S. SHELAH

Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram,
The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
Department of Mathematics, Hill Center – Busch Campus Rutgers,
The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA
e-mail: shelah@math.huji.ac.il

(Received November 19, 2013; revised July 29, 2018; accepted March 11, 2019)

Abstract. We prove a better colouring theorem for \aleph_4 and even \aleph_3 . This has a general topology consequence.

1. Introduction

1.1. Background. Our aim is to improve some colouring theorems of [10], [6, Ch. III, §4], they continue Todorćević [5] (introducing the walks) and [9], [8, §3] (and [11]), see history in [6], [7, §10]. After these works Moore [3] proved $\aleph_1 \mapsto [\aleph_1; \aleph_1]_{\aleph_0}^2$; Eisworth [1] and Rinot [4] proved equivalence of some colouring theorems on successor of singular cardinals.

Our aim is to prove better colouring theorems on successor of regular cardinals (when not too small), e.g. $Pr_1(\aleph_3, \aleph_3, \aleph_3, (\aleph_0, \aleph_1))$, see §1. We have looked at the matter again because Juhász–Shelah [2] needs such theorem in order to solve a problem in general topology, see 2.10(3).

1.2. Results. The paper is self contained.

Here we formulate $\Pr_{\ell}(\lambda, \mu, \sigma, \bar{\theta})$ where $\bar{\theta}$ is a pair (θ_0, θ_1) of cardinals rather than a single cardinal θ and prove e.g. $\Pr_1(\lambda, \lambda, \lambda, (\theta, \theta^+))$ when $\lambda = \theta^{+3}$ and θ is regular.

That is, we shall prove (see Definition 2.1 and Conclusion 2.10(1)):

THEOREM 1.1. 1) For any regular κ we have $\Pr_1(\kappa^{+4}, \kappa^{+4}, \kappa^{+4}, \kappa^+)$. 2) For any regular κ we have $(\Pr_1(\kappa^{+4}, \kappa^{+4}, \kappa^{+4}, (\kappa, \kappa^+))$ and $(\Pr_{0,0}(\kappa^{+4}, \kappa^{+4}, \kappa^{+4}, (\aleph_0, \kappa^+))$.

The author would like to thank the Israel Science Foundation for partial support of this research.

The author thanks Alice Leonhardt for the beautiful typing.

Key words and phrases: set theory, combinatorial set theory, colouring, partition relation. Mathematics Subject Classification: primary 03E02, 03E05, secondary 03E04, 03E75.

REMARK 1.2. Note that the statement $Pr_0(\kappa^{+4}, \kappa^{+4}, 2, \kappa^+)$ is also called by Juhasz $Col(\kappa^{+4}, \kappa)$, see more in the end of §1.

Moreover by 2.11 in 1.1(2) we can replace κ^{+4} by κ^{+3} , (thus half solving Problem 1 of [2], i.e. for \aleph_3 though not for \aleph_2) so we naturally ask:

QUESTION 1.3. 1) Do we have $\Pr_1(\aleph_2, \aleph_2, \sigma, \aleph_1)$ for $\sigma = \aleph_2$? For $\sigma = 2$? 2) Do we have at least $\Pr_{0,0}^{\text{uf}}(\aleph_2, \aleph_2, 2, (\aleph_0, \aleph_1))$?

Concerning the result of Juhász–Shelah [2] by using 2.8(1) instead of [6, Ch. III, §4] we can deduce $\Pr_0(\aleph_4, \aleph_4, 2, (\aleph_0, \aleph_1))$ which is sufficient for the topological result there. Moreover by 3.5 + 2.5 even $\Pr_{0,0}(\aleph_3, \aleph_3, 2, (\aleph_0, \aleph_1))$ holds, see 2.10 so there is a topological space as desired in [2] with weight \aleph_3 , see 2.11(2).

We can also generalize the other conclusion of [6, Ch. III, §4] replacing θ by (θ_0, θ_1) . This may be dealt with later. Also in [12] and better [13] we intend to improve 2.11 for most cardinals.

We thank Shimoni Garti and the referee for pointing out many missing points.

2. Definitions and some connections

DEFINITION 2.1. Assume $\lambda \geq \mu \geq \sigma + \theta_0 + \theta_1, \bar{\theta} = (\theta_0, \theta_1)$; if $\theta_0 = \theta_1$ we may write θ_0 instead of $\bar{\theta}$.

- 1) Let $\Pr_0(\lambda, \mu, \sigma, \bar{\theta})$ mean that there is $\mathbf{c} : [\lambda]^2 \to \sigma$ witnessing it which means:
 - $(*)_{\mathbf{c}}$ if (a) then (b) where:
- (a) (a) for $\iota = 0, 1, \bar{\zeta}^{\iota} = \langle \zeta_{\alpha,i}^{\iota} : \alpha < \mu, i < \mathbf{i}_{\iota} \rangle$ is a sequence without repetitions of ordinals $< \lambda$ and $\operatorname{Rang}(\bar{\zeta}^{0}), \operatorname{Rang}(\bar{\zeta}^{1})$ are disjoint and $\mathbf{i}_{0} < \theta_{0}$, $\mathbf{i}_{1} < \theta_{1}$
 - $(\beta) h: \mathbf{i}_0 \times \mathbf{i}_1 \to \sigma$
 - (b) for some $\alpha_0 < \alpha_1 < \mu$ we have:
 - if $i_0 < \mathbf{i}_0$ and $i_1 < \mathbf{i}_1$ then $\mathbf{c}\{\zeta^0_{\alpha_0, i_0}, \zeta^1_{\alpha_1, i_1}\} = h(i_0, i_1)$.
- 2) For $\iota \in \{0,1\}$ let $\Pr_{0,\iota}(\lambda,\mu,\sigma,\bar{\theta})$ be defined similarly but we replace $(a)(\beta)$ and (b) by $(a)(\beta)'$ and (b)', where
 - (a) $(\beta)' h : \mathbf{i}_{\iota} \to \sigma$
 - (b)' for some $\alpha_0 < \alpha_1 < \mu$ we have
 - •' if $i_0 < \mathbf{i}_0$ and $i_1 < \mathbf{i}_1$ then $\mathbf{c}\{\zeta_{\alpha_0, i_0}^0, \zeta_{\alpha_1, i_1}^1\} = h(i_\iota)$.
- 3) Let $\Pr^{\mathrm{uf}}_{0,\iota}(\lambda,\mu,\sigma,\bar{\theta})$ mean that some $\mathbf{c}:[\lambda]^2\to\sigma$ witnesses it which means:
 - $(*)_{\mathbf{c}}^{\mathrm{uf}}$ if (a) then (b) where
 - (a) (α) as above
 - (β) $h: \mathbf{i}_{\iota} \to \sigma$ and D is an ultrafilter on $\mathbf{i}_{1-\iota}$
 - (b) for some $\alpha_0 < \alpha_1 < \mu$ we have

• if $i < \mathbf{i}_{\iota}$ then $\{j < \mathbf{i}_{1-\iota} : \mathbf{c}\{\zeta_{\alpha_{\iota},i}^{\iota}, \zeta_{\alpha_{1-\iota},i}^{1-\iota}\} = h(i)\}$ belongs to D.

Definition 2.2. Assume $\lambda \geq \mu \geq \sigma + \theta_0 + \theta_1, \bar{\theta} = (\theta_0, \theta_1)$. Let $\Pr_1(\lambda, \mu, \theta_0) = 0$ $\sigma, \bar{\theta}$) mean that there is $\mathbf{c} : [\lambda]^2 \to \sigma$ witnessing it, which means:

 $(*)_{\mathbf{c}}$ if (a) then (b), where:

- (a) for $\iota = 0, 1, \mathbf{i}_{\iota} < \theta_{\iota}$ and $\bar{\zeta}^{\iota} = \langle \zeta_{\alpha,i}^{\iota} : \alpha < \mu, i < \mathbf{i}_{\iota} \rangle$ are sequences of ordinals of λ without repetitions, Rang $(\bar{\zeta}^{\iota})$ are disjoint and $\gamma < \sigma$
- (b) there are $\alpha_0 < \alpha_1 < \mu$ such that $\forall i_0 < \mathbf{i}_0, \forall i_1 < \mathbf{i}_1, \mathbf{c}\{\zeta_{\alpha_0, i_0}^0, \zeta_{\alpha_0, i_0}^1\}$ $=\gamma$.

REMARK 2.3. 1) So if $\theta_0 = \theta = \theta_1$ and $\bar{\theta} = (\theta_0, \theta_1)$ then for $\ell \in \{0, 1\}$, $\Pr_{\ell}(\lambda, \mu, \sigma, \theta)$ is $\Pr_{\ell}(\lambda, \mu, \sigma, \theta)$ from [6, Ch. III].

- 2) We do not write down the monotonicity and trivial implications concerning Definitions 2.1 and 2.5 below.
- 3) The disjointness of $\{\zeta_{\alpha,i}^0 : \alpha < \mu, i < \mathbf{i}_0\}, \{\zeta_{\alpha,i}^1 : \alpha < \mu, i < \mathbf{i}_1\}$ in Definition $2.1(1)(a)(\alpha)$ and 2.1(2), 2.1(3) and 2.2(a) is not really necessary.

NOTATION 2.4. pr : Ord \times Ord \rightarrow Ord is the standard pairing function.

Variants are

DEFINITION 2.5. Let $\lambda \geq \mu \geq \sigma + \theta_0 + \theta_1$ and $\bar{\theta} = (\theta_0, \theta_1)$.

- 1) Let $Qr_0(\lambda, \mu, \sigma, \bar{\theta})$ mean that there is $\mathbf{c} : [\lambda]^2 \to \sigma$ witnessing it which means:
 - $(*)_{\mathbf{c}}$ if (a) then (b) where
 - (a) (α) $u_{\alpha}^{\iota} \in [\lambda]^{<\theta_{\iota}}$ for $\iota < 2$ and $\alpha < \mu$ (β) $u_{\alpha} = u_{\alpha}^{0} \cup u_{\alpha}^{1}$ for every $\alpha < \mu$

 - $(\gamma) \langle u_{\alpha} : \alpha < \mu \rangle$ are pairwise disjoint
 - (δ) $h^{\iota}_{\alpha}: u^{\iota}_{\alpha} \to \sigma$ for $\iota < 2, \alpha < \mu$ and $\mathrm{pr}: \sigma \times \sigma \to \sigma$
- (b) for some $\alpha_0 < \alpha_1 < \mu$ for every $(\zeta_0, \zeta_1) \in (u_{\alpha_0}^0 \times u_{\alpha_1}^1)$ we have $\zeta_0 < \zeta_1 \text{ and } \mathbf{c}\{\zeta_0, \zeta_1\} = \operatorname{pr}(h_{\alpha_0}^0(\zeta_0), h_{\alpha_1}^1(\zeta_1)).$
 - 2) Let $\operatorname{Qr}_{0,\iota}(\lambda,\mu,\sigma,\bar{\theta})$ be defined similarly but each $h_{\alpha}^{1-\iota}$ is constant.
- 3) Let $Qr_1(\lambda,\mu,\sigma,\bar{\theta})$ be defined as above but each h^0_{α} and each h^1_{α} is a constant function.
 - 4) Let $\operatorname{Qr}_{0,\iota}^{\mathrm{uf}}(\lambda,\mu,\sigma,\bar{\theta})$ be defined parallely to Definition 2.1.

So, e.g.

Observation 2.6. 1) If $cf(\mu) \geq \sigma^+$, then $Pr_1(\lambda, \mu, \sigma, \bar{\theta})$ is equivalent to $Qr_1(\lambda, \mu, \sigma, \theta)$.

- 2) Recall that $\Pr_{\ell}(\lambda, \mu, \sigma, \theta)$ is $\Pr_{\ell}(\lambda, \mu, \sigma, (\theta, \theta))$.
- 3) $\operatorname{Qr}_0(\lambda,\mu,\sigma,\bar{\theta})$ implies $\operatorname{Pr}_0(\lambda,\mu,\sigma,\bar{\theta})$; similarly for the other variants, $Qr_{0,\iota}, Qr_{0,\iota}^{uf}$.

PROOF. Should be clear. $\square_{2,6}$

Observation 2.7. Let $\bar{\theta} = (\theta_0, \theta_1)$ and $\iota \in \{0, 1\}$.

- 1) If $\iota < 2, \partial < \theta_{\iota} \Rightarrow \sigma^{\partial} < cf(\mu)$ and $\theta_{0}, \theta_{1} < cf(\mu)$, then $Pr_{0,\iota}(\lambda, \mu, \sigma, \bar{\theta})$ is equivalent to $Qr_{0,\iota}(\lambda, \mu, \sigma, \bar{\theta})$.
 - 2) If $\partial < \theta_0 + \theta_1 \Rightarrow \sigma^{\partial} < \mathrm{cf}(\mu)$, then $\mathrm{Pr}_0(\lambda, \mu, \sigma, \bar{\theta}) \Leftrightarrow \mathrm{Qr}_0(\lambda, \mu, \sigma, \bar{\theta})$.

PROOF. Obvious but we elaborate.

1) By 2.6(3) we have one implication; so assume $\Pr_{0,\iota}(\lambda,\mu,\sigma,\bar{\theta})$ and we shall prove $\Pr_{0,\iota}(\lambda,\mu,\sigma,\bar{\theta})$, so let $u_{\alpha}=u_{\alpha}^{0}\cup u_{\alpha}^{1}$ for $\alpha<\mu$ and $h_{\alpha}^{\iota}:u_{\alpha}^{\iota}\to\sigma$ and $p_{\alpha}:\sigma\times\sigma\to\sigma$ be as in Definition 2.5(1) and each $h_{\alpha}^{1-\iota}$ is constant.

We should prove that there are $\alpha_0 < \alpha_1 < \mu$ as promised in Definition 2.5(2). As $|u_{\alpha}^{1-\iota}| < \theta_{1-\iota}$ and $\theta_{1-\iota} < \operatorname{cf}(\mu)$, without loss of generality for some $\varepsilon_{1-\iota} < \theta_{1-\iota}$ we have $\alpha < \mu \Rightarrow \operatorname{otp}(u_{\alpha}^{1-\iota}) = \varepsilon_{1-\iota}$. As $\theta_{\iota} < \operatorname{cf}(\mu)$ hence without loss of generality for some $\varepsilon_{\iota} < \theta_{\iota}$ we have $\alpha < \mu \Rightarrow \operatorname{otp}(u_{\alpha}^{\iota}) = \varepsilon_{\iota}$. Moreover, noting $\sigma^{|\varepsilon_{\iota}|} < \operatorname{cf}(\mu)$, without loss of generality $\{(\operatorname{otp}(\zeta \cap u_{\alpha}^{\iota}), h_{\alpha}^{\iota}(\zeta)) : \zeta \in u_{\alpha}^{\iota}\}$ is the same for all $\alpha < \mu$. Now we can apply $\operatorname{Pr}_{0,\iota}(\lambda, \mu, \sigma, \bar{\theta})$.

2) Similarly. $\square_{2,7}$

CLAIM 2.8. 1) Let $\iota < 2$. If $\Pr_1(\lambda, \mu, \sigma_1, \bar{\theta})$ and $\lambda = \mu = \operatorname{cf}(\mu)$, $\bar{\theta} = (\theta_0, \theta_1)$, $\theta = \theta_0 + \theta_1 < \mu$ and $2^{\chi} \ge \lambda, \chi^{<\theta_{\iota}} + (\sigma_2)^{<\theta_{\iota}} \le \sigma_1$ and $\chi^{<\theta_{\iota}} < \mu$ and $(\sigma_2)^{<\theta_{\iota}} < \mu$ then $\Pr_{0,\iota}(\lambda, \mu, \sigma_2, \bar{\theta})$ and $\Pr_{0,\iota}(\lambda, \mu, \sigma_2, \bar{\theta})$.

1A) If the assumptions of part (1) hold for both $\iota = 0$ and $\iota = 1$, then we can conclude $\Pr_0(\lambda, \mu, \sigma_2, \bar{\theta})$ and $\operatorname{Qr}_0(\lambda, \mu, \sigma_2, \bar{\theta})$.

- 2) If $\lambda = \sigma^+$ and $\sigma = \sigma^{<\theta_{\iota}}$ then $\Pr_{0,\iota}(\lambda,\lambda,\sigma,\bar{\theta})$ implies $\Pr_{0,\iota}(\lambda,\lambda,\bar{\lambda},\bar{\theta})$.
- 3) If $\lambda = \sigma^+$ and $\sigma = \sigma^{<(\theta_0 + \theta_1)}$ then $\Pr_0(\lambda, \lambda, \sigma, \bar{\theta})$ implies $\Pr_0(\lambda, \lambda, \lambda, \bar{\theta})$.
- 4) If $\Pr_1(\lambda, \mu, \sigma, \bar{\theta})$ and $\sigma \leq \chi = \chi^{<(\theta_0 + \theta_1)} < \lambda \leq 2^{\chi}$ then $\Pr_0(\lambda, \mu, \sigma, \bar{\theta})$.
- 5) If $\Pr_1(\lambda, \lambda, \lambda, \bar{\theta}), \lambda = \partial^+$ and $\bar{\partial} = \partial^{<(\theta_0 + \theta_1)}$ then $\Pr_0(\lambda, \lambda, \lambda, \bar{\theta})$.

Remark 2.9. 1) Claim 2.8(1) is similar to [6, Ch. III, 4.5(3), pp. 169-170] but we shall elaborate.

2) The condition $\lambda = \mu$ can be omitted if we systematically use $\mathbf{c} : \lambda \times \lambda \to \sigma$.

PROOF. 1) Recalling $\lambda \leq 2^{\chi}$ and $\chi^{<\theta_{\iota}} + (\sigma_2)^{<\theta_{\iota}} \leq \sigma_1$ hence $\chi^{<\theta_{\iota}} + 2^{<\theta_{\iota}} \leq \sigma_1$, choose

- $(*)_1$ (a) $A_{\alpha} \subseteq \chi$ (for $\alpha < \lambda$) which are pairwise distinct.
- (b) Let $\{(a_i, d_i) : i < \sigma_1\}$ be a list (maybe with repetitions) of the pairs (a, d) satisfying $a \subseteq \chi, |a| < \theta_i$ and d a function from $\mathscr{P}(a)$ to σ_2 such that

$$|\{b:b\subseteq a \text{ and } d(b)\neq 0\}|<\theta_{\iota}.$$

Choose

 $(*)_2$ **c** to be a symmetric two-place function from λ to σ_1 exemplifying

$$\Pr_1(\lambda, \mu, \sigma_1, \bar{\theta}).$$

Now we define the two place function **d** from λ to σ_2 as follows: for $\alpha_0 < \alpha_1$:

$$\mathbf{d}(\alpha_0, \alpha_1) = \mathbf{d}(\alpha_1, \alpha_0) := d_{\mathbf{c}(\alpha_0, \alpha_1)}(A_{\alpha_\iota} \cap a_{\mathbf{c}(\alpha_0, \alpha_1)}).$$

We shall show that **d** witnesses $\operatorname{Qr}_{0,\iota}(\lambda,\mu,\sigma_2,\bar{\theta})$ thus finishing upon using Observation 2.7(1) which yields the parallel assertion about $\operatorname{Pr}_{0,\iota}(\lambda,\mu,\sigma_2,\bar{\theta})$ because its assumption on the cardinals follows from those of 2.8(1), i.e. recall $\lambda = \mu = \operatorname{cf}(\mu)$ and $\theta_0 + \theta_1 < \lambda$ so $\theta_\iota < \operatorname{cf}(\mu)$ and $\sigma_2^{<\theta_\iota} < \mu$. So let $\langle t_\alpha : \alpha < \mu \rangle$ be pairwise disjoint subsets of $\lambda, t_\alpha = t_\alpha^0 \cup t_\alpha^1$ and $h_\alpha^\iota : t_\alpha^\iota \to \sigma_2$ such that $h_\alpha^{1-\iota}$ is constant, $|t_\alpha^0| < \theta_0, |t_\alpha^1| < \theta_1$ and $\operatorname{pr} : \sigma_2 \times \sigma_2 \to \sigma_2$. As $\lambda = \mu = \operatorname{cf}(\mu)$ without loss of generality $\alpha < \beta < \mu \Rightarrow \sup(t_\alpha) < \min(t_\beta)$. We have to find $\alpha_0 < \alpha_1$ as in the definition of $\operatorname{Qr}_{0,\iota}(\lambda,\mu,\sigma_\iota,\bar{\theta})$ see Definition 2.5. As by assumption $\mu = \operatorname{cf}(\mu) > \theta$ and, of course, $\alpha < \mu \wedge \ell < 2 \Rightarrow \operatorname{otp}(t_\alpha^\ell) < \theta_\ell \le \theta$ without loss of generality there are $\varepsilon_0^* < \theta_0, \varepsilon_1^* < \theta_1$ such that $\bigwedge_\alpha \operatorname{otp}(t_\alpha^\ell) = \varepsilon_\ell^*$ for $\ell = 0, 1$.

For each $\alpha < \mu$ and $\ell < 2$ let $t_{\alpha}^{\ell} = \{\zeta_{\alpha,\varepsilon}^{\ell} : \varepsilon < \varepsilon_{\ell}^{*}\}$ with $\zeta_{\alpha,\varepsilon}^{\ell}$ increasing with ε . As $|\{\langle h_{\alpha}^{\iota}(\zeta_{\alpha,\varepsilon}^{\iota}) : \varepsilon < \varepsilon_{\iota}^{*}\rangle : \alpha < \mu\}| \leq \sigma_{2}^{|\varepsilon_{\iota}^{*}|} \leq \sigma_{2}^{<\theta_{\iota}} < \mu = \mathrm{cf}(\mu)$, without loss of generality $h_{\alpha}^{\iota}(\zeta_{\alpha,\varepsilon}^{\iota}) = \xi_{\varepsilon}^{\iota} < \sigma_{2}$ for all $\varepsilon < \varepsilon_{\iota}^{*}$ and $h_{\alpha}^{1-\iota}(\zeta_{\alpha,\varepsilon}^{1-\iota}) = \xi_{\varepsilon}^{1-\iota}$ which does not depend on α . Renaming without loss of generality $\mathrm{pr}(\xi_{\varepsilon(0)}^{0}, \xi_{\varepsilon(1)}^{1}) = \xi_{\varepsilon(\iota)}$, so rename it $\xi_{\varepsilon(\iota)}$ for $\varepsilon(0) < \varepsilon_{0}^{*}, \varepsilon(1) < \varepsilon_{1}^{*}$.

We should find $\alpha_0 < \alpha_1 < \mu$ such that for $\varepsilon_0 < \varepsilon_0^*$, $\varepsilon_1 < \varepsilon_1^*$ we have $\zeta_{\alpha_0,\varepsilon_0} < \zeta_{\alpha_1,\varepsilon_1}$ (which follows) and $\mathbf{d}(\zeta_{\alpha_0,\varepsilon_0}^0,\zeta_{\alpha_1,\varepsilon_1}^1) = \operatorname{pr}(h_{\alpha_0}^0(\zeta_{\alpha_0,\varepsilon_0}^0),h_{\alpha_1}^1(\zeta_{\alpha_1,\varepsilon_1}^1))$ which is equal to $\operatorname{pr}(\xi_{\varepsilon_0},\xi_{\varepsilon_1})$. Choose $a_\alpha \subseteq \chi$, $|a_\alpha| = |\varepsilon_t^*| < \theta_t$ such that $\langle A_{\zeta_{\alpha,\varepsilon}^t} \cap a_\alpha : \varepsilon < \varepsilon_t^* \rangle$ is a sequence of pairwise distinct subsets of a_α . As $\operatorname{cf}(\mu) = \mu > \chi^{<\theta_t}$ without loss of generality for every $\alpha < \lambda = \mu$ we have $a_\alpha = a^*$ and $A_{\zeta_{\alpha,\varepsilon}^t} \cap a^* = a_\varepsilon^*$ for all $\varepsilon < \varepsilon_t^*$.

For some $i < \sigma_1$ we have $a_i = a^*$ and $d_i(a_{\varepsilon}^*) = \xi_{\varepsilon}$ for every $\varepsilon < \varepsilon_{\iota}^*$. By the choice of \mathbf{c} for some $\alpha_0 < \alpha_1 < \mu$ the function $\mathbf{c} \upharpoonright t_{\alpha_0} \times t_{\alpha_1}$ is constantly i, so $\varepsilon_0 < \varepsilon_0^* \wedge \varepsilon_1 < \varepsilon_1^* \Rightarrow \mathbf{c}(\zeta_{\alpha_0,\varepsilon_0}^0, \zeta_{\alpha_1,\varepsilon_1}^1) = i$, hence for every $(\varepsilon_0, \varepsilon_1) \in \varepsilon_0^* \times \varepsilon_1^*$ we have

$$\mathbf{d}(\zeta_{\alpha_0,\varepsilon_0}^0,\zeta_{\alpha_1,\varepsilon_1}^1) = d_i(A_{\zeta_{\alpha_1,\varepsilon_i}} \cap a_i) = d_i(a_{\varepsilon_i}^*) = \xi_{\varepsilon_i} = \operatorname{pr}(h_{\alpha_0}^0(\zeta_{\alpha_0,\varepsilon_0}^0), h_{\alpha_1}^1(\zeta_{\alpha_1,\varepsilon_1}^1))$$

as required.

- 1A) Similarly.
 - 2) Similar to part (3), see remarks inside its proof.
- 3) Let $\theta = \theta_0 + \theta_1$ but for part (2) we let $\theta = \theta_\ell$ and let $\mathbf{c}_1 : [\lambda]^2 \to \sigma$ witness $\Pr_0(\lambda, \lambda, \sigma, \bar{\theta})$ and let $\bar{f} = \langle f_\alpha : \alpha < \lambda \rangle$ be such that f_α is a one-to-one function from σ onto $\sigma + \alpha$. Let $\langle A_\alpha : \alpha < \lambda \rangle$ be a sequence of pairwise distinct subsets of σ and let $\langle (a_i, d_i) : i < \sigma \rangle$ list the pairs (a, d) such that $a \in [\sigma]^{<\theta}, d : \mathscr{P}(a) \times \mathscr{P}(a) \to \sigma$ and $|\{(b_1, b_2) : b_1 \subseteq a, b_2 \subseteq a \text{ and } \mathbf{c}_1(b_1, b_2) \neq 0\}| < \theta$; for part (2) we use $d : \mathscr{P}(a) \to \sigma$.

Now we define $\mathbf{c}_2 : [\lambda]^2 \to \lambda$ as follows: for $\alpha < \beta < \lambda$ let $\mathbf{c}_2(\{\alpha, \beta\}) = f_{\beta}((d_{\mathbf{c}_1(\{\alpha, \beta\})}(A_{\alpha} \cap a_{\mathbf{c}_1(\{\alpha, \beta\})}, A_{\beta} \cap a_{\mathbf{c}_1(\{\alpha, \beta\})})))$.

So let $\bar{\zeta}^{\iota} = \langle \zeta^{\iota}_{\alpha,i} : \alpha < \lambda, i < \mathbf{i}_{\iota} \rangle$ for $\iota < 2$ and $h : \mathbf{i}_{0} \times \mathbf{i}_{1} \to \lambda$ be as in Definition 2.1(1) but for part (2), $h : \mathbf{i}_{\ell} \to \lambda$, see 2.1(2). For $\iota = 0, 1$ for each $\alpha < \lambda$ and $i < \mathbf{i}_{\iota}$ we can find $a_{\alpha,\iota} \in [\sigma]^{<\theta_{\iota}}$ such that $\bar{b}_{\alpha,\iota} := \langle A_{\zeta^{\iota}_{\alpha,\iota}} \cap a_{\alpha,\iota} : i < \mathbf{i}_{\iota} \rangle$ is a sequence of pairwise distinct sets.

Without loss of generality $\alpha < \lambda \land \iota < 2 \Rightarrow a_{\alpha,\iota} = a_{\iota}, \bar{b}_{\alpha}^{\iota} = \bar{b}_{\iota}$; also without loss of generality $\sup(\operatorname{Rang}(h)) \leq \min\{\zeta_{\alpha,i}^{\iota} : \alpha < \lambda, i < \mathbf{i}_{\iota} \text{ and } \iota < 2\}.$

Next let $\bar{\beta}^{\iota}_{\alpha} = \langle \beta^{\iota}_{\alpha,i_0,i_1} : i_0 < \mathbf{i}_0 \text{ and } i_1 < \mathbf{i}_1 \rangle$ be a sequence of ordinals $< \sigma$ such that $f_{\zeta^{\iota}_{\alpha,i_1}}(\beta^{\iota}_{\alpha,i_0,i_1}) = h(i_0,i_1)$ and without loss of generality $\bar{\beta}^{\iota}_{\alpha} = \bar{\beta}^{\iota}$; actually for part (3) we use only $f_{\zeta^{\iota}_{\alpha,i_1}}$ but for part (2) we use $f_{\zeta^{\iota}_{\alpha,i_{\iota}}}$ for the ι from there.

Let $a = a_0 \cup a_1$ so $a \in [\sigma]^{<(\theta_0 + \theta_1)}$ and let $d : \mathscr{P}(a) \times \mathscr{P}(a) \to \sigma$ be such that $d(b_{i_0}^0, b_{i_1}^1) = \beta_{i_0, i_1}^1$ and $d(b_0, b_1) = 0$ if $b_0, b_1 \subseteq a$ and $(b_0, b_1) \not\in \{(b_{i_0}^0, b_{i_1}^1) : i_0 < \mathbf{i}_0, i_1 < \mathbf{i}_1\}$. Let $j < \sigma$ be such that $(a_j, d_j) = (a, d)$.

Lastly, by the choice of \mathbf{c}_1 we can find $\alpha < \beta$ such that $i_0 < \mathbf{i}_0 \land i_1 < \mathbf{i}_1 \Rightarrow \mathbf{c}_1(\{\zeta_{\alpha,i_0}^0,\zeta_{\alpha,i_1}^1\}) = j$; and now check.

- 4) Similarly to the proof of part (3).
- 5) As $\Pr_1(\lambda, \lambda, \lambda, \bar{\theta})$ by monotonicity we have $\Pr_1(\lambda, \lambda, \partial, \bar{\theta})$ hence by part (4) we have $\Pr_0(\lambda, \lambda, \partial, \bar{\theta})$ and now by part (3) we can deduce $\Pr_0(\lambda, \lambda, \lambda, \bar{\theta})$ as promised. $\square_{2.8}$

In Juhász–Shelah [2] we use $\operatorname{Col}(\lambda,\kappa)$, i.e. $\operatorname{Pr}_0(\lambda,\lambda,2,\kappa^+)$ quoting [6, Ch. III, §4] that e.g. $(\lambda,\kappa)=((2^{\aleph_0})^{++}+\aleph_4,\aleph_0)$ is O.K. But in fact less suffices (see Definition 2.1).

Conclusion 2.10. 1) For $\lambda = \kappa^{+4}$ we have $\Pr_1(\lambda, \lambda, \lambda, \kappa^+)$ which implies $\Pr_{0,0}(\lambda, \lambda, \lambda, (\aleph_0, \kappa^+))$ and hence trivially $\Pr_{0,0}(\lambda, \lambda, 2, (\aleph_0, \kappa^+))$ holds.

- 2) If $\Pr_{0,0}(\lambda,\lambda,\aleph_0,(\aleph_0,\kappa^+))$ or just $\Pr_{0,0}^{\mathrm{uf}}(\lambda,\lambda,\aleph_0,(\aleph_0,\kappa^+))$, e.g. $\lambda=\aleph_4$, $\kappa=\aleph_0$ then we have:
- $(*)_{\lambda,\kappa}$ there is a topological space X such that
 - (a) X is T_3 , even has a clopen basis and has weight $\leq \lambda$
 - (b) the closure of any set of $\leq \kappa$ points is compact
 - (c) any infinite discrete set has an accumulation point
 - (d) the space is not compact
- (e) some non-isolated point is not the accumulation point of any discrete set.

PROOF. 1) First we apply Theorem 3.2 (or [6, Ch. III, §4]) with $(\kappa^{+4}, \kappa^{+3}, \kappa^{+})$ here standing for $(\lambda, \partial, \theta)$ there. Clearly the assumptions there hold hence $\Pr_1(\kappa^{+4}, \kappa^{+4}, \kappa^{+4}, \kappa^{+})$ holds.

Second, we apply Claim 2.8(1) with 0, κ^{+4} , κ^{+4} , κ^{+3} , κ^{+3} , κ^{+} , \aleph_0 , κ^{+} , κ^{+3} here standing for ι , λ , μ , σ_1 , σ_2 , θ , θ_0 , θ_1 , χ there. Clearly the assumptions there hold because:

- "Pr₁($\lambda, \mu, \sigma_1, \bar{\theta}$)" there means Pr₁($\kappa^{+4}, \kappa^{+4}, \kappa^{+3}, (\aleph_0, \kappa^+)$) here which holds by the "first" above and monotonicity

 - •2 " $\chi^{<\theta_{\iota}} < \mu$ " there means " $(\kappa^{+3})^{<\aleph_0} < \kappa^{+4}$ "
 •3 " $\chi^{<\theta_{\iota}} \le \sigma_1$ " there means " $(\kappa^{+3})^{<\aleph_0} \le \kappa^{+3}$ "
 •4 " $2^{\chi} \ge \lambda$ " there means " $2^{\kappa^{+3}} \ge \kappa^{+4}$ "
 •5 " $\sigma_2^{<\theta_{\iota}} \le \sigma_1$ " there which means here " $(\kappa^{+3})^{<\aleph_0} \le \kappa^{+3}$ "
 - \bullet_6 " $\sigma_2^{<\theta_i} < \mu$ " there which means here $(\kappa^{+3})^{<\aleph_0} < \kappa^{+4}$

So all of them hold indeed.

Next, the conclusion of 2.8(1) is $\Pr_{0,\iota}(\lambda,\mu,\sigma_2,\bar{\theta})$ which here means $\Pr_{0.0}(\kappa^{+4}, \kappa^{+4}, \kappa^{+3}, (\aleph_0, \kappa^+)).$

Lastly, by 2.8(2) we get $\Pr_{0.0}(\kappa^{+4}, \kappa^{+4}, \kappa^{+4}, \kappa^{+4}, (\aleph_0, \kappa^+))$.

2) By Claim 2.13 below, which generalize the proof of Juhász-Shelah [2], that is, let $D = \langle D_i : i < \beth_2 \rangle$ list the ultrafilters on $\sigma := \aleph_0$ and let $\sigma_i = \sigma$ for $i < \beth_2$ and $\theta = \kappa^+$. So clause (A) of 2.13 below holds, hence we can apply 2.13 for $(\lambda, \theta) = (\lambda, \kappa^+)$ and \bar{D} . So clause (a) of 2.10(2) holds by (B)(a)(α) of 2.13, of course; clause (b) of 2.10(2) holds by (B)(a)(γ) recalling the choice of D; clause (c) there holds by (B)(a)(ε); clause (d) there holds by (B)(a)(δ); and lastly, clause (e) there holds by (B)(b). So we are done. $\square_{2,10}$

Moreover

CLAIM 2.11. 1) If κ is regular and $\lambda = \kappa^{+3}$ then $\Pr_1(\lambda, \lambda, \lambda, (\aleph_0, \kappa^+))$ hence $Pr_{0,0}(\lambda,\lambda,\lambda,(\aleph_0,\kappa^+))$.

- 2) $(*)_{\aleph_3,\aleph_0}$ from 2.10(2) holds.
- 3) $(*)_{\kappa^{+3},\kappa}$ from 2.10(2) holds for κ regular.

Proof. Like the proof of 2.10 using Theorem 3.5 instead of Theorem 3.2, that is, we apply 3.5 with $(\aleph_3, \aleph_2, \aleph_1, \aleph_0)$ standing for $(\lambda, \partial, \theta_1, \theta_0)$. $\square_{2,11}$

We conclude this section with an explicit proof of the topological statement in 2.10(2). We shall need the following:

DEFINITION 2.12. Let X be a topological space, D an ultrafilter over σ .

- 1) An element $y \in X$ is the *D*-limit of a sequence of points $\langle x_j : j < \sigma \rangle$ in X iff $y \in u \Rightarrow \{j < \sigma : x_j \in u\} \in D$ whenever u is a open subset of X.
- 2) X is D-complete iff for every sequence of points $\langle x_i : j < \sigma \rangle$ in X there is $y \in X$ such that y is the D-limit of the sequence.
- 3) If $D = \langle D_i : i < i_* \rangle$ is a sequence such that each D_i is an ultrafilter over $\sigma_i = \sigma(i)$ then X is D-complete iff X is D_i -complete for every $i < i_*$.

Claim 2.13. If (A) then (B) where

- (A) (a) $\lambda = cf(\lambda) > \theta = cf(\theta) > \aleph_0$
- (b) $\bar{D} = \langle D_i : i < i_* \rangle$, each D_i is a non-principal ultrafilter on σ_i and $\sigma_i < \theta$
 - (c) $Pr_{0,0}(\lambda, \lambda, 2, (\aleph_0, \theta))$; yes! $Pr_{0,0}$ and not Pr_0
 - (B) there is a topological space X and a point $g \in X$ such that:

- (a) (a) X is a subspace of $^{\lambda}2$ hence has a clopen basis and is a T_3 space
- (β) X is a dense subset of $^{\lambda}2$ hence has no isolated point and its weight is λ
- (γ) if every non-principal ultrafilter D on a cardinal $\sigma < \theta$ appears in D then for any set $Y \subseteq X$ of cardinality $\langle \theta \rangle$, the closure of Y is compact
 - (δ) X is not compact
- (ε) any subset of X of cardinality $\geq \min\{\sigma_i : i < i_*\}$ has an accumulation point; so the cardinality can be \aleph_0
 - (ζ) X is D-complete
- (b) (α) $g \in X$ is not an accumulation point of any discrete set $Y \subseteq$ $X \setminus \{g\}$
- (β) moreover, g is not an accumulation point of any set $Y \subseteq$ $\begin{array}{c} X\backslash\{g\} \ of \ cardinality < \lambda \\ \text{(c)} \ \ (\alpha) \ \ X \ \ has \leq \lambda^{<\theta} + \sum\limits_{\sigma<\theta} 2^{2^{\sigma}} \ \ points \end{array}$
 - - (β) X has $\geq \lambda$ points
 - (d) if $i_* < \lambda$ and $\alpha < \lambda \Rightarrow |\alpha|^{<\theta} < \lambda$ then
 - (α) X has no discrete subset of cardinality $> \lambda$, moreover
 - (β) $hL^+(X) \le \lambda$ so $\lambda = \mu^+ \Rightarrow hL(X) \le \mu$.

Proof.

Stage A: We make some choices:

- $(*)_1$ (a) let $\mathbf{c}: [\lambda]^2 \to \{0,1\}$ witness $\Pr_{0,0}(\lambda,\lambda,2,(\aleph_0,\theta))$
- (b) let $\bar{h}^* = \langle h_{\alpha}^* : \alpha < \lambda \rangle$ list the finite partial functions from λ to $\{0,1\}$; without loss of generality dom $(h_{\alpha}^*) \subseteq \alpha$
 - (c) let $q \in {}^{\lambda}2$ be constantly 1.

- $(*)_2$ for $\alpha < \lambda$ we define $f_{\alpha}^* \in {}^{\lambda}2$ as follows:
 - for $\beta < \lambda$ we let $f_{\alpha}^*(\beta)$ be
 - (a) $h_{\alpha}^*(\beta)$ if $\beta \in \text{dom}(h_{\alpha}^*)$
 - (b) $\mathbf{c}\{\beta,\alpha\}$ if $\beta < \alpha \land \beta \notin \mathrm{dom}(h_{\alpha}^*)$

Our X will include each f_{α}^* for $\alpha < \lambda$ but more.

- $(*)_3$ for $\beta \leq \lambda$ we let
 - (a) $\mathscr{F}_{\beta} = \{ f_{\alpha}^* : \alpha < \beta \}$
- (b) $\mathscr{F}_{\beta}^* = c\ell_{\bar{D}}(\mathscr{F}_{\beta})$, i.e. \mathscr{F}_{β}^* is the minimal subset of $^{\lambda}2$ which includes \mathscr{F}_{β} and is \bar{D} -closed
 - (c) $\mathscr{G}^*_{\beta} = \{ f : f \in \mathscr{F}^*_{\lambda} \text{ and } f \upharpoonright [\beta, \lambda) \text{ is constantly zero} \}.$

 $(*)_4 \mathscr{F}_{\lambda}^*$ is the union of the \subseteq -increasing sequence $(\mathscr{F}_{\beta}^* : \beta < \lambda)$.

[Why? Clearly $\langle \mathscr{F}_{\beta} : \beta < \lambda \rangle$ is \subseteq -increasing and as $\operatorname{cf}(\lambda) \geq \theta$ and D_i is an ultrafilter on $\sigma_i < \theta$ for $i < i_*$ clearly $(*)_4$ follows.

Lastly, we choose X

 $(*)_5 X$ is the subspace of $^{\lambda}2$ with set of elements $\mathscr{F}^*_{\lambda} \cup \{g\}$.

So it suffices to prove that X, g are as required in the claim.

 $(*)_6$ if $f \in \mathscr{F}^*_{\lambda}$ then for some triple (u, v, D) we have:

- (a) $u, v \in [\lambda]^{<\theta}$
- (b) D an ultrafilter on u
- (c) $f = \lim_D (\langle f_\alpha^* : \alpha \in u \rangle)$
- (d) if $\beta \in \lambda \setminus v$, then $f(\beta) = 1 \Leftrightarrow \{\alpha \in u : \beta < \alpha \text{ and } \mathbf{c}\{\alpha, \beta\} = 1\} \in D$.

[Why? Recall $\mathscr{F}_{\lambda}^{*}$ is $c\ell_{\bar{D}}(\mathscr{F}_{\lambda})$ and each D_{i} is an ultrafilter on some $\sigma_{i} < \theta$]. Hence we can find a sequence $\langle f_{\alpha}^{*} : \alpha \in [\lambda, \alpha_{*}) \rangle$ listing $\mathscr{F}_{\lambda}^{*} \backslash \mathscr{F}_{\lambda}$ and for each such $\alpha, i(\alpha) = i_{\alpha} < i_{*}$ and $\bar{\beta}_{\alpha} \in \sigma^{(i(\alpha))} \lambda$ are such that $f_{\alpha}^{*} = \lim_{D_{i(\alpha)}} (\langle f_{\beta_{\alpha},\varepsilon} : \varepsilon < \sigma_{i(\alpha)} \rangle)$. As θ is regular, clearly there are $u \in [\lambda]^{<\theta}$ and an ultrafilter D on u such that clause (c) holds.

[Why? If $f = f_{\alpha}^*$, $\alpha < \lambda$ then $u = \{\alpha\}$ is as required and if $f = f_{\alpha}^*$, $\alpha \in [\lambda, \alpha_*)$ then we can prove this by induction on α .]

Now choose $v = \bigcup \{ \operatorname{dom}(h_{\alpha}^*) : \alpha \in u \}$, clearly u, v are as required. E.g. if $f = f_{\alpha}^*, \alpha < \lambda$ the ultrafilter D is the unique principal ultrafilter on $\{\alpha\}$; for $(*)_6(d)$ recall the choice of the f_{α}^* 's for $\alpha < \lambda$.]

- $(*)_7$ if $f \in \mathscr{F}_{\lambda}^*$ and $\delta < \lambda$ has cofinality $\geq \theta$, then for some $\gamma < \delta$, at least one of the following holds:
 - (a) if $\beta \in [\gamma, \lambda)$ then $f(\beta) = 0$
- (b) for some $u = u_f \in [\lambda \backslash \delta]^{<\theta}$ and $v = v_f \in [\lambda \backslash \delta]^{<\theta}$ and ultrafilter D on u we have
 - if $\beta \in [\gamma, \lambda) \setminus v_f$ then $f(\beta) = \lim_D (\langle \mathbf{c} \{ \beta, \alpha \} : \alpha \in u \rangle)$.

[Why? Let u, v, D be as in $(*)_6$. If $u \cap \delta \in D$ then let γ be $\sup(u \cap \delta) < \delta$ and by $(*)_2(c) + (*)_6(c)$ clearly clause (a) of $(*)_7$ holds. So we can assume $u \cap \delta \not\in D$ and as D is an ultrafilter on u, necessarily $u \setminus \delta \in D$. Let $u' = u \setminus \delta, \gamma = \sup(\bigcup \{ \operatorname{dom}(h_{\alpha}^*) \cap \delta : \alpha \in u \} \cup (v \cap \delta)) + 1$ and $D' = D \cap \mathscr{P}(u')$ and $v' = v \setminus \delta$, they clearly witness clause (b) of $(*)_7$. Together we are done.]

- (*)₈ (a) if $f \in \mathscr{F}_{\lambda}^*$, then for some $\beta < \lambda$ we have $f \in \mathscr{F}_{\beta}^*$ which implies f is constantly zero on $[\beta, \lambda)$
 - (b) $\mathscr{F}_{\beta}^* \subseteq \mathscr{G}_{\beta}^* \subseteq \mathscr{F}_{\lambda}^*$
 - (c) \mathscr{G}_{β}^* is \subseteq -increasing with β with union \mathscr{F}_{λ}^* .

[Why? Clause (a) holds by $(*)_3(b) + (*)_4$ above. Clauses (b), (c) are easy too recalling $(*)_3(a)$.]

Stage B: Now we check the demands in (B) of the claim.

 $\bigoplus_1 X$ is a subspace of $^{\lambda}2$ [so clause (B)(a)(α) holds] hence X is a T_3 topological space with a clopen base.

[Why? By its choice in $(*)_5$.]

 $\oplus_2 X$ is dense in $^{\lambda}2$ hence clause (B)(a)(β) holds.

[Why? By the choice of \bar{h}^* in $(*)_1(b)$ because $h^*_{\alpha} \subseteq f^*_{\alpha}$ for $\alpha < \lambda$ by $(*)_2(a)$.]

 $\oplus_3 X$ is D_i -complete for every $i < i_*$ hence clause (B)(a)(ζ) holds.

[Why? By the choice of \mathscr{F}_{λ}^* in $(*)_3(b)$ because $X \setminus \mathscr{F}_{\lambda}^* = \{g\}$ recalling $\lambda = \operatorname{cf}(\lambda) > \theta$.]

 $\oplus_4 \ \lambda \leq |X| \leq \lambda^{<\theta} + \sum_{\sigma < \theta} 2^{2^{\sigma}}$ and also $|X| \leq \lambda^{<\theta} + 2^{\theta + |i_*|}$ hence clause

(B)(c) holds.

[Why? Clearly $|\mathscr{F}_{\lambda}| = \lambda$ and $\mathscr{F}_{\lambda} \subseteq \mathscr{F}_{\lambda}^* \subseteq X$ hence $\lambda \leq |X|$. As $|X \setminus \mathscr{F}_{\lambda}^*| = X$ $|\{g\}| = 1$ and by $(*)_6$ the other inequalities follow.

 $\oplus_5 g \notin c\ell(Y)$ when $Y \subseteq X \setminus \{g\}$ and at least one of the following holds:

- (a) $|Y| < \lambda$
- (b) for some $\beta < \lambda, Y \subseteq \mathscr{F}_{\beta}^*$
- (c) for some $\beta < \lambda, Y \subseteq \mathscr{G}_{\beta}^{\tilde{*}} := \{ f \in \mathscr{F}_{\lambda}^* : f \upharpoonright [\beta, \lambda] \text{ is constantly zero} \}.$

[Why? If clause (a), i.e. $|Y| < \lambda = \operatorname{cf}(\lambda)$ as $\langle \mathscr{F}_{\beta}^* : \beta < \lambda \rangle$ is \subseteq -increasing with union \mathscr{F}_{λ}^* by $(*)_4$, necessarily $Y \subseteq \mathscr{F}_{\beta}^*$ for some $\beta < \lambda$, i.e. clause (b); but this in turn implies clause (c) by $(*)_8(b)$.

But if clause (c) holds for β , then $g \notin c\ell(Y)$ recalling that $g(\gamma) = 1$ for every $\gamma < \lambda$.

Now comes a major point using the choice of \mathbf{c} , i.e. $\Pr_{0,0}(\lambda,\lambda,2,(\aleph_0,\theta))$. \oplus_6 if $Y \subseteq \mathscr{F}_{\lambda}^*$ and $\beta < \lambda \Rightarrow Y \not\subseteq \mathscr{G}_{\beta}^*$ then Y is not discrete and even not left separated (hence, together with \oplus_5 , clause (B)(b) holds).

[Why? For $\alpha < \lambda$ choose $f_{\alpha} \in Y \setminus \mathscr{G}_{\alpha}^* \subseteq \mathscr{F}_{\lambda}^* \setminus \mathscr{F}_{\alpha}$ hence there is $\beta_{\alpha}^1 \in [\alpha, \lambda)$ such that $f_{\alpha}(\beta_{\alpha}^1) = 1$ and there is $\beta_{\alpha}^2 \in (\beta_{\alpha}^1, \lambda)$ such that $f_{\alpha} \upharpoonright [\beta_{\alpha}^2, \lambda)$ is constant. stantly zero.

Recall that "Y is left separated (in the space X)" means that there is a well-ordering $<^*$ on Y such that for every $x \in Y$ the set $\{y \in Y : x <^* y\}$ is closed in the induced topology on Y.

Toward contradiction assume Y is discrete or just left separated. Fix a well-ordering $<^*$ on Y which witnesses this fact. Clearly we can find \mathcal{U}_0 $\in [\lambda]^{\lambda}$ such that $\langle \beta_{\alpha}^1 : \alpha \in \mathcal{U}_0 \rangle$ is an increasing sequence of ordinals and on $Y, <^*$ and the usual order agree.

Now by the choice of $<^*$ for some $\mathscr{U} \in [\mathscr{U}_0]^{\lambda}$ we can find a sequence $\bar{h} = \langle h_{\alpha} : \alpha \in \mathcal{U} \rangle, h_{\alpha}$ is a finite function from λ to $\{0,1\}$ satisfying (the statements $\bullet_0 + \bullet_2$ by the definition of "<* witnesses Y is left separated"; the statement \bullet_1 holds as without loss of generality as increasing h_{α} makes no harm, and the statement \bullet_3 holds without loss of generality because we can replace \mathscr{U} by any $\mathscr{U}' \in [\mathscr{U}]^{\lambda}$):

- $\bullet_0 \ h_{\alpha} \subseteq f_{\alpha}$
- $\bullet_1 \beta_{\alpha}^1, \beta_{\alpha}^2 \in \text{Dom}(h_{\alpha})$
- •2 if $\alpha_1 < \alpha_2$ then $h_{\alpha_1} \nsubseteq f_{\alpha_2}$. Also (not used) •3 if $\alpha_1 < \alpha_2$ are from \mathscr{U} then $\beta_{\alpha_1}^2 < \beta_{\alpha_2}^1$ hence $h_{\alpha_2} \nsubseteq f_{\alpha_1}$. Renaming without loss of generality

 $\bullet_4 \mathscr{U} = \lambda$ and still $\beta_{\alpha}^2 > \beta_{\alpha}^1 \geq \alpha, f_{\alpha}(\beta_{\alpha}^1) = 1$ and $f_{\alpha} \upharpoonright [\beta_{\alpha}^2, \lambda)$ is constantly zero.

For each $\delta \in S_1 := S_{\theta}^{\lambda} = \{\delta < \lambda : \operatorname{cf}(\delta) = \theta\}$ we consider $(*)_7$ with (f_{δ}, δ) here standing for (f, δ) there, now $\beta_{\delta}^1 \geq \delta, f_{\delta}(\beta_{\delta}^1) = 1$ by \bullet_4 hence clause $(*)_7(a)$ fails, so necessarily clause $(*)_7(b)$ holds. So there is a quadruple

 $(\gamma_{\delta}, u_{\delta}, v_{\delta}, D_{\delta})$ as there¹ and let $\beta_{\delta}^3 := \sup(\delta \cap (\operatorname{dom}(h_{\delta})))$, as h_{δ} is a finite function, necessarily $\beta_{\delta}^3 < \delta$. So by Fodor lemma for some $\gamma_* < \lambda$ the set $S_2 = \{\delta \in S_1 : \gamma_{\delta}, \beta_{\delta}^3 \le \gamma_* < \delta\}$ is stationary hence so is $S_3 = \{\delta \in S_2 : \text{ if } \alpha < \delta \text{ then } u_{\alpha}, v_{\alpha} \subseteq \delta, \ \beta_{\alpha}^1 < \delta, \ \beta_{\alpha}^2 < \delta \text{ and } \operatorname{dom}(h_{\alpha}) \subseteq \delta\}$. As $\operatorname{dom}(h_{\alpha})$ is finite and $\operatorname{range}(h_{\alpha}) \subseteq \{0,1\}$ clearly for some $h_*, \ h_{**}$ the set $S_4 = \{\delta \in S_3 : h_{\delta} \mid \delta = h_* \text{ and } h_{**} = \{(\operatorname{otp}(\operatorname{dom}(h_{\delta}) \cap \gamma), h_{\delta}(\gamma)) : \gamma \in \operatorname{dom}(h_{\delta})\}\}$ is stationary.

For $\delta \in S_4$ let $u_{\delta,0} = \operatorname{Dom}(h_{\delta}) \backslash \operatorname{Dom}(h_*), h'_{\delta} = h_{\delta} | u_{\delta,0}$ and $u_{\delta,1} = u_{\delta}$ and recall $u_{\delta} \cap \delta = \emptyset = v_{\delta} \cap \delta$, see $(*)_7(b)$. Note that $\operatorname{Qr}_{0,0}(\lambda, \lambda, 2, (\aleph_0, \theta))$ holds, see Definition 2.5(1),(2) for $\iota = 0$, now it holds because we are assuming $\operatorname{Pr}_{0,0}(\lambda, \lambda, 2, (\aleph_0, \theta))$ by 2.7(1). So we can apply the definition of $\operatorname{Qr}_{0,0}(\lambda, \lambda, 2, (\aleph_0, \theta))$ and the choice of \mathbf{c} to $\langle (u_{\delta,0}, u_{\delta,1} : \delta \in S_4 \rangle)$ and $\langle h'_{\delta} : \delta \in S_4 \rangle$. So there are δ_1, δ_2 such that:

- •5 $\delta_1 < \delta_2$ are from S_4
- •6 if $\alpha \in u_{\delta_1,0}$ and $\beta \in u_{\delta_2,1}$ then $\mathbf{c}\{\alpha,\beta\} = h'_{\delta_1}(\alpha)$.

Next

•7 if $\alpha \in u_{\delta_1,0}$ then $f_{\delta_2}(\alpha) = \lim_{D_{\delta_2}} (\langle \mathbf{c}\{\alpha,\beta\} : \beta \in u_{\delta_2,1} = u_{\delta_2} \rangle).$

[Why? By the choice of $(\gamma_{\delta_2}, u_{\delta_2}, D_{\delta_2}, h_*, h_{**})$ that is recalling $(*)_7(b)$ because $\alpha \in u_{\delta_1,0} \Rightarrow \alpha \in \text{dom}(h'_{\delta_1}) \Rightarrow \alpha \geq \delta_1 \Rightarrow \alpha \geq \gamma_* \geq \gamma_{\delta_2}$ and $\alpha \in u_{\delta_1,0} \cup v_{\delta_1} \Rightarrow \alpha < \delta_2$.]

•8 if $\alpha \in \text{dom}(h'_{\delta_1})$ then $f_{\delta_2}(\alpha) = h'_{\delta_2}(\alpha)$.

[Why? By \bullet_7 because $u_{\delta_1,0} = \text{dom}(h'_{\delta_1})$ and \bullet_6 .]

 $\bullet_9 h'_{\delta_1} \subseteq f_{\delta_2}.$

[Why? By \bullet_8 .]

However, $h_{\delta_1} \subseteq f_{\delta_1}$ by \bullet_0 hence $h_* \subseteq h_{\delta_1} \subseteq f_{\delta_1}$ but $h_* \subseteq h_{\delta_2} \not\subseteq f_{\delta_1}$ by \bullet_2 and $h'_{\delta_2} = h_{\delta_2} \upharpoonright (\text{dom}(h_{\delta_2}) \backslash \text{dom}(h_*)$ hence

 $\bullet_{10} h'_{\delta_2} \not\subseteq f_{\delta_1}.$

But \bullet_{10} contradict \bullet_9 , all this follows from the assumption toward contradiction in the beginning of the proof of \oplus_6 , so \oplus_6 holds indeed.

Now we can check all the remaining demands in (B), e.g.

Clause (B)(d)(β): Assume toward contradiction that $hL^+(X) > \lambda$. This means that some $Y \subseteq X$ has cardinality λ and is right separated (by some well ordering). Now without loss of generality $g \notin Y$ and if $\beta < \lambda \Rightarrow Y \nsubseteq \mathscr{G}^*_{\beta}$ then we get a contradiction by \oplus_6 . So we are left with the case $Y \subseteq \mathscr{G}^*_{\beta}$ for some $\beta < \lambda$. But by the clause assumption $|\mathscr{G}^*_{\beta}| \leq |\beta|^{<\theta} + |i_*|$ which has cardinality $< \lambda$, so we are done proving (B)(d)(β).

We are done proving 2.13: most clauses of (B) were proved and we have to add that: clauses (B)(a)(γ) + (ε) hold by the choice of $\mathscr{F}_{\lambda}^{*}$ as $X \setminus \mathscr{F}_{\lambda}^{*} = \{g\}$. Clause (B)(a)(δ) is exemplified by any uniform ultrafilter D on λ such that $\{\alpha : f_{\alpha}^{*}(0) = r\} \in D$, exists by $(*)_{3}(c) + (*)_{8}$. $\square_{2.13}$

¹ They depend also on $f = f_{\delta}$, but δ determines f.

3. The colouring existence

We try to explain the proof of 3.1, 3.5; probably more of it will make sense after reading part of the proof.

Claim 3.1 should be understood as follows: given a set S and functions $F_{\iota}: S \to \kappa_{\iota}$ for $\iota = 0, 1$ and a sequence $\varrho \in {}^{\omega} > \bar{S}, \mathbf{d}(\varrho)$ is a natural number which in the interesting case is a "place in the sequence", i.e. $\mathbf{d}(\varrho) < \ell g(\varrho)$.

In the interesting cases, $\rho = \eta_0 \hat{\nu}_0 \hat{\rho} \hat{\nu}_1 \hat{\eta}_1$ is as constructed during the proof of 3.5, and if (B)(a)-(d) of 3.1 holds, $\ell q(\eta_0) + \ell_4$ is a place in the sequence; so 3.1 tells us that it depends only on ρ (and not on the representation $(\eta_0, \nu_0, \rho, \nu_1, \eta_1)$ of ϱ).

How does d help us in the proof of Theorem 3.5?

We shall describe it for the case of θ_1 colours, i.e. $\sigma = \theta_1$ and the colouring is called \mathbf{c}_1 . Let $(\kappa_0, \kappa_1, \kappa_2) = (\theta_0, \theta_1, \lambda)$. We shall be given pairwise disjoint $t_{\alpha} = t_{\alpha}^{0} \cup t_{\alpha}^{1}$ for $\alpha < \lambda$ and a colour $j_{*} < \theta_{1}$ such that $|t_{\alpha}^{\iota}| < \theta_{\iota}$ for $\iota = 0, 1$ and $\alpha < \lambda$ and we shall carefully choose $\alpha_0 < \alpha_1$ exemplifying the desired conclusion.

Toward choosing the pair (α_0, α_1) we also choose $\delta_0 < \delta_1 < \delta_2 < \delta_3$ which will be from (α_0, α_1) such that $\sup(t_{\alpha_0}) < \delta_0$ and ℓ_4 such that:

- (a) we let $\nu_0 = \rho_{\bar{h}}(\delta_3, \delta_2), \rho = \rho_{\bar{h}}(\delta_2, \delta_1), \nu_1 = \rho_{\bar{h}}(\delta_1, \delta_0)$ where $\rho_{\bar{h}}(\delta', \delta'')$ is derived from the sequence $\rho(\delta', \delta'')$, see before \odot_2 in the proof of 3.5
- (b) $\ell_4 < \ell g(\nu_0)$ and $h'(F_1(\nu_0(\ell_4))) = j_*$ where $h': \kappa_1 \to \kappa_2$ is chosen in \odot_7 in the proof 3.5
- (c) let $\zeta_0 \in t^0_{\alpha_0}$ and $\zeta_1 \in t^1_{\alpha_1}$ and define $\eta_{1,\zeta_0} = \rho_{\bar{h}}(\delta_0,\zeta_0), \eta_{0,\zeta_1} = \rho_{\bar{h}}(\zeta_1,\delta_3)$ (d) continuing clause (c) by the construction $\varrho_{\zeta_1,\zeta_0} := \rho_{\bar{h}}(\zeta_1,\zeta_0)$ is equal to $\eta_{0,\zeta_1} \hat{\nu}_0 \hat{\rho} \hat{\nu}_1 \hat{\eta}_{1,\zeta_0}$.

So naturally we choose the colouring c_1 such that

$$\mathbf{c}_1(\alpha_0, \alpha_1) = h'(F_1(\rho(\ell q(\eta_0) + \ell_4)))$$

and 3.1 tells us that assuming (a)-(d) this will be j_* . Note it is desirable that in 3.1, the sequences η_0 , η_1 in a sense have little influence on the result, as they vary, i.e. we like to get j_* for every $\zeta_0 \in t^0_{\alpha_0}, \ \zeta_1 \in t^1_{\alpha_1}.$

Why do we demand in clause (b), $h_2(F_1(\nu_0(\ell_4))) = j_*$ and not simply $F_1(\nu_0(\ell_4)) = j_*$ and similarly when defining \mathbf{c}_1 in \odot_7 in the proof? Because we do not succeed to fully control $F_1(\nu_0(\ell_4))$, but just to place it in some stationary $S \subseteq \theta_1$, however we can use θ_1 pairwise disjoint stationary set and h_1 tells us which one.

When we choose $\alpha_0 < \alpha_1$ (in stage C of the proof) we first choose a pair $\delta_1 < \delta_2$ hence ρ (in \oplus_0 of the proof), then we choose an ordinal $\delta_0 < \delta_1$ hence ν_1 (in $\oplus_{0.1}$ of the proof) then $\varepsilon_* \in s_{\delta_2} \subseteq \kappa_1$ after $\oplus_{0.2}$ of the proof, (see below) large enough. Only then using ε_* we choose δ_3 and then α_1 (also after $\oplus_{0.2}$) hence $\eta_{0,\zeta}$ for $\zeta \in t^1_{\alpha_1}$. Lastly, we choose $\alpha_0 < \delta_0$ hence η_{1,ζ_0} for $\zeta_0 \in t_{\alpha_0}^0$. Of course, those choices are under some restrictions. More

specifically, (in stage B) though not determining any of η_{0,ζ_0} , ν_0 , ρ , ν_1 , η_{1,ζ_1} we restrict them in some ways.

Earlier, we first in $(*)_1$ choose $\mathscr{U}_1^{\text{up}}$, α_1^* , $\varepsilon_{1,1}^{\text{up}}$, $\varepsilon_{1,0}^{\text{up}}$ with the intention that $\alpha_1 \in \mathscr{U}_1^{\text{up}}$ "promising" that if $\alpha_1 \in \mathscr{U}_1^{\text{up}}$ then $\operatorname{Rang}(F_1(\eta_0)) \subseteq \varepsilon_{1,1}^{\text{up}} < \kappa_1$, i.e. $\zeta_1 \in t_{\alpha_1}^1 \Rightarrow \operatorname{Rang}(F_1(\eta_{0,\zeta_1})) \subseteq \varepsilon_{1,1}^{\text{up}}$, similarly in the further steps below. Second we do not "know" for which $\varepsilon < \kappa$ we shall use $S_{\kappa_0,\varepsilon}^{\kappa_1} \subseteq \kappa_1$, so we consider all of them, i.e. in $(*)_2$ we choose $\mathscr{U}_{2,\varepsilon}^{\text{up}}$, $g_{2,\varepsilon}$, γ_{ε}^* , $\alpha_{2,\varepsilon}^*$ satisfying $g_{2,\varepsilon} : \mathscr{U}_{2,\varepsilon}^{\text{up}} \to \mathscr{U}_1^{\text{up}}$ such that later $\delta_3 \in \mathscr{U}_{2,\varepsilon}^{\text{up}}$ and $\alpha_1 = g_{2,\varepsilon}(\delta_3)$. We still do not know what ν_2 will be hence how to compute ℓ_4 , but $\rho_{\bar{h}}(\alpha_1, \delta_3)$ will be part of it and for each $\varepsilon < \kappa_1$ we can compute $\ell_{2,\varepsilon}$ which will be the first place ℓ in ν_0 in which $F_2(\nu_0(\ell)) = \varepsilon$, see $(*)_2(f)$.)

In $(*)_3$ we choose $\mathscr{U}_4^{\mathrm{up}}$, $\mathscr{U}_3^{\mathrm{up}}$, $g_{3,\varepsilon}^3$, α_3^* and $\langle s_\delta : \delta \in \mathscr{U}_\ell^{\mathrm{up}} \rangle$ giving another part of ν_0 . Then in $(*)_4$ we deal further with ν_0 , in particular $s_\delta \subseteq \kappa_1$ is a stationary subset of $S_{\kappa_0,i_*}^{\kappa_1}$, promising $F_1(\nu_2(\ell_4)) \in s_{\delta_2}$.

Next we work on restricting the choices from below, choosing $\mathscr{U}_1^{\mathrm{dn}}$, $\varepsilon_{1,0}^{\mathrm{dn}}$, $\varepsilon_{1,1}^{\mathrm{dn}}$ in $(*)_5$ promising $\delta_0 \in \mathscr{U}_1^{\mathrm{dn}}$ so this restricts η_1 .

Lastly, in $(*)_6$ we choose \mathscr{U}_2^{dn} , $\varepsilon_{2,0}^{dn}$, $\varepsilon_{2,1}^{dn}$ promising $\delta_1 \in \mathscr{U}_2^{dn}$ (recalling $\nu_1 = \rho_{\bar{h}}(\delta_1, \delta_2)$).

Claim 3.1. Assume κ_1 , κ_0 are cardinals and S is a set. There is a function $\mathbf{d}: {}^{\omega}>S \to \mathbb{N}$ such that $(A) \Rightarrow (B)$ where

- (A) (a) $F_{\iota}: S \to \kappa_{\iota} \text{ for } \iota = 0, 1$
 - (b) for $\varrho \in {}^{\omega >}S$ and $\iota < 2$ we let $F_{\iota}(\varrho) = \langle F_{\iota}(\varrho(\ell)) : \ell < \ell g(\varrho) \rangle$
 - (c) we stipulate $\max \operatorname{Rang}(F_{\iota}(\langle \rangle)) = -1$
- (B) $\mathbf{d}(\varrho) = \ell_4^{\bullet}$ when $\varrho = \eta_0 \hat{\ } \nu_0 \hat{\ } \rho \hat{\ } \nu_1 \hat{\ } \eta_1$ satisfies (note that ℓ_1 , $\ell_4^{\bullet} \ell g(\eta_0)$ are places in ν_0 , ℓ_3 is a place in ν_1 , ℓ_2^{*} is a place in ρ and ℓ_2^{\bullet} , ℓ_4^{\bullet} is a place in ϱ and $u \subseteq \{\ell g(\nu_0) + \ell : \ell < \ell g(\nu_0)\}$) the following:

(a)
$$(\alpha)$$

$$\max \operatorname{Rang}(F_1(\varrho)) = \max(\operatorname{Rang}(F_1(\nu_0)) > \max(\operatorname{Rang}(F_1(\eta_0\hat{\rho}\hat{\rho}\nu_1\hat{\eta}_1))$$

- (β) let $\ell_1 = \min\{\ell < \ell g(\nu_0) : F_1(\nu_0(\ell)) = \max \operatorname{Rang}(F_1(\varrho))\}$ so $\ell_1 < \ell g(\nu_0)$
- (b) (a) $\max \operatorname{Rang}(F_0(\varrho \restriction (\ell g(\eta_0) + \ell_1, \ell g(\varrho)))) = \max \operatorname{Rang}(F_0(\rho)) > \max \operatorname{Rang}(F_0(\nu_0 \restriction [\ell_1, \ell g(\nu_0)) \hat{\nu}_1 \hat{\eta}_1)$

(
$$\beta$$
) let $\ell_2^{\bullet} = \min \left\{ \ell < \ell g(\varrho) : \ell \ge \ell g(\eta_0) + \ell_1 \text{ and } \right\}$

$$F_0(\varrho(\ell)) = \max \operatorname{Rang}(F_0(\varrho \upharpoonright (\ell g(\eta_0) + \ell_1, \ell g(\varrho)))))$$

so
$$\ell_2^{\bullet} < \ell g(\varrho)$$
 and $\ell_2^* = \ell_2^{\bullet} - \ell g(\eta_0 \hat{\nu}_0)$
 (γ) hence $\ell_2^{\bullet} \in [\ell g(\eta_0 \hat{\nu}_0), \ell g(\eta_0 \hat{\nu}_0 \hat{\rho}))$ and $\ell_2^* < \ell g(\varrho)$

(c)
$$(\alpha)$$

$$\max \operatorname{Rang}(F_1(\nu_0)) > \max \operatorname{Rang}(F_1(\varrho \upharpoonright [\ell_2^{\bullet}, \ell g(\varrho))))$$
$$= \max \operatorname{Rang}(F_1(\nu_1)) > \max \{F_1(\varrho(\ell)) : \ell \in [\ell_2^{*}, \ell g(\varrho))\}$$

- $(\beta) \ell_3$ is such that
 - $\bullet_1 \ \ell_3 < \ell g(\nu_1)$
 - $_{2} F_{1}(\nu_{1}(\ell_{3})) = \max\{F_{1}(\varrho)(\ell) : \ell \geq \ell_{2}^{\bullet}\}$
 - \bullet_3 ℓ_3 is minimal under the above
- (d) (a) let $u := \{\ell : \ell \leq \ell_2^{\bullet} \text{ and } F_1(\varrho)(\ell) \geq F_1(\nu_1(\ell_3))\}$
 - (β) $\ell_4^{\bullet} \in u$ is such that
 - •₁ $F_1(\varrho(\ell_4^{\bullet})) = \min\{F_1(\varrho(\ell)) : \ell \in u\}$
 - \bullet_2 under $\bullet_1, \ell_4^{\bullet}$ is minimal
 - •3 notation: if $\ell_4^{\bullet} \in [\ell g(\eta_0), \ell g(\eta_0^{\hat{}} \nu_0))$ then we let

$$\ell_4^* = \ell_4^{\bullet} - \ell g(\eta_0).$$

PROOF. Assume $\varrho \in {}^{\omega >}S$. We have to show that **d** is well defined, i.e. $\mathbf{d}(\varrho) = \ell_4^{\bullet}$ does not depend on the specific representation of ϱ as $\eta_0 \hat{\ \nu}_0 \hat{\ \rho} \hat{\ \nu}_1 \hat{\ \eta}_1$, i.e. we shall prove that ℓ_4^{\bullet} depends on ϱ only.

Toward this

(a) $\ell g(\eta_0) + \ell_1$ depends on ϱ only

Why? Let ℓ_1^{\bullet} be the first natural number so that

$$F_1(\varrho(\ell_1^{\bullet})) = \max \operatorname{Rang}(F_1(\varrho)).$$

By the strict > in (B)(a)(α) we must have $\ell g(\eta_0) \le \ell_1^{\bullet}$. Although one can decompose ϱ in different ways, yielding different values to $\ell g(\eta_0)$, the sum $\ell g(\eta_0) + \ell_1$ will be always ℓ_1^{\bullet} , by the definition of ℓ_1 . Now since only ϱ is mentioned in the definition of ℓ_1^{\bullet} we conclude that $\ell g(\eta_0) + \ell_1 = \ell_1^{\bullet}$ depends on ϱ only.]

- (b) ℓ_2^{\bullet} depends on ϱ only by a similar argument, this time for the function F_0
- (c) $\ell g(\eta_0 \hat{\nu}_0 \hat{\rho}) + \ell_3$ depends on ϱ only (for this statement notice that $\rho \neq \langle \rangle$, by $(b)(\alpha)$)
 - (d) $\{\ell g(\eta_0) + \ell : \ell \in u\}$ depends on ϱ only
 - (e) ℓ_4^{\bullet} depends on ϱ only.
 - By (e) clearly we are done. $\square_{3.1}$

THEOREM 3.2. Assume $\aleph_0 \leq \theta = cf(\theta), \lambda \geq \theta^{+3}$ and λ is a successor of a regular cardinal. Then $Pr_1(\lambda, \lambda, \lambda, \theta)$ holds.

PROOF. Firstly, let us spell out the definition of Pr₁.

Recall that $\lambda \geq \mu \geq \sigma, \theta_0, \theta_1$ and let $\bar{\theta} = (\theta_0, \theta_1)$. $\Pr_1(\lambda, \mu, \sigma, \bar{\theta})$ means that there exists a function $\mathbf{c} : [\lambda]^2 \to \sigma$ such that for every two disjoint sequences $\langle \zeta_{\alpha,i}^0 : \alpha < \mu, i < \mathbf{i}_0 \rangle, \langle \zeta_{\alpha,i}^1 : \alpha < \mu, i < \mathbf{i}_1 \rangle$ of ordinals $< \lambda$ (without

repetitions) such that $\mathbf{i}_0 < \theta_0$, $\mathbf{i}_1 < \theta_1$ and for every $\gamma < \sigma$, one can find $\alpha_0 < \alpha_1 < \mu$ so that:

(*) if $i_0 < \mathbf{i}_0$ and $i_1 < \mathbf{i}_1$ then $\mathbf{c}(\zeta_{\alpha_0, i_0}^0, \zeta_{\alpha_1, i_1}^1) = \gamma$.

It follows from the definition that if $\theta'_1 \leq \theta_1$ and $\Pr_1(\lambda, \mu, \sigma, (\theta_0, \theta_1))$ then $\Pr_1(\lambda, \mu, \sigma, (\theta_0, \theta'_1))$. Let $\theta_0 = \theta$, $\theta_1 = \theta^+$ by Theorem 3.5 below we have $\Pr_1(\lambda, \lambda, \lambda, (\theta_0, \theta_1))$ and since $\theta_0 < \theta_1$ we have by the previous sentence $Pr_1(\lambda, \lambda, \lambda, (\theta_0, \theta_0))$ which is also denoted $Pr_1(\lambda, \lambda, \lambda, \theta_0)$, see Observation 2.6, so we are done by noticing that θ_0 of 3.5 is θ here. $\square_{3,2}$

REMARK 3.3. 1) Can we replace θ by (θ^+, θ) ?

- 2) Or, at least when $\theta = \aleph_0, \lambda = \aleph_2$ for (θ, θ^+) with an ultrafilter on the $\langle \theta^+ \rangle$ sets? and 2 colours? may try to use the proof of the \aleph_2 -c.c. not productive from [11].
- 3) For many purposes, $\Pr_1(\lambda, \lambda, 2, (\theta, \theta^+))$ suffices and for this the proof (in 3.5) is somewhat simpler.

Conclusion 3.4. Assume $\lambda = \partial^+$, $\partial = cf(\partial) > \theta^+$, $\theta = cf(\theta) \ge \aleph_0$

- (a) if there is $\chi = \chi^{<\theta} < \lambda \le 2^{\chi}$ and $\chi \ge \sigma$ (so $\sigma \le \partial$), then $\Pr_0(\lambda, \lambda, \sigma, \theta)$ (b) if $\chi = \partial$ satisfies $\chi = \chi^{<\theta}$ then $\Pr_0(\lambda, \lambda, \lambda, \theta)$.

PROOF. Clause (a): We apply 2.8(4) with $(\lambda, \lambda, \chi, \sigma, \theta, \theta)$ here standing for $(\lambda, \mu, \chi, \sigma, \theta_0, \theta_1)$ there. We have to check the assumption of 2.8(4), the main point is " $\Pr_1(\lambda, \lambda, \sigma, (\theta, \theta))$ " which holds by Theorem 3.2, the other assumptions are straightforward hence we get the conclusion, i.e. $Pr_0(\lambda, \lambda, \sigma, \theta)$.

Clause (b): First, $Pr_0(\lambda, \lambda, \partial, \theta)$ holds as we can apply Clause (a) with $(\lambda, \partial, \partial, \partial, \theta)$ here standing for $(\lambda, \partial, \chi, \sigma, \bar{\theta})$ there.

Second, we get $Pr_0(\lambda, \lambda, \lambda, \theta)$ holds as we can apply 2.8(3) with $(\lambda, \partial, \theta)$ here standing for $(\lambda, \sigma, \theta)$ there. $\square_{3,4}$

Theorem 3.5. If λ is a successor of a regular cardinal, $\lambda \geq \theta_1^+$ and $\theta_1 > \theta_0 \geq \aleph_0$ are regular cardinals, then $\Pr(\lambda, \lambda, \lambda, (\theta_0, \theta_1))$.

Stage A: Let ∂ be the regular cardinal such that $\lambda = \partial^+$, so $\partial > \theta_1$.

Below we shall choose σ and κ_{ι} (for $\iota = 0, 1, 2$) to help in using this proof for proving other theorems.

Let $\sigma = \lambda$. Let $S \subseteq S_{\partial}^{\lambda}$ be stationary and $h : \lambda \to \sigma$ be such that $\alpha < \lambda$ $\Rightarrow h(\alpha) < 1 + \alpha, h \upharpoonright (\lambda \backslash S)$ is constantly zero and $S_{\gamma}^* := \{ \delta \in S : h(\delta) = \gamma \}$ is a stationary subset of λ for every $\gamma < \lambda$. Let $(\kappa_0, \kappa_1, \kappa_2) = (\theta_0, \theta_1, \sigma)$ and let $F_{\iota}: \lambda = \sigma \to \kappa_{\iota}$ for $\iota = 0, 1, 2$ be such that for every $(\varepsilon_0, \varepsilon_1, \varepsilon_2) \in (\kappa_0 \times \kappa_1)$ $\times \kappa_2$) the set $W_{\varepsilon_0,\varepsilon_1,\varepsilon_2}(\kappa) = \{ \gamma \in S_\kappa^\lambda : F_\iota(\gamma) = \varepsilon_\iota \text{ for } \iota \leq 2 \}$ is a stationary subset of λ for every $\kappa = \operatorname{cf}(\kappa) < \lambda$.

Let $\bar{e} = \langle e_{\alpha} : \alpha < \lambda \rangle$ be such that

- \odot_1 (a) if $\alpha = 0$ then $e_{\alpha} = \emptyset$
 - (b) if $\alpha = \beta + 1$ then $e_{\alpha} = \{\beta\}$

(c) if α is a limit ordinal then e_{α} is a club of α of order type $\mathrm{cf}(\alpha)$ disjoint to S_{∂}^{λ} hence to S.

Let $h_{\alpha} = h \upharpoonright e_{\alpha}$ for $\alpha < \lambda$ and $\bar{h} = \langle h_{\alpha} : \alpha < \lambda \rangle$. Note that h_{α} is non-zero only for successor α . We shall mostly use the h_{α} 's rather than h.

Now (using \bar{e}) for $0 < \alpha < \beta < \lambda$, let

$$\gamma(\beta, \alpha) := \min\{\gamma \in e_{\beta} : \gamma \ge \alpha\}.$$

Let us define $\gamma_{\ell}(\beta, \alpha)$:

$$\gamma_0(\beta, \alpha) = \beta, \quad \gamma_{\ell+1}(\beta, \alpha) = \gamma(\gamma_{\ell}(\beta, \alpha), \alpha) \text{ (if defined)}.$$

If $0 < \alpha < \beta < \lambda$, let $k(\beta, \alpha)$ be the maximal $k < \omega$ such that $\gamma_k(\beta, \alpha)$ is defined (equivalently is equal to α) and let $\rho_{\beta,\alpha} = \rho(\beta, \alpha)$ be the sequence

$$\langle \gamma_0(\beta, \alpha), \gamma_1(\beta, \alpha), \dots, \gamma_{k(\beta, \alpha) - 1}(\beta, \alpha) \rangle$$
.

Let $\gamma_{\ell t}(\beta, \alpha) = \gamma_{k(\beta, \alpha) - 1}(\beta, \alpha)$ where ℓt stands for last. Let

$$\rho_{\bar{h}}(\beta, \alpha) = \langle h_{\gamma_{\ell}(\beta, \alpha)}(\gamma_{\ell+1}(\beta, \alpha)) : \ell < k(\beta, \alpha) \rangle$$

and we let $\rho(\alpha, \alpha)$ and $\rho_{\bar{h}}(\alpha, \alpha)$ be the empty sequence. Now clearly:

$$\odot_2$$
 if $0 < \alpha < \beta < \lambda$ then $\alpha \le \gamma(\beta, \alpha) < \beta$

hence

 \odot_3 if $0 < \alpha < \beta < \lambda, 0 < \ell < \omega$, and $\gamma_{\ell}(\beta, \alpha)$ is well defined, then

$$\alpha \le \gamma_{\ell}(\beta, \alpha) < \beta$$

and

 \odot_4 if $0 < \alpha < \beta < \lambda$, then $k(\beta, \alpha)$ is well defined and letting $\gamma_\ell := \gamma_\ell(\beta, \alpha)$ for $\ell \le k(\beta, \alpha)$ we have

$$\alpha = \gamma_{k(\beta,\alpha)} < \gamma_{\ell t}(\beta,\alpha) = \gamma_{k(\beta,\alpha)-1} < \dots < \gamma_1 < \gamma_0 = \beta$$

and

$$\alpha \in e_{\gamma_{1+}(\beta,\alpha)}$$

i.e. $\rho(\beta, \alpha)$ is a (strictly) decreasing finite sequence of ordinals, starting with β , ending with $\gamma_{\ell t}(\beta, \alpha)$ of length $k(\beta, \alpha)$.

Note that if $\alpha \in S$, $\alpha < \beta$ then $\gamma_{lt}(\beta, \alpha) = \alpha + 1$.

² For successor of regular we can omit h_{α} and below replace \bar{h} and h^- by h and even let $\rho_h(\beta,\alpha) = \langle h(\gamma_\ell(\beta,\alpha)) : \ell < k(\beta,\alpha) \rangle$; but for other cases the present version is better, see more [6, Ch. III, §4]. But in later stages we may use h directly, e.g. the proof of $(*)_1$.

 \odot_5 if δ is a limit ordinal and $\delta < \beta < \lambda$, then for some $\alpha_0 < \delta$ we have: $\alpha_0 \leq \alpha < \delta \text{ implies}$:

- (i) for $\ell < k(\beta, \delta)$ we have $\gamma_{\ell}(\beta, \delta) = \gamma_{\ell}(\beta, \alpha)$
- (ii) $\delta \in \text{nacc}(e_{\gamma_{\ell t}(\beta, \delta)}) \Leftrightarrow \delta = \gamma_{k(\beta, \delta)}(\beta, \delta) = \gamma_{k(\beta, \delta)}(\beta, \alpha) \Leftrightarrow \neg [\gamma_{k(\beta, \delta)}(\beta, \delta)]$ $=\delta > \gamma_{k(\beta,\delta)}(\beta,\alpha)$
 - (iii) $\rho(\beta, \delta) \leq \rho(\beta, \alpha)$; i.e. is an initial segment
 - (iv) $\delta \in \text{nacc}(e_{\gamma_{\ell t}(\beta, \delta)})$ (here always holds if $\delta \in S$) implies:
 - $\rho(\beta, \delta)^{\hat{}}\langle\delta\rangle \leq \rho(\beta, \alpha)$ hence
 - $\rho_{\bar{h}}(\beta, \delta) \hat{\ } \langle h_{\gamma_{\ell t}(\beta, \delta)}(\delta) \rangle \leq \rho_{\bar{h}}(\beta, \alpha).$
 - (v) if $cf(\delta) = \partial$ then we have $\gamma_{\ell t}(\beta, \delta) = \delta + 1$
 - (vi) if $cf(\delta) = \partial$ and $\delta \in e_{\alpha}$, then necessarily $\alpha = \delta + 1$. Why? Just let

$$\alpha_0 = \operatorname{Max} \left\{ \sup(e_{\gamma_{\ell}(\beta,\delta)} \cap \delta) + 1 : \ell < k(\beta,\delta) \text{ and } \delta \not\in \operatorname{acc}(e_{\gamma_{\ell}(\beta,\delta)}) \right\}.$$

Notice that if $\ell < k(\beta, \delta) - 1$ then $\delta \not\in acc(e_{\gamma_{\ell}(\beta, \delta)})$ is immediate.

Note that the outer maximum (in the choice of α_0) is well defined as it is over a finite non-empty set of ordinals. The inner sup is on the empty set (in which case we get zero) or is the maximum (which is well defined) as $e_{\gamma_{\ell}(\beta,\delta)}$ is a closed subset of $\gamma_{\ell}(\beta,\delta)$, $\delta < \gamma_{\ell}(\beta,\delta)$ and $\delta \notin acc(e_{\gamma_{\ell}(\beta,\delta)})$ - as this is required. For clauses (v), (vi) recall $\delta \in S_{\partial}^{\lambda}$ and $e_{\gamma} \cap S_{\partial}^{\lambda} = \emptyset$ when γ is a limit ordinal and $e_{\gamma} = {\gamma - 1}$ when γ is a successor ordinal.

$$\odot_6$$
 (a) if $0 < \alpha < \beta < \lambda, \ell < k(\beta, \alpha), \gamma = \gamma_{\ell}(\beta, \alpha)$ then

$$\rho(\beta, \alpha) = \rho(\beta, \gamma) \hat{\rho}(\gamma, \alpha)$$
 and $\rho_{\bar{h}}(\beta, \alpha) = \rho_{\bar{h}}(\beta, \gamma) \hat{\rho}_{\bar{h}}(\gamma, \alpha)$

(b) if $0 < \alpha_0 < \dots < \alpha_k$ and $\rho(\alpha_k, \alpha_0) = \rho(\alpha_k, \alpha_{k-1})^{\hat{}} \dots \hat{} \rho(\alpha_1, \alpha_0)$ then this holds for any subsequence of $\langle \alpha_0, \ldots, \alpha_k \rangle$.

Now apply Claim 3.1 with λ , κ_1 , κ_0 , F_1 , F_0 here standing for S, κ_1 , κ_0 , F_1 , F_0 there and get $\mathbf{d}: {}^{\omega} > \lambda \to \mathbb{N}$.

Lastly, we define the colouring; as the proof is somewhat simpler if we use only κ_1 colours (which suffice for many purposes) we define two colourings: \mathbf{c}_1 with κ_1 colours and \mathbf{c}_2 with $\kappa_2 = \lambda$ colours, as follows:

- \odot_7 (a) choose a function $h': \kappa_1 \to \kappa_1$ such that $S_{\kappa_0,\varepsilon}^{\kappa_1} := \{\delta \in S_{\kappa_0}^{\kappa_1} : h'(\delta) = 1\}$ ε } is stationary in κ_1 for every $\varepsilon < \kappa_1$
 - (b) if $\eta = \langle \zeta_0, \dots, \zeta_{n-1} \rangle$ then we let $h'(\eta) = \langle h'(\zeta_0), \dots, h'(\zeta_{n-1}) \rangle$ (c) $\mathbf{c}_1 : [\lambda]^2 \to \kappa_1$ is defined for $\alpha < \beta$ by

$$\mathbf{c}_1(\{\alpha,\beta\}) = h'(F_1(\rho_{\bar{h}}(\beta,\alpha)))(\ell_{\beta,\alpha}^1)$$

where $\ell_{\beta,\alpha}^1 = \mathbf{d}(\rho_{\bar{h}}(\beta,\alpha)).$

Clearly

 \odot_8 we can demand on h'_1 that we can choose h'_2 such that:

- (a) h'_1, h'_2 are functions with domain κ_1
- (b) h'_1 is onto κ_1
- (c) h_2' is onto \mathbb{N}
- (d) for every $\zeta < \kappa_1$ and $n < \omega$ the set $S_{\kappa_1,\zeta,n} = \{\varepsilon < \kappa_1 : h'_1(\varepsilon) = \zeta\}$ and $h_2'(\varepsilon) = n$ is stationary

 \odot_9 the colouring \mathbf{c}_2 with λ colours is chosen as follows: for $\alpha < \beta < \lambda$, $\mathbf{c}_2(\{\alpha,\beta\}) = (F_2(\rho_{\bar{h}}(\beta,\alpha)))(\ell_{\beta,\alpha}^2)$ where letting $\varepsilon_{\alpha,\beta} = \mathbf{c}_1(\{\alpha,\beta\})$ we have $\ell^2_{\beta,\alpha}$ is the $h'_2(\varepsilon_{\beta,\alpha})$ -th member of the³ set $\{\ell < \ell g(\rho_{\bar{h}}(\beta,\alpha)) : F_1(\rho_{\bar{h}}(\beta,\alpha))(\ell)\}$ $=h'_1(\varepsilon_{\beta,\alpha})$ if this set has $>h'_2(\varepsilon_{\alpha,\beta})$ members and is zero otherwise.

Stage B: So we have to prove that the colouring $\mathbf{c} = \mathbf{c}_1$ (with κ_1 colours) and moreover $\mathbf{c} = \mathbf{c}_2$ (with λ colours) is as required.

Now for the rest of the proof assume:

- \boxplus (a) $t_{\alpha} \subseteq \lambda$ for every $\alpha < \lambda$
 - (b) $t_{\alpha} = t_{\alpha}^{0} \cup t_{\alpha}^{1}$ and $1 \leq |t_{\alpha}^{\iota}| < \theta_{\iota}$ for $\iota < 2$
 - (c) $\alpha \neq \beta \Rightarrow t_{\alpha} \cap t_{\beta} = \emptyset$
 - (d) $j_* < \kappa_1$ (when dealing with \mathbf{c}_1) or $j_* < \sigma$ (when dealing with \mathbf{c}_2).

Clearly (by \boxplus (c)), we can choose β_{α} by induction on $\alpha < \lambda$ by $\beta_{\alpha} =$ $\min\{\beta: \beta > \alpha \text{ and } \min(t_{\beta}) > \alpha + \sup(\bigcup\{t_{\beta_{\alpha(1)}}: \alpha(1) < \alpha\})\}.$ Now can use $t'_{\alpha} = t_{\beta_{\alpha}}$ for $\alpha < \lambda$, hence:

(*)₀ without loss of generality $\alpha < \min(t_{\alpha})$ and $\alpha < \beta \Rightarrow \sup(t_{\alpha}) < \min(t_{\beta})$.

We have to prove that for some $\alpha_0 < \alpha_1 < \lambda$ for every $(\zeta_0, \zeta_1) \in t^0_{\alpha_0} \times t^1_{\alpha_1}$ we have $c\{\zeta_0, \zeta_1\} = j_*$.

- $(*)_1$ We can find $\mathscr{U}_1^{\text{up}}, \alpha_1^*, \varepsilon_{1,1}^{\text{up}}$ such that:

 - (a) $\mathscr{U}_{1}^{\text{up}} \subseteq S$ is stationary (b) $h \upharpoonright \mathscr{U}_{1}^{\text{up}}$ is constantly 0 (so actually $\mathscr{U}_{1}^{\text{up}} \subseteq S_{0}^{*}$)
 - (c) $\alpha_1^* < \min(\mathcal{U}_1^{\text{up}})$ and $\varepsilon_{1,1}^{\text{up}} < \kappa_1$
- (d) if $\delta \in \mathcal{U}_1^{\text{up}}$ and $\alpha \in [\alpha_1^*, \delta), \beta \in t_\delta^1$ (treating t_δ^0 is unreasonable because t_{δ}^1 may be of cardinality $\geq \theta_0 = \kappa_1, \varepsilon_{1,0}$ is defined for notational simplicity) then:
 - $\rho_{\beta,\delta} \hat{\ } \langle \delta \rangle \leq \rho_{\beta,\alpha}$
 - Rang $(F_1(\rho_{\bar{h}}(\beta,\delta))) \subseteq \varepsilon_{1,1}^{\mathrm{up}}$.

[Why? For every $\delta \in S_0^* \subseteq S$ and $\zeta \in t_\delta$ let $\alpha_{1,\delta,\zeta}^* < \delta$ be such that

$$(\forall \alpha) (\alpha \in [\alpha_{1,\delta,\zeta}^*, \delta) \Rightarrow \rho_{\zeta,\delta} \hat{\langle} \delta \rangle \leq \rho_{\zeta,\alpha}),$$

it exists by \odot_5 of Stage A.

Let $\alpha_{1,\delta}^* = \sup\{\alpha_{1,\delta,\zeta}^* : \zeta \in t_\delta\}$ and for $\iota = 1$ let

$$\varepsilon_{1,1,\delta}^{\mathrm{up}} = \sup \left\{ F_1(h(\gamma_\ell(\zeta,\delta))) + 1 : \zeta \in t_\delta^1 \text{ and } \ell < k(\zeta,\delta) \right\}$$

³ So **d** is used only via the definition of $\ell_{\beta,\alpha}^2$.

$$=\sup\bigcup\left\{\operatorname{Rang}(F_1(\rho_{\bar{h}}(\beta,\delta))+1):\beta\in t^1_\delta\right\};$$

as $\operatorname{cf}(\delta) = \partial = \operatorname{cf}(\partial) > |t_{\delta}^1|$ and $\kappa_1 = \operatorname{cf}(\kappa_1) \ge \theta_1 > |t_{\delta}^1|$, necessarily $\alpha_{1,\delta}^* < \delta$ and $\varepsilon_{1,1,\delta}^{\operatorname{up}} < \kappa_{\iota}$.

Lastly, there are $\alpha_1^* < \lambda$ and $\varepsilon_{1,0}^{\text{up}} < \kappa_0, \varepsilon_{1,1}^{\text{up}} < \kappa_1$ and $\mathscr{U}_1^{\text{up}} \subseteq S_0^*$ as required in $(*)_1$ by Fodor lemma.]

- $(*)_2$ for each $\varepsilon \in S_{\kappa_0}^{\kappa_1} \setminus \varepsilon_{1,1}^{\text{up}}$ we can find $g_{2,\varepsilon}, \mathscr{U}_{2,\varepsilon}^{\text{up}}, \gamma_{\varepsilon}^*, \alpha_{2,\varepsilon}^*, \ell_{2,\varepsilon}$ such that:
 - (a) $\gamma_{\varepsilon}^* < \lambda$ satisfies $F_2(\gamma_{\varepsilon}^*) = j_*, F_1(\gamma_{\varepsilon}^*) = \varepsilon, F_0(\gamma_{\varepsilon}^*) = 0$
 - (b) $\widetilde{\mathscr{U}}_{2,\varepsilon}^{\mathrm{up}} \subseteq S_{\gamma_{\varepsilon}^*}^*$ is stationary
 - (c) $\alpha_1^* < \alpha_{2,\varepsilon}^* < \min(\mathscr{U}_{2,\varepsilon}^{\mathrm{up}})$
- (d) $g_{2,\varepsilon}$ is a function with domain $\mathscr{U}_{2,\varepsilon}^{\mathrm{up}}$ such that $\delta \in \mathscr{U}_{2,\varepsilon}^{\mathrm{up}} \Rightarrow \delta < g_{2,\varepsilon}(\delta) \in \mathscr{U}_{1}^{\mathrm{up}}$
- (e) if $\delta \in \mathscr{U}_{2,\varepsilon}^{\mathrm{up}}$ and $\alpha \in [\alpha_{2,\varepsilon}^*, \delta)$ and $\beta \in t_{g_{2,\varepsilon}(\delta)}$ then $\rho_{g_{2,\varepsilon}(\delta),\delta} \hat{\delta} \subseteq \rho_{g_{2,\varepsilon}(\delta),\alpha}$ hence (recalling $\odot_6, (*)_1(\mathrm{d})$)
 - if $\beta \in t_{g_{2,\varepsilon}(\delta)}$ then $\rho_{\beta,\delta} \hat{\delta} \leq \rho_{\beta,\alpha}$
 - (f) $\ell_{2,\varepsilon}^*$ is well defined where for any $\delta \in \mathcal{U}_{2,\varepsilon}^{up}$ we have
- $\ell_{2,\varepsilon}^* = \ell g(\rho_{g_{2,\varepsilon}(\delta),\delta})$ hence if $\alpha \in (\alpha_{2,\varepsilon}^*,\delta)$ then $\rho_{g_{2,\varepsilon}(\delta),\alpha}(\ell_{2,\varepsilon}^*) = \delta$.
- (g) Lastly, if $\alpha \in (\alpha_{2,\varepsilon}^*, \delta)$ then $\ell_{2,\varepsilon}^{\bullet} = \min\{\ell : \ell < \ell g(\rho_{g_{2,\varepsilon}(\delta),\alpha}) \text{ and } F_1(\rho_{\bar{h}}(g_{2,\varepsilon}(\delta),\alpha))(\ell) = \varepsilon\}$ so $\ell_{2,\varepsilon}^{\bullet} \le \ell_{2,\varepsilon}^{*}$; recall that $\varepsilon > \varepsilon_{1,1}^{\text{up}}$ hence necessarily $\beta \in t_{g_{2,\varepsilon}(\delta)} \Rightarrow \varepsilon > \sup \operatorname{Rang}(F_1(\rho_{\bar{h}}(\beta, g_{2,\varepsilon}(\delta))))$.

[Why? First, choose γ_{ε}^* as in clause (a) of $(*)_2$, (possible by the choice of F_0 , F_1 , F_2 in the beginning of Stage A). Second, define $g'_{\varepsilon}: S_{\gamma_{\varepsilon}^*}^* \to \mathcal{U}_1^{\text{up}}$ such that $\delta \in S_{\gamma_{\varepsilon}^*}^* \Rightarrow \delta < g'_{\varepsilon}(\delta) \in \mathcal{U}_1^{\text{up}}$. Third, do as in the proof of $(*)_1$ above for each $\delta \in S_{\gamma_{\varepsilon}^*}^*$ separately, i.e. find $\alpha'_{2,\varepsilon,\delta} < \delta$ above α_1^* and $\ell_{2,\varepsilon,\delta}^*, \ell_{2,\varepsilon,\delta}^{\bullet}$ such that the parallel of clauses (c), (e), (f), (g) of $(*)_2$ holds. Fourth, use Fodor lemma to get a stationary $\mathcal{U}_{2,\varepsilon}^{\text{up}} \subseteq S_{\gamma_{\varepsilon}^*}^*$ such that $\langle (\alpha'_{2,\varepsilon,\delta}, \ell_{2,\varepsilon,\delta}^*, \ell_{2,\varepsilon,\delta}^{\bullet}) : \delta \in \mathcal{U}_{2,\varepsilon}^{\text{up}} \rangle$ is constantly $(\alpha_{2,\varepsilon}^*, \ell_{2,\varepsilon}^*, \ell_{2,\varepsilon}^{\bullet})$ and lastly let $g_{2,\varepsilon} = g'_{\varepsilon} \upharpoonright \mathcal{U}_{2,\varepsilon}^{\text{up}}$.]

- $(*)_3$ we can find $\mathscr{U}_3^{\text{up}}, \bar{g}^3, \alpha_3^*$ such that:
 - (a) $\mathscr{U}_3^{\text{up}} \subseteq S$ is stationary
 - (b) $\min(\mathscr{U}_3^{\mathrm{up}}) > \alpha_3^* > \sup\{\alpha_{2,\varepsilon}^* : \varepsilon \in S_{\kappa_0}^{\kappa_1} \setminus \varepsilon_{1,1}^{\mathrm{up}}\}$
 - (c) $\bar{g}^3 = \langle g_{3,\varepsilon} : \varepsilon \in S_{\kappa_0}^{\kappa_1} \backslash \varepsilon_{1,1}^{\text{up}} \rangle$
 - (d) $g_{3,\varepsilon}$ is a function with domain $\mathscr{U}_3^{\mathrm{up}}$
 - (e) if $\delta \in \mathcal{U}_3^{\text{up}}$ and $\varepsilon \in S_{\kappa_0}^{\kappa_1} \setminus \varepsilon_{1,1}^{\text{up}}$ then $\delta < g_{3,\varepsilon}(\delta) \in \mathcal{U}_{2,\varepsilon}^{\text{up}}$
- (f) if $\alpha \in [\alpha_3^*, \delta)$, $\delta \in \mathscr{U}_3^{\text{up}}$ and $\varepsilon \in S_{\kappa_0}^{\kappa_1} \setminus \varepsilon_{1,1}^{\text{up}}$ then $\rho_{g_{3,\varepsilon}(\delta),\delta} \hat{\ } \langle \delta \rangle \leq \rho_{g_{3,\varepsilon}(\delta),\alpha}$ hence
 - (f)' if in addition $\beta \in t^1_{g_{2,\varepsilon}(g_{3,\varepsilon}(\delta))}$ then $\rho_{\beta,\delta} \hat{\delta} \leq \rho_{\beta,\alpha}$ this follows.

[Why? First, let $\alpha_2^* = \sup\{\alpha_{2,\varepsilon}^* + 1 : \varepsilon \in S_{\kappa_0}^{\kappa_1} \setminus \varepsilon_{1,1}^{\text{up}}\} < \lambda$ and choose $g_{\varepsilon}'' : S \setminus \alpha_2^* \to \mathscr{U}_{2,\varepsilon}^{\text{up}}$ such that $g_{\varepsilon}''(\delta) > \delta$ for every $\delta \in S \setminus \alpha_2^*$ and second for each $\delta \in S \setminus \alpha_2^*$ choose $\alpha_{3,\delta}^* < \delta$ as in clauses (f), (f') of (*)₃, i.e. such that $\alpha \in [\alpha_{3,\delta}^*, \delta)$

 $\Rightarrow \rho_{g''_{\varepsilon}(\delta),\delta} \hat{\delta} \leq \rho_{g''_{\varepsilon}(\delta),\alpha}$ for every $\varepsilon \in S_{\kappa_0}^{\kappa_1} \setminus \varepsilon_{1,1}^{\text{up}}$ and such that the relevant part of clause (b) of (*)₃, holds, that is, $\alpha_{3,\delta}^* > \alpha_2^* = \sup\{\alpha_{2,\varepsilon}^* : \varepsilon < S_{\kappa_0}^{\kappa_1} \setminus \varepsilon_{1,1}^{\text{up}}\},$ possible as $\kappa_1 < \partial$. Third, use Fodor lemma to find $\alpha_3^* < \lambda$ such that $\mathscr{U}_3^{\text{up}} = \{\delta \in S : \alpha_{3,\delta}^* = \alpha_3^*\}$ is a stationary subset of λ . Fourth, let $g_{3,\varepsilon} = g_{\varepsilon}'' \upharpoonright \mathscr{U}_3^{\text{up}}$.]

 $(*)_4$ recalling $j_* < \kappa_1$, there are $\mathscr{U}_4^{\text{up}}, \varepsilon_{4,1}^*, \varepsilon_{4,0}^*$ and $\langle s_\delta : \delta \in \mathscr{U}_4^{\text{up}} \rangle$ such that:

- (a) $\mathscr{U}_{4}^{\text{up}} \subseteq \mathscr{U}_{3}^{\text{up}}$ is a stationary subset of λ (b) $\varepsilon_{1,1}^{\text{up}} < \varepsilon_{4,1}^{\text{up}} < \kappa_{1}$ and $\varepsilon_{4,0}^{\text{up}} < \kappa_{0}$ (c) if $\delta \in \mathscr{U}_{4}^{\text{up}}$ then s_{δ} is a stationary (in κ_{1}) subset of $S_{\kappa_{0},j_{*}}^{\kappa_{1}} \setminus \varepsilon_{4,1}^{\text{up}}$
- (d) if $\delta \in \mathscr{U}_4^{\mathrm{up}}, \varepsilon \in s_\delta$ then
 - (α) Rang $(F_1(\rho_{\bar{h}}(g_{2,\varepsilon}(g_{3,\varepsilon}(\delta)),\delta))) \cap \varepsilon \subseteq \varepsilon_{4,1}^{\text{up}}$ hence by clause (b)
 - (β) if β ∈ $t_{g_{2,\varepsilon}(g_{3,\varepsilon}(\delta))}$ then Rang($F_1(\rho_{\bar{h}}(\beta,\delta))$) ∩ ε ⊆ $\varepsilon_{4.1}^{\text{up}}$
 - (γ) also Rang $(F_0(\rho_{\bar{h}}(g_{2,\varepsilon}(g_{3,\varepsilon}(\delta)),\delta))) \subseteq \varepsilon_{4,0}^{\text{up}}$.

[Why? Recall that κ_1 is regular uncountable (being θ_1) and $\kappa_0 < \kappa_1$ is regular (being θ_0). First, for each $\delta \in \mathscr{U}_3^{\text{up}}$ we use Fodor lemma on $S_{\kappa_0,j_*}^{\kappa_1} \setminus \varepsilon_{1,1}^{\text{up}}$ to choose s_{δ} , $\varepsilon_{4,1,\delta}^{\text{up}}$, $\varepsilon_{4,0,\delta}^{\text{up}}$ as in clauses (c) + (d); second use the Fodor Lemma on $\mathcal{U}_3^{\text{up}}$ to get $\mathcal{U}_4^{\text{up}}$, $\varepsilon_{4,1}^{\text{up}}$, $\varepsilon_{4,0}^{\text{up}}$; we cannot do it for s_δ as maybe $2^{\kappa_1} \geq \lambda$.]

Let us verify $(d)(\beta)$ and $(d)(\gamma)$. For $(d)(\beta)$ notice that Rang $(F_1(\rho_{\bar{h}}(\beta,\delta)))$ $\subseteq \varepsilon_{1,1}^{\text{up}} < \varepsilon_{4,1}^{\text{up}}$ for every $\beta \in t_{g_{2,\varepsilon}(g_{3,\varepsilon}(\delta))}$ by $(*)_1(d)$. This requirement is easy since $|t_{g_{2,\varepsilon}(g_{3,\varepsilon}(\delta))}| < \kappa_1$ and $\rho_{\bar{h}}(\beta,\delta)$ is finite for every $\beta \in t_{g_{2,\varepsilon}(g_{3,\varepsilon}(\delta))}$.

For $(d)(\gamma)$ we apply Fodor's lemma twice.

First, fix an ordinal $\delta \in \mathcal{U}_4^{\text{up}}$. For every $\varepsilon \in s_{\delta}$, the sequence

$$F_0(\rho_{\bar{h}}(g_{2,\varepsilon}(g_{3,\varepsilon}(\delta))))$$

is finite and hence bounded in κ_0 . But $\kappa_0 < \kappa_1 = \mathrm{cf}(\kappa_1)$ and hence by shrinking s_{δ} if needed we may assume that all the values are bounded by the same ordinal $\sigma_{\delta} < \kappa_0$.

Now for each $\delta \in \mathcal{U}_4^{\text{up}}$ we choose $\sigma_\delta \in \kappa_0$ in this way, so by shrinking $\mathcal{U}_4^{\text{up}}$ if needed we may assume that $\sigma_\delta = \sigma$ for some fixed $\sigma < \kappa_0$ and every $\delta \in \mathcal{U}_4^{\text{up}}$. Now choose $\varepsilon_{4,0}^{\text{up}} > \max\{\sigma, \varepsilon_{1,0}^{\text{up}}\}$.

- $(*)_5$ we can find $\mathcal{U}_1^{\mathrm{dn}}, \varepsilon_{1,0}^{\mathrm{dn}}, \varepsilon_{1,1}^{\mathrm{dn}}$ such that:
 - (a) $\mathscr{U}_{1}^{\mathrm{dn}} \subseteq S_{0}^{*}$ is stationary in λ (b) $\alpha < \delta \in \mathscr{U}_{1}^{\mathrm{dn}} \Rightarrow t_{\alpha} \subseteq \delta$ (c) $\varepsilon_{1,\iota}^{\mathrm{dn}} < \kappa_{\iota}$ for $\iota = 0, 1$
- (d) if $\delta \in \mathscr{U}_1^{\mathrm{dn}}$ then for arbitrarily large $\alpha < \delta$ we have $\beta \in t_\alpha^{\iota} \wedge \iota$ $\in \{0,1\} \Rightarrow \operatorname{Rang}(F_{\iota}(\rho_{\bar{h}}(\delta,\beta))) \subseteq \varepsilon_{1,\iota}^{\operatorname{dn}} < \kappa_{\iota}.$

[Why? Clearly $E = \{\delta < \lambda : \delta \text{ a limit ordinal such that } \alpha < \delta \Rightarrow t_{\alpha} \subseteq \delta \}$ is a club of λ . For every $\delta \in S_0^* \cap E$ and $\alpha < \delta$ we can find $(\varepsilon_{1,0,\delta,\alpha}^{\mathrm{dn}}, \varepsilon_{1,1,\delta,\alpha}^{\mathrm{dn}})$

⁴ Recall that in this stage we are dealing with $\mathbf{c} = \mathbf{c}_1$ hence $j_* < \kappa_1$.

as in clauses (c),(d) above because $|t_{\alpha}^{\iota}| < \kappa_{\iota} = \mathrm{cf}(\kappa_{\iota})$. So recalling that $\operatorname{cf}(\delta) = \partial > \theta_1 = \kappa_1 > \kappa_0 = \theta_0$ it follows that there is a pair $(\varepsilon_{1,0,\delta}^{\operatorname{dn}}, \varepsilon_{1,1,\delta}^{\operatorname{dn}})$ such that $\delta = \sup\{\alpha < \delta : (\varepsilon_{1,0,\delta,\alpha}^{\mathrm{dn}}, \varepsilon_{1,1,\delta,\alpha}^{\mathrm{dn}}) = (\varepsilon_{1,0,\delta}^{\mathrm{dn}}, \varepsilon_{1,1,\delta}^{\mathrm{dn}})\}$. Then recalling $\lambda = \mathrm{cf}(\lambda) > \kappa_1 + \kappa_0$ we can choose $(\varepsilon_{1,0}^{\mathrm{dn}}, \varepsilon_{1,1}^{\mathrm{dn}})$ such that the set $\mathscr{U}_1^{\mathrm{dn}} =$ $\{\delta \in S_0^*: (\varepsilon_{1,0,\delta}^{\rm dn}, \varepsilon_{1,1,\delta}^{\rm dn}) = (\varepsilon_{1,0}^{\rm dn}, \varepsilon_{1,1}^{\rm dn})\} \text{ is stationary.}]$

 $(*)_6$ we can find $\mathscr{U}_2^{\mathrm{dn}}, \varepsilon_{2,0}^{\mathrm{dn}}, \varepsilon_{2,1}^{\mathrm{dn}}$ such that:

- (a) $\mathscr{U}_2^{\mathrm{dn}} \subseteq S_0^* \setminus (\alpha_3^* + 1)$ is stationary (b) if $\delta \in \mathscr{U}_2^{\mathrm{dn}}$ and $\zeta < \kappa_1$ then $\delta = \sup(\mathscr{U}_1^{\mathrm{dn}} \cap \delta)$ and for arbitrarily large $\delta_0 \in \mathscr{U}_1^{\mathrm{dn}} \cap \delta$ we have $\zeta < \max \mathrm{Rang}(F_1(\rho_{\bar{h}}(\delta, \delta_0)))$ and

$$\operatorname{Rang}(F_0(\rho_{\bar{h}}(\delta, \delta_0))) \subseteq \varepsilon_{2.0}^{\operatorname{dn}} \quad \text{and} \quad \zeta \cap \operatorname{Rang}(F_1(\rho_{\bar{h}}(\delta, \delta_0))) \subseteq \varepsilon_{2.1}^{\operatorname{dn}}$$

(c)
$$\varepsilon_{2,0}^{dn} \in (\varepsilon_{1,0}^{dn}, \kappa_0)$$
 and $\varepsilon_{2,1}^{dn} \in (\varepsilon_{1,1}^{dn}, \kappa_1)$.

[Why? For every $\zeta < \kappa_1$ let $S'_{\zeta} = \{\alpha \in S : \alpha = \sup(\mathscr{U}_1^{\mathrm{dn}} \cap \alpha) \text{ and } F_1(h(\alpha))$ $=\zeta$, clearly it is a stationary subset of λ .

Let $E = \{ \delta < \lambda : \delta \text{ is a limit ordinal and } \zeta < \kappa_1 \Rightarrow \delta = \sup(\delta \cap S'_{\zeta}) \}.$ Clearly it is a club of λ . If $\zeta \in S_{\kappa_0}^{\kappa_1} \setminus \mathcal{E}_{1,1}^{dn}$ and $\delta \in E \cap S_0^*$ and $\alpha \in S_{\zeta}' \cap \delta$ let $\varepsilon_{2,0,\zeta,\delta,\alpha}^{\mathrm{dn}} = \sup \mathrm{Rang}(F_0(\rho_{\bar{h}}(\delta,\alpha))) + \varepsilon_{1,0}^{\mathrm{dn}} + 1$ and let

$$\varepsilon_{2,1,\zeta,\delta,\alpha}^{\mathrm{dn}} = \sup(\zeta \cap \mathrm{Rang}(F_1(\rho_{\bar{h}}(\delta,\alpha))) + 1 < \zeta.$$

Fixing δ and ζ , recalling $\operatorname{cf}(\delta) > \kappa_0 + \kappa_1$, for some pair $(\varepsilon_{2,0,\zeta,\delta}^{\operatorname{dn}}, \varepsilon_{2,1,\zeta,\delta}^{\operatorname{dn}}) \in \kappa_0 \times \kappa_1$ we have $\delta = \sup\{\alpha \in S'_{\zeta} \cap \delta : (\varepsilon_{2,0,\zeta,\delta,\alpha}^{\operatorname{dn}}, \varepsilon_{2,1,\zeta,\delta,\alpha}^{\operatorname{dn}}) = (\varepsilon_{2,0,\zeta,\delta}^{\operatorname{dn}}, \varepsilon_{2,1,\zeta,\delta}^{\operatorname{dn}})\}$. Fixing δ apply Fodor lemma on $S_{\kappa_0}^{\kappa_1}$, for some pair $(\varepsilon_{2,0,\delta}^{\operatorname{dn}}, \varepsilon_{2,1,\delta}^{\operatorname{dn}})$ the set

 $b_{\delta} = \{\zeta \in S_{\kappa_0}^{\kappa_1} : (\varepsilon_{2,0,\zeta,\delta}^{\mathrm{dn}}, \varepsilon_{2,1,\zeta,\delta}^{\mathrm{dn}}) = (\varepsilon_{2,0,\delta}^{\mathrm{dn}}, \varepsilon_{2,1,\delta}^{\mathrm{dn}})\} \text{ is a stationary subset of } \kappa_1.$

Applying Fodor lemma on $\delta \in E \cap S_0^*$, there is a pair $(\varepsilon_{2,0}^{dn}, \varepsilon_{2,1}^{dn})$ such that $\mathscr{U}_2^{\mathrm{dn}} := \{\delta \in S_0^* : \delta \in E \text{ and } (\varepsilon_{2,0,\delta}^{\mathrm{dn}}, \varepsilon_{2,1,\delta}^{\mathrm{dn}}) = (\varepsilon_{2,0}^{\mathrm{dn}}, \varepsilon_{2,1}^{\mathrm{dn}}) \} \text{ is stationary. Clearly}$ we are done. We could have put b_{ε} in (*)₆(b) but it does not seem needed.] Stage C: Now we shall find the required $\alpha_0 < \alpha_1$.

In this stage we deal with \mathbf{c}_1 , so $j_* < \kappa_1$. First, there are δ_1 , δ_2 , $\varepsilon_0^{\mathrm{md}}$, $\varepsilon_1^{\mathrm{md}}, \, \alpha_4^* \text{ such that:}$

- \oplus_0 (a) $\delta_1 \in \mathscr{U}_2^{\mathrm{dn}}$ and $\delta_2 \in \mathscr{U}_4^{\mathrm{up}}$, see (*)₆ and (*)₄ respectively
 - (b) $\delta_1 < \delta_2$ and $\alpha_3^* < \delta_1$
 - (c) $\varepsilon_{\iota}^{\mathrm{md}} := \max \operatorname{Rang}(F_{\iota}(\rho_{\bar{h}}(\delta_2, \delta_1))) > \varepsilon_{2,\iota}^{\mathrm{dn}} + \varepsilon_{4,\iota}^{\mathrm{up}} \ge \varepsilon_{1,\iota}^{\mathrm{dn}} + \varepsilon_{1,\iota}^{\mathrm{up}} \text{ for } \iota = 0,1$
 - (d) $\alpha_4^* < \delta_1$ is $> \alpha_3^*$ and if $\alpha \in (\alpha_4^*, \delta_1)$ then $\rho_{\delta_2, \delta_1} \hat{\langle \delta_1 \rangle} \leq \rho_{\delta_2, \alpha}$.

Why can we? Easy but we give details. First, let $\mathcal{W}_* = \{\delta \in S : \delta \text{ is a } \}$ limit ordinal $> \alpha_3^*$ necessarily of cofinality ∂ such that $F_{\iota}(\delta) > \varepsilon_{2,\iota}^{\mathrm{dn}} + \varepsilon_{4,\iota}^{\mathrm{up}}$ for $\iota = 0, 1$ and $\delta = \sup(\delta \cap \mathscr{U}_2^{dn})$, clearly it is a stationary subset of λ . Second, choose $\delta_2 \in \mathcal{U}_4^{\text{up}}$ which is $> \alpha_3^*$ such that $\delta_2 = \sup(\mathcal{W}_* \cap \delta_2)$. Third, choose $\delta_* \in \mathcal{W}_* \cap \delta_2$ such that $\alpha_3^* < \delta_*$. Fourth, let $\alpha_* < \delta_*$ be such that $\alpha_* > \alpha_3^*$ and $\alpha \in (\alpha_*, \delta_*) \Rightarrow \rho(\delta_2, \delta_*) \hat{\ } \langle \delta_* \rangle \leq \rho(\delta_2, \alpha)$ (hence $\rho_{\bar{h}}(\delta_2, \delta_*) \hat{\ } \langle h_{\delta_*+1}(\delta_*) \rangle \leq \rho_{\bar{h}}(\delta_2, \alpha)$). Fifth, choose $\delta_1 \in (\alpha_*, \delta_*) \cap \mathcal{U}_2^{\mathrm{dn}}$ hence $\delta_1 > \alpha_3^*$. Sixth, we choose $\varepsilon_{\iota}^{\mathrm{md}}$ for $\iota = 0, 1$ by clause (c), the inequality holds because $\delta_* \in \mathcal{W}_* \cap \mathrm{Rang}(\rho_{\bar{h}}(\delta_2, \delta_1))$.

Lastly, choose α_4^* as in $\oplus_0(d)$. Easy to check that we are done proving \oplus_0 .]

Let $\rho = \rho_{\bar{h}}(\delta_2, \delta_1)$.

Second, choose δ_0 such that

 $\oplus_{0.1}$ (a) $\delta_0 \in \mathscr{U}_1^{\mathrm{dn}} \cap \delta_1$

(b) (*)₆(b) holds with $(\varepsilon_1^{\mathrm{md}}, \delta_1)$ here standing for (ζ, δ) there, that is, we have $\varepsilon_1^{\mathrm{md}} < \max \mathrm{Rang}(F_1(\rho_{\bar{h}}(\delta_1, \delta_0)))$ and $\mathrm{Rang}(F_0(\rho_{\bar{h}}(\delta_1, \delta_0))) \subseteq \varepsilon_{2,0}^{\mathrm{dn}}$ and $\varepsilon_1^{\mathrm{md}} \cap \mathrm{Rang}(F_1(\rho_{\bar{h}}(\delta_1, \delta_0))) \subseteq \varepsilon_{2,1}^{\mathrm{dn}}$

(c) $\delta_0 > \alpha_4^*$ recalling $\delta_1 > \alpha_4^* > \alpha_3^*$ by $\bigoplus_0(b)$,(d).

[Why can we choose δ_0 ? By $(*)_6$.]

Also choose α_5^* such that

 $\bigoplus_{0.2} \alpha_5^* < \delta_0$ is such that $\alpha \in (\alpha_5^*, \delta_0) \Rightarrow \rho_{\delta_1, \delta_0} \hat{\delta} = \rho_{\delta_1, \alpha}$.

Third, choose $\varepsilon_* \in s_{\delta_2}$ $(s_{\delta_2} \text{ is from } (*)_4(c), (d))$ such that $\varepsilon_* > \varepsilon_{2,1}^{\text{md}} := \max \left(\text{Rang}(F_1(\rho_{\bar{h}}(\delta_2, \delta_1) \cup \text{Rang}(F_1(\rho_{\bar{h}}(\delta_1, \delta_0)))) \right)$ which is $> \varepsilon_1^{\text{md}}$, possible as s_{δ_2} is a stationary subset of κ_1 .

Fourth, let $\delta_3 = g_{3,\varepsilon_*}(\delta_2)$.

Fifth, let $\alpha_1 = g_{2,\varepsilon_*}(\delta_3)$.

Lastly, choose $\alpha_0 < \delta_0$ large enough and as in $(*)_5(d)$ such that $\alpha_0 > \alpha_5^* > \alpha_4^*$, that is, we have $\beta \in t_{\alpha_0}^1 \Rightarrow \operatorname{Rang}(F_1(\rho_{\bar{h}}(\delta_0, \beta))) \subseteq \varepsilon_{1,1}^{\operatorname{dn}} < \kappa_1$.

We shall prove below that the pair (α_0, α_1) is as promised.

So (finishing the case of κ_1 colours)

 \circledast let $\zeta_0 \in t_{\alpha_0}^0, \zeta_1 \in t_{\alpha_1}^1$ and we should prove that $\mathbf{c}_1\{\zeta_0, \zeta_1\} = j_*$. Note

 $\oplus_1 \ \delta_2 \in \mathscr{U}_4^{\mathrm{up}} \subseteq \mathscr{U}_3^{\mathrm{up}} \ \mathrm{and} \ \alpha_0 < \delta_0 < \delta_1 < \delta_2.$

[Why? The first statement holds by the choice of δ_2 , see $\oplus_0(a)$ and $(*)_4(a)$. The second statement holds by the choices of δ_1 , i.e. $\oplus_0(b)$, the choice of δ_0 , i.e. $\oplus_{0.1}(a)$ and the choice of α_0 (see "Lastly..." after $\oplus_{0.2}$).]

 $\oplus_2 \ \delta_3 = g_{3,\varepsilon_*}(\delta_2) \in \mathscr{U}_{2,\varepsilon_*}^{\mathrm{up}} \ \mathrm{and} \ \delta_2 < \delta_3.$

[Why? By the choice of δ_3 (after $\oplus_{0.2}$ in "Fourth") and by $(*)_3(d)+(e)$ (note that the assumption of $(*)_3(e)$ in our case, which means $\delta_2 \in \mathscr{U}_3^{\text{up}}$ and $\varepsilon_* \in S_{\kappa_0}^{\kappa_1} \setminus \varepsilon_{2,1}^{\text{md}}$, holds by \oplus_1 and by the "Third" after $\oplus_{0.2}$ above (recalling $s_{\delta_2} \subseteq S_{\kappa_0}^{\kappa_1}$ and $\oplus_0(c)$)).]

 $\oplus_3 \ \alpha_1 = g_{2,\varepsilon_*}(\delta_3) \in \mathscr{U}_1^{\mathrm{up}} \ \mathrm{and} \ \delta_3 < \alpha_1.$

[Why? By the choice of α_1 in "Fifth" after $\oplus_{0,2}$ and $(*)_2(d)$.]

 $\oplus_4 \eta_0 := \rho_{\bar{h}}(\zeta_1, \alpha_1)$ satisfies $(\eta_0 \in {}^{\omega} > \lambda \text{ and})$:

• Rang $(F_1(\eta_0)) \subseteq \varepsilon_{1,1}^{\text{up}}$.

[Why? By $(*)_1(d)$ recalling \oplus_3 of course, $\alpha_1 > \alpha_5^* > \alpha_1^*$.]

Recall that $(*)_1(d)$ deals only with t_{ε}^1 .

$$\oplus_5 \ \nu_0 := \rho_{\bar{h}}(\alpha_1, \delta_2) \text{ satisfies } (\nu_0 \in {}^{\omega} > \lambda \text{ and})$$

- (a) Rang $(F_0(\nu_0)) \subseteq \varepsilon_{4,0}^{\text{up}}$
- (b) $\varepsilon_* \in \operatorname{Rang}(F_1(\nu_0))$
- (c) Rang $(F_1(\nu_0)) \cap \varepsilon_* \subseteq \varepsilon_{4,1}^{\text{up}}$
- (d) $\alpha_1 = g_{2,\varepsilon_*}(g_{3,\varepsilon_*}(\delta_2)) = g_{2,\varepsilon_*}(\delta_3)$
- (e) $\rho(\alpha_1, \delta_2) = \rho(\alpha_1, g_{3,\varepsilon_*}(\delta_2)) \hat{\rho}(g_{3,\varepsilon_*}(\delta_2), \delta_2).$

[Why? Clause (d) of \oplus_5 holds by the choice of α_1 in "Fourth" and "Fifth" after $\oplus_{0.2}$ above (and see \oplus_2); similarly clause (e) holds. By \oplus_1 we have $\delta_2 \in \mathscr{U}_4^{\mathrm{up}}$ and by $(*)_4(d)(\gamma), (\alpha)$ and the choices of δ_3, α_1 we have clauses (a) + (c) of \oplus_5 ; that is, $(\alpha_1, \delta_{2,\varepsilon_*}, \varepsilon_*)$ here stand for $(g_{2,\varepsilon}(g_{3,\varepsilon}(\delta)), \delta, \varepsilon)$ in $(*)_4(d)$. Now $\delta_3 \in \mathrm{Rang}(\rho(g_{3,\varepsilon_*}(\delta)), \delta_2)$ by \oplus_2 hence $\delta_3 \in \mathrm{Rang}(\rho(\alpha_1, \delta_2))$ by \oplus_5 (e) hence $\delta_3 \in \mathrm{Rang}(\rho_3)$ by the choice of ν_0 (see the beginning of \oplus_5). This implies clause (b) of \oplus_5 because $F_1(\delta_3) = \varepsilon_*$ because $\delta_3 \in \mathrm{dom}(g_{2,\varepsilon_*}) \subseteq \mathscr{U}_{2,\varepsilon_*}^{\mathrm{up}}$ by \oplus_2 and $(\forall \delta)[\delta \in \mathscr{U}_{2,\varepsilon_*}^{\mathrm{up}} \Rightarrow \delta \in S_{\gamma_{\varepsilon_*}^*}^* \Rightarrow F_1(\delta) = \varepsilon_*]$ by $(*)_2(a)$,(b).]

- $\bigoplus_{\delta} \nu_1 := \rho_{\bar{b}}(\delta_1, \delta_0)$ satisfies:
 - (a) Rang $(F_0(\nu_1)) \subseteq \varepsilon_{2,0}^{\mathrm{dn}}$
 - (b) $\varepsilon_1^{\mathrm{md}} < \max \mathrm{Rang}(F_1(\nu_1))$
 - (c) Rang $(F_1(\nu_1)) \subseteq \varepsilon_*$.

[Why? By $\oplus_0(a)$ we have $\delta_1 \in \mathscr{U}_2^{dn}$. So (a), (b) hold by $(*)_6(b)$ and the choice of δ_0 , i.e. $\oplus_{0.1}(b)$; we use the first two conclusions of $(*)_6(b)$ not the third. As for clause (c) it holds by the choice of ε_* in "Third" after $\oplus_{0.2}$.]

- \oplus_7 (a) $\eta_1 := \rho_{\bar{b}}(\delta_0, \zeta_0)$ satisfies
 - Rang $(F_{\iota}(\eta_1)) \subseteq \varepsilon_{1,\iota}^{\mathrm{dn}}$ for $\iota = 0, 1$.
 - (b) $\rho = \rho_{\bar{b}}(\delta_2, \delta_1)$ satisfies
 - $\max \operatorname{Rang}(F_{\iota}(\rho)) = \varepsilon_{\iota}^{\operatorname{md}} \text{ for } \iota = 0, 1.$

[Why? Clause (a) holds by $(*)_5(d)$ and the choice of α_0 in "lastly" after $\bigoplus_{0.2}$ recalling $\zeta_0 \in t^0_{\alpha_0}$. Clause (b) holds by $\bigoplus_0(c)$.]

- $\bigoplus_{8} (a) \rho_{\bar{h}}(\zeta_1, \zeta_0) = \rho_{\bar{h}}(\zeta_1, \alpha_1) \hat{\rho}_{\bar{h}}(\alpha_1, \delta_2) \hat{\rho}_{\bar{h}}(\delta_2, \delta_1) \hat{\rho}_{\bar{h}}(\delta_1, \delta_0) \hat{\rho}_{\bar{h}}(\delta_0, \zeta_0)$
- (b) recalling $\rho = \rho_{\bar{h}}(\delta_2, \delta_1)$ and the choices of $\eta_0, \nu_0, \rho, \nu_1, \eta_1$ we have $\rho_{\bar{h}}(\zeta_1, \zeta_0) = \eta_0 \hat{\nu}_0 \hat{\rho} \hat{\nu}_1 \hat{\eta}_1$.

[Why? Clause (a) holds by the choices of α_0^* in $(*)_1(c)(d)$ and of α_3^* in $(*)_3(f),(f)'$ and $\delta_1 > \alpha_3^*$ by $\oplus_0(b)$ and as " $\delta_0 > \alpha_3^*$ " recalling $\oplus_{0.1}(c)$ and " $\alpha_0 > \alpha_5^*$ ", see "Lastly" after $\oplus_{0.2}$. Clause (b) holds by clause (a) and the definitions of η_0 , ν_0 , ρ , ν_1 , η_1 above, that is, in \oplus_4 , in \oplus_3 , before $\oplus_{0.1}$, in \oplus_6 , in \oplus_7 respectively.]

$$\oplus_9 \ \ell_4^{\bullet} := \mathbf{d}(\rho_{\bar{h}}(\zeta_1, \zeta_0)) \text{ satisfies } F_1(\varrho(\ell_4^{\bullet})) = \varepsilon_*.$$

[Why? We shall use $\oplus_8(a)$,(b) freely; now **d** was chosen by Claim 3.1 and letting $\rho = \eta_0 \hat{\nu}_0 \hat{\rho} \hat{\nu}_1 \hat{\eta}_1$ we apply the claim to $(\eta_0, \nu_0, \rho, \nu_1, \eta_1)$, so it suffices to show that clauses (B)(a)–(d) of 3.1 hold.

 $\oplus_{9.1}$ clause (B)(a)(α) of 3.1 holds.

Why? First, $\varepsilon_* \leq \max \operatorname{Rang}(F_1(\nu_0))$ by $\oplus_5(b)$.

Second, Rang $(F_1(\eta_0)) \subseteq \varepsilon_{1,1}^{\text{up}}$ by \oplus_4 and $\varepsilon_{1,1}^{\text{up}} \le \varepsilon_{4,1}^{\text{up}}$ by $(*)_4(b)$ and $\varepsilon_{4,1}^{\text{up}}$ $\leq \varepsilon_1^{\mathrm{md}}$ by $\oplus_0(c)$ and $\varepsilon_1^{\mathrm{md}} < \varepsilon_*$ by the choice of ε_* in "Third" after $\oplus_{0.2}$. Third, Rang $(F_1(\rho)) \subseteq \varepsilon_*$ as

$$\operatorname{Rang}(F_1(\rho)) = \operatorname{Rang}(F_1(\rho_{\bar{h}}(\delta_2, \delta_1))) \subseteq \varepsilon_1^{\operatorname{md}} + 1$$

by $\oplus_0(c)$ and $\varepsilon_1^{\mathrm{md}} < \varepsilon_*$ by the choice of ε_* .

Fourth, Rang $(F_1(\nu_1)) \subseteq \varepsilon_*$ by $\oplus_6(c)$.

Fifth, $\operatorname{Rang}(F_1(\eta_1)) \subseteq \varepsilon_*$ as $\operatorname{Rang}(F_1(\eta_1)) \subseteq \varepsilon_{1,1}^{\operatorname{dn}}$ by $(*)_5$ and $\varepsilon_{1,1}^{\operatorname{dn}} \le \varepsilon_{2,1}^{\operatorname{dn}}$ by $(*)_6(c)$ and $\varepsilon_{2,1}^{dn} < \varepsilon_1^{md}$ by $\oplus_0(c)$ and $\varepsilon_1^{md} < \varepsilon_*$ by the choice of ε_* .

Together $\oplus_{9,1}$ holds.

 $\bigoplus_{9.2}$ let $\ell_1 < \ell g(\nu_0)$ be as in clause (B)(a)(β) of 3.1

 $\oplus_{9.3}$ clause $(B)(b)(\alpha)$ of 3.1 holds.

Why? First, $\max \operatorname{Rang}(F_0(\rho)) = \varepsilon_0^{\operatorname{md}}$ by $\oplus_0(c)$. Second, $\operatorname{Rang}(F_0(\eta_0)) \subseteq \varepsilon_0^{\operatorname{md}}$ is unreasonable see \oplus_4 and not necessary. Third, $\operatorname{Rang}(F_0(\nu_0)) \subseteq \varepsilon_0^{\operatorname{md}}$ because $\operatorname{Rang}(F_0(\nu_0)) \subseteq \varepsilon_{4,0}^{\operatorname{up}}$ by $\oplus_5(a)$ and $\varepsilon_{4,0}^{\mathrm{up}} \le \varepsilon_0^{\mathrm{md}} \text{ by } \oplus_0(c).$

Fourth, Rang $(F_0(\nu_1)) \subseteq \varepsilon_0^{\mathrm{md}}$ because Rang $(F_0(\nu_1)) \subseteq \varepsilon_{2,0}^{\mathrm{dn}}$ by $\oplus_6(a)$ and $\varepsilon_{2,0}^{\mathrm{dn}} \leq \varepsilon_0^{\mathrm{md}}$ by $\oplus_0(c)$.

Fifth, $\operatorname{Rang}(F_0(\eta_1)) \subseteq \varepsilon_0^{\operatorname{md}}$ because $\operatorname{Rang}(F_0(\eta_1)) \subseteq \varepsilon_{1,0}^{\operatorname{dn}}$ by $\oplus_7(a)$ and $\varepsilon_{1,0}^{\mathrm{dn}} < \varepsilon_{2,0}^{\mathrm{dn}} \text{ by } (*)_6(c) \text{ and } \varepsilon_{2,0}^{\mathrm{dn}} \le \varepsilon_0^{\mathrm{md}} \text{ by } \oplus_0(c).$

Together $\oplus_{9.3}$ holds.

 $\oplus_{9.4}$ (a) let $\ell_2^{\bullet} < \ell g(\varrho)$ be as in clause (B)(b)(β) of 3.1 (b) let $\ell_2^* = \ell_2^{\bullet} - \ell g(\eta_0 \hat{\ } \nu_0)$

 $\oplus_{9.5}$

- (a) $\ell_2^{\bullet} \in [\ell g(\eta_0 \hat{\nu}_0), \ell g(\eta_0 \hat{\nu}_0 \hat{\rho}))$
- (b) clause $(B)(c)(\alpha)$ holds, i.e.
 - $_1 \max \operatorname{Rang}(F_1(\nu_0)) > \max \operatorname{Rang}(F_1(\varrho \upharpoonright [\ell_2^{\bullet}, \ell_g(\varrho))))$

 \bullet_2

 $\max \operatorname{Rang}(F_1)(\varrho \upharpoonright [\ell_2^{\bullet}, \ell g(\varrho))) = \max \operatorname{Rang}(F_1(\nu_1)) > \max \operatorname{Rang}(\rho \cap \eta_1)$

- (c) let $\ell_3 < \ell g(\nu_1)$ be as in clause (B)(c)(β) of 3.1
- (d) $F_1(\nu_1(\ell_3)) \geq \varepsilon_1^{\mathrm{md}}$.

Why? Clause (a) follows by $(B)(b)(\alpha)$ proved in $\oplus_{9,3}$ above. Clause (b), • 1 holds by $\oplus_{9.1}$. Clause (b),• 2 follows because: first Rang $(F_1(\rho)) \subseteq \varepsilon_{\mathrm{md}}^1 + 1$ by $\oplus_0(c)$ and $\varepsilon_{\mathrm{md}}^1 + 1 < \varepsilon$ by second; $\mathrm{Rang}(F_1(\nu_1)) \nsubseteq \varepsilon_1^{\mathrm{md}} + 1$ by $\oplus_6(b)$ and third, $\mathrm{Rang}(F_1(\eta_1)) \subseteq \varepsilon_{1,1}^{\mathrm{dn}}$ by $\oplus_7(a)$ and $\varepsilon_{1,1}^{\mathrm{dn}} < \varepsilon_1^{\mathrm{md}}$ by $\oplus_0(d)$ by the choice of ε_* .

By clause (b), it follows that ℓ_3 from Clause (c) are well defined and Clause (d) holds

$$\oplus_{9.6}$$
 (a) Rang $(F_1(\eta_0\hat{\ }(\rho \upharpoonright \ell_2^*)\hat{\ }\nu_1\hat{\ }\eta_1)) \subseteq \varepsilon_1^{\mathrm{md}} + 1$

- (b) $\varepsilon_* \in \text{Rang}(F_1(\nu_0)) \text{ is } > \varepsilon_1^{\text{md}}$ (c) $\text{Rang}(F_1(\nu_0)) \cap \varepsilon_* \subseteq \varepsilon_1^{\text{md}}$

Why? First, $\operatorname{Rang}(F_1(\eta_0)) \subseteq \varepsilon_1^{\operatorname{md}}$ because $\operatorname{Rang}(F_1(\eta_0)) \subseteq \varepsilon_{1,1}^{\operatorname{up}}$ by \oplus_4 and $\varepsilon_{1,1}^{\text{up}} \leq \varepsilon_{4,1}^{\text{up}}$ by $(*)_4(b)$ and $\varepsilon_{4,1}^{\text{up}} \leq \varepsilon_1^{\text{md}}$ by $\oplus_0(c)$.

Second, $\operatorname{Rang}(F_1(\rho \upharpoonright \ell_2^*)) \subseteq \operatorname{Rang}(\rho) \subseteq \varepsilon_1^{\operatorname{md}} + 1$ and $\operatorname{Rang}(F_1(\nu_1 \widehat{\eta}_1)) \subseteq$ $\varepsilon_1^{\mathrm{md}}$ by $\oplus_0(\mathbf{c})$.

Third, $\operatorname{Rang}(F_1(\eta_0 \hat{\ } (\rho \restriction \ell_2^*)) \subseteq \operatorname{Rang}(F_1(\eta_0)) \cup \operatorname{Rang}(F_1(\rho \restriction \ell_2^*)) \subseteq \varepsilon_1^{\operatorname{md}} + 1$ by the last two sentences, so clause (a) of $\oplus_{9.6}$ holds.

Fourth, clause (b), i.e. $\varepsilon_* \in \text{Rang}(F_1(\nu_0))$ holds by $\oplus_5(b)$.

Fifth, Rang $(F_1(\eta_0^{\hat{}}\nu_0)) \cap \varepsilon_* \subseteq \varepsilon_{4,1}^{\text{up}}$ by $(*)_4(d)$ with $(\delta, \beta, \varepsilon)$ there standing for $(\delta_2, \zeta_1, \varepsilon_*)$ here (recalling $\delta_2 \in \mathscr{U}_4^{\text{up}}$ and $\zeta_1 \in t_{\alpha_1}^1 = t_{g_{2,\varepsilon_*}(g_{3,\varepsilon_*}(\delta_2))}^1$) and $\varepsilon_{4,1}^{\text{up}}$ $\leq \varepsilon_1^{\mathrm{md}}$ by $\oplus_0(c)$. Hence, $\mathrm{Rang}(F_1(\nu_0)) \cap \varepsilon_* \subseteq \mathrm{Rang}(F_1(\eta_0\hat{\nu}_0)) \cap \varepsilon_* \subseteq \varepsilon_{4,1}^{\mathrm{up}} \subseteq$ $\varepsilon_1^{\mathrm{md}}$, so also clause (c) of $\oplus_{9.6}$ holds.

- $\oplus_{9.7}$ (a) let ℓ_4^{\bullet} from \oplus_9 be as in (B)(d)(β)
 - (b) $F_1(\varrho(\ell_4^{\bullet})) = \varepsilon_*$
 - (c) (used in stage D) $\ell_4^{\bullet} \in [\ell g(\eta_0), \ell g(\eta_0^{\hat{}} \nu_1)).$

[Why? By $\oplus_{9.6}$, ℓ_4^{\bullet} is well defined and belongs to $[\ell g(\eta_0), \ell g(\eta_0^{\hat{}}\nu_0));$ moreover, $F_1(\varrho(\ell_4^{\bullet})) = \varepsilon_*$.

So indeed \oplus_9 holds.

 $\bigoplus_{10} \mathbf{c}_1 \{ \zeta_0, \zeta_1 \} = j_*.$

[Why? Because $\mathbf{d}(\varrho) = \ell_4^{\bullet}$ and $(F_1(\varrho))(\ell_4^{\bullet}) = \varepsilon_*$ and so by $\odot_7(c), h''(\varepsilon_*) =$ ℓ_4^{\bullet} we have $\mathbf{c}_1\{\zeta_0,\zeta_1\}=h'(\varepsilon_*)$ and $h'(\varepsilon_*)=j_*$ because $\varepsilon_*\in s_{\delta_2}$ by the choice of ε_* and $h'(\varepsilon_*)$ is j_* by $(*)_4(c)$ recalling the definition of $S_{\kappa_0,j_*}^{\kappa_1}$ in $\odot_7(a)$. Stage D:

We would like to have λ colours (not just κ_1 colours), but (unlike earlier versions) we rely on what was proved (i.e. the properties of c_1) instead of repeating it. So we shall assume \boxplus from the beginning of Stage B and $j_* < \lambda$ in $\boxplus(d)$.

Now

 $\exists_1 \text{ for some } \mathscr{W}_1, \varepsilon_{0,1}^{\text{up}}, \alpha_{0,1}^*$ $(a) \alpha_{0,1}^* < \lambda, \varepsilon_{0,1}^{\text{up}} < \kappa_1$

- (b) $\mathcal{W}_1 \subseteq S$ is stationary and $\min(\mathcal{W}_1) > \alpha_{0,1}^*$
- (c) if $\delta \in \mathcal{W}_1$ and $\beta \in t_\delta$ then Rang $(F_1(\rho_{\bar{h}}(\beta,\delta))) \subseteq \varepsilon_{0,1}^{\text{up}}$
- (d) if $\delta \in \mathcal{W}_1$ and $\alpha \in [\alpha_{0,1}^*, \delta)$ and $\beta \in t_\delta$ then $\rho(\beta, \delta) \hat{\ } \langle \delta \rangle \leq \rho(\beta, \alpha)$. [Why? As in the proof of $(*)_1$ in Stage B.]
- \boxplus_2 (a) let $\mathscr{W}_2 = \{ \delta \in S : F_2(h(\delta)) = j_*, F_1(h(\delta)) = \varepsilon_{0,1}^{\text{up}} \text{ and } \delta > \alpha_{0,1}^* \}, \text{ so}$ stationary
 - (b) let $g_1^* : \mathcal{W}_2 \to \mathcal{W}_1$ be such that $\delta < g_1^*(\delta) \in \mathcal{W}_1$

 \boxplus_3 there are $\mathscr{W}_3, \alpha_{0,2}^*$ and n_* such that:

(a) $\mathcal{W}_3 \subseteq \mathcal{W}_2$ is stationary and $\min(\mathcal{W}_3) > \alpha_{0,2}^* > \alpha_{0,1}^*$

S. SHELAH: THE COLOURING EXISTENCE THEOREM REVISITED

- (b) if $\delta \in \mathcal{W}_3$ and $\alpha \in [\alpha_{0,2}^*, \delta)$ and $\beta \in t_{g_1^*(\delta)}$ then $\rho(\beta, g_1^*(\delta))^{\hat{}}\langle g_1^*(\delta) \rangle \leq \rho(\beta, g_1^*(\delta))^{\hat{}}\rho(g_1^*(\delta), \delta)^{\hat{}}\langle \delta \rangle \leq \rho(\beta, \alpha)$
 - (c) if $\delta \in \mathcal{W}_3$ and $\beta \in t_{g_1^*(\delta)}$ then
 - (α) Rang $(F_1(\rho_{\bar{h}}(\beta, g_1^*(\delta))) \subseteq \varepsilon_{0,1}^{\mathrm{up}}$
 - $(\beta) \ n_* = |\{\ell < k(\beta, \delta) : (F_1(\rho_{\bar{h}}(\beta, \delta))(\ell) = \varepsilon_{0,1}^{\text{up}}\}|$
- (γ) hence if $\alpha < \delta$ and $\rho(\beta, \delta) \hat{\delta} \leq \rho(\beta, \alpha)$ then the $(n_* + 1)$ -th member of the set $\{\ell < k(\beta, \alpha) : F_1(\rho_{\bar{h}}(\beta, \alpha))(\ell) = \varepsilon_{0,1}^{\text{up}}\}$ is $\ell g(\rho(\beta, \delta))$.

[Why? As usual, e.g. how do we justify n_* in clause $(c)(\beta)$ not depending on $\beta \in t_{\delta}$? First, find δ , then for any $\beta \in t_{\delta}$ we have

• $\rho(\beta, \delta) = \rho(\beta, g_1^*(\delta))\hat{\rho}(g_1^*(\delta), \delta).$

[Why? Recall $\boxplus_1(d)$.]

• Rang $(F_1(\rho_{\bar{h}}(\beta, g_1^*(\delta))) \subseteq \varepsilon_{0,1}^{\mathrm{up}}$.

[Why? Recall $\boxplus_1(c)$.]

Together, n_* depends just on $\rho_{\bar{h}}(g_1^*(\delta), \delta)$ which depends only on δ (not β). Second, as choosing \mathcal{W}_3 we can make n_* not depend on δ .]

Let $j_{**} < \kappa_1$ be such that $h'_1(j_{**}) = \varepsilon_{0,1}^{\text{up}}$, $h'_2(j_{**}) = n_*$. Next let $g_*: \lambda \to \mathcal{W}_3$ be increasing and define $s_\alpha = t_{g_*(\alpha)}$, $s'_\alpha = t'_{g_*(\alpha)}$ for $\iota = 0, 1$. Now by what was proved in the earlier stages we can find $\alpha_0 < \alpha_1 < \lambda$ such that if $\zeta_0 \in s^0_{\alpha_0} \land \zeta_1 \in s^1_{\alpha_1}$ then $\mathbf{c}_1\{\zeta_0, \zeta_1\} = j_{**}$.

Let $(\zeta_0, \zeta_1) \in s^0_{\alpha_0} \wedge \zeta_1 \in s^1_{\alpha_1}$ then $\mathbf{c}_1\{\zeta_0, \zeta_1\} = j_{**}$. Let $(\zeta_0, \zeta_1) \in s^0_{\alpha_0} \times s^1_{\alpha_1}$. By the choice of \mathbf{c}_1 , in \odot_7 we have \mathbf{c}_2 from \odot_9 and by $\coprod_3(c)(\gamma)$ we have $\mathbf{c}_2(\{\zeta_0, \zeta_1\}) = j_*$. But $(s^0_{\alpha_0}, s^1_{\alpha_1}) = (t^0_{g_*(\alpha_0)}, t^1_{g_*(\alpha_1)})$ so $\alpha'_0 = g_*(\alpha_0), \alpha'_1 = g_*(\alpha_1)$ are as required. $\square_{3,2}$

References

- [1] Todd Eisworth, Getting more colors, II, J. Symbolic Logic, 78 (2013), 17–38.
- [2] István Juhász and Saharon Shelah, Strong colourings yield κ-bounded spaces with discretely untouchable points, *Proc. Amer. Math. Soc.*, **143** (2015), 2241–2247.
- [3] Justin Tatch Moore, A solution to the L space problem, J. Amer. Math. Soc., 19 (2006), 717–736.
- [4] Assaf Rinot, Transforming rectangles into squares, with applications to strong colorings, Adv. Math., 231 (2012), 1085–1099.
- [5] Stevo Todorčević, Partitioning pairs of countable ordinals, Acta Math., 159 (1987), 261–294.
- [6] Saharon Shelah, *Cardinal Arithmetic*, Oxford Logic Guides, vol. 29, Oxford University Press (1994).
- [7] Saharon Shelah, Analytical Guide and Corrections to [6], arXiv:math.LO/9906022.
- [8] Saharon Shelah, Was Sierpiński right? I, Israel J. Math., 62 (1988), 355–380.
- [9] Saharon Shelah, Strong negative partition above the continuum, *J. Symbolic Logic*, **55** (1990), 21–31.
- [10] Saharon Shelah, Strong negative partitions below the continuum, *Acta Math. Hungar.*, **58** (1991), 95–100.
- [11] Saharon Shelah, Colouring and non-productivity of $\aleph_2 cc$, Ann. Pure Appl. Logic, 84 (1997), 153–174.
- [12] Saharon Shelah, Colouring of successor of regular again (manuscript).
- [13] Saharon Shelah, Colouring of successor of regulars (manuscript).