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Abstract. We prove a better colouring theorem for ℵ4 and even ℵ3. This
has a general topology consequence.

1. Introduction

1.1. Background. Our aim is to improve some colouring theorems of
[10], [6, Ch. III, §4], they continue Todorćević [5] (introducing the walks) and
[9], [8, §3] (and [11]), see history in [6], [7, §10]. After these works Moore
[3] proved ℵ1 �→ [ℵ1;ℵ1]

2
ℵ0
; Eisworth [1] and Rinot [4] proved equivalence of

some colouring theorems on successor of singular cardinals.
Our aim is to prove better colouring theorems on successor of regular

cardinals (when not too small), e.g. Pr1(ℵ3,ℵ3,ℵ3, (ℵ0,ℵ1)), see §1. We have
looked at the matter again because Juhász–Shelah [2] needs such theorem
in order to solve a problem in general topology, see 2.10(3).

1.2. Results. The paper is self contained.
Here we formulate Prℓ(λ, µ, σ, θ̄) where θ̄ is a pair (θ0, θ1) of cardinals

rather than a single cardinal θ and prove e.g. Pr1(λ, λ, λ, (θ, θ
+)) when λ =

θ+3 and θ is regular.
That is, we shall prove (see Definition 2.1 and Conclusion 2.10(1)):

Theorem 1.1. 1) For any regular κ we have Pr1(κ
+4, κ+4, κ+4, κ+).

2) For any regular κ we have (Pr1(κ
+4, κ+4, κ+4, (κ,κ+)) and (Pr0,0(κ

+4,
κ+4, κ+4, (ℵ0, κ

+)).
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Remark 1.2. Note that the statement Pr0(κ
+4, κ+4,2, κ+) is also called

by Juhasz Col(κ+4, κ), see more in the end of §1.

Moreover by 2.11 in 1.1(2) we can replace κ+4 by κ+3, (thus half solving
Problem 1 of [2], i.e. for ℵ3 though not for ℵ2) so we naturally ask:

Question 1.3. 1) Do we have Pr1(ℵ2,ℵ2, σ,ℵ1) for σ = ℵ2? For σ = 2?
2) Do we have at least Pruf0,0(ℵ2,ℵ2, 2, (ℵ0,ℵ1))?

Concerning the result of Juhász–Shelah [2] by using 2.8(1) instead of [6,
Ch. III, §4] we can deduce Pr0(ℵ4,ℵ4, 2, (ℵ0,ℵ1)) which is sufficient for the
topological result there. Moreover by 3.5 + 2.5 even Pr0,0(ℵ3,ℵ3,2, (ℵ0,ℵ1))
holds, see 2.10 so there is a topological space as desired in [2] with weight
ℵ3, see 2.11(2).

We can also generalize the other conclusion of [6, Ch. III, §4] replacing
θ by (θ0, θ1). This may be dealt with later. Also in [12] and better [13] we
intend to improve 2.11 for most cardinals.

We thank Shimoni Garti and the referee for pointing out many missing
points.

2. Definitions and some connections

Definition 2.1. Assume λ ≥ µ ≥ σ+ θ0 + θ1, θ̄ = (θ0, θ1); if θ0 = θ1 we
may write θ0 instead of θ̄.

1) Let Pr0(λ, µ, σ, θ̄) mean that there is c : [λ]2 → σ witnessing it which
means:
(∗)c if (a) then (b) where:

(a) (α) for ι = 0,1, ζ̄ι = �ζια,i : α < µ, i < iι� is a sequence without rep-

etitions of ordinals < λ and Rang(ζ̄0),Rang(ζ̄1) are disjoint and i0 < θ0,
i1 < θ1

(β) h : i0 × i1 → σ
(b) for some α0 < α1 < µ we have:

• if i0 < i0 and i1 < i1 then c{ζ0α0,i0
, ζ1α1,i1

} = h(i0, i1).

2) For ι ∈ {0, 1} let Pr0,ι(λ, µ, σ, θ̄) be defined similarly but we replace
(a)(β) and (b) by (a)(β)′ and (b)′, where

(a) (β)′ h : iι → σ
(b)′ for some α0 < α1 < µ we have

•′ if i0 < i0 and i1 < i1 then c{ζ0α0,i0
, ζ1α1,i1

} = h(iι).

3) Let Pruf0,ι(λ, µ, σ, θ̄) mean that some c : [λ]2 → σ witnesses it which
means:
(∗)ufc if (a) then (b) where

(a) (α) as above
(β) h : iι → σ and D is an ultrafilter on i1−ι

(b) for some α0 < α1 < µ we have
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• if i < iι then {j < i1−ι : c{ζ
ι
αι,i

, ζ1−ι
α1−ι,j

} = h(i)} belongs to D.

Definition 2.2. Assume λ ≥ µ ≥ σ+ θ0+ θ1, θ̄ = (θ0, θ1). Let Pr1(λ,µ,
σ, θ̄) mean that there is c : [λ]2 → σ witnessing it, which means:
(∗)c if (a) then (b), where:

(a) for ι = 0, 1, iι < θι and ζ̄ι = �ζια,i : α < µ, i < iι� are sequences of

ordinals of λ without repetitions, Rang(ζ̄ι) are disjoint and γ < σ
(b) there are α0 < α1 < µ such that ∀i0 < i0, ∀i1 < i1,c{ζ

0
α0,i0

, ζ1α1,i1
}

= γ.

Remark 2.3. 1) So if θ0 = θ = θ1 and θ̄ = (θ0, θ1) then for ℓ ∈ {0, 1},
Prℓ(λ, µ, σ, θ̄) is Prℓ(λ, µ, σ, θ) from [6, Ch. III].

2) We do not write down the monotonicity and trivial implications con-
cerning Definitions 2.1 and 2.5 below.

3) The disjointness of {ζ0α,i : α < µ, i < i0}, {ζ
1
α,i : α < µ, i < i1} in Defi-

nition 2.1(1)(a)(α) and 2.1(2), 2.1(3) and 2.2(a) is not really necessary.

Notation 2.4. pr : Ord×Ord → Ord is the standard pairing function.

Variants are

Definition 2.5. Let λ ≥ µ ≥ σ + θ0 + θ1 and θ̄ = (θ0, θ1).
1) Let Qr0(λ, µ, σ, θ̄) mean that there is c : [λ]2 → σ witnessing it which

means:
(∗)c if (a) then (b) where

(a) (α) uια ∈ [λ]<θι for ι < 2 and α < µ
(β) uα = u0α ∪ u1α for every α < µ
(γ) �uα : α < µ� are pairwise disjoint
(δ) hι

α : uια → σ for ι < 2, α < µ and pr : σ × σ → σ
(b) for some α0 < α1 < µ for every (ζ0, ζ1) ∈ (u0α0

× u1α1
) we have

ζ0 < ζ1 and c{ζ0, ζ1} = pr(h0
α0
(ζ0), h

1
α1
(ζ1)).

2) Let Qr0,ι(λ, µ, σ, θ̄) be defined similarly but each h1−ι
α is constant.

3) Let Qr1(λ, µ, σ, θ̄) be defined as above but each h0
α and each h1

α is a
constant function.

4) Let Qruf0,ι(λ, µ, σ, θ̄) be defined parallely to Definition 2.1.

So, e.g.

Observation 2.6. 1) If cf(µ) ≥ σ+, then Pr1(λ,µ, σ, θ̄) is equivalent to
Qr1(λ, µ, σ, θ̄).

2) Recall that Prℓ(λ, µ, σ, θ) is Prℓ(λ, µ, σ, (θ, θ)).
3) Qr0(λ, µ, σ, θ̄) implies Pr0(λ, µ, σ, θ̄); similarly for the other variants,

Qr0,ι,Qruf0,ι.

Proof. Should be clear. �2.6

Observation 2.7. Let θ̄ = (θ0, θ1) and ι ∈ {0, 1}.

Acta Mathematica Hungarica

THE COLOURING EXISTENCE THEOREM REVISITED

Sh:1027



Acta Mathematica Hungarica

44 S. SHELAH

1) If ι < 2, ∂ < θι ⇒ σ∂ < cf(µ) and θ0, θ1 < cf(µ), then Pr0,ι(λ, µ, σ, θ̄)
is equivalent to Qr0,ι(λ, µ, σ, θ̄).

2) If ∂ < θ0 + θ1 ⇒ σ∂ < cf(µ), then Pr0(λ, µ, σ, θ̄) ⇔ Qr0(λ, µ, σ, θ̄).

Proof. Obvious but we elaborate.
1) By 2.6(3) we have one implication; so assume Pr0,ι(λ, µ, σ, θ̄) and we

shall prove Qr0,ι(λ, µ, σ, θ̄), so let uα = u0α ∪ u1α for α < µ and hι
α : uια → σ

and pr : σ × σ → σ be as in Definition 2.5(1) and each h1−ι
α is constant.

We should prove that there are α0 < α1 < µ as promised in Definition
2.5(2). As |u1−ι

α | < θ1−ι and θ1−ι < cf(µ), without loss of generality for some
ε1−ι < θ1−ι we have α < µ ⇒ otp(u1−ι

α ) = ε1−ι. As θι < cf(µ) hence without
loss of generality for some ει < θι we have α < µ ⇒ otp(uια) = ει. Moreover,
noting σ|ει| < cf(µ), without loss of generality {(otp(ζ ∩uια), h

ι
α(ζ)) : ζ ∈ uια}

is the same for all α < µ. Now we can apply Pr0,ι(λ, µ, σ, θ̄).
2) Similarly. �2.7

Claim 2.8. 1) Let ι < 2. If Pr1(λ, µ, σ1, θ̄) and λ = µ = cf(µ), θ̄ =
(θ0, θ1), θ = θ0 + θ1 < µ and 2χ ≥ λ, χ<θι + (σ2)

<θι ≤ σ1 and χ<θι < µ and

(σ2)
<θι < µ then Pr0,ι(λ, µ, σ2, θ̄) and Qr0,ι(λ, µ, σ2, θ).

1A) If the assumptions of part (1) hold for both ι = 0 and ι = 1, then we

can conclude Pr0(λ, µ, σ2, θ̄) and Qr0(λ, µ, σ2, θ̄).
2) If λ = σ+ and σ = σ<θι then Pr0,ι(λ, λ, σ, θ̄) implies Pr0,ι(λ, λ, λ, θ̄).

3) If λ = σ+ and σ = σ<(θ0+θ1) then Pr0(λ,λ,σ, θ̄) implies Pr0(λ,λ,λ, θ̄).
4) If Pr1(λ,µ, σ, θ̄) and σ ≤ χ = χ<(θ0+θ1) < λ ≤ 2χ then Pr0(λ,µ, σ, θ̄).
5) If Pr1(λ, λ, λ, θ̄), λ = ∂+ and ∂ = ∂<(θ0+θ1) then Pr0(λ, λ, λ, θ̄).

Remark 2.9. 1) Claim 2.8(1) is similar to [6, Ch. III, 4.5(3), pp. 169-
170] but we shall elaborate.

2) The condition λ = µ can be omitted if we systematically use c : λ× λ

→ σ.

Proof. 1) Recalling λ ≤ 2χ and χ<θι + (σ2)
<θι ≤ σ1 hence χ<θι +2<θι

≤ σ1, choose
(∗)1 (a) Aα ⊆ χ (for α < λ) which are pairwise distinct.

(b) Let {(ai, di) : i < σ1} be a list (maybe with repetitions) of the
pairs (a, d) satisfying a ⊆ χ, |a| < θι and d a function from P(a) to σ2 such
that

∣

∣

{

b : b ⊆ a and d(b) �= 0
}∣

∣ < θι.

Choose
(∗)2 c to be a symmetric two-place function from λ to σ1 exemplifying

Pr1(λ, µ, σ1, θ̄).
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Now we define the two place function d from λ to σ2 as follows: for α0 < α1:

d(α0, α1) = d(α1, α0) := dc(α0,α1)(Aαι
∩ ac(α0,α1)).

We shall show that d witnesses Qr0,ι(λ,µ,σ2, θ̄) thus finishing upon using

Observation 2.7(1) which yields the parallel assertion about Pr0,ι(λ, µ, σ2, θ̄)
because its assumption on the cardinals follows from those of 2.8(1), i.e.

recall λ = µ = cf(µ) and θ0 + θ1 < λ so θι < cf(µ) and σ<θι
2 < µ. So let �tα :

α < µ� be pairwise disjoint subsets of λ, tα = t0α ∪ t1α and hι
α : tια → σ2 such

that h1−ι
α is constant, |t0α| < θ0, |t

1
α| < θ1 and pr : σ2 × σ2 → σ2. As λ = µ =

cf(µ) without loss of generality α < β < µ ⇒ sup(tα) < min(tβ). We have to
find α0 < α1 as in the definition of Qr0,ι(λ,µ, σι, θ̄) see Definition 2.5. As by

assumption µ = cf(µ) > θ and, of course, α < µ ∧ ℓ < 2 ⇒ otp(tℓα) < θℓ ≤ θ
without loss of generality there are ε∗0 < θ0, ε

∗
1 < θ1 such that

∧

α

otp(tℓα) = ε∗ℓ

for ℓ = 0, 1.
For each α < µ and ℓ < 2 let tℓα = {ζℓα,ε : ε < ε∗ℓ} with ζℓα,ε increasing with

ε. As |{�hι
α(ζ

ι
α,ε) : ε < ε∗ι � : α < µ}| ≤ σ

|ε∗ι |
2 ≤ σ<θι

2 < µ = cf(µ), without loss

of generality hι
α(ζ

ι
α,ε) = ξιε < σ2 for all ε < ε∗ι and h1−ι

α (ζ1−ι
α,ε ) = ξ1−ι

ε which

does not depend on α. Renaming without loss of generality pr(ξ0
ε(0), ξ

1
ε(1)) =

ξε(ι), so rename it ξε(ι) for ε(0) < ε∗0, ε(1) < ε∗1.
We should find α0 < α1 < µ such that for ε0 < ε∗0, ε1 < ε∗1 we have

ζα0,ε0 <ζα1,ε1 (which follows) and d(ζ0α0,ε0 , ζ
1
α1,ε1)=pr(h0

α0
(ζ0α0,ε0), h

1
α1
(ζ1α1,ε1))

which is equal to pr(ξε0, ξε1). Choose aα ⊆ χ, |aα| = |ε∗ι | < θι such that
�Aζι

α,ε
∩ aα : ε < ε∗ι � is a sequence of pairwise distinct subsets of aα. As

cf(µ) = µ > χ<θι without loss of generality for every α < λ = µ we have
aα = a∗ and Aζι

α,ε
∩ a∗ = a∗ε for all ε < ε∗ι .

For some i < σ1 we have ai = a∗ and di(a
∗
ε) = ξε for every ε < ε∗ι . By

the choice of c for some α0 < α1 < µ the function c↾tα0
× tα1

is constantly i,
so ε0 < ε∗0 ∧ ε1 < ε∗1 ⇒ c(ζ0α0,ε0 , ζ

1
α1,ε1) = i, hence for every (ε0, ε1) ∈ ε∗0 × ε∗1

we have

d(ζ0α0,ε0 , ζ
1
α1,ε1)=di(Aζι

αι,ει
∩ai) = di(a

∗
ει)=ξει =pr(h0

α0
(ζ0α0,ε0), h

1
α1
(ζ1α1,ε1))

as required.
1A) Similarly.
2) Similar to part (3), see remarks inside its proof.
3) Let θ = θ0 + θ1 but for part (2) we let θ = θℓ and let c1 : [λ]

2 → σ
witness Pr0(λ, λ, σ, θ̄) and let f̄ = �fα : α < λ� be such that fα is a one-to-
one function from σ onto σ + α. Let �Aα : α < λ� be a sequence of pairwise
distinct subsets of σ and let �(ai, di) : i < σ� list the pairs (a, d) such that
a ∈ [σ]<θ, d : P(a)×P(a) → σ and |{(b1, b2) : b1 ⊆ a, b2 ⊆ a and c1(b1, b2)
�= 0}| < θ; for part (2) we use d : P(a) → σ.
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Now we define c2 : [λ]
2 → λ as follows: for α < β < λ let c2({α, β}) =

fβ((dc1({α,β})(Aα ∩ ac1({α,β}), Aβ ∩ ac1({α,β})))).

So let ζ̄ι = �ζια,i : α < λ, i < iι� for ι < 2 and h : i0× i1 → λ be as in Defini-

tion 2.1(1) but for part (2), h : iℓ → λ, see 2.1(2). For ι = 0,1 for each α < λ
and i < iι we can find aα,ι ∈ [σ]<θι such that b̄α,ι := �Aζι

α,i
∩ aα,ι : i < iι� is

a sequence of pairwise distinct sets.
Without loss of generality α < λ ∧ ι < 2 ⇒ aα,ι = aι, b̄

ι
α = b̄ι; also with-

out loss of generality sup(Rang(h)) ≤ min{ζια,i : α < λ, i < iι and ι < 2}.

Next let β̄ι
α = �βι

α,i0,i1
: i0 < i0 and i1 < i1� be a sequence of ordinals < σ

such that fζι
α,i1

(βι
α,i0,i1

) = h(i0, i1) and without loss of generality β̄ι
α = β̄ι;

actually for part (3) we use only fζι
α,i1

but for part (2) we use fζι
α,iι

for the ι

from there.
Let a = a0 ∪ a1 so a ∈ [σ]<(θ0+θ1) and let d : P(a)×P(a) → σ be such

that d(b0i0 , b
1
i1
) = β1

i0,i1
and d(b0, b1) = 0 if b0, b1 ⊆ a and (b0, b1) �∈ {(b0i0 , b

1
i1
) :

i0 < i0, i1 < i1}. Let j < σ be such that (aj, dj) = (a, d).
Lastly, by the choice of c1 we can find α < β such that i0 < i0 ∧ i1 < i1

⇒ c1({ζ
0
α,i0

, ζ1α,i1}) = j; and now check.

4) Similarly to the proof of part (3).
5) As Pr1(λ,λ,λ, θ̄) by monotonicity we have Pr1(λ,λ, ∂, θ̄) hence by part

(4) we have Pr0(λ, λ, ∂, θ̄) and now by part (3) we can deduce Pr0(λ, λ, λ, θ̄)
as promised. �2.8

In Juhász–Shelah [2] we use Col(λ, κ), i.e. Pr0(λ, λ, 2, κ
+) quoting [6,

Ch. III, §4] that e.g. (λ, κ) = ((2ℵ0)++ + ℵ4,ℵ0) is O.K. But in fact less suf-
fices (see Definition 2.1).

Conclusion 2.10. 1) For λ = κ+4 we have Pr1(λ, λ, λ, κ
+) which im-

plies Pr0,0(λ, λ, λ, (ℵ0, κ
+)) and hence trivially Pr0,0(λ, λ, 2, (ℵ0, κ

+)) holds.

2) If Pr0,0(λ,λ,ℵ0, (ℵ0, κ
+)) or just Pruf0,0(λ,λ,ℵ0, (ℵ0, κ

+)), e.g. λ = ℵ4,
κ = ℵ0 then we have:
(∗)λ,κ there is a topological space X such that

(a) X is T3, even has a clopen basis and has weight ≤ λ
(b) the closure of any set of ≤ κ points is compact
(c) any infinite discrete set has an accumulation point
(d) the space is not compact
(e) some non-isolated point is not the accumulation point of any dis-

crete set.

Proof. 1) First we apply Theorem 3.2 (or [6, Ch. III, §4]) with
(κ+4, κ+3, κ+) here standing for (λ, ∂, θ) there. Clearly the assumptions
there hold hence Pr1(κ

+4, κ+4, κ+4, κ+) holds.
Second, we apply Claim 2.8(1) with 0, κ+4, κ+4, κ+3, κ+3, κ+, ℵ0, κ

+,
κ+3 here standing for ι, λ, µ, σ1, σ2, θ, θ0, θ1, χ there. Clearly the assump-
tions there hold because:
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•1 “Pr1(λ,µ, σ1, θ̄)” there means Pr1(κ
+4, κ+4, κ+3, (ℵ0, κ

+)) here which
holds by the “first” above and monotonicity

•2 “χ<θι < µ” there means “(κ+3)<ℵ0 < κ+4”
•3 “χ<θι ≤ σ1” there means “(κ+3)<ℵ0 ≤ κ+3”

•4 “2χ ≥ λ” there means “2κ
+3

≥ κ+4”
•5 “σ<θι

2 ≤ σ1” there which means here “(κ+3)<ℵ0 ≤ κ+3”

•6 “σ<θι
2 < µ” there which means here (κ+3)<ℵ0 < κ+4

So all of them hold indeed.
Next, the conclusion of 2.8(1) is Pr0,ι(λ, µ, σ2, θ̄) which here means

Pr0,0(κ
+4, κ+4, κ+3, (ℵ0, κ

+)).
Lastly, by 2.8(2) we get Pr0,0(κ

+4, κ+4, κ+4, (ℵ0, κ
+)).

2) By Claim 2.13 below, which generalize the proof of Juhász–Shelah [2],
that is, let D̄ = �Di : i < �2� list the ultrafilters on σ := ℵ0 and let σi = σ for
i < �2 and θ = κ+. So clause (A) of 2.13 below holds, hence we can apply
2.13 for (λ, θ) = (λ,κ+) and D̄. So clause (a) of 2.10(2) holds by (B)(a)(α) of
2.13, of course; clause (b) of 2.10(2) holds by (B)(a)(γ) recalling the choice
of D̄; clause (c) there holds by (B)(a)(ε); clause (d) there holds by (B)(a)(δ);
and lastly, clause (e) there holds by (B)(b). So we are done. �2.10

Moreover

Claim 2.11. 1) If κ is regular and λ = κ+3 then Pr1(λ, λ, λ, (ℵ0, κ
+))

hence Pr0,0(λ, λ, λ, (ℵ0, κ
+)).

2) (∗)ℵ3,ℵ0
from 2.10(2) holds.

3) (∗)κ+3,κ from 2.10(2) holds for κ regular.

Proof. Like the proof of 2.10 using Theorem 3.5 instead of Theorem
3.2, that is, we apply 3.5 with (ℵ3,ℵ2,ℵ1,ℵ0) standing for (λ, ∂, θ1, θ0). �2.11

We conclude this section with an explicit proof of the topological state-
ment in 2.10(2). We shall need the following:

Definition 2.12. Let X be a topological space, D an ultrafilter over σ.
1) An element y ∈ X is the D-limit of a sequence of points �xj : j < σ�

in X iff y ∈ u ⇒ {j < σ : xj ∈ u} ∈ D whenever u is a open subset of X .
2) X is D-complete iff for every sequence of points �xj : j < σ� in X

there is y ∈ X such that y is the D-limit of the sequence.
3) If D̄ = �Di : i < i∗� is a sequence such that each Di is an ultrafilter

over σi = σ(i) then X is D̄-complete iff X is Di-complete for every i < i∗.

Claim 2.13. If (A) then (B) where
(A) (a) λ = cf(λ) > θ = cf(θ) > ℵ0

(b) D̄ = �Di : i < i∗�, each Di is a non-principal ultrafilter on σi and
σi < θ

(c) Pr0,0(λ, λ, 2, (ℵ0, θ)); yes! Pr0,0 and not Pr0
(B) there is a topological space X and a point g ∈ X such that:
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(a) (α) X is a subspace of λ2 hence has a clopen basis and is a T3-
space

(β) X is a dense subset of λ2 hence has no isolated point and its
weight is λ

(γ) if every non-principal ultrafilter D on a cardinal σ < θ appears
in D̄ then for any set Y ⊆ X of cardinality < θ, the closure of Y is compact

(δ) X is not compact
(ε) any subset of X of cardinality ≥ min{σi : i < i∗} has an accu-

mulation point; so the cardinality can be ℵ0

(ζ) X is D̄-complete
(b) (α) g ∈ X is not an accumulation point of any discrete set Y ⊆

X\{g}
(β) moreover, g is not an accumulation point of any set Y ⊆

X\{g} of cardinality < λ
(c) (α) X has ≤ λ<θ +

∑

σ<θ

22
σ

points

(β) X has ≥ λ points
(d) if i∗ < λ and α < λ ⇒ |α|<θ < λ then

(α) X has no discrete subset of cardinality ≥ λ, moreover
(β) hL+(X) ≤ λ so λ = µ+ ⇒ hL(X) ≤ µ.

Proof.

Stage A: We make some choices:
(∗)1 (a) let c : [λ]2 → {0, 1} witness Pr0,0(λ, λ, 2, (ℵ0, θ))

(b) let h̄∗ = �h∗
α : α < λ� list the finite partial functions from λ to

{0, 1}; without loss of generality dom(h∗
α) ⊆ α

(c) let g ∈ λ2 be constantly 1.
Further

(∗)2 for α < λ we define f∗
α ∈ λ2 as follows:

• for β < λ we let f∗
α(β) be

(a) h∗
α(β) if β ∈ dom(h∗

α)
(b) c{β, α} if β < α ∧ β �∈ dom(h∗α)

Our X will include each f∗
α for α < λ but more.

(∗)3 for β ≤ λ we let
(a) Fβ = {f∗

α : α < β}
(b) F ∗

β = cℓD̄(Fβ), i.e. F
∗
β is the minimal subset of λ2 which includes

Fβ and is D̄-closed
(c) G ∗

β = {f : f ∈ F ∗
λ and f↾[β, λ) is constantly zero}.

So
(∗)4 F ∗

λ is the union of the ⊆-increasing sequence �F ∗
β : β < λ�.

[Why? Clearly �Fβ : β < λ� is ⊆-increasing and as cf(λ) ≥ θ and Di is
an ultrafilter on σi < θ for i < i∗ clearly (∗)4 follows.]

Lastly, we choose X
(∗)5 X is the subspace of λ2 with set of elements F ∗

λ ∪ {g}.
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So it suffices to prove that X, g are as required in the claim.
(∗)6 if f ∈ F ∗

λ then for some triple (u, v,D) we have:

(a) u, v ∈ [λ]<θ

(b) D an ultrafilter on u
(c) f = limD(�f

∗
α : α ∈ u�)

(d) if β ∈ λ\v, then f(β) = 1 ⇔ {α ∈ u : β < α and c{α,β} = 1} ∈ D.
[Why? Recall F ∗

λ is cℓD̄(Fλ) and each Di is an ultrafilter on some
σi < θ]. Hence we can find a sequence �f∗

α : α ∈ [λ, α∗)� listing F ∗
λ\Fλ

and for each such α, i(α) = iα < i∗ and β̄α ∈ σ(i(α))λ are such that f∗
α =

limDi(α)
(�fβα,ε : ε < σi(α)�). As θ is regular, clearly there are u ∈ [λ]<θ and

an ultrafilter D on u such that clause (c) holds.
[Why? If f = f∗

α, α < λ then u = {α} is as required and if f = f∗
α,

α ∈ [λ, α∗) then we can prove this by induction on α.]
Now choose v =

⋃

{dom(h∗
α) : α ∈ u}, clearly u, v are as required. E.g.

if f = f∗
α, α < λ the ultrafilter D is the unique principal ultrafilter on {α};

for (∗)6(d) recall the choice of the f∗
α’s for α < λ.]

(∗)7 if f ∈ F ∗
λ and δ < λ has cofinality ≥ θ, then for some γ < δ, at least

one of the following holds:
(a) if β ∈ [γ, λ) then f(β) = 0
(b) for some u = uf ∈ [λ\δ]<θ and v = vf ∈ [λ\δ]<θ and ultrafilter D

on u we have
• if β ∈ [γ, λ)\vf then f(β) = limD(�c{β, α} : α ∈ u�).

[Why? Let u, v, D be as in (∗)6. If u ∩ δ ∈ D then let γ be sup(u
∩ δ) < δ and by (∗)2(c) + (∗)6(c) clearly clause (a) of (∗)7 holds. So we can
assume u ∩ δ �∈ D and as D is an ultrafilter on u, necessarily u\δ ∈ D. Let
u′ = u\δ, γ = sup(

⋃

{dom(h∗
α)∩ δ : α ∈ u}∪ (v∩ δ))+1 and D′ = D∩P(u′)

and v′ = v\δ, they clearly witness clause (b) of (∗)7. Together we are done.]
(∗)8 (a) if f ∈ F ∗

λ , then for some β < λ we have f ∈ F ∗
β which implies f

is constantly zero on [β, λ)
(b) F ∗

β ⊆ G ∗
β ⊆ F ∗

λ

(c) G ∗
β is ⊆-increasing with β with union F ∗

λ .

[Why? Clause (a) holds by (∗)3(b) + (∗)4 above. Clauses (b), (c) are
easy too recalling (∗)3(a).]

Stage B: Now we check the demands in (B) of the claim.
⊕1 X is a subspace of λ2 [so clause (B)(a)(α) holds] hence X is a T3

topological space with a clopen base.
[Why? By its choice in (∗)5.]
⊕2 X is dense in λ2 hence clause (B)(a)(β) holds.
[Why? By the choice of h̄∗ in (∗)1(b) because h∗

α ⊆ f∗
α for α < λ by

(∗)2(a).]
⊕3 X is Di-complete for every i < i∗ hence clause (B)(a)(ζ) holds.
[Why? By the choice of F ∗

λ in (∗)3(b) because X\F ∗
λ = {g} recalling

λ = cf(λ) > θ.]
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⊕4 λ ≤ |X| ≤ λ<θ +
∑

σ<θ

22
σ

and also |X| ≤ λ<θ + 2θ+|i∗| hence clause

(B)(c) holds.
[Why? Clearly |Fλ| = λ andFλ ⊆ F ∗

λ ⊆ X hence λ ≤ |X|. As |X\F ∗
λ | =

|{g}| = 1 and by (∗)6 the other inequalities follow.]
⊕5 g �∈ cℓ(Y ) when Y ⊆ X\{g} and at least one of the following holds:

(a) |Y | < λ
(b) for some β < λ, Y ⊆ F ∗

β

(c) for some β < λ, Y ⊆ G ∗
β := {f ∈ F ∗

λ : f↾[β, λ] is constantly zero}.

[Why? If clause (a), i.e. |Y | < λ = cf(λ) as �F ∗
β : β < λ� is ⊆-increasing

with union F ∗
λ by (∗)4, necessarily Y ⊆ F ∗

β for some β < λ, i.e. clause (b);

but this in turn implies clause (c) by (∗)8(b).
But if clause (c) holds for β, then g �∈ cℓ(Y ) recalling that g(γ) = 1 for

every γ < λ.]
Now comes a major point using the choice of c, i.e. Pr0,0(λ, λ, 2, (ℵ0, θ)).
⊕6 if Y ⊆ F ∗

λ and β < λ ⇒ Y � G ∗
β then Y is not discrete and even not

left separated (hence, together with ⊕5, clause (B)(b) holds).
[Why? For α < λ choose fα ∈ Y \G ∗

α ⊆ F ∗
λ\Fα hence there is β1

α ∈ [α,λ)
such that fα(β

1
α) = 1 and there is β2

α ∈ (β1
α, λ) such that fα↾[β

2
α, λ) is con-

stantly zero.]
Recall that “Y is left separated (in the space X)” means that there is a

well-ordering <∗ on Y such that for every x ∈ Y the set {y ∈ Y : x <∗ y} is
closed in the induced topology on Y .

Toward contradiction assume Y is discrete or just left separated. Fix
a well-ordering <∗ on Y which witnesses this fact. Clearly we can find U0

∈ [λ]λ such that �β1
α : α ∈ U0� is an increasing sequence of ordinals and on

Y,<∗ and the usual order agree.
Now by the choice of <∗ for some U ∈ [U0]

λ we can find a sequence
h̄ = �hα : α ∈ U �, hα is a finite function from λ to {0,1} satisfying (the state-
ments •0 + •2 by the definition of “<∗ witnesses Y is left separated”; the
statement •1 holds as without loss of generality as increasing hα makes no
harm, and the statement •3 holds without loss of generality because we can
replace U by any U ′ ∈ [U ]λ):

•0 hα ⊆ fα
•1 β1

α, β
2
α ∈ Dom(hα)

•2 if α1 < α2 then hα1
� fα2

. Also (not used)
•3 if α1 < α2 are from U then β2

α1
< β1

α2
hence hα2

� fα1
.

Renaming without loss of generality
•4 U = λ and still β2

α > β1
α ≥ α, fα(β

1
α) = 1 and fα↾[β

2
α, λ) is constantly

zero.
For each δ ∈ S1 := Sλ

θ = {δ < λ : cf(δ) = θ} we consider (∗)7 with (fδ, δ)
here standing for (f, δ) there, now β1

δ ≥ δ, fδ(β
1
δ ) = 1 by •4 hence clause

(∗)7(a) fails, so necessarily clause (∗)7(b) holds. So there is a quadruple
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(γδ, uδ , vδ,Dδ) as there1 and let β3
δ := sup(δ ∩ (dom(hδ))), as hδ is a finite

function, necessarily β3
δ < δ. So by Fodor lemma for some γ∗ < λ the set

S2 = {δ ∈ S1 : γδ, β
3
δ ≤ γ∗ < δ} is stationary hence so is S3 = {δ ∈ S2: if

α < δ then uα, vα ⊆ δ, β1
α < δ, β2

α < δ and dom(hα) ⊆ δ}. As dom(hα) is
finite and range(hα) ⊆ {0, 1} clearly for some h∗, h∗∗ the set S4 = {δ ∈ S3 :
hδ↾δ = h∗ and h∗∗ = {(otp(dom(hδ) ∩ γ), hδ(γ)) : γ ∈ dom(hδ)}} is station-
ary.

For δ ∈ S4 let uδ,0 = Dom(hδ)\Dom(h∗), h
′
δ = hδ↾uδ,0 and uδ,1 = uδ and

recall uδ ∩ δ = ∅ = vδ ∩ δ, see (∗)7(b). Note that Qr0,0(λ, λ, 2, (ℵ0, θ)) holds,
see Definition 2.5(1),(2) for ι = 0, now it holds because we are assum-
ing Pr0,0(λ, λ, 2, (ℵ0, θ)) by 2.7(1). So we can apply the definition of
Qr0,0(λ, λ, 2, (ℵ0, θ)) and the choice of c to �(uδ,0, uδ,1 : δ ∈ S4� and �h′

δ :
δ ∈ S4�. So there are δ1, δ2 such that:

•5 δ1 < δ2 are from S4

•6 if α ∈ uδ1,0 and β ∈ uδ2,1 then c{α, β} = h′
δ1
(α).

Next
•7 if α ∈ uδ1,0 then fδ2(α) = limDδ2

(�c{α, β} : β ∈ uδ2,1 = uδ2�).
[Why? By the choice of (γδ2 , uδ2 ,Dδ2 , h∗, h∗∗) that is recalling (∗)7(b) be-

cause α ∈ uδ1,0 ⇒ α ∈ dom(h′
δ1
)⇒ α ≥ δ1 ⇒ α ≥ γ∗ ≥ γδ2 and α ∈ uδ1,0 ∪ vδ1

⇒ α < δ2.]
•8 if α ∈ dom(h′δ1) then fδ2(α) = h′

δ2
(α).

[Why? By •7 because uδ1,0 = dom(h′
δ1
) and •6.]

•9 h′
δ1

⊆ fδ2 .
[Why? By •8.]
However, hδ1 ⊆ fδ1 by •0 hence h∗ ⊆ hδ1 ⊆ fδ1 but h∗ ⊆ hδ2 � fδ1 by •2

and h′
δ2

= hδ2↾(dom(hδ2)\dom(h∗) hence

•10 h′
δ2

� fδ1 .
But •10 contradict •9, all this follows from the assumption toward con-

tradiction in the beginning of the proof of ⊕6, so ⊕6 holds indeed.
Now we can check all the remaining demands in (B), e.g.
Clause (B)(d)(β): Assume toward contradiction that hL+(X) > λ. This

means that some Y ⊆ X has cardinality λ and is right separated (by some
well ordering). Now without loss of generality g �∈ Y and if β < λ ⇒ Y � G ∗

β

then we get a contradiction by ⊕6. So we are left with the case Y ⊆ G ∗
β

for some β < λ. But by the clause assumption |G ∗
β | ≤ |β|<θ + |i∗| which has

cardinality < λ, so we are done proving (B)(d)(β).
We are done proving 2.13: most clauses of (B) were proved and we have

to add that: clauses (B)(a)(γ) + (ε) hold by the choice of F ∗
λ as X\F ∗

λ =
{g}. Clause (B)(a)(δ) is exemplified by any uniform ultrafilter D on λ such
that {α : f∗

α(0) = r} ∈ D, exists by (∗)3(c) + (∗)8. �2.13

1They depend also on f = fδ, but δ determines f .
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3. The colouring existence

We try to explain the proof of 3.1, 3.5; probably more of it will make
sense after reading part of the proof.

Claim 3.1 should be understood as follows: given a set S and functions
Fι : S → κι for ι = 0, 1 and a sequence ̺ ∈ ω>S,d(̺) is a natural number
which in the interesting case is a “place in the sequence”, i.e. d(̺) < ℓg(̺).

In the interesting cases, ̺ = η0ˆν0ˆρˆν1ˆη1 is as constructed during the
proof of 3.5, and if (B)(a)-(d) of 3.1 holds, ℓg(η0) + ℓ4 is a place in the
sequence; so 3.1 tells us that it depends only on ̺ (and not on the represen-
tation (η0, ν0, ρ, ν1, η1) of ̺).

How does d help us in the proof of Theorem 3.5?
We shall describe it for the case of θ1 colours, i.e. σ = θ1 and the colour-

ing is called c1. Let (κ0, κ1, κ2) = (θ0, θ1, λ). We shall be given pairwise
disjoint tα = t0α ∪ t1α for α < λ and a colour j∗ < θ1 such that |tια| < θι for
ι = 0, 1 and α < λ and we shall carefully choose α0 < α1 exemplifying the
desired conclusion.

Toward choosing the pair (α0, α1) we also choose δ0 < δ1 < δ2 < δ3 which
will be from (α0, α1) such that sup(tα0

) < δ0 and ℓ4 such that:
(a) we let ν0 = ρh̄(δ3, δ2), ρ = ρh̄(δ2, δ1), ν1 = ρh̄(δ1, δ0) where ρh̄(δ

′, δ′′) is
derived from the sequence ρ(δ′, δ′′), see before ⊙2 in the proof of 3.5

(b) ℓ4 < ℓg(ν0) and h′(F1(ν0(ℓ4))) = j∗ where h′ : κ1 → κ2 is chosen in
⊙7 in the proof 3.5

(c) let ζ0 ∈ t0α0
and ζ1 ∈ t1α1

and define η1,ζ0 = ρh̄(δ0, ζ0), η0,ζ1 = ρh̄(ζ1, δ3)
(d) continuing clause (c) by the construction ̺ζ1,ζ0 := ρh̄(ζ1, ζ0) is equal

to η0,ζ1ˆν0ˆρˆν1ˆη1,ζ0 .
So naturally we choose the colouring c1 such that

c1(α0, α1) = h′(F1(̺(ℓg(η0) + ℓ4)))

and 3.1 tells us that assuming (a)-(d) this will be j∗. Note it is desirable
that in 3.1, the sequences η0, η1 in a sense have little influence on the result,
as they vary, i.e. we like to get j∗ for every ζ0 ∈ t0α0

, ζ1 ∈ t1α1
.

Why do we demand in clause (b), h2(F1(ν0(ℓ4))) = j∗ and not simply
F1(ν0(ℓ4)) = j∗ and similarly when defining c1 in ⊙7 in the proof? Because
we do not succeed to fully control F1(ν0(ℓ4)), but just to place it in some
stationary S ⊆ θ1, however we can use θ1 pairwise disjoint stationary set and
h1 tells us which one.

When we choose α0 < α1 (in stage C of the proof) we first choose a
pair δ1 < δ2 hence ρ (in ⊕0 of the proof), then we choose an ordinal δ0 < δ1
hence ν1 (in ⊕0.1 of the proof) then ε∗ ∈ sδ2 ⊆ κ1 after ⊕0.2 of the proof,
(see below) large enough. Only then using ε∗ we choose δ3 and then α1

(also after ⊕0.2) hence η0,ζ for ζ ∈ t1α1
. Lastly, we choose α0 < δ0 hence η1,ζ0

for ζ0 ∈ t0α0
. Of course, those choices are under some restrictions. More
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specifically, (in stage B) though not determining any of η0,ζ0 , ν0, ρ, ν1, η1,ζ1
we restrict them in some ways.

Earlier, we first in (∗)1 choose U
up
1 , α∗

1, ε
up
1,1, ε

up
1,0 with the intention

that α1 ∈ U
up
1 “promising” that if α1 ∈ U

up
1 then Rang(F1(η0)) ⊆ ε

up
1,1 < κ1,

i.e. ζ1 ∈ t1α1
⇒ Rang(F1(η0,ζ1)) ⊆ ε

up
1,1, similarly in the further steps below.

Second we do not “know” for which ε < κ we shall use Sκ1
κ0,ε

⊆ κ1, so we

consider all of them, i.e. in (∗)2 we choose U
up
2,ε , g2,ε, γ∗ε , α∗

2,ε satisfying

g2,ε : U
up
2,ε → U

up
1 such that later δ3 ∈ U

up
2,ε and α1 = g2,ε(δ3). We still do

not know what ν2 will be hence how to compute ℓ4, but ρh̄(α1, δ3) will be
part of it and for each ε < κ1 we can compute ℓ2,ε which will be the first
place ℓ in ν0 in which F2(ν0(ℓ)) = ε, see (∗)2(f).)

In (∗)3 we choose U
up
4 , U up

3 , g33,ε, α
∗
3 and �sδ : δ ∈ U

up
ℓ � giving another

part of ν0. Then in (∗)4 we deal further with ν0, in particular sδ ⊆ κ1 is a
stationary subset of Sκ1

κ0,j∗
, promising F1(ν2(ℓ4)) ∈ sδ2 .

Next we work on restricting the choices from below, choosing U dn
1 , εdn1,0,

εdn1,1 in (∗)5 promising δ0 ∈ U dn
1 so this restricts η1.

Lastly, in (∗)6 we choose U dn
2 , εdn2,0, ε

dn
2,1 promising δ1 ∈ U dn

2 (recalling
ν1 = ρh̄(δ1, δ2)).

Claim 3.1. Assume κ1, κ0 are cardinals and S is a set. There is a

function d : ω>S → N such that (A) ⇒ (B) where
(A) (a) Fι : S → κι for ι = 0, 1

(b) for ̺ ∈ ω>S and ι < 2 we let Fι(̺) = �Fι(̺(ℓ)) : ℓ < ℓg(̺)�
(c) we stipulate maxRang(Fι(��)) = −1

(B) d(̺) = ℓ•4 when ̺ = η0ˆν0ˆρˆν1ˆη1 satisfies (note that ℓ1, ℓ
•
4–ℓg(η0)

are places in ν0, ℓ3 is a place in ν1, ℓ
∗
2 is a place in ρ and ℓ•2, ℓ

•
4 is a place

in ̺ and u ⊆ {ℓg(ν0) + ℓ : ℓ < ℓg(ν0)}) the following :
(a) (α)

maxRang(F1(̺)) = max(Rang(F1(ν0)) > max(Rang(F1(η0ˆρˆν1ˆη1))

(β) let ℓ1 = min{ℓ < ℓg(ν0) : F1(ν0(ℓ)) = maxRang(F1(̺))} so

ℓ1 < ℓg(ν0)
(b) (α) maxRang(F0(̺↾(ℓg(η0) + ℓ1, ℓg(̺)))) = maxRang(F0(ρ)) >

maxRang(F0(ν0↾[ℓ1, ℓg(ν0))ˆν1ˆη1)
(β) let ℓ•2 = min{ℓ < ℓg(̺) : ℓ ≥ ℓg(η0) + ℓ1 and

F0(̺(ℓ)) = maxRang(F0(̺↾(ℓg(η0) + ℓ1, ℓg(̺))))}

so ℓ•2 < ℓg(̺) and ℓ∗2 = ℓ•2 − ℓg(η0ˆν0)
(γ) hence ℓ•2 ∈ [ℓg(η0ˆν0), ℓg(η0ˆν0ˆρ)) and ℓ∗2 < ℓg(ρ)
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(c) (α)

maxRang(F1(ν0)) > maxRang(F1(̺↾[ℓ
•
2, ℓg(̺)))

= maxRang(F1(ν1)) > max{F1(ρ(ℓ)) : ℓ ∈ [ℓ∗2, ℓg(ρ))}

(β) ℓ3 is such that
•1 ℓ3 < ℓg(ν1)
•2 F1(ν1(ℓ3)) = max{F1(̺)(ℓ) : ℓ ≥ ℓ•2}
•3 ℓ3 is minimal under the above

(d) (α) let u := {ℓ : ℓ ≤ ℓ•2 and F1(̺)(ℓ) ≥ F1(ν1(ℓ3))}
(β) ℓ•4 ∈ u is such that

•1 F1(̺(ℓ
•
4)) = min{F1(̺(ℓ)) : ℓ ∈ u}

•2 under •1, ℓ
•
4 is minimal

•3 notation: if ℓ•4 ∈ [ℓg(η0), ℓg(η0ˆν0)) then we let

ℓ∗4 = ℓ•4 − ℓg(η0).

Proof. Assume ̺ ∈ ω>S. We have to show that d is well de-
fined, i.e. d(̺) = ℓ•4 does not depend on the specific representation of ̺ as
η0ˆν0ˆρˆν1ˆη1, i.e. we shall prove that ℓ•4 depends on ̺ only.

Toward this
(a) ℓg(η0) + ℓ1 depends on ̺ only
[Why? Let ℓ•1 be the first natural number so that

F1(̺(ℓ
•
1)) = maxRang(F1(̺)).

By the strict > in (B)(a)(α) we must have ℓg(η0) ≤ ℓ•1. Although one can
decompose ̺ in different ways, yielding different values to ℓg(η0), the sum
ℓg(η0) + ℓ1 will be always ℓ•1, by the definition of ℓ1. Now since only ̺ is
mentioned in the definition of ℓ•1 we conclude that ℓg(η0) + ℓ1 = ℓ•1 depends
on ̺ only.]

(b) ℓ•2 depends on ̺ only by a similar argument, this time for the func-
tion F0

(c) ℓg(η0ˆν0ˆρ) + ℓ3 depends on ̺ only (for this statement notice that
ρ �= ��, by (b)(α))

(d) {ℓg(η0) + ℓ : ℓ ∈ u} depends on ̺ only
(e) ℓ•4 depends on ̺ only.
By (e) clearly we are done. �3.1

Theorem 3.2. Assume ℵ0 ≤ θ = cf(θ), λ ≥ θ+3 and λ is a successor of
a regular cardinal. Then Pr1(λ, λ, λ, θ) holds.

Proof. Firstly, let us spell out the definition of Pr1.
Recall that λ ≥ µ ≥ σ, θ0, θ1 and let θ̄ = (θ0, θ1). Pr1(λ, µ, σ, θ̄) means

that there exists a function c : [λ]2 → σ such that for every two disjoint se-
quences �ζ0α,i : α < µ, i < i0�, �ζ

1
α,i : α < µ, i < i1� of ordinals < λ (without
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repetitions) such that i0 < θ0, i1 < θ1 and for every γ < σ, one can find
α0 < α1 < µ so that:

(∗) if i0 < i0 and i1 < i1 then c(ζ0α0,i0
, ζ1α1,i1

) = γ.

It follows from the definition that if θ′1 ≤ θ1 and Pr1(λ, µ, σ, (θ0, θ1))
then Pr1(λ, µ, σ, (θ0, θ

′
1)). Let θ0 = θ, θ1 = θ+ by Theorem 3.5 below we

have Pr1(λ,λ, λ, (θ0, θ1)) and since θ0 < θ1 we have by the previous sentence
Pr1(λ, λ, λ, (θ0, θ0)) which is also denoted Pr1(λ, λ, λ, θ0), see Observation
2.6, so we are done by noticing that θ0 of 3.5 is θ here. �3.2

Remark 3.3. 1) Can we replace θ by (θ+, θ)?
2) Or, at least when θ = ℵ0, λ = ℵ2 for (θ, θ+) with an ultrafilter on

the < θ+ sets? and 2 colours? may try to use the proof of the ℵ2-c.c. not
productive from [11].

3) For many purposes, Pr1(λ, λ, 2, (θ, θ
+)) suffices and for this the proof

(in 3.5) is somewhat simpler.

Conclusion 3.4. Assume λ = ∂+, ∂ = cf(∂) > θ+, θ = cf(θ) ≥ ℵ0

(a) if there is χ = χ<θ < λ ≤ 2χ and χ ≥ σ (so σ ≤ ∂), then Pr0(λ,λ,σ, θ)
(b) if χ = ∂ satisifes χ = χ<θ then Pr0(λ, λ, λ, θ).

Proof. Clause (a): We apply 2.8(4) with (λ,λ,χ, σ, θ, θ) here standing
for (λ, µ, χ, σ, θ0, θ1) there. We have to check the assumption of 2.8(4), the
main point is “Pr1(λ,λ, σ, (θ, θ))” which holds by Theorem 3.2, the other as-
sumptions are straightforward hence we get the conclusion, i.e. Pr0(λ,λ,σ, θ̄).

Clause (b): First, Pr0(λ, λ, ∂, θ) holds as we can apply Clause (a) with
(λ, ∂, ∂, ∂, θ) here standing for (λ, ∂, χ, σ, θ̄) there.

Second, we get Pr0(λ, λ, λ, θ) holds as we can apply 2.8(3) with (λ, ∂, θ)
here standing for (λ, σ, θ) there. �3.4

Theorem 3.5. If λ is a successor of a regular cardinal, λ ≥ θ+1 and

θ1 > θ0 ≥ ℵ0 are regular cardinals, then Pr1(λ, λ, λ, (θ0, θ1)).

Proof. Stage A: Let ∂ be the regular cardinal such that λ = ∂+, so
∂ ≥ θ1.

Below we shall choose σ and κι (for ι = 0,1,2) to help in using this proof
for proving other theorems.

Let σ = λ. Let S ⊆ Sλ
∂ be stationary and h : λ → σ be such that α < λ

⇒ h(α) < 1 + α, h↾(λ\S) is constantly zero and S∗
γ := {δ ∈ S : h(δ) = γ} is

a stationary subset of λ for every γ < λ. Let (κ0, κ1, κ2) = (θ0, θ1, σ) and
let Fι : λ = σ → κι for ι = 0,1,2 be such that for every (ε0, ε1, ε2) ∈ (κ0 × κ1

× κ2) the set Wε0,ε1,ε2(κ) = {γ ∈ Sλ
κ : Fι(γ) = ει for ι ≤ 2} is a stationary

subset of λ for every κ = cf(κ) < λ.
Let ē = �eα : α < λ� be such that
⊙1 (a) if α = 0 then eα = ∅

(b) if α = β + 1 then eα = {β}
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(c) if α is a limit ordinal then eα is a club of α of order type cf(α)
disjoint to Sλ

∂ hence to S.
Let2 hα = h↾eα for α < λ and h̄ = �hα : α < λ�. Note that hα is non-zero

only for successor α. We shall mostly use the hα’s rather than h.
Now (using ē) for 0 < α < β < λ, let

γ(β, α) := min{γ ∈ eβ : γ ≥ α}.

Let us define γℓ(β, α):

γ0(β, α) = β, γℓ+1(β, α) = γ(γℓ(β, α), α) (if defined).

If 0 < α < β < λ, let k(β, α) be the maximal k < ω such that γk(β, α) is
defined (equivalently is equal to α) and let ρβ,α = ρ(β, α) be the sequence

〈

γ0(β, α), γ1(β, α), . . . , γk(β,α)−1(β, α)
〉

.

Let γℓt(β, α) = γk(β,α)−1(β, α) where ℓt stands for last.
Let

ρh̄(β, α) =
〈

hγℓ(β,α)(γℓ+1(β, α)) : ℓ < k(β, α)
〉

and we let ρ(α,α) and ρh̄(α,α) be the empty sequence. Now clearly:
⊙2 if 0 < α < β < λ then α ≤ γ(β, α) < β
hence
⊙3 if 0 < α < β < λ, 0 < ℓ < ω, and γℓ(β, α) is well defined, then

α ≤ γℓ(β, α) < β

and
⊙4 if 0 < α < β < λ, then k(β,α) is well defined and letting γℓ := γℓ(β,α)

for ℓ ≤ k(β, α) we have

α = γk(β,α) < γℓt(β, α) = γk(β,α)−1 < · · · < γ1 < γ0 = β

and

α ∈ eγlt(β,α)

i.e. ρ(β,α) is a (strictly) decreasing finite sequence of ordinals, starting with
β, ending with γℓt(β, α) of length k(β, α).

Note that if α ∈ S,α < β then γlt(β, α) = α+ 1.

2For successor of regular we can omit hα and below replace h̄ and h− by h and even let
ρh(β, α) = �h(γℓ(β, α)) : ℓ < k(β,α)�; but for other cases the present version is better, see more [6,
Ch. III, §4]. But in later stages we may use h directly, e.g. the proof of (∗)1.
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Also
⊙5 if δ is a limit ordinal and δ < β < λ, then for some α0 < δ we have:

α0 ≤ α < δ implies:
(i) for ℓ < k(β, δ) we have γℓ(β, δ) = γℓ(β, α)
(ii) δ ∈ nacc(eγℓt(β,δ)) ⇔ δ = γk(β,δ)(β, δ) = γk(β,δ)(β,α)⇔¬[γk(β,δ)(β, δ)

= δ > γk(β,δ)(β, α)]
(iii) ρ(β, δ) � ρ(β, α); i.e. is an initial segment
(iv) δ ∈ nacc(eγℓt(β,δ)) (here always holds if δ ∈ S) implies:

• ρ(β, δ)ˆ�δ� � ρ(β, α) hence
• ρh̄(β, δ)ˆ�hγℓt(β,δ)(δ)� � ρh̄(β, α).

(v) if cf(δ) = ∂ then we have γℓt(β, δ) = δ + 1
(vi) if cf(δ) = ∂ and δ ∈ eα, then necessarily α = δ + 1.

Why? Just let

α0 = Max
{

sup(eγℓ(β,δ) ∩ δ) + 1 : ℓ < k(β, δ) and δ �∈ acc(eγℓ(β,δ))
}

.

Notice that if ℓ < k(β, δ)− 1 then δ �∈ acc(eγℓ(β,δ)) is immediate.
Note that the outer maximum (in the choice of α0) is well defined as it

is over a finite non-empty set of ordinals. The inner sup is on the empty
set (in which case we get zero) or is the maximum (which is well defined)
as eγℓ(β,δ) is a closed subset of γℓ(β, δ), δ < γℓ(β, δ) and δ �∈ acc(eγℓ(β,δ)) – as

this is required. For clauses (v), (vi) recall δ ∈ Sλ
∂ and eγ ∩ Sλ

∂ = ∅ when γ
is a limit ordinal and eγ = {γ − 1} when γ is a successor ordinal.

⊙6 (a) if 0 < α < β < λ, ℓ < k(β, α), γ = γℓ(β, α) then

ρ(β, α) = ρ(β, γ)ˆρ(γ, α) and ρh̄(β, α) = ρh̄(β, γ)ˆρh̄(γ, α)

(b) if 0 < α0 < · · · < αk and ρ(αk, α0) = ρ(αk, αk−1)ˆ . . . ˆρ(α1, α0)
then this holds for any subsequence of �α0, . . . , αk�.

Now apply Claim 3.1 with λ, κ1, κ0, F1, F0 here standing for S, κ1, κ0,
F1, F0 there and get d : ω>λ → N.

Lastly, we define the colouring; as the proof is somewhat simpler if we use
only κ1 colours (which suffice for many purposes) we define two colourings:
c1 with κ1 colours and c2 with κ2 = λ colours, as follows:

⊙7 (a) choose a function h′ : κ1 → κ1 such that Sκ1
κ0,ε

:= {δ ∈ Sκ1
κ0

: h′(δ) =
ε} is stationary in κ1 for every ε < κ1

(b) if η = �ζ0, . . . , ζn−1� then we let h′(η) = �h′(ζ0), . . . , h
′(ζn−1)�

(c) c1 : [λ]
2 → κ1 is defined for α < β by

c1({α, β}) = h′(F1(ρh̄(β, α)))(ℓ
1
β,α)

where ℓ1β,α = d(ρh̄(β, α)).
Clearly
⊙8 we can demand on h′

1 that we can choose h′
2 such that:
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(a) h′
1, h

′
2 are functions with domain κ1

(b) h′
1 is onto κ1

(c) h′
2 is onto N

(d) for every ζ < κ1 and n < ω the set Sκ1,ζ,n = {ε < κ1 : h
′
1(ε) = ζ

and h′
2(ε) = n} is stationary

⊙9 the colouring c2 with λ colours is chosen as follows: for α < β < λ,
c2({α, β}) = (F2(ρh̄(β, α)))(ℓ

2
β,α) where letting εα,β = c1({α, β}) we have

ℓ2β,α is the h′
2(εβ,α)-th member of the3 set {ℓ < ℓg(ρh̄(β,α)) : F1(ρh̄(β,α))(ℓ)

= h′
1(εβ,α)} if this set has > h′

2(εα,β) members and is zero otherwise.
Stage B: So we have to prove that the colouring c = c1 (with κ1 colours)

and moreover c = c2 (with λ colours) is as required.
Now for the rest of the proof assume:
⊞ (a) tα ⊆ λ for every α < λ

(b) tα = t0α ∪ t1α and 1 ≤ |tια| < θι for ι < 2
(c) α �= β ⇒ tα ∩ tβ = ∅
(d) j∗ < κ1 (when dealing with c1) or j∗ < σ (when dealing with c2).

Clearly (by ⊞(c)), we can choose βα by induction on α < λ by βα =
min{β : β > α and min(tβ) > α+ sup(

⋃

{tβα(1)
: α(1) < α})}. Now can use

t′α = tβα
for α < λ, hence:

(∗)0 without loss of generality α <min(tα) and α < β ⇒ sup(tα) < min(tβ).
We have to prove that for some α0 < α1 < λ for every (ζ0, ζ1) ∈ t0α0

× t1α1

we have c{ζ0, ζ1} = j∗.
(∗)1 We can find U

up
1 , α∗

1, ε
up
1,1 such that:

(a) U up
1 ⊆ S is stationary

(b) h↾U up
1 is constantly 0 (so actually U

up
1 ⊆ S∗

0 )
(c) α∗

1 < min(U up
1 ) and ε

up
1,1 < κ1

(d) if δ ∈ U
up
1 and α ∈ [α∗

1, δ), β ∈ t1δ (treating t0δ is unreasonable
because t1δ may be of cardinality ≥ θ0 = κ1, ε1,0 is defined for notational
simplicity) then:

• ρβ,δˆ�δ� � ρβ,α
• Rang(F1(ρh̄(β, δ))) ⊆ ε

up
1,1.

[Why? For every δ ∈ S∗
0 ⊆ S and ζ ∈ tδ let α∗

1,δ,ζ < δ be such that

(∀α)
(

α ∈ [α∗
1,δ,ζ , δ

)

⇒ ρζ,δˆ�δ� � ρζ,α),

it exists by ⊙5 of Stage A.
Let α∗

1,δ = sup{α∗
1,δ,ζ : ζ ∈ tδ} and for ι = 1 let

ε
up
1,1,δ = sup{F1(h(γℓ(ζ, δ))) + 1 : ζ ∈ t1δ and ℓ < k(ζ, δ)}

3 So d is used only via the definition of ℓ2
β,α

.
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= sup
⋃

{

Rang(F1(ρh̄(β, δ)) + 1) : β ∈ t1δ
}

;

as cf(δ) = ∂ = cf(∂) > |t1δ | and κ1 = cf(κ1) ≥ θ1 > |t1δ |, necessarily α∗
1,δ < δ

and ε
up
1,1,δ < κι.

Lastly, there are α∗
1 < λ and ε

up
1,0 < κ0, ε

up
1,1 < κ1 and U

up
1 ⊆ S∗

0 as re-

quired in (∗)1 by Fodor lemma.]
(∗)2 for each ε ∈ Sκ1

κ0
\εup1,1 we can find g2,ε,U

up
2,ε , γ

∗
ε , α

∗
2,ε, ℓ2,ε such that:

(a) γ∗ε < λ satisfies F2(γ
∗
ε ) = j∗, F1(γ

∗
ε ) = ε, F0(γ

∗
ε ) = 0

(b) U up
2,ε ⊆ S∗

γ∗

ε
is stationary

(c) α∗
1 < α∗

2,ε < min(U up
2,ε )

(d) g2,ε is a function with domain U
up
2,ε such that δ ∈ U

up
2,ε ⇒ δ <

g2,ε(δ) ∈ U
up
1

(e) if δ ∈ U
up
2,ε and α ∈ [α∗

2,ε, δ) and β ∈ tg2,ε(δ) then ρg2,ε(δ),δˆ�δ� �
ρg2,ε(δ),α hence (recalling ⊙6, (∗)1(d))

• if β ∈ tg2,ε(δ) then ρβ,δˆ�δ� � ρβ,α
(f) ℓ∗2,ε is well defined where for any δ ∈ U

up
2,ε we have

ℓ∗2,ε = ℓg(ρg2,ε(δ),δ) hence if α ∈ (α∗
2,ε, δ) then ρg2,ε(δ),α(ℓ

∗
2,ε) = δ.

(g) Lastly, if α ∈ (α∗
2,ε, δ) then ℓ•2,ε = min{ℓ : ℓ < ℓg(ρg2,ε(δ),α) and

F1(ρh̄(g2,ε(δ), α))(ℓ) = ε} so ℓ•2,ε ≤ ℓ∗2,ε; recall that ε > ε
up
1,1 hence necessarily

β ∈ tg2,ε(δ) ⇒ ε > supRang(F1(ρh̄(β, g2,ε(δ)))).
[Why? First, choose γ∗ε as in clause (a) of (∗)2, (possible by the choice of

F0, F1, F2 in the beginning of Stage A). Second, define g′ε : S
∗
γ∗

ε
→ U

up
1 such

that δ ∈ S∗
γ∗

ε
⇒ δ < g′ε(δ) ∈ U

up
1 . Third, do as in the proof of (∗)1 above for

each δ ∈ S∗
γ∗

ε
separately, i.e. find α′

2,ε,δ < δ above α∗
1 and ℓ∗2,ε,δ, ℓ

•
2,ε,δ such that

the parallel of clauses (c), (e), (f), (g) of (∗)2 holds. Fourth, use Fodor lemma
to get a stationary U

up
2,ε ⊆ S∗

γ∗

ε
such that �(α′

2,ε,δ, ℓ
∗
2,ε,δ, ℓ

•
2,ε,δ) : δ ∈ U

up
2,ε � is

constantly (α∗
2,ε, ℓ

∗
2,ε, ℓ

•
2,ε) and lastly let g2,ε = g′ε↾U

up
2,ε .]

(∗)3 we can find U
up
3 , ḡ3, α∗

3 such that:
(a) U up

3 ⊆ S is stationary
(b) min(U up

3 ) > α∗
3 > sup{α∗

2,ε : ε ∈ Sκ1
κ0
\εup1,1}

(c) ḡ3 = �g3,ε : ε ∈ Sκ1
κ0
\εup1,1�

(d) g3,ε is a function with domain U
up
3

(e) if δ ∈ U
up
3 and ε ∈ Sκ1

κ0
\εup1,1 then δ < g3,ε(δ) ∈ U

up
2,ε

(f) if α∈ [α∗
3, δ), δ∈U

up
3 and ε∈Sκ1

κ0
\εup1,1 then ρg3,ε(δ),δˆ�δ� � ρg3,ε(δ),α

hence
(f)′ if in addition β ∈ t1

g2,ε(g3,ε(δ))
then ρβ,δˆ�δ� � ρβ,α this follows.

[Why? First, let α∗
2 = sup{α∗

2,ε + 1 : ε ∈ Sκ1
κ0
\εup1,1} < λ and choose g′′ε :

S\α∗
2 → U

up
2,ε such that g′′ε (δ) > δ for every δ ∈ S\α∗

2 and second for each δ ∈

S\α∗
2 choose α∗

3,δ < δ as in clauses (f), (f′) of (∗)3, i.e. such that α ∈ [α∗
3,δ, δ)
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⇒ ρg′′

ε (δ),δ
ˆ�δ� � ρg′′

ε (δ),α
for every ε ∈ Sκ1

κ0
\εup1,1 and such that the relevant

part of clause (b) of (∗)3, holds, that is, α
∗
3,δ > α∗

2 = sup{α∗
2,ε : ε < Sκ1

κ0
\εup1,1},

possible as κ1 < ∂. Third, use Fodor lemma to find α∗
3 < λ such that U up

3 =
{δ ∈ S : α∗

3,δ = α∗
3} is a stationary subset of λ. Fourth, let g3,ε = g′′ε ↾U

up
3 .]

(∗)4 recalling4 j∗ < κ1, there are U
up
4 , ε∗4,1, ε

∗
4,0 and �sδ : δ ∈ U

up
4 � such

that:
(a) U up

4 ⊆ U
up
3 is a stationary subset of λ

(b) εup1,1 < ε
up
4,1 < κ1 and ε

up
4,0 < κ0

(c) if δ ∈ U
up
4 then sδ is a stationary (in κ1) subset of S

κ1

κ0,j∗
\εup4,1

(d) if δ ∈ U
up
4 , ε ∈ sδ then

(α) Rang(F1(ρh̄(g2,ε(g3,ε(δ)), δ))) ∩ ε ⊆ ε
up
4,1 hence by clause (b)

(β) if β ∈ tg2,ε(g3,ε(δ)) then Rang(F1(ρh̄(β, δ)) ∩ ε ⊆ ε
up
4,1

(γ) also Rang(F0(ρh̄(g2,ε(g3,ε(δ)), δ))) ⊆ ε
up
4,0.

[Why? Recall that κ1 is regular uncountable (being θ1) and κ0 < κ1 is
regular (being θ0). First, for each δ ∈ U

up
3 we use Fodor lemma on Sκ1

κ0,j∗
\εup1,1

to choose sδ , ε
up
4,1,δ, ε

up
4,0,δ as in clauses (c) + (d); second use the Fodor Lemma

on U
up
3 to get U up

4 , εup4,1, ε
up
4,0; we cannot do it for sδ as maybe 2κ1 ≥ λ.]

Let us verify (d)(β) and (d)(γ). For (d)(β) notice that Rang(F1(ρh̄(β, δ)))
⊆ ε

up
1,1 < ε

up
4,1 for every β ∈ tg2,ε(g3,ε(δ)) by (∗)1(d). This requirement is easy

since |tg2,ε(g3,ε(δ))| < κ1 and ρh̄(β, δ) is finite for every β ∈ tg2,ε(g3,ε(δ)).
For (d)(γ) we apply Fodor’s lemma twice.
First, fix an ordinal δ ∈ U

up
4 . For every ε ∈ sδ , the sequence

F0(ρh̄(g2,ε(g3,ε(δ)))

is finite and hence bounded in κ0. But κ0 < κ1 = cf(κ1) and hence by shrink-
ing sδ if needed we may assume that all the values are bounded by the same
ordinal σδ < κ0.

Now for each δ ∈ U
up
4 we choose σδ ∈ κ0 in this way, so by shrinking

U
up
4 if needed we may assume that σδ = σ for some fixed σ < κ0 and every

δ ∈ U
up
4 . Now choose ε

up
4,0 > max{σ, εup1,0}.

(∗)5 we can find U dn
1 , εdn1,0, ε

dn
1,1 such that:

(a) U dn
1 ⊆ S∗

0 is stationary in λ
(b) α < δ ∈ U dn

1 ⇒ tα ⊆ δ
(c) εdn1,ι < κι for ι = 0, 1

(d) if δ ∈ U dn
1 then for arbitrarily large α < δ we have β ∈ tια ∧ ι

∈ {0, 1} ⇒ Rang(Fι(ρh̄(δ, β))) ⊆ εdn1,ι < κι.
[Why? Clearly E = {δ < λ : δ a limit ordinal such that α < δ ⇒ tα ⊆ δ}

is a club of λ. For every δ ∈ S∗
0 ∩E and α < δ we can find (εdn1,0,δ,α, ε

dn
1,1,δ,α)

4Recall that in this stage we are dealing with c = c1 hence j∗ < κ1.
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as in clauses (c),(d) above because |tια| < κι = cf(κι). So recalling that
cf(δ) = ∂ > θ1 = κ1 > κ0 = θ0 it follows that there is a pair (εdn1,0,δ, ε

dn
1,1,δ)

such that δ = sup{α < δ : (εdn1,0,δ,α, ε
dn
1,1,δ,α) = (εdn1,0,δ, ε

dn
1,1,δ)}. Then recalling

λ = cf(λ) > κ1 + κ0 we can choose (εdn1,0, ε
dn
1,1) such that the set U dn

1 =

{δ ∈ S∗
0 : (εdn1,0,δ, ε

dn
1,1,δ) = (εdn1,0, ε

dn
1,1)} is stationary.]

(∗)6 we can find U dn
2 , εdn2,0, ε

dn
2,1 such that:

(a) U dn
2 ⊆ S∗

0\(α
∗
3 + 1) is stationary

(b) if δ ∈ U dn
2 and ζ < κ1 then δ = sup(U dn

1 ∩ δ) and for arbitrarily
large δ0 ∈ U dn

1 ∩ δ we have ζ < maxRang(F1(ρh̄(δ, δ0))) and

Rang(F0(ρh̄(δ, δ0))) ⊆ εdn2,0 and ζ ∩ Rang(F1(ρh̄(δ, δ0))) ⊆ εdn2,1

(c) εdn2,0 ∈ (εdn1,0, κ0) and εdn2,1 ∈ (εdn1,1, κ1).

[Why? For every ζ < κ1 let S
′
ζ = {α∈S : α = sup(U dn

1 ∩α) and F1(h(α))

= ζ}, clearly it is a stationary subset of λ.
Let E = {δ < λ : δ is a limit ordinal and ζ < κ1 ⇒ δ = sup(δ ∩ S′

ζ)}.

Clearly it is a club of λ. If ζ ∈ Sκ1
κ0
\εdn1,1 and δ ∈ E ∩ S∗

0 and α ∈ S′
ζ ∩ δ

let εdn2,0,ζ,δ,α = supRang(F0(ρh̄(δ, α))) + εdn1,0 + 1 and let

εdn2,1,ζ,δ,α = sup(ζ ∩ Rang(F1(ρh̄(δ, α))) + 1 < ζ.

Fixing δ and ζ , recalling cf(δ) > κ0 +κ1, for some pair (εdn2,0,ζ,δ, ε
dn
2,1,ζ,δ) ∈

κ0 × κ1 we have δ = sup{α ∈ S′
ζ ∩ δ : (εdn2,0,ζ,δ,α, ε

dn
2,1,ζ,δ,α) = (εdn2,0,ζ,δ, ε

dn
2,1,ζ,δ)}.

Fixing δ apply Fodor lemma on Sκ1
κ0
, for some pair (εdn2,0,δ, ε

dn
2,1,δ) the set

bδ = {ζ ∈ Sκ1
κ0

: (εdn2,0,ζ,δ, ε
dn
2,1,ζ,δ) = (εdn2,0,δ, ε

dn
2,1,δ)} is a stationary subset of κ1.

Applying Fodor lemma on δ ∈ E ∩S∗
0 , there is a pair (εdn2,0, ε

dn
2,1) such that

U dn
2 := {δ ∈ S∗

0 : δ ∈ E and (εdn2,0,δ, ε
dn
2,1,δ) = (εdn2,0, ε

dn
2,1)} is stationary. Clearly

we are done. We could have put bε in (∗)6(b) but it does not seem needed.]
Stage C: Now we shall find the required α0 < α1.
In this stage we deal with c1, so j∗ < κ1. First, there are δ1, δ2, ε

md
0 ,

εmd
1 , α∗

4 such that:
⊕0 (a) δ1 ∈ U dn

2 and δ2 ∈ U
up
4 , see (∗)6 and (∗)4 respectively

(b) δ1 < δ2 and α∗
3 < δ1

(c) εmd
ι := maxRang(Fι(ρh̄(δ2, δ1))) > εdn2,ι+ε

up
4,ι ≥ εdn1,ι+ε

up
1,ι for ι=0,1

(d) α∗
4 < δ1 is > α∗

3 and if α ∈ (α∗
4, δ1) then ρδ2,δ1ˆ�δ1� � ρδ2,α.

[Why can we? Easy but we give details. First, let W∗ = {δ ∈ S : δ is a
limit ordinal > α∗

3 necessarily of cofinality ∂ such that Fι(δ) > εdn2,ι + ε
up
4,ι for

ι = 0,1 and δ = sup(δ∩U dn
2 )}, clearly it is a stationary subset of λ. Second,

choose δ2 ∈ U
up
4 which is > α∗

3 such that δ2 = sup(W∗ ∩ δ2). Third, choose
δ∗ ∈ W∗ ∩ δ2 such that α∗

3 < δ∗. Fourth, let α∗ < δ∗ be such that α∗ > α∗
3
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and α ∈ (α∗, δ∗) ⇒ ρ(δ2, δ∗)ˆ�δ∗� � ρ(δ2, α) (hence ρh̄(δ2, δ∗)ˆ�hδ∗+1(δ∗)� �
ρh̄(δ2, α)). Fifth, choose δ1 ∈ (α∗, δ∗) ∩U dn

2 hence δ1 > α∗
3. Sixth, we

choose εmd
ι for ι = 0, 1 by clause (c), the inequality holds because δ∗ ∈

W∗ ∩ Rang(ρh̄(δ2, δ1)).
Lastly, choose α∗

4 as in ⊕0(d). Easy to check that we are done proving
⊕0.]

Let ρ = ρh̄(δ2, δ1).
Second, choose δ0 such that

⊕0.1 (a) δ0 ∈ U dn
1 ∩ δ1

(b) (∗)6(b) holds with (εmd
1 , δ1) here standing for (ζ, δ) there, that

is, we have εmd
1 < maxRang(F1(ρh̄(δ1, δ0))) and Rang(F0(ρh̄(δ1, δ0))) ⊆ εdn2,0

and εmd
1 ∩ Rang(F1(ρh̄(δ1, δ0))) ⊆ εdn2,1
(c) δ0 > α∗

4 recalling δ1 > α∗
4 > α∗

3 by ⊕0(b),(d).
[Why can we choose δ0? By (∗)6.]
Also choose α∗

5 such that
⊕0.2 α∗

5 < δ0 is such that α ∈ (α∗
5, δ0) ⇒ ρδ1,δ0ˆ�δ0� � ρδ1,α.

Third, choose ε∗ ∈ sδ2 (sδ2 is from (∗)4(c), (d)) such that ε∗ > εmd
2,1 :=

max
(

Rang(F1(ρh̄(δ2, δ1)∪Rang(F1(ρh̄(δ1, δ0)))
)

which is > εmd
1 , possible as

sδ2 is a stationary subset of κ1.
Fourth, let δ3 = g3,ε∗(δ2).
Fifth, let α1 = g2,ε∗(δ3).
Lastly, choose α0 < δ0 large enough and as in (∗)5(d) such that α0 >

α∗
5 > α∗

4, that is, we have β ∈ t1α0
⇒ Rang(F1(ρh̄(δ0, β))) ⊆ εdn1,1 < κ1.

We shall prove below that the pair (α0, α1) is as promised.
So (finishing the case of κ1 colours)
⊛ let ζ0 ∈ t0α0

, ζ1 ∈ t1α1
and we should prove that c1{ζ0, ζ1} = j∗.

Note
⊕1 δ2 ∈ U

up
4 ⊆ U

up
3 and α0 < δ0 < δ1 < δ2.

[Why? The first statement holds by the choice of δ2, see ⊕0(a) and
(∗)4(a). The second statement holds by the choices of δ1, i.e. ⊕0(b), the
choice of δ0, i.e. ⊕0.1(a) and the choice of α0 (see “Lastly. . . ” after ⊕0.2).]

⊕2 δ3 = g3,ε∗(δ2) ∈ U
up
2,ε∗

and δ2 < δ3.

[Why? By the choice of δ3 (after ⊕0.2 in “Fourth”) and by (∗)3(d)+(e)
(note that the assumption of (∗)3(e) in our case, which means δ2 ∈ U

up
3 and

ε∗ ∈ Sκ1
κ0
\εmd

2,1 , holds by ⊕1 and by the “Third” after ⊕0.2 above (recalling
sδ2 ⊆ Sκ1

κ0
and ⊕0(c))).]

⊕3 α1 = g2,ε∗(δ3) ∈ U
up
1 and δ3 < α1.

[Why? By the choice of α1 in “Fifth” after ⊕0,2 and (∗)2(d).]
⊕4 η0 := ρh̄(ζ1, α1) satisfies (η0 ∈

ω>λ and):
• Rang(F1(η0)) ⊆ ε

up
1,1.

[Why? By (∗)1(d) recalling ⊕3 of course, α1 > α∗
5 > α∗

1.]
Recall that (∗)1(d) deals only with t1ε.
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⊕5 ν0 := ρh̄(α1, δ2) satisfies (ν0 ∈
ω>λ and)

(a) Rang(F0(ν0)) ⊆ ε
up
4,0

(b) ε∗ ∈ Rang(F1(ν0))
(c) Rang(F1(ν0)) ∩ ε∗ ⊆ ε

up
4,1

(d) α1 = g2,ε∗(g3,ε∗(δ2)) = g2,ε∗(δ3)
(e) ρ(α1, δ2) = ρ(α1, g3,ε∗(δ2))ˆρ(g3,ε∗(δ2), δ2).

[Why? Clause (d) of ⊕5 holds by the choice of α1 in “Fourth” and “Fifth”
after ⊕0.2 above (and see ⊕2); similarly clause (e) holds. By ⊕1 we have
δ2 ∈ U

up
4 and by (∗)4(d)(γ), (α) and the choices of δ3, α1 we have clauses

(a) + (c) of ⊕5; that is, (α1, δ2,ε∗, ε∗) here stand for (g2,ε(g3,ε(δ)), δ, ε) in
(∗)4(d). Now δ3 ∈ Rang(ρ(g3,ε∗(δ)), δ2) by ⊕2 hence δ3 ∈ Rang(ρ(α1, δ2)) by
⊕5(e) hence δ3 ∈ Rang(ν0) by the choice of ν0 (see the beginning of ⊕5). This
implies clause (b) of ⊕5 because F1(δ3) = ε∗ because δ3 ∈ dom(g2,ε∗) ⊆ U

up
2,ε∗

by ⊕2 and (∀δ)[δ ∈ U
up
2,ε∗

⇒ δ ∈ S∗
γ∗

ε∗
⇒ F1(δ) = ε∗] by (∗)2(a),(b).]

⊕6 ν1 := ρh̄(δ1, δ0) satisfies:
(a) Rang(F0(ν1)) ⊆ εdn2,0
(b) εmd

1 < maxRang(F1(ν1))
(c) Rang(F1(ν1)) ⊆ ε∗.

[Why? By ⊕0(a) we have δ1 ∈ U dn
2 . So (a), (b) hold by (∗)6(b) and the

choice of δ0, i.e. ⊕0.1(b); we use the first two conclusions of (∗)6(b) not the
third. As for clause (c) it holds by the choice of ε∗ in “Third” after ⊕0.2.]

⊕7 (a) η1 := ρh̄(δ0, ζ0) satisfies
• Rang(Fι(η1)) ⊆ εdn1,ι for ι = 0, 1.

(b) ρ = ρh̄(δ2, δ1) satisfies
• maxRang(Fι(ρ)) = εmd

ι for ι = 0, 1.
[Why? Clause (a) holds by (∗)5(d) and the choice of α0 in “lastly” after

⊕0.2 recalling ζ0 ∈ t0α0
. Clause (b) holds by ⊕0(c).]

⊕8 (a) ρh̄(ζ1, ζ0) = ρh̄(ζ1, α1)ˆρh̄(α1, δ2)ˆρh̄(δ2, δ1)ˆρh̄(δ1, δ0)ˆρh̄(δ0, ζ0)
(b) recalling ρ = ρh̄(δ2, δ1) and the choices of η0, ν0, ρ, ν1, η1 we have

ρh̄(ζ1, ζ0) = η0ˆν0ˆρˆν1ˆη1.
[Why? Clause (a) holds by the choices of α∗

0 in (∗)1(c)(d) and of α∗
3

in (∗)3(f),(f)
′ and δ1 > α∗

3 by ⊕0(b) and as “δ0 > α∗
3” recalling ⊕0.1(c) and

“α0 > α∗
5”, see “Lastly” after ⊕0.2. Clause (b) holds by clause (a) and the

definitions of η0, ν0, ρ, ν1, η1 above, that is, in ⊕4, in ⊕3, before ⊕0.1, in
⊕6, in ⊕7 respectively.]

⊕9 ℓ•4 := d(ρh̄(ζ1, ζ0)) satisfies F1(̺(ℓ
•
4)) = ε∗.

[Why? We shall use ⊕8(a),(b) freely; now d was chosen by Claim 3.1
and letting ̺ = η0ˆν0ˆρˆν1ˆη1 we apply the claim to (η0, ν0, ρ, ν1, η1), so it
suffices to show that clauses (B)(a)–(d) of 3.1 hold.
⊕9.1 clause (B)(a)(α) of 3.1 holds.
Why? First, ε∗ ≤ maxRang(F1(ν0)) by ⊕5(b).
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Second, Rang(F1(η0)) ⊆ ε
up
1,1 by ⊕4 and ε

up
1,1 ≤ ε

up
4,1 by (∗)4(b) and ε

up
4,1

≤ εmd
1 by ⊕0(c) and εmd

1 < ε∗ by the choice of ε∗ in “Third” after ⊕0.2.
Third, Rang(F1(ρ)) ⊆ ε∗ as

Rang(F1(ρ)) = Rang(F1(ρh̄(δ2, δ1))) ⊆ εmd
1 + 1

by ⊕0(c) and εmd
1 < ε∗ by the choice of ε∗.

Fourth, Rang(F1(ν1)) ⊆ ε∗ by ⊕6(c).
Fifth, Rang(F1(η1)) ⊆ ε∗ as Rang(F1(η1)) ⊆ εdn1,1 by (∗)5 and εdn1,1 ≤ εdn2,1

by (∗)6(c) and εdn2,1 < εmd
1 by ⊕0(c) and εmd

1 < ε∗ by the choice of ε∗.
Together ⊕9.1 holds.

⊕9.2 let ℓ1 < ℓg(ν0) be as in clause (B)(a)(β) of 3.1
⊕9.3 clause (B)(b)(α) of 3.1 holds.
Why? First, maxRang(F0(ρ)) = εmd

0 by ⊕0(c).
Second, Rang(F0(η0)) ⊆ εmd

0 is unreasonable see ⊕4 and not necessary.
Third, Rang(F0(ν0)) ⊆ εmd

0 because Rang(F0(ν0)) ⊆ ε
up
4,0 by ⊕5(a) and

ε
up
4,0 ≤ εmd

0 by ⊕0(c).

Fourth, Rang(F0(ν1)) ⊆ εmd
0 because Rang(F0(ν1)) ⊆ εdn2,0 by ⊕6(a) and

εdn2,0 ≤ εmd
0 by ⊕0(c).

Fifth, Rang(F0(η1)) ⊆ εmd
0 because Rang(F0(η1)) ⊆ εdn1,0 by ⊕7(a) and

εdn1,0 < εdn2,0 by (∗)6(c) and εdn2,0 ≤ εmd
0 by ⊕0(c).

Together ⊕9.3 holds.
⊕9.4 (a) let ℓ•2 < ℓg(̺) be as in clause (B)(b)(β) of 3.1

(b) let ℓ∗2 = ℓ•2 − ℓg(η0ˆν0)
⊕9.5

(a) ℓ•2 ∈ [ℓg(η0ˆν0), ℓg(η0ˆν0ˆρ))
(b) clause (B)(c)(α) holds, i.e.

•1 maxRang(F1(ν0)) > maxRang(F1(̺↾[ℓ
•
2, ℓg(̺)))

•2

maxRang(F1)(̺↾[ℓ
•
2, ℓg(̺))) = maxRang(F1(ν1)) > maxRang(ρˆη1)

(c) let ℓ3 < ℓg(ν1) be as in clause (B)(c)(β) of 3.1
(d) F1(ν1(ℓ3)) ≥ εmd

1 .
Why? Clause (a) follows by (B)(b)(α) proved in ⊕9.3 above. Clause (b),

•1 holds by ⊕9.1. Clause (b),•2 follows because: first Rang(F1(ρ)) ⊆ ε1md +1

by ⊕0(c) and ε1md + 1 < ε by second; Rang(F1(ν1)) � εmd
1 + 1 by ⊕6(b) and

third, Rang(F1(η1)) ⊆ εdn1,1 by ⊕7(a) and εdn1.1 < εmd
1 by ⊕0(d) by the choice

of ε∗.
By clause (b), it follows that ℓ3 from Clause (c) are well defined and

Clause (d) holds
⊕9.6 (a) Rang(F1(η0ˆ(ρ↾ℓ

∗
2)ˆν1ˆη1)) ⊆ εmd

1 + 1
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(b) ε∗ ∈ Rang(F1(ν0)) is > εmd
1

(c) Rang(F1(ν0)) ∩ ε∗ ⊆ εmd
1

Why? First, Rang(F1(η0)) ⊆ εmd
1 because Rang(F1(η0)) ⊆ ε

up
1,1 by ⊕4

and ε
up
1,1 ≤ ε

up
4,1 by (∗)4(b) and ε

up
4,1 ≤ εmd

1 by ⊕0(c).

Second, Rang(F1(ρ↾ℓ
∗
2)) ⊆ Rang(ρ) ⊆ εmd

1 + 1 and Rang(F1(ν1ˆη1)) ⊆
εmd
1 by ⊕0(c).

Third, Rang(F1(η0ˆ(ρ↾ℓ
∗
2)) ⊆ Rang(F1(η0)) ∪ Rang(F1(ρ↾ℓ

∗
2)) ⊆ εmd

1 + 1
by the last two sentences, so clause (a) of ⊕9.6 holds.

Fourth, clause (b), i.e. ε∗ ∈ Rang(F1(ν0)) holds by ⊕5(b).
Fifth, Rang(F1(η0ˆν0))∩ ε∗ ⊆ ε

up
4,1 by (∗)4(d) with (δ, β, ε) there standing

for (δ2, ζ1, ε∗) here (recalling δ2 ∈ U
up
4 and ζ1 ∈ t1α1

= t1
g2,ε∗ (g3,ε∗ (δ2))

) and ε
up
4,1

≤ εmd
1 by ⊕0(c). Hence, Rang(F1(ν0))∩ ε∗ ⊆ Rang(F1(η0ˆν0))∩ ε∗ ⊆ ε

up
4,1 ⊆

εmd
1 , so also clause (c) of ⊕9.6 holds.
⊕9.7 (a) let ℓ•4 from ⊕9 be as in (B)(d)(β)

(b) F1(̺(ℓ
•
4)) = ε∗

(c) (used in stage D) ℓ•4 ∈ [ℓg(η0), ℓg(η0ˆν1)).
[Why? By ⊕9.6, ℓ

•
4 is well defined and belongs to [ℓg(η0), ℓg(η0ˆν0));

moreover, F1(̺(ℓ
•
4)) = ε∗.]

So indeed ⊕9 holds.
⊕10 c1{ζ0, ζ1} = j∗.
[Why? Because d(̺) = ℓ•4 and (F1(̺))(ℓ

•
4) = ε∗ and so by ⊙7(c), h

′′(ε∗) =
ℓ•4 we have c1{ζ0, ζ1} = h′(ε∗) and h′(ε∗) = j∗ because ε∗ ∈ sδ2 by the choice
of ε∗ and h′(ε∗) is j∗ by (∗)4(c) recalling the definition of Sκ1

κ0,j∗
in ⊙7(a).]

Stage D:
We would like to have λ colours (not just κ1 colours), but (unlike earlier

versions) we rely on what was proved (i.e. the properties of c1) instead of
repeating it. So we shall assume ⊞ from the beginning of Stage B and j∗ < λ

in ⊞(d).
Now
⊞1 for some W1, ε

up
0,1, α

∗
0,1

(a) α∗
0,1 < λ, ε

up
0,1 < κ1

(b) W1 ⊆ S is stationary and min(W1) > α∗
0,1

(c) if δ ∈ W1 and β ∈ tδ then Rang(F1(ρh̄(β, δ))) ⊆ ε
up
0,1

(d) if δ ∈ W1 and α ∈ [α∗
0,1, δ) and β ∈ tδ then ρ(β, δ)ˆ�δ� � ρ(β, α).

[Why? As in the proof of (∗)1 in Stage B.]
⊞2 (a) let W2 = {δ ∈ S : F2(h(δ)) = j∗, F1(h(δ)) = ε

up
0,1 and δ > α∗

0,1}, so
stationary

(b) let g∗1 : W2 → W1 be such that δ < g∗1(δ) ∈ W1

⊞3 there are W3, α
∗
0,2 and n∗ such that:

(a) W3 ⊆ W2 is stationary and min(W3) > α∗
0,2 > α∗

0,1
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(b) if δ ∈ W3 and α ∈ [α∗
0,2, δ) and β ∈ tg∗

1 (δ)
then ρ(β, g∗1(δ))ˆ�g

∗
1(δ)�

� ρ(β, g∗1(δ))ˆρ(g
∗
1(δ), δ)ˆ�δ� � ρ(β, α)

(c) if δ ∈ W3 and β ∈ tg∗

1 (δ)
then

(α) Rang(F1(ρh̄(β, g
∗
1(δ))) ⊆ ε

up
0,1

(β) n∗ = |{ℓ < k(β, δ) : (F1(ρh̄(β, δ))(ℓ) = ε
up
0,1}|

(γ) hence if α < δ and ρ(β, δ)ˆ�δ� � ρ(β, α) then the (n∗ + 1)-th
member of the set {ℓ < k(β, α) : F1(ρh̄(β, α))(ℓ) = ε

up
0,1} is ℓg(ρ(β, δ)).

[Why? As usual, e.g. how do we justify n∗ in clause (c)(β) not depending
on β ∈ tδ? First, find δ, then for any β ∈ tδ we have

• ρ(β, δ) = ρ(β, g∗1(δ))ˆρ(g
∗
1(δ), δ).

[Why? Recall ⊞1(d).]
• Rang(F1(ρh̄(β, g

∗
1(δ))) ⊆ ε

up
0,1.

[Why? Recall ⊞1(c).]
Together, n∗ depends just on ρh̄(g

∗
1(δ), δ) which depends only on δ

(not β). Second, as choosing W3 we can make n∗ not depend on δ.]
Let j∗∗ < κ1 be such that h′

1(j∗∗) = ε
up
0,1, h′

2(j∗∗) = n∗. Next let g∗ :
λ → W3 be increasing and define sα = tg∗(α), s

ι
α = tι

g∗(α)
for ι = 0,1. Now by

what was proved in the earlier stages we can find α0 < α1 < λ such that if
ζ0 ∈ s0α0

∧ ζ1 ∈ s1α1
then c1{ζ0, ζ1} = j∗∗.

Let (ζ0, ζ1) ∈ s0α0
× s1α1

. By the choice of c1, in ⊙7 we have c2 from ⊙9

and by ⊞3(c)(γ) we have c2({ζ0, ζ1}) = j∗. But (s0α0
, s1α1

) = (t0
g∗(α0)

, t1
g∗(α1)

)

so α′
0 = g∗(α0), α

′
1 = g∗(α1) are as required. �3.2
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