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Abstract. We prove a better colouring theorem for N4 and even N3. This
has a general topology consequence.

1. Introduction

1.1. Background. Our aim is to improve some colouring theorems of
[10], [6, Ch. III, §4], they continue Todoréevié [5] (introducing the walks) and
9], [8, §3] (and [11]), see history in [6], [7, §10]. After these works Moore
3] proved Nj — [Ny; Nl]io; Eisworth [1] and Rinot [4] proved equivalence of
some colouring theorems on successor of singular cardinals.

Our aim is to prove better colouring theorems on successor of regular
cardinals (when not too small), e.g. Pry (N3, N3, N3, (Ro,Ny)), see §1. We have
looked at the matter again because Juhdsz—Shelah [2] needs such theorem
in order to solve a problem in general topology, see 2.10(3).

1.2. Results. The paper is self contained.

Here we formulate Pry(\, u,0,0) where 6 is a pair (6, 61) of cardinals
rather than a single cardinal § and prove e.g. Pry(A, A\, (0,01)) when )\ =
6+3 and 6 is regular.

That is, we shall prove (see Definition 2.1 and Conclusion 2.10(1)):

THEOREM 1.1. 1) For any regular k we have Pry(kt*, st st x1).
2) For any reqular k we have (Pri(k™, k™, k™ (k,5%)) and (Proo(k™,
K KT (Rg, 1)),
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REMARK 1.2. Note that the statement Pro(k+4, k14,2, ) is also called
by Juhasz Col(k*%, k), see more in the end of §1.

Moreover by 2.11 in 1.1(2) we can replace k™ by x*3, (thus half solving
Problem 1 of [2], i.e. for X3 though not for Rg) so we naturally ask:

QUESTION 1.3. 1) Do we have Pri(Ng, Ry, 0,R1) for 0 =Rg? Foro =27
2) Do we have at least Pr&fO(Ng,NQ,Q, (R, Ny))?

Concerning the result of Juhdsz—Shelah [2] by using 2.8(1) instead of [6,
Ch. III, §4] we can deduce Pro(Ng, Ny, 2, (R, R;)) which is sufficient for the
topological result there. Moreover by 3.5 + 2.5 even Prg o(X3, 83,2, (Rg, Ny))
holds, see 2.10 so there is a topological space as desired in [2] with weight
N3, see 2.11(2).

We can also generalize the other conclusion of [6, Ch. III, §4] replacing
0 by (6p,01). This may be dealt with later. Also in [12] and better [13] we
intend to improve 2.11 for most cardinals.

We thank Shimoni Garti and the referee for pointing out many missing
points.

2. Definitions and some connections

DEFINITION 2.1. Assume A > p > o + 0y + 01,0 = (69, 01); if 6y = 61 we
may write 0y instead of 6.
1) Let Pro(, i1, 0,0) mean that there is c : [\]> — o witnessing it which
means:
(¥)c if (a) then (b) where:

(a) (a)fore=0,1,¢"=((,; o < p,i < i,) is a sequence without rep-
etitions of ordinals < A and Rang(¢?), Rang(¢!) are disjoint and iy < 6y,
ip <6

(B) h:ig x i1 — 0
(b) for some oy < a1 < p we have:
e if g < ip and 41 < i; then C{Cgo,io’cclllyil} = h(ig,i1).
2) For ¢ € {0,1} let Prq,(\, i, 0,0) be defined similarly but we replace
(a)(8) and (b) by (a)(8)" and (b)’, where
(a) (B) h:i, >0
(b)’ for some ap < a < p we have
o' if ig <ig and iy <ij then c{¢3 ;,Ca, i} = h(i).
3) Let Prgi()\, p,0,0) mean that some c: [A\]?> — o witnesses it which
means:
()4 if (a) then (b) where
(a) («) as above
(8) h:i, —» o and D is an ultrafilter on i;_,
(b) for some o < a1 < p we have
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o if { < i, then {j <ij_, : c{C, ;. é:j} = h(i)} belongs to D.

DEFINITION 2.2. Assume A > p > o + 60y + 61,0 = (6y,01). Let Pri(\, pu,
0,0) mean that there is c : [\]> — o witnessing it, which means:
(x)c if (a) then (b), where:
(a) for t = 0,1,i, <6, and ¢* = { it < i <1i) are sequences of
ordinals of A without repetitions, Rang(¢*) are disjoint and v < &
(b) there are oy < vy < p such that Vig < iy, Vi; < iy, C{ngo, Célyil}
= .
REMARK 2.3. 1) So if 6y =6 = 6 and 6 = (6, 6,) then for ¢ € {0,1},
Pre(A\, i, 0,0) is Pry(A\, p, 0,0) from [6, Ch. III].
2) We do not write down the monotonicity and trivial implications con-
cerning Definitions 2.1 and 2.5 below.
3) The disjointness of {(872- ta < py i <ipl, {Colw to < pyi < i1} in Defi-
nition 2.1(1)(a)(«) and 2.1(2), 2.1(3) and 2.2(a) is not really necessary.

NOTATION 2.4. pr: Ord x Ord — Ord is the standard pairing function.
Variants are

DEFINITION 2.5. Let A > pu > 0 + 6y + 61 and 6 = (6o, 61).
1) Let Qry(\, 1, 0,0) mean that there is c : [\]> — o witnessing it which
means:

(*)c if (a) then (b) where
(a) (a) u, €A ]<6 fort <2and a < p
(B) uq = ud Uul for every a <

(7) (uq : o < p) are pairwise disjoint
(0) ht,:ul, o fort<2;a<pandpr:oxo—o
(b) for some ap < al < p for every (Co,¢1) € (ud, x ul
Co < G and ¢{¢o, G1} = pr(hl, (o), AL, (C1)).
2) Let Qrg, (A, p,0,0) be defined similarly but each hl~* is constant.
3) Let Qry(\, i, 0,0) be defined as above but each ho and each hl i
constant function. B
4) Let Qrgi(/\, i, 0,0) be defined parallely to Definition 2.1.

L.) we have

So, e.g.

OBSERVATION 2.6. 1) If cf(u) > o, then Pri(\, u,0,0) is equivalent to
Qry (A, p,0,0).

2) Recall that Pro(\, p,0,0) is Pre(A, p,0,(0,0)).

3) Qro(A, p,0,0) implies Pro(A, i, 0,0); similarly for the other variants,
Qro,u Qrbl,fr

PROOF. Should be clear. (g ¢
OBSERVATION 2.7. Let 0 = (6p,61) and ¢ € {0,1}.
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1) If 1 < 2,0 <0, = 0% < cf(n) and 0y, 61 < cf(p), then Pro, (X, p,0,0)
is equivalent to Qrg (A, p,0,0).
2) If 0 < O + 01 = 02 < cf(u), then Pro(\, p,0,0) < Qro(\, u,0,0).

PRrOOF. Obvious but we elaborate.

1) By 2.6(3) we have one implication; so assume Pro, (), i, 0,0) and we
shall prove Qrg (X, p,0,0), so let ug =ud Uul, for a < p and h, : ul, — o
and pr: o X ¢ — o be as in Definition 2.5(1) and each hl~* is constant.

We should prove that there are ap < a1 < p as promised in Definition
2.5(2). As |ult| <61, and 0;_, < cf(u), without loss of generality for some
e1-, < 61, we have a < pu = otp(ul™) = e1_,. As 0, < cf(p) hence without
loss of generality for some ¢, < 6, we have o < pu = otp(u’,) = €,. Moreover,
noting o/*! < cf (1), without loss of generality {(otp(¢NuY,), h4(C)) : ¢ € ul,}
is the same for all & < . Now we can apply Pro,(\, i, 0,0).

2) Similarly. g 7

CLAIM 2.8. 1) Let 1 < 2. If Pri(\ p,01,0) and A= p = cf(p), 0 =
(00,61), 0 =6 + 601 < p and 2X > A\, x~% + (09)<% < 0y and x<% < p and
(02)<% < p then Pro, (X, p,02,0) and Qrg, (A, 1, 02,6).

1A) If the assumptions of part (1) hold for both . =0 and v = 1, then we
can conclude Pro(\, 1, 02,0) and Qro(\, 1, 02,0).

2) If A\=0" and o = 0<% then Pro,(\, A, 0,0) implies Prg, (A, A\, 0).

3) If A=0t and o = c<@10) then Pro(\, N, 0,0) implies Pro(\, A, \,0).

4) If Pri(\, p,0,0) and o < x = x<Cot01) < X\ < 2X then Pro(\, u, 0,6).

5) If Pri(M\ AN, 0),A = 0% and 8 = 9<@+0) then Pro(\, A\, A, 0).

REMARK 2.9. 1) Claim 2.8(1) is similar to [6, Ch. III, 4.5(3), pp. 169-
170] but we shall elaborate.

2) The condition A = p can be omitted if we systematically use ¢ : A x A
— 0.

PrOOF. 1) Recalling A < 2X and x<% + (03)<% < oy hence x<% + 2<%
< o1, choose
(x)1 (a) Aq C x (for o < ) which are pairwise distinct.
(b) Let {(as,d;) :i < o1} be a list (maybe with repetitions) of the
pairs (a,d) satisfying a C x, |a| < 6, and d a function from Z?(a) to o2 such
that

|[{b:bCaandd(b)£0}| <.

Choose
()2 ¢ to be a symmetric two-place function from A to o7 exemplifying

Prl()‘a M, 01, 0)
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Now we define the two place function d from A to o9 as follows: for oy < aq:

d(a07 al) = d(ah Oé()) = dc(ao,al)(Aa,, N ac(ag,al))'

We shall show that d witnesses Qr , (A, i, 02,6) thus finishing upon using

Observation 2.7(1) which yields the parallel assertion about Prq (X, i, 02, 6)
because its assumption on the cardinals follows from those of 2.8(1), i.e.
recall A = = cf(u) and 6 + 61 < A so 8, < cf(p) and o5 < . So let (g
a < p) be pairwise disjoint subsets of \,t, = tQ Ut} and b, : ¢, — o2 such
that hl™* is constant, [t| < 6o, [tL| < 6; and pr: oy X 09 — 09. As A= pu =
cf (u) without loss of generality o < 8 < p = sup(t,) < min(tg). We have to
find ag < aj as in the definition of Qry (A, i, 0,,0) see Definition 2.5. As by

assumption p = cf(y) > 6 and, of course, a < p AL < 2 = otp(th) <, <0
without loss of generality there are £} < g, €} < 1 such that A otp(t}) = &}
[e%

for £ =0,1.
For each a < prand ¢ < 2let tf, = {¢} . : € < )} with ¢} _ increasing with

e. As [{(RL(CL)re<el)ra<u}] < J'fﬂ < 05% < p = cf(p), without loss

a,e
of generality ht,(C,.) = & < oy for all € <&} and h(¢i7") = €17 which
does not depend on a. Renaming without loss of generality pr({g(o), 551(1)) =
&e(1), s0 rename it &,y for £(0) < gf,e(1) < &7.

We should find ap < a3 < p such that for €9 < e, €1 <e] we have
Cao,e0 <Cay e, (which follows) and d(Cgoﬁo, Colmgl) :pr(hgé0 (ggm), hél (Colmgl))
which is equal to pr(&,,&,). Choose an C X, |aa| = |ef| < 6, such that
(Ac, _Mag e <egf) is a sequence of pairwise distinct subsets of ao. As

cf(u) = p > x=% without loss of generality for every o < A =y we have
ao =a* and A¢, _Na* =af forall e <gj.

For some i < 01 we have a; = a* and d;(a}) = & for every € < ef. By
the choice of ¢ for some ay < a; < p the function c[t,, X t,, is constantly i,
so g0 <ej ANer <ef = ¢(C, .., ¢, c,) =1, hence for every (g9,€1) € €f X €}
we have

d(Cgo,agv Colzl,el) = di(ACL

Q€L

Nai) = di(aZ,) =&, =pr(hg, (Cay.c0) Moy (o, c,))

as required.
1A) Similarly.

2) Similar to part (3), see remarks inside its proof.

3) Let 0 =6y + 61 but for part (2) we let =6, and let ¢y : [\ —» o
witness Pro(A\, A\, 0,60) and let f = (f, : @« < A\) be such that f, is a one-to-
one function from o onto o + . Let (A, : a < A) be a sequence of pairwise
distinct subsets of o and let ((a;,d;) : i < o) list the pairs (a,d) such that
aclo]<?,d: P(a) x P(a) = o and |{(b1,b2) : b1 C a,by C a and c;(by, bo)
# 0}| < 0; for part (2) we use d: P(a) — o.
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Now we define ¢y : [\]> — A as follows: for a < 8 < A let ca({a, B}) =
f8((de, ({a,8y) (Aa N ac, ({a,8}): A N Ge, ({ar8))))-

Solet ¢* = i@ <A< i,) forv < 2and h:ipxi; — A be asin Defini-
tion 2.1(1) but for part (2), h: iy — A, see 2.1(2). For ¢ = 0,1 for each av < A
and ¢ < i, we can find a,, € [0 ] <8 such that by, := <A< Naqg, 1 <1i,) is
a sequence of pairwise distinct sets. ~

Without loss of generality a < ANt < 2= aq, = a,,b, = b,; also with-
out loss of generality sup(Rang(h)) < min{c;,;:a < A,i <1i, and ¢ < 2}.

Next let 8, = (8%, oy 0 <dpand iy < i1) be a sequence of ordinals < o
such that fe. (B4, ) = hlio,11) and without loss of generality B = B
actually for part (3) we use only fe.  but for part (2) we use f¢: ~for the ¢
from there.

Let a = ag U ay so a € [o]<%+%) and let d : Z(a) x P(a) — o be such
that d(bg b)) = Z.lw.l and d(bo,b1) = 0 if by, by C a and (bg, b1) & {(bgo, b)) :
ip < ip,71 <ii}. Let j < o be such that (aj,d;) = (a,d).

Lastly, by the choice of ¢; we can find oo < 8 such that ip < ig Ai; < iy
= Cl({Cg,¢07 Colm}) = 7; and now check.

4) Similarly to the proof of part (3).

5) As Pri(\, A, )\, 0) by monotonicity we have Pri(\, A, 9,0) hence by part
(4) we have Pro(\, A, 9,0) and now by part (3) we can deduce Pro(\, A, A, 0)
as promised. (g g

In Juhdsz—Shelah [2] we use Col(\, k), i.e. Pro(\ A, 2,kT) quoting [6,
Ch. III, §4] that e.g. (\, &) = ((2%)*+ + Ry, Rg) is O.K. But in fact less suf-
fices (see Definition 2.1).

CONCLUSION 2.10. 1) For A = k™ we have Pri(\, A\, \, k) which im-
plies Pro (A A\, (Ro, £T)) and hence trivially Proo(\, A, 2, (R, £T)) holds.
2) If Proo(X, A R, (Ro, £1)) or just Pri (A, A, Ro, (Ro, £7)), e.g. A =Ry,
Kk = Ng then we have:
(*¥)a,x there is a topological space X such that
(a) X is T3, even has a clopen basis and has weight < A
(b) the closure of any set of < k points is compact
(¢) any infinite discrete set has an accumulation point
(d) the space is not compact
e) some non-isolated point is not the accumulation point of any dis-
crete set.

Proor. 1) First we apply Theorem 3.2 (or [6, Ch. III, §4]) with
(k** k13, k1) here standing for (), 0,60) there. Clearly the assumptions
there hold hence Pry(xt4, k™, k14, k1) holds.

Second, we apply Claim 2.8(1) with 0, k™, k™4 £¥3, kT3 Kkt Ro, kT,
kT3 here standing for ¢, \, i, o1, 09, 0, 6y, 01, x there. Clearly the assump-
tions there hold because:
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o1 “Pri(\, p,01,0)” there means Pry(xk™, k™ k13, (Rg, k1)) here which
holds by the “first” above and monotonicity

o “x<% < 17 there means “(k+3)<No < p+47

o3 “x<% < 01” there means “(k13)<No < 37

o, “2X > \” there means “2¢"° > 47

o “02<9" < 01" there which means here “(k+3)<Ro < +37

o “05% < p” there which means here (k13) <M <t

So all of them hold indeed. ~

Next, the conclusion of 2.8(1) is Prq,(A, i, 02,6) which here means
PI‘070(/€+4, K+4> K+3> (N()v K+))'

Lastly, by 2.8(2) we get Pro (k™ k4, k14, (Rg, kT)).

2) By Claim 2.13 below, which generalize the proof of Juhasz—Shelah [2],
that is, let D = (D; : i < Jp) list the ultrafilters on o := Xy and let o; = o for
i <Jy and @ = k™. So clause (A) of 2.13 below holds, hence we can apply
2.13 for (\,0) = (\,x*) and D. So clause (a) of 2.10(2) holds by (B)(a)(«a) of
2.13, of course; clause (b) of 2.10(2) holds by (B)(a)(v) recalling the choice
of D; clause (c) there holds by (B)(a)(¢); clause (d) there holds by (B)(a)(d);
and lastly, clause (e) there holds by (B)(b). So we are done. s 19

Moreover

CLAIM 2.11. 1) If k is reqular and X\ = k3 then Pri(\ A\ N\, (Ro, k1))
hence Pro (A, A\, (Ro, 7).

2) (%)ny,n, from 2.10(2) holds.

3) (%)x+s s from 2.10(2) holds for r regular.

ProOF. Like the proof of 2.10 using Theorem 3.5 instead of Theorem
3.2, that is, we apply 3.5 with (N3, X9, N1, Rg) standing for (X, 9,01,60). Oo.11

We conclude this section with an explicit proof of the topological state-
ment in 2.10(2). We shall need the following:

DEFINITION 2.12. Let X be a topological space, D an ultrafilter over o.

1) An element y € X is the D-limit of a sequence of points (z; : j < o)
in X iff yeu={j <o:z; €u} €D whenever u is a open subset of X.

2) X is D-complete iff for every sequence of points (z;:j <o) in X
there is y € X such that y is the D-limit of the sequence.

3) If D = (D; :i < i) is a sequence such that each D; is an ultrafilter
over o; = o(i) then X is D-complete iff X is D;-complete for every i < i..

Cramv 2.13. If (A) then (B) where
(A) (a) A =cf(A) >0 =cf(h) > R
(b) D = (D; :i < i), each D; is a non-principal ultrafilter on o; and
o; <0
(c) Proo(A, A, 2, (g, 0)); yes! Proo and not Prg
(B) there is a topological space X and a point g € X such that:
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(a) (o) X is a subspace of *2 hence has a clopen basis and is a Tz-
space
(B) X is a dense subset of *2 hence has no isolated point and its
weight is A
(7) if every non-principal ultrafilter D on a cardinal o < 6 appears
in D then for any set Y C X of cardinality < 0, the closure of Y is compact
(6) X is not compact
(€) any subset of X of cardinality > min{o; : i < i.} has an accu-
mulation point, so the cardinality can be Ng
(¢) X is D-complete
(b) () g € X is not an accumulation point of any discrete set Y C

X\{g}
(B8) moreover, g is not an accumulation point of any set Y C
X\{g} of cardinality < X
(c) () X has <A<+ 3" 227 points
o<
(8) X has > X points
(d) ifis < X and a < X = |a|<? < X then
(a) X has no discrete subset of cardinality > X\, moreover
(B) hLT(X) <X soA=put = hL(X) < p.

PROOF.
Stage A: We make some choices:
(¥)1 (a) let c: [A\]? — {0,1} witness Prg (A, ), 2, (Rg,0))

(b) let h* = (h% : a < \) list the finite part1al functions from A to
{0, 1}; without loss of generality dom(h}) C «
(c) let g € *2 be constantly 1
Further
(%)g for o < X we define f* € *2 as follows:
o for B < X we let fi(3) be
(a) hey(8) if B € dom(hy,)
(b) c{B,a} if § < a A § ¢ dom(hs)
Our X will include each f} for a < A but more.
() for B < X we let
(a )Jﬁ—{f;:a<,8}
(b) F5 = clp(Fp), i.e. Fj is the minimal subset of A2 which includes
g and is D closed
(c) 95 ={f:fe€F5 and f[[B,]) is constantly zero}.
So
(¥)a Z is the union of the C-increasing sequence (Fj5 : B < A).
[Why? Clearly (Fg: [ < \) is C-increasing and as cf(\) > 6 and D; is
an ultrafilter on o; < 6 for ¢ < i, clearly ()4 follows.]
Lastly, we choose X
(¥)5 X is the subspace of *2 with set of elements .7y U {g}.
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So it suffices to prove that X, g are as required in the claim.
(x)¢ if f € F} then for some triple (u,v, D) we have:
(a) u, [ J<0
(b) D an ultrafilter on u
(c) f=limp((f¥:a€u))
(d)lfﬂe)\\v thenf(,é’):1@{a€u:ﬂ<aandc{a,ﬂ}:1}€D.

[Why? Recall .Z{ is clp(Fy) and each D; is an ultrafilter on some
0; < 0]. Hence we can find a sequence (f}:a € [\ ay)) listing F\Fy
and for each such a,i(a) =i, < i, and B, € U)X\ are such that fF =
limp, ., ((f8..c 1 € < Oi(a)))- As 0 is regular, clearly there are u € [A]< and
an ultrafilter D on wu such that clause (c) holds.

[Why? If f=fX a <X\ then u={a} is as required and if f = f7,
a € [\, ay) then we can prove this by induction on a.]

Now choose v = | J{dom(h}) : a € u}, clearly u,v are as required. E.g.
if f= fX a <\ the ultrafilter D is the unique principal ultrafilter on {«a};
for (x)g(d) recall the choice of the f*’s for o < A\

(x)7 if f € # and § < A has cofinality > 6, then for some v < 0, at least
one of the following holds:
(a) if 8 € [, A) then f(B) =
(b) for some u = uy € [A\6]<? and v = v; € [\\6]<? and ultrafilter D
on u we have
o if € [, \)\uy then £(8) = limp((e{8, 0} : a € u}).

[Why? Let u, v, D be as in (x)g. If unéd € D then let v be sup(u
Nd) < d and by (x)a(c) + (*)g(c) clearly clause (a) of (x)7 holds. So we can
assume u N o ¢ D and as D is an ultrafilter on u, necessarily u\d € D. Let
u = u\é, v =sup(U{dom(h:)Nd:acu}U(vnd))+1and D' = DNP(u)
and v' = v\d, they clearly witness clause (b) of (x)7. Together we are done.|

(¥)s (a) if f € Z3, then for some B < A we have f € .# which implies f

is constantly zero on [, \)
(b) 75 C9; C 75
(c) 5 is C-increasing with 8 with union 3.
[Why? Clause (a) holds by (x)3(b) + (x)4 above. Clauses (b), (c) are
easy too recalling (x)s3(a).]
Stage B: Now we check the demands in (B) of the claim.
@®1 X is a subspace of *2 [so clause (B)(a)(c) holds] hence X is a Tj
topological space with a clopen base.
[Why? By its choice in (x)s.]
@2 X is dense in *2 hence clause (B)(a)(3) holds.
[Why? By the choice of h* in (x)1(b) because h} C f* for a < A by
(*)2(a).]
@3 X is D;-complete for every i < i, hence clause (B)(a)(¢) holds.
[Why? By the choice of .5 in (x)3(b) because X\.Z#; = {g} recalling
A =cf(\) > 6]
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Dy A <X <A+ 3 2% and also |X| < A<V + 29H1] hence clause

o<0
(B)(c) holds.

[Why? Clearly |.%)\| = A and Z)\ C .Z#; C X hence A < | X|. As | X\.Z}| =
l{g}| =1 and by (x)g the other inequalities follow.]

@5 g & L(Y) when Y C X\{g} and at least one of the following holds:

(a) [Y] <A
(b) for some B <\, Y C .7}
(c) for some B <\, Y C 95 = {f € Z: fI[B,A] is constantly zero}.

[Why? If clause (a), i.e. [Y| < A=cf()) as (F} : B < A) is C-increasing
with union Z3 by (*)4, necessarily Y C .7 for some 8 < A, i.e. clause (b);
but this in turn implies clause (c) by (x)s(b).

But if clause (c) holds for 3, then g & c¢/(Y) recalling that g(v) =1 for
every 7 < A

Now comes a major point using the choice of ¢, i.e. Prg (A, A, 2, (R, 0)).

G fY CFiand B<A=>Y ¢ &5 then Y is not discrete and even not
left separated (hence, together with @5, clause (B)(b) holds).

[Why? For o < A choose f, € Y\¥: C F;\F, hence there is 8} € [a, \)
such that f,(B8L) = 1 and there is 82 € (BL,\) such that f,[[32,)) is con-
stantly zero.]

Recall that “Y is left separated (in the space X)” means that there is a
well-ordering <* on Y such that for every z € Y theset {y € Y : z <* y} is
closed in the induced topology on Y.

Toward contradiction assume Y is discrete or just left separated. Fix
a well-ordering <* on Y which witnesses this fact. Clearly we can find %4
€ [A\]} such that (Bl : o € %) is an increasing sequence of ordinals and on
Y, <* and the usual order agree.

Now by the choice of <* for some % € [%)* we can find a sequence
h = (ha:a €U),hg is a finite function from X to {0, 1} satisfying (the state-
ments ey + e by the definition of “<* witnesses Y is left separated”; the
statement e; holds as without loss of generality as increasing h, makes no
harm, and the statement e3 holds without loss of generality because we can
replace % by any %' € [%]):

®) hoz - fa

®1 ﬁé»ﬂg € Dom(hq)

o, if a1 < ap then hy, € fo,. Also (not used)

o3 if a1 < an are from % then [3’31 < Bég hence ha, € fa,-

Renaming without loss of generality

oy % = X and still 82 > BL > a, fo(BL) =1 and £,[[3%,)\) is constantly
zero.

For each § € S1 := S) = {6 < X : cf(6) = 0} we consider ()7 with (fs,0)
here standing for (f,d) there, now S} >4, f5(8}) =1 by e4 hence clause
(x)7(a) fails, so necessarily clause (*)7(b) holds. So there is a quadruple
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(Vs us, vs, Ds) as there! and let 83 := sup(d N (dom(hy))), as hs is a finite
function, necessarlly B3 ¢ < 0. So by Fodor lemma for some 7, < A the set
So={d€ S : 'y(;,ﬁ(; < . < 0} is stationary hence so is S35 = {6 € Sy: if
a < § then uq, vy C 0, BL <0, B2 < and dom(h,) C 0}. As dom(hy,) is
finite and range(h,) € {0,1} clearly for some h., h.. the set Sy ={J € S3:
hsd = hy and h.. = {(otp(dom(hs) N~y), hs(7y)) : v € dom(hs)}} is station-
ary.

For 6 € Sy let uso = Dom(hs)\Dom(hy), k5 = hsluso and us; = us and
recall us Mo =0 = vs N3, see (*)7(b). Note that Qrgo(A, A, 2, (No,0)) holds,
see Definition 2.5(1),(2) for + =0, now it holds because we are assum-
ing Proo(A A, 2,(Ro,8)) by 2.7(1). So we can apply the definition of
Qrp (M A, 2, (Ro,0)) and the choice of ¢ to ((uso,us1: 6 € Sy) and (A :
0 € S4). So there are 01,2 such that:

o5 01 < &2 are from Sy

o if o € ug, 0 and B € ug,;1 then c{a, B} = hj ().

Next

o7 if & € ug, o then fs,(a) = limp,, ((c{a, B} : B € us, 1 = us,))-

[Why? By the choice of (vs,, us,, Ds,, hx, has) that is recalling (x)7(b) be-
cause a € us, o = « € dom(hgl) = a >0 = o>y > and a € us, o U,
= o< 52]

o5 if o € dom(hj, ) then fs,(a) = hj (o).

[Why? By e7 because us, o = dom(hy, ) and eg.]

o9 hgl Q f52.

[Why? By es.]

However, hs, C fs, by eg hence h, C hs, C f5, but hy C hs, € fs5, by e
and hj = hs,[(dom(hs,)\dom(h,) hence

10 5, & fo..-

But ey contradict eg, all this follows from the assumption toward con-
tradiction in the beginning of the proof of &g, so &g holds indeed.

Now we can check all the remaining demands in (B), e.g.

Clause (B)(d)(B): Assume toward contradiction that hL™(X) > X. This
means that some Y C X has cardinality A and is right separated (by some
well ordering). Now without loss of generality g ¢ Y andif 3 < A=Y ¢ gﬁ*
then we get a contradiction by @®s. So we are left with the case Y C &3

for some 8 < A. But by the clause assumption |¥3] < |8|<% + |i,| which has

cardinality < A, so we are done proving (B)(d)(8).

We are done proving 2.13: most clauses of (B) were proved and we have
to add that: clauses (B)(a)(y) + (¢) hold by the choice of .#} as X\.%} =
{g}. Clause (B)(a)(9) is exemplified by any uniform ultrafilter D on A such
that {« : f2(0) =} € D, exists by (x)3(c) + (%)s. O2.13

I They depend also on f = f5, but § determines f.
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3. The colouring existence

We try to explain the proof of 3.1, 3.5; probably more of it will make
sense after reading part of the proof.

Claim 3.1 should be understood as follows: given a set S and functions
F,:S— kK, for t=0,1 and a sequence g € “~S,d(p) is a natural number
which in the interesting case is a “place in the sequence”, i.e. d(p) < £g(0).

In the interesting cases, 0 = 19 vy p v1 11 is as constructed during the
proof of 3.5, and if (B)(a)-(d) of 3.1 holds, ¢g(no) + ¢4 is a place in the
sequence; so 3.1 tells us that it depends only on g (and not on the represen-
tation (7707 Vo, P, Vlﬂ]l) of Q)

How does d help us in the proof of Theorem 3.57

We shall describe it for the case of 61 colours, i.e. 0 = 61 and the colour-
ing is called c;. Let (ko,k1,K2) = (0o,61,\). We shall be given pairwise
disjoint t, = tQ Ut} for a < A and a colour j,. < 0; such that [t!| < 6, for
t=0,1 and a < A and we shall carefully choose oy < a7 exemplifying the
desired conclusion.

Toward choosing the pair («, 1) we also choose dy < 1 < J2 < d3 which
will be from (ag, a1) such that sup(ts,) < 09 and ¢4 such that:

(a) we let vy = p;,(03,92), p = p5(02,01), 11 = p;(01,00) where p,(8',6") is
derived from the sequence p(¢’, "), see before ® in the proof of 3.5

(b) €4 < Lg(vy) and R/ (F1(vo(fs))) = j« where h' : k1 — Ko is chosen in
®7 in the proof 3.5

(c) let o € to, and ¢; € t, and define 11 ¢, = p5(d0, o), M0.¢, = P7(C1,3)

(d) continuing clause (c) by the construction o¢, ¢, := pp(¢1,¢o) is equal
to moc, "M P v NG,

So naturally we choose the colouring c; such that

ci(ag, a1) = W (Fi(o(lg(no) + £4)))

and 3.1 tells us that assuming (a)-(d) this will be j.. Note it is desirable
that in 3.1, the sequences 79, 71 in a sense have little influence on the result,
as they vary, i.e. we like to get j, for every (y € tgo, (1€ tal.

Why do we demand in clause (b), ho(F1(v9(¢4))) = j« and not simply
Fi(v(44)) = j« and similarly when defining ¢; in ®7 in the proof? Because
we do not succeed to fully control Fi(ry(¢4)), but just to place it in some
stationary S C 61, however we can use 1 pairwise disjoint stationary set and
h1 tells us which one.

When we choose oy < a1 (in stage C of the proof) we first choose a
pair 01 < d2 hence p (in @¢ of the proof), then we choose an ordinal dy < d;
hence v; (in @g 1 of the proof) then e, € ss5, C k1 after @g o of the proof,
(see below) large enough. Only then using e, we choose d3 and then o
(also after @g.2) hence 1 ¢ for ( € t}ll. Lastly, we choose oy < dp hence 1, ¢,
for (o € tgo. Of course, those choices are under some restrictions. More
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specifically, (in stage B) though not determining any of no.¢,, 10, p, Y1, M,¢,
we restrict them in some ways.

Earlier, we first in ()1 choose %4, o, €)%, € with the intention
that a; € 24" “promising” that if oy € 24" then Rang(Fi(ng)) C sipl < K1,
ie. (1 €ty = Rang(Fi(m,)) € €)Y, similarly in the further steps below.
Second we do not “know” for which e < k we shall use Sg!_ C k1, so we
consider all of them, i.e. in (%) we choose 02/21715, 925 VE, a5, satistying
92, Uy? — 2" such that later 63 € %, ¢ and a; = ga.(d3). We still do
not know what v, will be hence how to compute ¢4, but pj(a1,d3) will be
part of it and for each € < k1 we can compute /5. which will be the first
place ¢ in vy in which Fy(1p(f)) = ¢, see (x)a(f).)

In (x)3 we choose %", U3, g3, o and (s : 6 € %,") giving another
part of vy. Then in (x)4 we deal further with 1y, in particular s5 C k1 is a
stationary subset of Sy . , promising F(v2(fs)) € ss, .

Next we work on restricting the choices from below, choosing %%, {4 09

scllnl in ()5 promising dy € 2™ so this restricts 7.

Lastly, in (¥)g we choose Z5™®, Eg%, 52 | promising §; € %" (recalling

v1 = pp(01,62)).

CLAIM 3.1. Assume k1, kg are cardinals and S is a set. There is a

function d : “>S — N such that (A) = (B) where

(A) (a) F,: S — kK, fort=0,1
(b) for 0 €“>S and 1 < 2 we let F,(0) = (F,(0(¢)) : £ < Lg(p))
(c) we stipulate max Rang(F,({))) = —1

(B) d(o) = ¢35 when o =mn0"vo"p 1 m satisfies (note that €1, £3—Lg(no)
are places in vy, {3 is a place in vy, €5 is a place in p and 05, £3 is a place
in o and u C {lg(vy) + £ : € < Lyg(vp)}) the following:

(a) (@)

max Rang(Fi(g)) = max(Rang(Fy(vp)) > max(Rang(Fy(no"p v1"m))

(B) let ¢4 =min{l < lg(vp) : F1(vo(¢)) = maxRang(Fi(0))} so
0 < Lg(vp)
(b) (@) maxRang(Fo(el(fg(no) + £1,49(0)))) = max Rang(Fo(p)) >
max Rang(Fo(vo[¢1, g(vo)) v1 m)
(B) let £5 = min {€ <Lg(p) : L >Lg(no) + £1 and

Fo(e(f)) = max Rang(Fo(el (€g(no) + £1,£9(e)))) }

so 03 < Lg(p) and 05 = 05— Lg(no o)
(7) hence €3 € [Lg(n0"vo),Lg(n0"vo"p)) and €5 < Lg(p)
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(c) (@)
max Rang(F (1)) > max Rang(F1(o[[¢3, £g9(0)))
= max Rang(F1(v1)) > max{Fi(p(¢)) : £ € [t5,49(p))}

(B) 43 is such that
o I3 < fg(l/l)
o Fi(v1(l3)) = max{Fi(o)(¢) : £ > (5}
o3 V3 is minimal under the above
(d) () let w:={¢:¢ <105 and Fi(p)(£) > Fi(vi(¢3))}
(B) 3 € u is such that
1 Fi(o(¢3)) = min{Fi(o(()) : £ € u}
oy under o1, 03 is minimal
o3 notation: if £ € [€g(no),Lg(no” o)) then we let

ty = 5 — tg(m).-

PROOF. Assume p€“>S. We have to show that d is well de-
fined, i.e. d(p) = ¢3 does not depend on the specific representation of o as
Mo Vo p v1 M, i.e. we shall prove that ¢] depends on g only.

Toward this

(a) Lg(no) + ¢1 depends on p only

[Why? Let ¢} be the first natural number so that

Fi(o(£1)) = max Rang(Fi(0)).

By the strict > in (B)(a)(«) we must have £g(ny) < ¢}. Although one can
decompose ¢ in different ways, yielding different values to £g(ng), the sum
Lg(no) + £1 will be always (7, by the definition of ¢;. Now since only p is
mentioned in the definition of ¢} we conclude that £g(ng) + ¢1 = ¢} depends
on o only.]

(b) £5 depends on p only by a similar argument, this time for the func-
tion Fjy

(c) Lg(no”"vo"p) + ¢3 depends on p only (for this statement notice that
p# (), by (b)(e))

(d) {€g(no) + ¢ : ¢ € u} depends on p only

(e) £5 depends on p only.

By (e) clearly we are done. [z 1

THEOREM 3.2. Assume g < 0 = cf(0),\ > 013 and X is a successor of
a regular cardinal. Then Pri(\, A\, A\, 0) holds.

Proor. Firstly, let us spell out the definition of Pry. -

Recall that A > pu > 0,6p,0; and let 8 = (6p,01). Pri(A, u,0,0) means
that there exists a function ¢ : [\]?> — o such that for every two disjoint se-
quences (0. :a <, i <ig), ((1.:a < u,i<iy) of ordinals < A (without

.t a,i "
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repetitions) such that ip < 6y, iy < #; and for every 7 < o, one can find
ap < a1 < p so that:

(*) if ip < ip and iy < iy then c(¢Q, ;,Ch,4,) = 7-

It follows from the definition that if 6] <6, and Pri(\, u,o, (0o, 61))
then Pry(\, p,0,(60,67)). Let 6p =6, 6 =0T by Theorem 3.5 below we
have Pri(\ A, A, (6p,61)) and since 8y < 61 we have by the previous sentence
Pri(\ A A, (0o, 00)) which is also denoted Prq(A, A\ A, 6p), see Observation
2.6, so we are done by noticing that 8y of 3.5 is 6 here. [3 9

REMARK 3.3. 1) Can we replace 6 by (67,6)?

2) Or, at least when 6 = Rg, A = Ry for (6,0") with an ultrafilter on
the < 01 sets? and 2 colours? may try to use the proof of the Ns-c.c. not
productive from [11].

3) For many purposes, Pri(\, A, 2, (6,07)) suffices and for this the proof
(in 3.5) is somewhat simpler.

CONCLUSION 3.4. Assume A =91, 0 =cf(d) > 61, 6 = cf(0) > N
(a) if there is x = x<Y < A < 2X and x > o (s0 0 < ), then Pro(\, )\, 0,0)
(b) if x = 0 satisifes x = x<¢ then Pro(\,\, ), 6).

PROOF. Clause (a): We apply 2.8(4) with (A, A, x, 0,0, 0) here standing
for (A, u, x,0,6p,01) there. We have to check the assumption of 2.8(4), the
main point is “Pri (A, A, o, (0,0))” which holds by Theorem 3.2, the other as-
sumptions are straightforward hence we get the conclusion, i.e. Pro(\, A, 0, 8).

Clause (b): First, Pro(A, A, 0,0) holds as we can apply Clause (a) with
(A, 0,0,0,0) here standing for (X, 0, x,o,6) there.

Second, we get Pro(A, A\, A, 0) holds as we can apply 2.8(3) with (), 9,6)
here standing for (\, 0,0) there. (3 4

THEOREM 3.5. If X is a successor of a reqular cardinal, A > Hf and
01 > 0y > Ng are reqular cardinals, then Pri(\, A\, \, (00,61)).

PROOF. Stage A: Let O be the regular cardinal such that A = 9", so
0> 6.

Below we shall choose o and «, (for ¢ = 0, 1,2) to help in using this proof
for proving other theorems.

Let o = A. Let S C Sg‘ be stationary and h : A — o be such that o < A
= h(a) <1+ a,h[(A\S) is constantly zero and S; := {6 € S: h(§) =~} is
a stationary subset of A for every v < A. Let (ko, k1,k2) = (0o,601,0) and
let F, : A\ =0 — K, for . =0, 1,2 be such that for every (g¢,c1,€2) € (kg X K1
x kg) the set We, ¢, o, (k) = {y € Sp : F.(y) = ¢, for + <2} is a stationary
subset of A for every xk = cf(k) < A.

Let € = (eq : a < A) be such that

®1 (a) if @ =0 then ey =0

(b) if « = B+ 1 then e, = {5}
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(c) if « is a limit ordinal then e, is a club of « of order type cf(«a)
disjoint to S?, hence to S. ~
Let? hy = hleq for a < XA and h = (hy : @ < )). Note that h,, is non-zero
only for successor . We shall mostly use the h,’s rather than h.
Now (using €) for 0 < a < 5 < A, let

v(B,a) :=min{y € eg : v > a}.
Let us define v4(f3, a):

Y0 (/87 CY) = /87 Y41 (/87 CY) = 7(75(/87 Oé), Oé) (lf deﬁned)'

Ifo<a<pB<A\ let k&(B,«a) be the maximal k < w such that (8, «) is
defined (equivalently is equal to «) and let pg = p(8, ) be the sequence

<")/0(,8,Oé),")/1(,870é), s 7’Yk(ﬁ,a)—1(/87 a)> :

Let ve:(8, a) = Vi(8,0)—1(8, @) where (¢ stands for last.
Let

pﬁ(,@,a) = <h'ye(,8,a)(7€+l(/8>a)) < k(lﬁ’a)>

and we let p(o, a) and pj, (o, &) be the empty sequence. Now clearly:
O f0<a<pf<Athen a<~(f,a)<p
hence
O3if0<a<pf<\0</{l<w,and (6, ) is well defined, then

a <y(B,0) <

and
410 < < B < A, then k(f, ) is well defined and letting vy := (3, @)
for ¢ < k(B, o) we have

@ =Ypp,a) < Vet(B,a) = M@a)-1 < <1 < =P
and

o E 6’Ylt (B,Ol)

ie. p(B,a) is a (strictly) decreasing finite sequence of ordinals, starting with
B, ending with ., (8, ) of length k(53, ).
Note that if & € S, < 8 then vt (5, ) = a+ 1.

2 For successor of regular we can omit h, and below replace h and h~ by h and even let
pr(B,a) = (h(ve(B,)) : £ < k(B,a)); but for other cases the present version is better, see more [6,
Ch. III, §4]. But in later stages we may use h directly, e.g. the proof of ().
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Also
®s if ¢ is a limit ordinal and § < 8 < A, then for some oy < § we have:
ag < a < § implies:
(1) for £ < k(ﬂvé) we have 7@(/875) = yf(ﬁaa)
(ii) 6 € nacc(ey,,(5,6) € 0 = M(s.5)(B+9) = Mr(s,6) (B> @) & =[Yk(8,5)(5,9)
= 6> g8 (B: )]
(iii) p(5,0) < p(B, @); i.e. is an initial segment
(iv) 0 € nacc(e.,,(g,5)) (here always holds if 6 € ) implies:
® p(B,0)"(6) < p(B, ) hence
0 03.(8,0) (ha(3.5)(0)) < pi(B. ).
(v) if cf(§) = O then we have vy (5,0) =0 + 1
(vi) if cf(§) = 0 and § € ey, then necessarily a = § + 1.
Why? Just let

g = Max{ sup(ew(m;) Nd)+1:4<k(B,9)and § & acc(ew(m;))}.

Notice that if £ < k(3,0) — 1 then § & acc(e,,(3,5)) is immediate.

Note that the outer maximum (in the choice of ag) is well defined as it
is over a finite non-empty set of ordinals. The inner sup is on the empty
set (in which case we get zero) or is the maximum (which is well defined)
as €,(3,5) 1s a closed subset of v,(8,9), & < v,(83,9) and & & acc(ey,(g,5)) — as
this is required. For clauses (v), (vi) recall § € S3 and e, N .S) = () when «
is a limit ordinal and e, = {7 — 1} when ~ is a successor ordinal.

©6 (A)if0<a< fB<A\l<k(B,a),y=(B,a) then

p(Bsa) = p(B,7) p(v,) and  pg(B, @) = pp(B8,7) pp(7, @)

(b) if 0 <ap < - <ap and plag,ap) = plak, ag—1)" ... plag, ap)
then this holds for any subsequence of {(ag, ..., ax).

Now apply Claim 3.1 with A, k1, ko, F1, Fp here standing for S, k1, ko,
Fy, F, there and get d : “” A — N.

Lastly, we define the colouring; as the proof is somewhat simpler if we use
only k1 colours (which suffice for many purposes) we define two colourings:
¢y with k1 colours and cy with k9 = A colours, as follows:

©7 (a) choose a function A’ : k1 — k1 such that S = {6 € Siit : h/(9) =
e} is stationary in k; for every € < k1

(b) if n= <<07 s 7Cn—1> then we let h,(n) = (h/(<0)7 s 7h,(Cn—1)>
(c) c1: [A]? = k1 is defined for a < 8 by

c1({a, 8}) = I (F1(pi (B, @))) (05 o)
where %’a =d(p; (8, a)).
Clearly

©s we can demand on h} that we can choose hf such that:
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(a) hf,h% are functions with domain 4
(b) A} is onto K
(c) hb is onto N
(d) for every ¢ < k1 and n < w the set S, cn ={e < K1 :hj(e) =¢
and h)(e) = n} is stationary
®g the colouring co with A colours is chosen as follows: for a < 6 < A,
co({a, f}) = (FQ(pB(ﬁ,O&)))(ﬁ%’Q) where letting e, 3 = c1({a, 5}) we have
6%’0[ is the h)(e.q)-th member of the? set {£ < £g(p;(B,)) : Fi(py(8,))(£)
= h(epq)} if this set has > hb (e, 3) members and is zero otherwise.
Stage B: So we have to prove that the colouring ¢ = ¢; (with 1 colours)
and moreover ¢ = ¢y (with A colours) is as required.
Now for the rest of the proof assume:
B (a) ta C A for every a < A
(b) to =t Utl and 1 < |t,| < 6, for . < 2
(c)a#pB=tsNtg=10
(d) j« < k1 (when dealing with ¢1) or j. < o (when dealing with c3).
Clearly (by H(c)), we can choose 3, by induction on a < A\ by S, =
min{J : > o and min(tg) > a + sup(U{ts.,, : @(1) < a})}. Now can use
t,, = tg, for a < A, hence:
(%)o without loss of generality v < min(t,) and o < 8 = sup(t,) < min(tg).
We have to prove that for some oy < ay < A for every (o, (1) € tgg X tg,
we have ¢{(p, (1} = J«.
(¥)1 We can find %", aj, )" such that:
(a) 2,'* C S is stationary
(b) hl2,™ is constantly 0 (so actually 24" C S§)
(c) o <min(2,"") and &1} < #1
(d) if § € 24" and « € [af,6), B € t} (treating t? is unreasonable
because t% may be of cardinality > 6y = k1,10 is defined for notational
simplicity) then:
* pps (0) 4 pga
e Rang(Fi(p5(8,9))) C €1l
[Why? For every § € S5 C S and (¢ € t; let A sc < & be such that

(1)

(Vo) (« € [ 5¢6,0) = pe,s™(6) < pe.a),

it exists by ©5 of Stage A.
Let o 5 = sup{of{’&c :( €ts} and for ¢ =1 let

e s = sup { Fi(h(v(¢,4))) +1: ¢ € t5 and € < k(¢,0)}

380 d is used only via the definition of Z%’a.
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= sup |_J { Rang(F1(p5(8,6)) + 1) : 8 € 15 };

as cf((S) =0 =cf(9) > |t}| and k1 = cf(k1) > 61 > [t}], necessarily ;<0
and 51 15 < K
Lastly, there are af < A and Ei% < /io,Eipl < k1 and 24" C S§ as re-
quired in (%); by Fodor lemma.|
(¥)2 for each € € Sf! \51117101 we can find go ., %2?5,7:, a5 ., b2 such that:

(a) 72 < A satisfies Fo(77) = ju, F1(72) = &, Fo(72) = 0

(b) %, C 57 is stationary

(0) af < a3, < min(25")

(d) g2, is a function with domain %, such that § € %, = § <
9275(5) S %1up

(e) if § € %Y and a € [a3,,0) and B € ty, (5 then py, (55 () <
Pgs..(5),« hence (recalling ©g, (¥)1(d))

o if B €ty (5 then pgs(6) < ppga

(f) €5 is well defined where for any § € %, we have
@75 = g(pQQE s) hence if a € (04275,5) then pg, (5),a (6275) = 0.

(2) Lastly, if o€ (aj,,6) then €5, =min{l: /¢ < £9(pg,..(5),a) and
Fi(pp(92,2(0),a))(£) = e} so 43 . < {3 _; recall that € > €]} hence necessarily
B € ty, (55 = € >sup Rang(Fl(p}-l(,B,gg,g( )))-

[Why? First, choose 7} as in clause (a) of (x)2, (possible by the choice of
Fy, F1, Fy in the beginning of Stage A). Second, define g : S3. — %" such
that § € S5. = 6 < g.(d) € 2,"®. Third, do as in the proof of (*); above for
each § € S* separately, i.e. find a2 s < 0 above o] and /3 5 5,65 ) such that

the parallel ‘of clauses (c) (e), (1), ( ) of (%) holds. Fourth, use Fodor lemma
to get a stationary %, C S3. such that ((0/255,@65, 57575) 10 € Upy) s
constantly (a3, ;,57525) and lastly let go . = gL [%UP ]
(*)3 we can find %3 , g%, a such that:
(a) %P C S is statlonary
(b) mm(% P) > af > sup{oz26 e € SE\eth)
(c) * = (gae 1€ € SE\e)h)
(d) gscis a functlon with domain U
(e) if 6 € %™ and € € SEH\eth then 0 < g3.(0) € Uy
(f)ifae [a3, 8), 6€W,"® and 56523\6 5 then pg, (5).67(0) < Py, (5).a
hence
(f)" if in addition 3 € t;k(g&s((;)) then pg s~ (0) < pg o this follows.

[Why? First, let a3 =sup{as, +1:¢c€ S5\ } < A and choose g :
S\ay — U, ? such that g/ (d) > 0 for every ¢ € S\aj and second for each § €
S\ choose aj 5 < 4 as in clauses (f), (f') of ()3, i.e. such that a € [} 4,0)
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= pgr(6),5 (0) < pgr(s),a for every e € SE\el) and such that the relevant
part of clause (b) of (x)3, holds, that is, aj 5 > a5 = sup{aj . 1 e < St\e))
possible as k1 < 0. Third, use Fodor lemma to find a3 < A such that %, uP
{0 € S:a3s5=aj} is a stationary subset of A\. Fourth, let g3 . = g/ [% ;P ]
(*)a recalling® j. < k1, there are %, e} |,¢4, and (ss: 6 € %) such
that:
(a) %, C U"® is a statlonary subset of A
(b )611 <z—:41</<1 and e,y < Ko
(c) if § € %,'® then s; is a stationary (in 1) subset of S:;J*\sipl
(d) if § € %P, € s5 then
() Rang(Fy (g2 (95.(9).5))) N € <2 hence by clause (b)
(B) if B € ty, (4,.(5)) then Rang(Fl(Pﬁ(ﬂ 5)) eCen
(7) also Rang(Fo(pp,(92.£(93.:(9)),9))) €
[Why? Recall that k; is regular uncountable (bemg 01) and kg < K1 is

regular (being ). First, for each § € %, we use Fodor lemma on See j*\eipl
to choose sg, eipL 5 z—:z% g as in clauses (¢) + (d); second use the Fodor Lemma
on %" to get %", €, e4y; we cannot do it for s5 as maybe 2% > A]
Let us verify (d) (,B) and (d)( ). For (d)(5) notice that Rang(Fi(p;(5,0)))
- EUP < 54 | for every B €ty (4, (5)) by (¥)1(d). This requirement is easy

since [ty, (g, (5))| < K1 and pg(B,9) is finite for every 8 € t,, (4, (5))-
For (d)(y) we apply Fodor’s lemma twice.
First, fix an ordinal 6 € %,"". For every ¢ € sg, the sequence

Fo(pr(92,(93,:(0)))

is finite and hence bounded in ky. But kg < k1 = cf(x1) and hence by shrink-
ing ss if needed we may assume that all the values are bounded by the same
ordinal o5 < Kg.

Now for each § € %, we choose o5 € kg in this way, so by shrinking
%,"® if needed we may assume that o5 = o for some fixed o < kg and every
§ € %,"". Now choose EZ% > max{a €10}

()5 we can find 2, e, e such that:
(a) 2™ C Sg is stationary in A
(b)a<5e% =1t,C0o
(c) e <k, for L = 0,1
(d) if § € 2 then for arbitrarily large a < § we have 3 €t AL
€ {0,1} = Rang(F,(p(6, 8))) C et < Ky

[Why? Clearly E = {0 < A:J alimit ordinal such that a < § = ¢, C §}

is a club of A. For every § € S; N E and o < § we can find (5‘1135706,5%75@)

4 Recall that in this stage we are dealing with ¢ = c¢; hence jx < k1.
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as in clauses (c),(d) above because |t| < k, = cf(k,). So recalling that
cf(8) =0 > 01 = k1 > ko = by it follows that there is a pair (6(11% 5 ?"1175)
such that § = sup{a <& : ({950,610 6.0) = (610,561 5)}- Then recalling
A =cf(A) > k1 + Ko we can choose (6(11%,6(11111) such that the set 2" =
{6€ 85 (e 0675(11nl o) = (5(110751 1)} is stationary ]
(*)6 we can find %™, €3, 255 such that:
(a) ™ C Si\(af + 1) is stationary

(b) if § € %™ and ¢ < Ky then & = sup(Z,™ N §) and for arbitrarily
large 6o € 2" N § we have ¢ < max Rang(Fy(p;(0,00))) and

Rang(Fo(p5(6,00))) C €9 and ¢ N Rang(Fi(py(8,80))) € 95

(c) €9 € (€1, ko) and €57 € (e77, #1).
[Why? For every ¢ < k1 let S{ = {aES a = sup(Z " Na) and Fi(h(a))
= (}, clearly it is a stationary subset of A.
Let £ ={0<A:d is a limit ordinal and ¢ < x1 = ¢ =sup(d N S;)}.
Clearly it is a club of A. If ¢ € S,’j;\e?ﬁ and 6 € EN Sy and o € S; N0
let Eg%’c’&a = sup Rang(Fo(p5 (9, @))) + scllfb + 1 and let

€95 ¢.5.0 = Sup(¢ N Rang(Fy(p5(5, @))) +1 < C.

Fixing ¢ and ¢, recalling cf(d) > ko + k1, for some pair (sg% 5 sgnl ) €
Ko X k1 we have § = sup{a € SC N6 :(egn 0500 %LC 5a) (egn 0,067 gﬁ,c s}
Fixing 6 apply Fodor lemma on Sf!, for some pair (52 0.6 Eg 1 5) the set
bs = {C € Sk : (egn e 5,62 1cs) = (egn 0, 5,52 15)} is a stationary subset of ;.
Applymg Fodor lemma on 6§ € EN S{, there is a pair (e§% 0+ €9, 42 such that
={0€S;:6€FEand (3} 0.5° 65“‘1 5= (6510, €51)} is stationary. Clearly
we are done. We could have put b, in (x)g(b) but it does not seem needed.]
Stage C: Now we shall find the required ag < o;.
In this stage we deal with c1, so j. < k1. First, there are 41, 0o, EBnd,
emd, a4 such that
o (a) 01 € %™ and 0y € %', see (x)g and ()4 respectively
(b )51<(52 anda3<51
(c) e™d .= maxRang(F,(p;(02,01))) > 62114-64 > 13—!—61112 fort=0,1
(d) af <61 is > of and if « € (af, 61) then ps, 5,7 (61) < ps,.a-
[Why can we? Easy but we give details. First, let %, = {5 €S:disa
limit ordinal > o necessarily of cofinality 9 such that F,(8) > 5" + ey, for
1 =0,1and 6 = sup(6 N %)}, clearly it is a stationary subset of A. Second,
choose 0y € %, which is > o} such that dy = sup(#4 N d2). Third, choose
0« € W, N dg such that af < J,. Fourth, let a, < d, be such that o, > o3
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and « € (au,04) = p(d2,04) (0x) < p(da, ) (hence py(d2,04)" (hs,+1(dx)) I
o, (62,)).  Fifth, choose &1 € (au,dx) N %™ hence §; > of. Sixth, we
choose €™ for + = 0,1 by clause (c), the inequality holds because 6, €
#. O\ Rang(py (52, 61)).

Lastly, choose o as in @¢(d). Easy to check that we are done proving
@o.]

Let p = pp,(d2,01).

Second, choose dy such that

Do.1 (a) do € %1dn N 01
(b) (%)g(b) holds with ("4, 7) here standing for (¢,§) there, that
is, we have e < maXRang(Fl(ph(él,&)))) and Rang(Fy(py,(61,00))) C 9 X0
and P4 N Rang(Fy(p;(d1,60))) C
(c) dp > @ recalling 67 > a4 > af by @o(b),(d).
[Why can we choose d¢p? By (*)g.]
Also choose o such that
@o.2 af < &g is such that a € (af,dg) = ps, s, (00) < Ps,.a-

Third, choose e, € s5, (85, is from (x)4(c), (d)) such that e, > egj{l =
max (Rang(F(pj(d2,01) URang(Fi(pp(61,00)))) which is > e, possible as
ss, is a stationary subset of k1.

Fourth, let 03 = g3, (d2).

Fifth, let oy = gac, (03).

Lastly, choose ag < 0y large enough and as in (*)5(d) such that ap >
of > o, that is, we have 8 € t},, = Rang(Fi(p5(00,3))) € 51 1 < K1

We shall prove below that the pair (ag, 1) is as promlsed

So (ﬁnlshmg the case of k; colours)

® let ¢y € 19,1 € t3, and we should prove that ¢1{o, (1} = Jj-

Note

P1 09 € %4up - %Sup and ag < dg < d1 < Oo.

[Why? The first statement holds by the choice of d2, see @p(a) and
(*)4(a). The second statement holds by the choices of d1, i.e. @g(b), the
choice of dp, i.e. Bo1(a) and the choice of g (see “Lastly...” after &p.2).]

Do 03 = G3,c. (52) € %2?5* and 0o < d3.

[Why? By the choice of d3 (after @g2 in “Fourth”) and by (*)3(d)+(e)
(note that the assumption of (x)3(e) in our case, which means d; € %" and

€S \E%}f, holds by @; and by the “Third” after @go above (recalling
ss, € SfL and ©o(c)))]

B3 a1 = g2, ((53) € %1up and 03 < ag.

[Why? By the choice of «; in “Fifth” after &g 2 and (x)2(d).]

@4 no = p;(C1, 1) satisfies (ny € “~ A and):

* Rang(Fi(m)) C 1]
[Why? By (%)1(d) recalling @3 of course, oy > of > o]
Recall that (*)1(d) deals only with ¢.

2
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@5 vy = pj (a1, d2) satisfies (19 € “” X and)
(a) Rang(Fo(o)) C ey
(b) e« € Rang(F1(w))
E )

c) Rang(F1(v)) Nex C ey
d) a1 = g2, (93,6* (62)) = 92¢. (63)
(e) plau,d2) = plai, g3.c.(02)) " p(g3.6.(02), 02).

[Why? Clause (d) of &5 holds by the choice of o in “Fourth” and “Fifth”
after @g2 above (and see @9); similarly clause (e) holds. By @; we have
82 € %,"® and by (*)4(d)(7), (a) and the choices of d3,a; we have clauses
(a) + (c) of @5; that is, (aq,02..,64) here stand for (g2.(g3:(0)),d,¢) in
(x)4(d). Now 03 € Rang(p(g3..(0)),02) by @2 hence d3 € Rang(p(aq,d2)) by
@s5(e) hence 63 € Rang(1y) by the choice of 1 (see the beginning of @5). This
implies clause (b) of @5 because F1(d3) = . because 03 € dom(gae,) C % .
by @2 and (V9)[6 € %,y = 0 € S5 = Fi(9) = e4] by (x)2(a),(b).]

@6 v1 = py,(01,00) satisfies:

(a) Rang(Fo(n1)) C e
(b) ePd < max Rang(F(v1))
(c) Rang(Fi(v1)) C ex.

[Why? By @g(a) we have d; € . So (a), (b) hold by ()g(b) and the
choice of dg, i.e. @g.1(b); we use the first two conclusions of (x)g(b) not the
third. As for clause (c) it holds by the choice of e, in “Third” after @&g.2.]

@7 (a) m = pp(do, Co) satisfies

e Rang(F,(n1)) C 6?3 for 1 =0,1.
(b) p = py,(62,01) satisfies
e max Rang(F,(p)) = e for . =0, 1.

[Why? Clause (a) holds by (%)5(d) and the choice of ag in “lastly” after
®p.2 recalling (o € 0 . Clause (b) holds by ®g(c).]

s (a) pp(C15C0) = pp(Crs 1) pp(ar, 02)" pp (02, 01) " pp (91, d0) " pr (90, Co)

(b) recalling p = pj;(d2,01) and the choices of ng, vy, p, v1,m1 we have
Pr(C1,C0) =m0 " vo " p v1 M.

[Why? Clause (a) holds by the choices of of in (x)1(c)(d) and of o}
in (x)3(f),(f)" and 6; > af by @¢(b) and as “dp > 4" recalling P¢1(c) and
“ap > at”, see “Lastly” after @p2. Clause (b) holds by clause (a) and the
definitions of ng, v, p, v1, 1 above, that is, in @4, in B3, before Pg 1, in
@, in By respectively.]

@9 03 := d(p5(C1,¢p)) satisfies Fy(o(L])) = €x.

[Why? We shall use @g(a),(b) freely; now d was chosen by Claim 3.1
and letting o = 1o vy " p v m we apply the claim to (no, vo, p,v1,m1), SO it
suffices to show that clauses (B)(a)—(d) of 3.1 hold.

@®g.1 clause (B)(a)(«) of 3.1 holds.
Why? First, e, < max Rang(Fi(vp)) by @s5(b).
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Second, Rang(Fi(m)) C €1} by @4 and e} <ejf) by (x)a(b) and &3

< e by @g(c) and e < ¢, by the choice of e, in “Third” after ©g..
Third, Rang(Fi(p )) Ce, as

Rang(Fi(p)) = Rang(Fi(pj(02,01))) C el + 1

by @®o(c) and e < ¢, by the choice of &,.
Fourth, Rang(F (1)) C e. by @e(c).
Fifth, Rang(Fy(n1)) C e, as Rang(F1(n1)) C e by (x)s and e} < &§
by ()6(c) and €9 < e by @o(c) and e < &, by the choice of €.
Together @91 holds.
@2 let ¢1 < Lg(rp) be as in clause (B)(a)(B) of 3.1
@g.3 clause (B)(b)(«) of 3.1 holds.
Why? First, max Rang(Fo(,o)) = e by @o(c).
Second, Rang(Fy(np)) C e is unreasonable see @y and not necessary.
Third Rang(Fp(vp)) C efd because Rang(Fy(vp)) C €40 by @5(a) and
o <€ 4 by @o(c).
Fourth, Rang(Fy(1)) C ef'® because Rang(Fy(11)) € 9% by @6(a) and
e5h < g by @o(c).
Flfth Rang(Fy(m)) C el because Rang(Fy(n1)) € sffb by @7(a) and
ey < 3 by (x)6(c) and e9% < i by @o(c).
Together Gg.3 holds.
@4 (a) let £5 < Lg(p) be as in clause (B)(b)(p) of 3.1
(b) let £5 = £5 — Lg (0" v0)
Do.5
(a) €5 € [tg(no"v0), Lg(m0”"vo”p))
(b) clause (B)(c)(«) holds, i.e.
e; max Rang(F(vp)) > max Rang(Fi(o[[¢3,4g(0)))

*
max Rang(F7)(el[f3,£9(0))) = max Rang(F3(v1)) > max Rang(p"n)

(c) let 43 < £g(v1) be as in clause (B)(c)(53) of 3.1
(d) Fi(vi(63)) > eP.

Why? Clause (a) follows by (B)(b)(«) proved in ég 3 above. Clause (b),
¢; holds by @y, I Clause (b),es follows because: first Rang(Fi(p)) C el ;+1
by @o(c) and el 1 +1 < 6 by second; Rang (Fi(11)) € €4 +1 by @g(b) and
third, Rang(Fi(m)) C e} by @7(a) and £ < ei! by @(d) by the choice
of ..

By clause (b), it follows that ¢35 from Clause (c) are well defined and
Clause (d) holds

@9 (a) Rang(Fi(no (pl€3) v1"m)) C epfd+1
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(b) e« € Rang(F1(1p)) is > epd
(c) Rang(Fy(vg)) Ne, C epd
Why? First, Rang(F1(no)) C ! because Rang(Fj(no)) C ey by @4
and e < e} by (¥)a(b) and e} < e by @o(c).
Second, Rang(Fi(p[f3)) € Rang(p) C P4 +1 and Rang(Fi(v1 m)) C
74 by o(c).
Third, Rang(F1 (10" (pl3)) € Rang(Fi(no)) U Rang(Fi(pl€5)) C e + 1
by the last two sentences, so clause (a) of ©g ¢ holds.
Fourth, clause (b), i.e. e, € Rang(Fi(1p)) holds by @5(b).
Fifth, Rang(F1 (10" o)) Nex € €47 by (%)a(d) with (6, 3,¢) there standing

for (82,C1,e+) here (recalling 6> € %, and ( € t}, = t;2 (05 (5»))) and €41
< e by @o(c). Hence, Rang(F1(v0)) Nex C Rang(F1(no o)) Nes C ey C

srlnd, so also clause (¢) of @9 ¢ holds.

@o.7 (a) let £3 from @9 be as in (B)(d)(5)
(b) Fi(o(£3) =e.
(c) (used in stage D) €3 € [£g(no), €g(n0"11))-

[Why? By @96, ] is well defined and belongs to [¢g(no),4g(n0 10));
moreover, Fy(o(f3)) = €4.]

So indeed @9 holds.

®10 ¢1{C0, (1} = Js-

[Why? Because d(o) = 3 and (F1(0))(¢3) = & and so by ®7(c),h"(e,) =
03 we have ¢1{(p, (1} = I/(e4) and K/ (e,) = j. because €, € s, by the choice
of e. and h'(es) is j« by (*)a(c) recalling the definition of SJ! . in ®7(a).]

Stage D:

We would like to have A colours (not just 1 colours), but (unlike earlier
versions) we rely on what was proved (i.e. the properties of c¢1) instead of
repeating it. So we shall assume H from the beginning of Stage B and j, < A
in H(d).

Now

M, for some #4, 0", a5 4

(a) a5 1 < Agp < K1

(b) 71 C S is stationary and min(#1) > ag

(c) if 6 € #1 and B € ts then Rang(Fi(p;(5,9))) C €55

(d) if 6 € #1 and «a € [ 1,6) and B € t5 then p(53,0)"(0) < p(B, ).

[Why? As in the proof of (x); in Stage B.]

By (a)let #o = {0 € S : Fa(h(0)) = ju, F1(h(0)) = g and § > af 1}, s0
stationary

(b) let g : #5 — #4 be such that § < gi(d) € 71

;3 there are #3, o 5 and n, such that:

(a) #3 C W3 is stationary and min(#3) > ag 5 > a5,
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(b) if 6 € #3 and « € [af 5,0) and B € ty:(5) then p(83,g7(0))"(97(6))
L p(B,97(0)) " p(97(9),6)"(8) < p(B,a)
(c) if 0 € #3 and B €ty (5 then

*»—A*

@) Rang(Fl(ph(ﬂ,g (6))) €

(
(B8) nu = [{€ < k(B,9) : (Fl(ph(ﬁ, 9))(£) = g }1
(7) hence if a < ¢ and p(3,0)"(d) < p(B, ) then the (n, + 1)-th

member of the set {£ < k(8, ) : F1(p5(8,a))(£) = g5} is £g(p(B,0)).
[Why? As usual, e.g. how do we justify n, in clause (¢)(8) not depending

on B € ts5? First, find 6, then for any g € t5 we have
* p(B,6) = p(B,91(6)) p(g7(6),9).
[Why? Recall H;(d).]
e Rang(F1(p5(8,91(9))) C gl
[Why? Recall B (c).]
Together, n, depends just on pj;(g;(0),0) which depends only on §
(not ). Second, as choosing #3 we can make n, not depend on ¢.]
Let j.« < k1 be such that h)(ju) = 601, h2(]**) =n4. Next let g, :
A — #5 be increasing and define so =ty (o), S5 = 9. (a) for .« = 0,1. Now by

what was proved in the earlier stages we can ﬁnd ao < ay < A such that if
(o € 85, N1 € sl then Cl{CoaCl} = Jux-
Let (o, (1) € sao x s . By the choice of ¢1, in ®7 We have ¢y from (g

and by Hs(c)(y) we have cz({Co,Cl}) = j.. But (s9,,s5,) = (tg (a0)? t;*(al))
50 o) = g«(), &) = g«(c) are as required. (3 2
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