < (0):

Because « is weakly compact.
Clause (c) implies (a):

Similarly.
Clause (b) iff clause (d):

Similarly. O

Claim 8.4 Assume « is weakly compact.

(1) “{p;i :i <k} C Qy is predense” is H%(K),’ this means {(i,n) : n € pi,i <k}
is H% («c)-set recalling 0.1(3).

(2) “X =2\ Ullim, () : a < k} belongs to id(Qy) each Ty a subtree of *=2”
is a k-stationary-Borel relation.

Proof (1) By 8.1(4) and 8.2

(2) Ask is weakly compact, X € id(Q,)™ iff thereis p € Q, such thatlim,(p) € X

iff there are & < « and g as in 8.1(5) above p such that T'[g] € . So X € id(Q,)™

isa Ell(lc) condition hence “X € id(Q,)” is a H} («) condition and we finish by 8.2.
O

Claim 8.5 (1) Assume P is (<k)-complete or just strategically k-complete (i.e. for
games with k moves, COM winning if a play takes k-moves).

(a) Satisfying a k-stationary-Borel is absolute between V and VF.
(b) Satisfying a le (x) relation is absolute between V and VP

(2) If P is strategically 6-complete for every 0 < k, then “p € Q, " is upward absolute
from V to VP,

Proof Should be clear. O
Observation 8.6 Being «-stationary Borel is not equivalent to being k-Borel.

Proof Consider A; = {S C « : § is stationary} and Ag = Z(«) \ Aj. Clearly A;
is k-stationary Borel and A is xk-non-stationary Borel (defined naturally). Assume
towards contradiction that A is equal to a k-Borel set B. Let Cohen, = (“~2, <), and
let n be the k -generic real. Then for some truth value t and v € “~2 we have v |Fcohen,
n {1} eBifft=1".Let: <2, M < (S (k), €)be of cardinality «, [M]~* C M
and B, k € M. Now we can find v, € 2 such that v <v, and {vJo : o < Kk}isasubset
of Cohen, generic over M and v, (o) = ¢ for a club of ¢ < k. By easy absoluteness
we get v, € B iff t = 1, easy contradiction. O

Claim 8.7 (1) Consistently, k is weakly compact but being predense in Q, is not
absolute under k-complete forcing and hence it is not k-Borel.
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(2) Assume Kk is weakly compact and moreover (can be gotten by preliminary forc-
ing) this is preserved by adding k™, k-Cohen. Then adding a k™, k-Cohens (i.e.
forcing with Cohen,. ,+) we get the above.

(3) In part (2) also {S C « : S stationary in k} (is k-stationary Borel but) its
complement is not k -stationary Borel.

Proof The counterexample will be gotten by forcing by Cohen, .+, e.g., when « is
Laver indestructible supercompact but similarly for « weakly compact by a preliminary
forcing and the set Sy below being {0 < k : d not Mahlo}.

Assume « is Mahlo and let §; C Si’;ac be nowhere stationary but unbounded. Let
S» C Si . be astationary subset of acc(S1). We define a representation Q1 of Cohen,
as follows:

()1 (A) p e Qiff:
@ p=Mmy:0€HNa)=mps:0€SHNay) forsomea =a), <k,
(b) foreachd € S, Nayp, ny € 2.
(B) Q is ordered by <.
(C) The genericof Qis = J{p: p € Gg}andletY = {n; : 9 € S»}, where
plny =v7ifd € SaNay Anpy =v. )
(D) The length £g(p) of p is the minimal o < « such that dom(p) = S> Na.

Nextwelet p, ={p €“72:p dnvn dp}eQforn e 2. Now
(¥)2 Ik, “{py : n € Y} is a predense subset of Q.

[Why? If not, let g € Q1, q IFg, “p = (v, S, (Ay : 3 € §)) € Q, is incompatible
with every p, forn € Y and E| is aclub of « disjoint to $”.

Let (g; : i < k) be increasing continuous in Q1, go = ¢ and ¢;+ forces a value to
SNi,(Ay:9d e SNi)andtomin(E£\i) called y;. Let

E= {8 <k :disalimitordinalandi <& = £g(g;) < Ay < 8}.

Clearly E is a club of «, so we can choose d € S, N E. Then gy € Q is well defined
and of length 9 and it forces a value (', (Aj, : 0 € §')) to (SN, (Ag:0 € SNI))
and this value represents a condition r € Qy. Moreover, g3 forces that 3 = sup{y; :
i <0} =sup(E1N0J) e Eyand hence it forces 9 ¢ S. Choose v € limy(r) € 92 and
let g | be above gy such that ¢}, ;(3) = v,i.e. g5, IF “v € ¥ and we arrive to an
easy contradiction.]

Next, in V@ we define Q, = Qz[n}(], n,l( the generic for Q1, by

(0)3(A) pe Qiff B
@ p=(a, 1}) = (apa Ap),
(b) ap <k, Ap=(App:0€SNay),
(c) each A, 5 is a family of < 0 dense subsets of Q (for 9 € S| Nay),
(d) if 60 € S, N(a+1),then & =sup{d € STNO :ny[0 ¢ set(Ap )}
(recall S, C acc(S1));
(B) the order is being an initial segment.
(C) The generic is Z:\ =(Ay:0 €8
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Now in V@ the forcing notion Qs is not (< «)-complete and even not strategically
k-complete but it is strategically (<« )-complete. (It is not strategically «-complete
because given st, let M < (JZ(x),€), x = )T, M Nk =3 € S, |[M| =3,
M= C M,ste M,Y € M).

Now in V@*& easily p = ({), S1, A) belongs to Q, and it exemplifies that ( Py
n € Y) is not predense. Also Q1 * Q2 has a dense set closed subset equivalent to
x-Cohen and similarly 1, hence H—QI;QZ“K is weakly compact” and I, “x is weakly
compact”. So there are «-Borel functions By, B with domain ¥2 and such that

IFCohen, ““B1 (Z],() is generic over V for Q; and
B> (1) is generic over V[Bj (n,)] for Qa2[Bi(ne)] ™.

Assume that in V@', B is a (definition of a) x-Borel subset of [.7#(k)]¢ which is
the set of predense subsets of Q,, so in VQI*@Z, B no longer satisfies this. This is
somewhat weaker than the desired conclusion, butif 7 = (n, : y < k1) is generic for
Cohen, .+ and B € V[7] is a (definition of a) x-Borel subset of [.7(k)]*, for some
a < k, B € V[i]a] and interpret 1, as the generic Q; * Q,. Consider p = B (n).
Now we can compute By (p) in V[n]a, 5] and in V[5[a, ns]. As B is k-Borel, we
should get the same result, but they are not the same. A contradiction. O

Definition 8.8 (1) We say M is a x-model when:

(@) M C (S (™), €) is transitive of cardinality «, [M]<¥ € M and M is a model
of ZFC™ (i.e. power set axiom omitted);
(b) similarly for (77 ,.+(U), €), U a set of ure-elements.

(2) Wesay nisa (M, Q, g)-generic k-real when (as in [38]):

(a) Qisaforcing notion definable in M, (absolutely enough in the interesting cases),

(b) n € M a Q-name of «-real, defined by a Borel function from a sequence of «
truth values of the form p € Gqg”,

(c) thereis G € QM generic over M such that n[G] = 1.

Observation 8.9 (1) A «-Borel set B belongs to id(Qy) Q‘ for some k-real ¢ = cp
for every k-model M to which ¢ belongs we have:

e ifvis(M,Qy, 1)-generic real then v ¢ B.

(2) If M is ak-model, M = “Q is (<«)-strategically complete forcing notion (set or
class in M sense) (or a definition of Q)” and G € QM is generic over M then M|[G]
is a k-model.

Definition 8.10 1. We say a set X € “.77(x) is k — id,-Borel when:
(a) id, is an ideal on & (k),
(b) for some k-Borel function F : “ 77 (k) —> (k) forevery n € (k) we
have: n € X iff F(n) € id.
Here (in (2), (3)) we may omit ¥ when clear from the context.
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2.

Similarly for id;.

3. Letidywc(x) be the weakly compact ideal on «.

So

Observation 8.11 Letting idpgt (k) be the non-stationary ideal on «, /{—id;'st (x)-Borel
means k-stationary Borel.
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