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Abstract. This paper can be viewed as a continuation of the article by Ka-

plan and Shelah that dealt with the automorphism tower problem without

Choice. Here we deal with the inequality τnlgκ | ≤ τκ without Choice and in-
troduce a new proof to a theorem of Fried and Kollár that any group can be
represented as an automorphism group of a field. The proof uses a simple
construction: working more in graph theory, and less in algebra.

1. Introduction and preliminaries

Background. Although this paper hardly mentions automorphism towers, it
is the main motivation for it. So we shall start by giving the story behind them.

Given any centerless group G, G ∼= Inn (G) ≤ Aut (G) so we can embed G into
its automorphism group. Also, an easy exercise shows that Aut (G) is also without
center, so we can do this again, and again:

Definition 1.1. For a centerless group G, we define the automorphism tower
〈Gα |α ∈ ord 〉 by

• G0 = G.
• Gα+1 = Aut (Gα).
• Gδ = ∪{Gα |α < δ } for δ limit.

Remark 1.2. The union in limit stages can be understood as the direct limit.
But we shall think of the tower as an increasing continuous sequence of groups.

The natural question that arises, is whether this process stabilizes, and when.
We define

Definition 1.3. For such a group, define τG = min
{
α

∣∣Gα+1 = Gα
}
.

In 1939, Weilandt proved in [Wie39] that for finite G, τG is finite. What
about infinite G? There exist examples of centerless infinite groups such that
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this process does not stop in any finite stage. For example — the infinite dihedral
groupD∞ =

〈
x, y

∣∣x2 = y2 = 1
〉
satisfies Aut (D∞) ∼= D∞ while the automorphism

replacing x with y is not in Inn (D∞). The question remained open until the works
of Faber [Fab78] and Thomas [Tho85, Tho98] (who was not aware of Faber’s

work), that showed τG <
(
2|G|)+.

Definition 1.4. For a cardinal κ we define τκ as the smallest ordinal such that
τκ > τG for all centerless groups G of cardinality ≤ κ, or in other words

τκ =
⋃

{τG + 1 |G is centerless and |G| ≤ κ} .

Since (2κ)+ is regular we can immediately conclude τκ < (2κ)+.
This paper is concerned with a Choiceless universe, i.e. we do not assume the

axiom of Choice. As a consequence, the previous definition is generalized to

Definition 1.5. For a set k, we define τ|k| to be the smallest ordinal α such
that α > τG for all groups G with power ≤ |k|.

Note that when we write |X| ≤ |Y | as in the definition above, we mean that
there is an injective function from X to Y . Below we provide a short glossary.

A helpful and close notion is that of the normalizer tower 〈norαG (H) |α ∈ ord 〉
of a subgroup H of G in G.

Definition 1.6. Let

• nor0G (H) = H.

• norα+1
G (H) = norG (norαG (H)).

• norδG (H) =
⋃
{norαG (H) |α < δ } for δ limit.

And we let the normalizer length be τnlgG,H = min
{
α

∣∣ norα+1
G (H) = norαG (H)

}
(sometimes we just write τG,H).

Analogously to τκ, we define

Definition 1.7. For a cardinal κ, let τnlgκ be the smallest ordinal such that
τnlgκ > τAut(A),H , for every structure A of cardinality ≤ κ and H ≤ Aut (A) of
cardinality ≤ κ.

In general (i.e. without assuming Choice), for a set k, we define τnlg|k| as the

smallest ordinal α, such that for every structure A of power ||A|| ≤ |k|, τAut(A),H <
α for every subgroup H ≤ Aut (A) = G of power |H| ≤ |k|. In other words,

τnlg|k| = sup {τG,H + 1 | for such G,H }.

In [JST99, Lemma 1.8], Just, Shelah and Thomas proved the following in-
equality

τκ ≥ τnlgκ .

In fact it was essentially already proved by Thomas in [Tho85].
In [KS09] we dealt with an upper bound of τκ without assuming Choice. Here

we prove τκ ≥ τnlgκ without Choice, and also provide a Choiceless variant of τ|k| ≥
τnlg|k| .

It is worth mentioning some previous results regarding τκ that were proved
using this inequality.

In [Tho85], Thomas proved that τκ ≥ κ+. It is a easy to conclude from Main
Theorem A below that this result still holds without Choice. We will elaborate in
the end of this section (See Corollary 2.5).
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In [JST99] the authors found that for uncountable κ one cannot find an explicit

upper bound for τκ better than (2κ)
+

in ZFC (using set theoretic forcing). In
[She07], Shelah proved that if κ is strong limit singular of uncountable cofinality
then τκ > 2κ (using results from PCF theory). In the proofs the authors construct
normalizer towers to find lower bound for τκ, but we did not check how much Choice
was used.

It remains an open question whether or not there exists a countable centerless
group G such that τG ≥ ω1.

Description of paper. As mentioned before, we wish to prove τκ ≥ τnlgκ

without Choice. So we started by reading what was done in [JST99] (which is also
described in detail in [Tho]).

The proof contains three parts:

(1) Given some structure, code it in a graph (i.e. find a graph with the same
cardinality and automorphism group).

(2) Given a graph code it in a field. Now we have a fieldK with some subgroup
H ≤ Aut (K) such that |K| = |H| = κ.

(3) Use some lemmas from group theory and properties of PSL (2,K) to find a
centerless group whose automorphism tower coincides with the normalizer
tower of H in Aut (K).

Our first intention was to mimic this proof, and to prove some version of τ|k| ≥ τnlg|k|
(see definitions 1.7 and 1.1 above). To explain what we did prove, we need some
notation:

Definition 1.8. Let X be a set.

(1) X<ω is the set of all finite sequences of members of X.

(2) [X]<ℵ0 = {a ⊆ X | |a| < ℵ0 }.
(3) X〈<ω〉 = [X<ω]

<ℵ0 , i.e. the set of all finite subsets of finite sequences of
elements of X.

Our methods cannot tackle τ|k| ≥ τnlg|k| without Choice, since one often needs to

code finite sequences. The natural way to overcome this is to replace k with k<ω,

so that we get τ|k<ω| ≥ τnlg|k<ω|. However, we managed to proved a slightly different

version:

Main Theorem A. For any set k, τ|k〈<ω〉| ≥ τnlg
′

|k〈<ω〉|.

Where τnlg
′

|k| is a variant of τnlg|k| . See Definition 2.2 below.

With Choice there is no difference, and moreover, we get as a corollary the
original inequality for a cardinal κ (see Corollary 2.4 below). It is a matter of
taste whether replacing k<ω and nlg by k〈<ω〉 and nlg′ matters. Still, one may ask

whether τnlg|k<ω| ≤ τ|k<ω| or even τ|k| ≥ τnlg|k| holds without Choice.

Part (1) was easy enough. However, it needs a passage to a structure with
countable language. This stage uses Choice. In order to fix this, we just bypassed

the problem all together and replaced τnlg|k| by τnlg
′

|k| .

Part (3) was easy as well: An algebraic lemma which obviously did not need
Choice (Lemma 4.1); And two lemmas regarding PSL (2,K) — Lemma 4.4 and

Sh:913



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

190 ITAY KAPLAN AND SAHARON SHELAH

Lemma 4.8. The latter is a theorem of Van der Waerden and Schreier which de-
scribed Aut (PSL (2,K)). There is a simple model theoretic argument that shows
that these lemmas do not require Choice (Lemma 4.5).

However, part (2) seemed to be somewhat harder. In [JST99], the authors
referred to the work of Fried and Kollár [FK82]. In [Tho], the author gives a less
technical proof that the construction in [FK82] works. The proof, in both cases,
was a little bit complicated, and we were suspicious that Choice was used in it.
After some time we realized that it is most likely not used, but by then we already
came up with a proof of our own, in which the construction of the field is much
simpler, and thought that it is worth presenting. So, for part (2) we prove:

Main Theorem B. Let Γ = 〈X,E〉 be a connected graph. Then for any choice
of characteristic there exists a field KΓ of that characteristic such that |KΓ| ≤∣∣X〈<ω〉∣∣ and Aut (KΓ) ∼= Aut (Γ).

The proof of Main Theorem B is given in Section 6. Here we will give a brief
outline of the construction.

The plan was this: work a little bit on the graph, so that the algebra would
be easier. First code the given graph as a graph with the following properties: its
edges are colorable with some finite number N of colors, and the subgraphs induced
by any particular color is a union of disjoint stars. This is done in Lemma 6.4.

Now the construction of the field is as follows: first let 〈p0, p1, . . . , pN 〉 be a
list of distinct odd primes. Start with Q (or any prime field), and add the set of
vertices X as transcendental elements over it. For each one, add pn0 roots to it for
all n < ω. Now, for each edge, e = {s, t}, colored with the color l < N , adjoin pnl+1

roots for all n < ω to (s+ t+ 1). This is it. The reader is invited to compare to
[FK82].

This construction can be done without Choice.
In the proof we use a generalized form of a lemma by P. Pröhle that appears

in [Prö84]. In their original paper, Fried and Kollár could construct KΓ with the
restriction that char (KΓ) �= 2 and Pröhle removed this restriction. His “third
lemma” from [Prö84] seemed to be perfect for our situation. However, we needed
to generalize it in order to suit our purposes (and prove the generalization). This
is Lemma 6.8.

The proof of Lemma 6.8 can be found in full detail in [KS11] which is an online
copy of the present paper, but with the added proof of this technical lemma. We
felt that the details of the proof can be omitted since it is technical and similar to
the proof in [Prö84].

Acknowledgment. We would like to thank the referee for many useful re-
marks and to Haran Pilpel for drawing a graph with certain properties in record
time.

A note about reading this paper. If the reader is not interested in Choice,
but still wants to see the proof of Main Theorem A and Main Theorem B, he should
ignore all the computations of cardinalities, since they become trivial. Also, with
Choice, the construction of the field is somewhat easier — in our construction, we
took the polynomial ring Q [Y ] (where Y is a set containing the vertices) and then
the quotient by an ideal. Then we had to show the ideal is prime in order to take
the field of fractions. But with Choice we can construct the field by adding roots
from the algebraic closure. See also Remark 6.14.
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A small glossary.

• |X| ≤ |Y | means: There is an injective function from X to Y .
• |X| = |Y | means: There is a bijection from X onto Y .
• For a structure A, |A| is its universe and ||A|| is its cardinality.
• V is the universe and L is Gödel’s constructible universe.

2. A variant of τnlg|k| and some corollaries of Main Theorem A

Definition 2.1. A structure A is called rigid if Aut (A) = 1, i.e. it has no
non-trivial automorphism.

Definition 2.2. For a set k, we define τnlg
′

|k| as the smallest ordinal α which

is greater than τAut(A),H where A, H are as in Definition 1.7 and in addition the
vocabulary (language) L of A satisfies

(1) There is some rigid structure with universe L and a countable vocabulary
(for instance, L is well-orderable); and

(2) |L| ≤
∣∣∣|A|〈<ω〉

∣∣∣.
Remark 2.3. If κ is a cardinal number (i.e. an ℵ), then τnlgκ = τnlg

′

|κ〈<ω〉| and

τκ = τ|κ〈<ω〉|. This is true since
∣∣κ〈<ω〉∣∣ = |κ|, and because given any A as in

the definition, we may assume that |A| ⊆ κ and that L is |A|<ω ⊆ κ<ω which is
well-orderable (see [KS09, Observation 2.3]).

Hence, by Main Theorem A

Corollary 2.4. (ZF ) For a cardinal κ, τnlgκ ≤ τκ.

The following is another easy conclusion of Main Theorem A

Corollary 2.5. (ZF ) for any cardinal κ, τκ ≥ κ+. Moreover, letting υk〈<ω〉 be
the smallest nonzero ordinal α such that there is no injective function f : α → k〈<ω〉,
then τ|k〈<ω〉| ≥ υk〈<ω〉 for any set k.

Proof. By [Tho85], we know that this result is true with Choice. Moreover,
he proves that τnlgκ ≥ κ+ (see Lemma in the proof of Theorem 2 there). Let

α < υk〈<ω〉 be some ordinal. We know that L |= τnlg|α| ≥ |α|+ > α and that

|α| ≤ k〈<ω〉.
For a moment we work in L. So there is a group G (the automorphism group

of some structure) and a subgroup group H ≤ G such that |H| ≤ |α| and α ≤ τG,H .
We may assume that |G| ≤ |α|. For one reason, this is the way it is constructed in
[Tho85]. However, we give a self-contained explanation:

Let L be the language {P,Q,<,R}∪LGroups where P,Q are predicates, <,R

are binary relation symbols and LGroups is the language of groups. Consider

the L-structure G with universe the disjoint union of G and α where PG = G,
QG = α, with the group structure on P , the order on Q and RG (x, β) holds iff

x ∈ norβG (H). Let G′ ≺ G be an elementary substructure of size ≤ |α| such that

H ⊆ PG
′
, α ⊆ QG

′
(so α = QG

′
), and let G′ = PG

′
. As a group G′ is a subgroup

of G containing H of size ≤ |α| and for all β < α, norβG′ (H) �= norβ+1
G′ (H), and in

particular α ≤ τG′,H .
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Now we go back to V, so |G| ≤ |α| ≤
∣∣k〈<ω〉∣∣ by assumption. By [KS09,

Claim 2.8], α ≤ τLG,H = τVG,H . Let A be the structure with universe G and for each

g ∈ G a unary function fg taking x to x · g. Then Aut (A) ∼= G. So we conclude

that τnlg
′

k〈<ω〉 ≥ α (because G is well-orderable as in Remark 2.3 above). By Main
Theorem A, τ|k〈<ω〉| ≥ α. �

3. Coding structures as graphs

The next lemma allows us to present any automorphism group of an (almost)
arbitrary structure as the automorphism group of a graph.

Lemma 3.1. Let A be a structure for the vocabulary (=language) L such that

(1) There is some rigid structure on L with vocabulary L′ such that |L′| ≤ ℵ0.

(2) |L| ≤
∣∣∣|A|〈<ω〉

∣∣∣.
Then there is a structure B with vocabulary LB such that

• ||B|| ≤ ||A||+ |L| (so ≤
∣∣∣|A|〈<ω〉

∣∣∣)
• Aut (B) ∼= Aut (A)
• |LB| = ℵ0

Proof. We may assume that both L and L′ are relational languages.
Define B by:

• |B| = |A| × {0} ∪ L× {1}.
• The vocabulary is LB = {Rn |n ∈ ω } ∪ L′ ∪ {P} where P is a unary
predicate and each Rn is an n+ 1 place relation.

Where:

• QB = QL on L× {1} for each Q ∈ L′.

• RB
n =

{
((a0, 0) , . . . , (an−1, 0) , (R, 1))

∣∣∣∣ R ∈ L is an n place relation and
(a0, . . . , an−1) ∈ RA

}

• PB = L× {1}.
It is easy to see that B is as desired. �

This is well known:

Theorem 3.2. Let A be a structure for the first order language L which is as
in the conditions of 3.1. Then there is a connected graph Γ = 〈XΓ, EΓ〉 such that

Aut (Γ) ∼= Aut (A), and |XΓ| ≤ ||A||<ℵ0 .

Proof. For details see e.g. [Tho, Lemma 4.2.2] or [Hod93, Thereom 5.5.1].
From the construction (which does not use Choice) described there, one can deduce
the part regarding the cardinality. The proof uses the fact that we can reduce to
structures with countable languages, but this is exactly Lemma 3.1. �

4. Some group theory

Lemma 4.1. Let S be a simple non-abelian group, and let G be a group such that
Inn (S) ≤ G ≤ Aut (S). Then the automorphism tower of G is naturally isomorphic
to the normalizer tower of G in Aut (S).
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The proof of this lemma can be found in [Tho, Theorem 4.1.4] (and, of course,
it does not use Choice).

So we need a simple group. Recall

Definition 4.2. Let K be a field, n < ω, then:

• GL (n,K) is the group of invertible n× n matrices over K.
• PGL (n,K) = GL (n,K) /Z (GL (n,K)) (Here, Z (GL (n,K)) is the group
K× · I where I is the identity matrix).

• SL (n,K) = {x ∈ GL (n,K) | det (x) = 1}.
• PSL (n,K) = SL (n,K) /Z (SL (n,K)) (The denominator is just
Z (GL (n,K)) ∩ SL (n,K)).

Fact 4.3. PSL (n,K) is a normal subgroup of PGL (n,K).

Lemma 4.4. PSL (2,K) is simple for any field K such that |K| ≥ 3.

The proof of this lemma can be found in many books, e.g. [Rot95]. It is also
true in ZF , by the following Lemma and Claim:

Lemma 4.5. Suppose P is a claim, such that ZFC � P , and ψ is a first order
sentence (in some language) such that ZF �’P is true iff ψ does not have a model’.
Then ZF � P .

Proof. If we have a model V of ZF , such that V |= ¬P , then ψ has a model so
cannot prove contradiction (there is no use of Choice here). Hence ψ is consistent
in L = LV as well. (If ψ was not consistent in L, then a proof of a contradiction
from ψ would exist in V as well). Hence, by Gödel Completeness Theorem in ZFC,
L |= ¬P , but L |= ZFC — a contradiction. �

Claim 4.6. There is a first order sentence ψ such that ψ has a model iff there
is a field K, |K| ≥ 3 such that PSL (2,K) is not simple.

Proof. Let L be the language of fields with an extra 4-ary relation H, i.e.
L = {+, ·, 0, 1, H}. Let the sentence ψ say that the universe is a field K of size
≥ 3 and that H ⊆ K4 is a normal subgroup of SL (2,K) (after some choice of
coordinates), and that H contains Z (SL (2,K)) and also some element outside
Z (SL (2,K)). �

We close this section by showing one final algebraic fact holds over ZF . Recall:

Definition 4.7. Given any two groups N and H and a group homomorphism
ϕ : H → Aut (N), we denote by N �ϕ H (or simply N � H if ϕ is known) the
semi-direct product of N and H with respect to ϕ.

Note that for a field K, there are canonical homomorphisms
Aut (K) → Aut (PSL (2,K)) and Aut (K) → Aut (PGL (2,K)).

Fact 4.8. (Van der Waerden, Schreier [vdWS28]) Let K be a field. Then
every automorphism of PSL (2,K) is induced via conjugation by a unique element
of PΓL (2,K) := PGL (2,K)�Aut (K). Hence Aut (PSL (2,K)) ∼= PΓL (2,K).

This means that if ϕ ∈ Aut (PSL (2,K)) then there are unique α ∈ Aut (K)
and g ∈ PGL (2,K) such that for every x ∈ PSL (2,K), ϕ (x) = gα (x) g−1.

We again use the model theoretic argument of Lemma 4.5 to give a proof of
this fact in ZF :
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Claim 4.9.

(1) There is a first order sentence ψ such that ψ has a model iff there is a
field K, and an automorphism ϕ ∈ Aut (PSL (2,K)) such that ϕ is not
in PΓL (2,K). (This implies the existence of (α, g) required by the fact).

(2) There is a first order sentence ψ′ such that ψ′ has a model iff there is a
field K, and some 1 �= g ∈ PGL (2,K), α ∈ Aut (K), such that for every
x ∈ PSL (2,K), α (x) = gxg−1. (This implies the uniqueness of (α, g)
required by the fact).

Proof. (1): Let K be a field. Recall that xt =

(
1 t
0 1

)
and zt =

(
1 0
t 1

)

generate SL(2,K). Let g ∈ PGL (2,K), σ ∈ Aut (PSL (2,K)).
Then α ∈ Aut (K) satisfies σ (x) = gα (x) g−1 iff the map x �→ g−1σ (x) g takes

x̄t to x̄α(t) and z̄t to z̄α(t). Let L be the language of fields augmented with 4-place
function symbols {σi | i < 4}. ψ says that the universe K is a field, and that σ
is an automorphism of PSL (2,K) (SL (2,K) is a definable subset of K4, as is
Z (SL (2,K))), such that for all g ∈ PGL (2,K), the maps t �→ g−1σ (x̄t) g and
t �→ g−1σ (z̄t) g do not induce a well defined automorphism of K.

(2): Let L be the language of fields. ψ′ says that the universe K is a field and
that there is some nontrivial g ∈ PGL (2,K) such that the maps t �→ g−1x̄tg and
t �→ g−1z̄tg are induced by an automorphism α of K. �

5. Proof of Main Theorem A from Main Theorem B

From Main Theorem B which is proved in the next section, we can now deduce

Main Theorem A. For any set k, τnlg
′

|k〈<ω〉| ≤ τ|k〈<ω〉|.

Proof. (essentially the same proof as in [JST99]). We are given a structure
A, with language L such that on the set L there is a rigid structure with countable
vocabulary, and ||A|| ≤

∣∣k〈<ω〉∣∣. By Theorem 3.2 and Main Theorem B we may
assume that A is an infinite field, K. We are also given a subgroup H ≤ Aut (K),
|H| ≤

∣∣k〈<ω〉∣∣.
Let G = PGL (2,K)�H. Obviously |G| ≤

∣∣k〈<ω〉∣∣.
G is centerless, because by Fact 4.8, the centralizer of PSL (2,K) in PΓL (2,K)

is trivial, and PSL (2,K) ≤ G. So PSL (2,K) ≤ G ≤ PΓL (2,K). By Lemmas
4.1, 4.4, and 4.8, Gα is isomorphic to norαPΓL(2,K) (G).

Now, by induction on α, one has norαPΓL(2,K) (G) = PGL (2,K)�norαAut(K) (H)

and we are done. �

6. Coding graphs as fields

In the introduction we mentioned that the following theorem of Fried and Kollár
[FK82] was used in [JST99]:

Theorem 6.1. (Fried and Kollár) (ZFC) For every connected graph Γ there
is a field K such that Aut (Γ) ∼= Aut (K), and |K| = |Γ|+ ℵ0.

Here we will offer a different proof of the Choiceless version, namely

Main Theorem B. Let Γ = 〈X,E〉 be a connected graph. Then there exists a
field KΓ of any characteristic such that |KΓ| ≤

∣∣X〈<ω〉∣∣ and Aut (KΓ) ∼= Aut (Γ).
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Corollary 6.2. If G is a group and there is some rigid structure with count-
able vocabulary on it, then there is a field K such that Aut (K) ∼= G, and |K| ≤∣∣G〈<ω〉∣∣.

Proof. (of corollary) Let A be the structure with universe G and for each
g ∈ G a unary function fg taking x to x · g so that Aut (A) ∼= G. Now apply 3.2
and Main Theorem B. �

6.1. Coding graphs as colored graphs. We start by working a bit on the
graph, to make the algebra easier.

Definition 6.3. A graph G = 〈X,E〉 is called a star if there is a vertex v (the
center) such that E ⊆ {{v, u} |u ∈ V − {v}}.

Lemma 6.4. There is some number N such that for every connected graph
Γ = 〈XΓ, EΓ〉, there is a connected graph Γ+ = 〈XΓ+ , EΓ+〉 with the following
properties:

(1) Aut (Γ) ∼= Aut (Γ+).
(2) There is a coloring C : EΓ+ → N of the edges of Γ+ in N colors such that

for all l < N the l-th colored subgraph is a disjoint union of stars.
(3) Every ϕ ∈ Aut (Γ+) preserves the coloring.

(4) |XΓ+ | ≤
∣∣∣X〈<ω〉

Γ

∣∣∣, in fact |XΓ| ≤ |XΓ+ | ≤ |XΓ|+ 4 |EΓ|.

Proof. The idea is to replace each edge {x, y} by a copy of the graph G
described below.

Recall that the valency of a vertex is the number of edges incident to the vertex,
and will be denoted by val (x). Let G = 〈XG, EG〉 be the following auxiliary graph:

x

����
����

����
����

����

z a b c

y

��������������������

Note the following properties of G:

• It has only 2 automorphisms: id and σ, where σ switches x and y, but
fixes all other vertices: z, b, c are characterized by their valency and a is
the only vertex with valency 2 which is adjacent to b, z.

• z is adjacent to all the vertices, its valency is unique and is not divisible
by val (x).

• x and y are not adjacent.

Description of Γ+:
The set of vertices is

XΓ+ = {(1, x) |x ∈ XΓ } ∪ {(2, u, w) |u ∈ EΓ, w ∈ XG − {x,y}} .
And the edges are:

• (2, u, w) and (2, u′, w′) are adjacent iff u = u′ and {w,w′} ∈ EG.
• (1, x) and (2, u, w) are adjacent iff x ∈ u and {x, w} ∈ EG (iff {y, w} ∈
EG).
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• That is all.

So, for each edge {x, y} = u ∈ EΓ there is an induced subgraph Γ+
u of Γ+, whose

vertices are {(1, x) , (1, y)}∪ {(2, u, w) |w �= x,y}, and Γ+
{x,y}

∼= G (by sending x to

(1, x), y to (1, y) and w �= x,y to (2, u, w)).
Let G′ be the subgraph of G induced by removing y, let N = |EG′ | (so N = 7),

and denote EG′ = {e0, . . . , eN−1}. Let f : Γ+ → G′ be a homomorphism of graphs
defined as follows: f (1, x) = x, f (2, u, w) = w. The coloring C : EΓ+ → N is
defined by C (e) = i iff f (e) = ei.

Let us now show (2). For each i < N , let Γ+
i = 〈Xi, Ei〉 be the subgraph

induced by the color i. If x /∈ ei, then Γ+
i is a union of disjoint edges by the

definitions (and an edge is a star). If x ∈ ei, then Γ+
i is a disjoint union of |XΓ|

stars, with centers {(1, x) |x ∈ XΓ }, each having valΓ (x) edges.
For (1), note that valΓ+ (1, x) = valG (x) · valΓ (x) (or ∞, if valΓ (x) ≥ ℵ0),

while valΓ+ (2, u, w) = valG (w), hence valΓ+ (2, u, z) is not divisible by valΓ+ (1, x).
Hence if ϕ ∈ Aut (Γ+) then ϕ (2, u, z) = (2, u′, z) for some u′ ∈ EΓ. Since z is

adjacent to all the vertices in G, Γ+
{x,y} consists of all the vertices (2, u, z) is adjacent

to and itself. So ϕ � Γ+
u is an isomorphism onto Γ+

u′ . Since Aut (G) = {id, σ}, for
all w �= x,y, ϕ (2, u, w) = (2, u′, w). This allows us to define ψϕ = ψ ∈ Aut (Γ)
by ψ (x) = x′ where ϕ (1, x) = (1, x′). It is now easy to see that ϕ �→ ψϕ is an
isomorphism from Aut (Γ+) onto Aut (Γ).

(3) and (4) should be clear. �
6.2. Coding colored graphs as fields. Now we may assume that our graph

is as in 6.4, and we start constructing the field.
We use the somewhat nonstandard notation of r as the characteristic of a field,

so that Fr is the prime field with r elements.

Definition 6.5. Let F ⊆ K be a field extension. F is said to be relatively
algebraically closed in K if every x ∈ K\F is transcendental over F .

Definition 6.6. Let p be a prime. An element x in a field F is called p-high,
if there is a sequence 〈xi | i < ω 〉 of elements in F , such that x0 = x, and xp

i+1 = xi.
With Choice this means that x has a pn-th root for all n < ω.

Example 6.7. If F = Q, then for p odd, the only p-high element in F are
1,−1, 0. If F = Fr for some prime r, then for every p such that (p, r − 1) = 1 (i.e.
the map x �→ xp is onto), every element in F is p-high.

This next lemma is the technical key. Its proof may use Choice, and this is
OK, because we use it for finite Γ (see Remark 6.10 below).

Lemma 6.8. (taken from [Prö84, The third lemma] with some adjustments) Let
r be a prime number or 0, p a prime number different from r and let {p0, . . . , pn−1}
be a set of pairwise distinct primes, different from p, r. Let F be a field of charac-
teristic r. For k < n, let Vk be some set such that k �= l ⇒ Vk ∩ Vl = ∅, and let
V =

⋃
k<n Vk.

For each v ∈ V , let Tv ∈ F [X] be polynomials such that:

• none of them is constant.
• none of them is divisible by X.
• they are separable polynomials.
• they are pairwise relatively prime (i.e. no nontrivial common divisor).

Sh:913



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

AUT. TOWERS AND AUT. GROUPS OF FIELDS WITHOUT CHOICE 197

Suppose that K is an extension of F generated by the set {zi | i < ω }∪{tvi | v ∈ V, i < ω }
from the algebraic closure of F (z0) where:

• z0 is transcendental over F .
• (zi+1)

p
= zi for all i < ω.

• For v ∈ V , tv0 = Tv (z0)

• if v ∈ Vk then
(
tvi+1

)pk = tvi .

Then we have the following properties:

(1) F is relatively algebraically closed in K.
(2) An equivalent definition of K is the following one: Suppose F is the field

of fractions of an integral domain S. Then K is the field of fractions of
the integral domain R/I (in particular I is prime) where
R = S [Yi, S

v
l | i, l < ω, v ∈ V ] (i.e. the ring generated freely by S and

these elements) and I ≤ R is the ideal generated by the equations:
(a) Y p

i+1 = Yi for i < ω.
(b) Sv

0 = Tv (Y0) for v ∈ V .

(c) If v ∈ Vk, then
(
Sv
l+1

)pk = Sv
l for k < n, l < ω.

(3) Each q-high element of K belongs to F whenever q is a prime different
from p and 〈pk | k < n 〉.

(4) Each p-high element of K is of the form c · (zi)m, where c is a p-high
element of F , i < ω and m is an integer.

(5) If p′ is a prime different from p then z0 does not have a p′ root.
(6) If V is finite then |K| ≤

∣∣F 〈<ω〉∣∣. Furthermore, the injection witnessing
this is definable from the parameters given when constructing K (i.e. the
function v �→ Tv, etc).

The proof may be found in [KS11].
The rest of the section is devoted to proving

Theorem 6.9. Let Γ = 〈X,E,C〉 be an N-colored graph as in Lemma 6.4.
Then there exists a field KΓ such that |KΓ| ≤

∣∣X〈<ω〉∣∣ and Aut (KΓ) ∼= Aut (Γ).
Furthermore, X ⊆ KΓ and π �→ π � X is an isomorphism from Aut (KΓ) onto
Aut (Γ). We can choose KΓ to be of any characteristic.

So Main Theorem B immediately follows from this and Lemma 6.4.
The construction of KΓ: Let L be the field Q or Fr for some prime r. Let

〈pi | i ≤ N 〉 list odd prime numbers which are different then r, and do not divide
r − 1 (so that in L there are no pi-roots of unity). Let R be the ring L [YΓ] where
YΓ =

{
xi
s | i < ω, s ∈ X

}
∪

{
xi
e |i < ω, e ∈ E

}
1 is an algebraically independent set.

Let IΓ ⊆ R be the ideal generated by the equations:

•
(
xi+1
s

)p0 = xi
s for all s ∈ X and i < ω.

• If e = {s, t} then x0
e = x0

s + x0
t + 1 for all s, t ∈ X and e ∈ E.

• If C (e) = l then
(
xi+1
e

)pl+1 = xi
e for all e ∈ E.

Now let RΓ be the ring R/IΓ.

Remark 6.10.

(1) If Γ,Γ′ are N -colored graphs, and Γ ∼= Γ′ (and the isomorphism respects
the coloring) then RΓ

∼= RΓ′ .

1The i s are indices not exponents! Later we will use parentheses in order not to confuse a
superscript with an exponent.
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(2) Hence we may use Choice when proving properties regarding RΓ (and
later KΓ) when Γ is finite because we may assume Γ ∈ L (hence also
RΓ ∈ L etc). In that case we may use Lemma 6.8 even if there is Choice
in the proof.

Proposition 6.11. IΓ is prime, so we let KΓ be be the field of fractions of RΓ.

The proof uses the following remark (when it makes sense)

Remark 6.12. If Γ0 ⊆ Γ1 are finite where Γi = 〈Xi, Ei, Ci〉 for i < 2 and
X1 = X0 ∪ {t}, t /∈ X0, then the field extension KΓ0

⊆ KΓ1
is as in Lemma 6.8,

where

• F is the fieldKΓ0
; r is its characteristic; p is p0; {p0, . . . , pn−1} is {pl+1 | l < N };

Vk is the set of edges {t, s} ∈ E of color k; for s ∈ X0 such that
v = {t, s} ∈ E, Tv is the polynomial X + x0

s + 1; zi is xi
t and for

v = e = {t, s}, tvi is xi
e.

Proof. (of proposition) We may assume Γ is finite, so the proof is by induction
on |X|. Suppose that Γ0 ⊆ Γ1 where Γi = 〈Xi, Ei, Ci〉 for i < 2 and that X1 =
X0 ∪ {t}, t /∈ X0. By induction, IΓ0

is prime, so R = RΓ0
is an integral domain.

Let Yt =
{
xi
t | i < ω

}
∪

{
xi
e | i < ω, t ∈ e ∈ E1

}
; It ⊆ R [Yt] be the ideal gener-

ated by the equations related to t and {e ∈ E1 | t ∈ e}.
By Lemma 6.8, clause (2), It is prime.
Consider the canonical projection π : L [YΓ1

] → R [Yt] so that π (IΓ1
) = It and

〈IΓ0
〉 = ker (π). Hence, π induces an isomorphism L[YΓ1

]/IΓ1
→ R[Yt]/It and we

are done since the right hand side is an integral domain. �

Definition 6.13. (ZFC) Let F be a field and let p be a natural number. Let
S be a set of elements from F . Then F (S, p) denotes the field which is obtained by
adjoining the elements {s (l) | s ∈ S, l < ω } from the algebraic closure of F where:

• s (0) = s.
• s (l + 1)

p
= s (l), l < ω.

Remark 6.14. Choice is a priori needed in this definition because the construc-
tion implicitly assumes the existence of an algebraic closure, and some ordering of
S and of the p-roots of the s (l)s.

Definition 6.15. Let K−1 = L (Y ) (Y, p0), where Y =
{
x0
t | t ∈ X

}
, and

L (Y ) denotes the purely transcendental extension of L, and for l < N , Kl =
Kl−1 (El, pl+1), where El =

{
x0
s + x0

t + 1 | {s, t} = e ∈ E,C (e) = l
}
.

Lemma 6.16.

(1) For Γ finite2, KΓ is canonically isomorphic to KN−1.
(2) If Γ0 ⊆ Γ1 then KΓ0

⊆ KΓ1
.

Proof. (1) follows from Lemma 6.8, (2) by induction on the size of Γ, similarly
to the proof of Proposition 6.11. (2) follows from (1) for finite Γ, which is enough.

�

From now on, fix some Γ.

2The assumption that Γ is finite is only to insure that KN−1 is well defined, with Choice

this assumption is not needed.
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Definition 6.17. For each Y ⊆ X, let ΓY be the induced subgraph generated
by Y (i.e. ΓY = 〈Y,E � Y 〉) and let RY = RΓY

, KY = KΓY
.

Some properties of KΓ:

Lemma 6.18. For Γ as in Lemma 6.4,

(1) For any prime p, if a ∈ KY for some Y ⊆ X and is p-high in KΓ then a
is already p-high in KY .

(2) For each i < ω, the set
{
xi
s | s ∈ X

}
is algebraically independent over L.

(3) If X1 ⊆ X2 then KX1
is relatively algebraically closed in KX2

(in partic-
ular L is r.a.c in KΓ).

Proof. (1) and (2) follows from (3). For (3), we may assume X1, X2 are finite,
and then it is enough to prove it for the case X2 = X1 ∪ {t} , t /∈ X1. Now use
Remark 6.12, and clause (1) of Lemma 6.8. �

Now we shall define the isomorphism from Aut (Γ) to Aut (KΓ):

Proposition 6.19. For Γ as in 6.4, there is a canonical injective homomor-
phism σ : Aut (Γ) → Aut (KΓ) defined by σ (ϕ)

(
xi
t

)
= xi

ϕ(t), and σ (ϕ)
(
xi
e

)
= xi

ϕ(e),

for ϕ ∈ Aut (Γ) and all t ∈ X, e ∈ E.

Proof. σ is well defined because of clause (3) of Lemma 6.4. σ is obviously
a homomorphism. It is injective: If σ (ϕ) = id, while ϕ (s) = t �= s, then x0

s =
σ (ϕ)

(
x0
s

)
= x0

t — a contradiction to clause (2) of Lemma 6.18. �

Our aim is to prove that σ is onto. We start with:

Claim 6.20. Suppose that a ∈ KΓ is p-high, then:

(1) If p = p0 then a can be written in the form ε ·
∏

{(xns
s )ms | s ∈ X0 } for

some finite X0 ⊆ X , some choice of ms ∈ Z, ns < ω for s ∈ X0 and a
p0-high element ε ∈ L.

(2) If p = pl+1 for some l < N then a can be written in the form ε ·∏
{(xne

e )me | e ∈ E0 } for some finite E0 ⊆ E such that C � E0 = l, some
choice of ne < ω,me ∈ Z for e ∈ E0 and a pl+1-high element ε ∈ L.

Proof. By Lemma 6.18, clause (1), there is some X0 ⊆ X such that a is
p-high in KX0

. The proof is by induction on |X0|. The base of the induction —
X0 = ∅ — is clear. For the induction step, we prove that if X0 ⊆ X1 are finite and
X1 = X0 ∪ {t}, t /∈ X0, and the claim is true for X0, then every a ∈ KX1

which is
p-high has the desired form.

For clause (1), Remark 6.12 implies that we can use Lemma 6.8, clause (4).
For (2), we shall use the assumption on the coloring.

Case 1. There is no edge e0 � t in ΓX1
such that C (e0) = l. In that case, we

use clause (3) of Lemma 6.8, and conclude that a ∈ KX0
.

Case 2. There is an edge e0 � t in ΓX1
with C (e0) = l, but only one such edge.

If e0 = {s, t} , s ∈ X0 then x0
e0 = x0

s + x0
t + 1 ∈ KX1

is transcendental over KX0

(because x0
t is). In addition x0

t = x0
e0 − x0

s − 1 and for all vertices r ∈ X0 such that

er = {t, r} is an edge (of some other color), x0
er

= x0
e0

− x0
s + x0

r. The polynomials

X −x0
s − 1, X −x0

s +x0
r satisfy the conditions of Lemma 6.8, and so, by clause (4),

a is of the form
(
xi
e0

)m · c for c which is pl+1-high in KΓ0
and we are done (we do
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not use the lemma in the same way as in Remark 6.12 — here z0 is played by x0
e0 ,

but it is the same idea).

Case 3. There is more than one edge e0 � t in ΓX1
with color l. Then t is

the center of a star in the subgraph of Γ1 induced by that color. Assume that
s1, . . . , sk ∈ X0 list the vertices such that C (si, t) = l, (k ≥ 2). Let X− =
X0\ {s1, . . . , sk}, and X ′ = X− ∪ {t}. Note that |X ′| < |X1|, so by the induction
hypothesis, the claim is true for KX′ . ΓX1

is built from ΓX′ by adding s1, . . . , sk
and in each step we are in the previous case (because t was the center of a star),
so we are done. �

Lemma 6.21. For all s ∈ X, x0
s does not have a p′ root for p′ a prime different

from p0.

Proof. Again, it is enough to prove this finite X0 ⊆ X, and the proof is by
induction on |X0|, and follows from clause (5) of Lemma 6.8. �

This is the main proposition:

Proposition 6.22. Assume ϕ ∈ Aut (KΓ) and that {s0, t0} ∈ E of color l.
Then there is an edge {s1, t1} ∈ E of the same color such that ϕ

(
x0
s0

)
= x0

s1 and

ϕ
(
x0
t0

)
= x0

t1 .

Proof. Let f1 = ϕ
(
x0
s0

)
, f2 = ϕ

(
x0
t0

)
, f = ϕ

(
x0
s0 + x0

t0 + 1
)
= f1 + f2 + 1.

From Claim 6.20 it follows that

• f1 = ε1 ·
∏{(

xis
s

)ms | s ∈ X0

}
, f2 = ε2 ·

∏{(
xis
t

)mt | t ∈ Y0

}
and

f = ε3 ·
∏ {(

xie
e

)me | e ∈ E0

}
,

where X0, Y0 ⊆ X and E0 ⊆ E are finite nonempty; is < ω, ms ∈ Z for s ∈ X0;
it < ω, mt ∈ Z for t ∈ Y0; and E0 is homogeneous of color l and ie < ω, me ∈ Z
for e ∈ E0. Let p = pl+1, so f is p-high.

We can assume that unless is = 0, p0 � ms for s ∈ X0 ∪ Y0, and that unless
ie = 0, p � me for e ∈ E0.

Raising the equation f1 + f2 + 1 = f by pk where k = max {ie | e ∈ E0 }, we
have an equation of the form

(
ε1

∏(
xis
s

)ms
+ ε2

∏ (
xit
t

)mt
+ 1

)pk

= εp
k

3

∏ (
x0
r + x0

w + 1
)pk−i{r,w}m{r,w} .

Let i = max {it | t ∈ X0 ∪ Y0 }. We can replace xit
t by

(
xi
t

)pi−it
0 and the same for

xis
s . Also replace x0

r by
(
xi
r

)pi
0 and the same for x0

w. For t ∈ T := X0 ∪ Y0 ∪
⋃
E0,

let yt = xi
t, then we get

(
ε1

∏
(ys)

pi−is
0 ms + ε2

∏
(yt)

p
i−it
0 mt + 1

)pk

= εp
k

3

∏ (
(yr)

pi
0 + (yw)

pi
0 + 1

)p
k−i{r,w}m{r,w}

.

By Lemma 6.18, these elements are algebraically independent so this is an equation
in the field of rational functions L (yt | t ∈ T ).

The next step is to see that the exponents (mt and m{r,w}) are non-negative.
For that we use valuations.
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Recall that for any field, F and any irreducible g ∈ F [X] there is a unique
discrete (i.e. with value group Z) valuation on the field of rational functions F (t)
defined by v (g (t)) = 1, v � F× = 0. In this case, v � F [t] ≥ 0 and v (m (t)) > 0 iff
g|m for m ∈ F [X]. This is the g-adic valuation.

Suppose mt0 is negative for some t ∈ X0 ∪ Y0. Consider the discrete valuation

v on the field L (yt | t ∈ T ) defined by v (yt0) = 1, v � L (yt | t �= t0 )
×
= 0. Then on

the left hand side we get v (LHS) < 0 while on the right hand side, v (RHS) = 0
— contradiction.

Suppose m{r,w} < 0 for some {r, w} ∈ E0. Consider the valuation v on the

field L (yt | t ∈ T ) defined by v (g (yr)) = 1, v � L (yt | t �= r )
×

= 0 where g is any

irreducible polynomial dividing Xpi
0 + (yw)

pi
0 + 1. So v

(
(yr)

pi
0 + (yw)

pi
0 + 1

)
> 0,

while g does not divide
(
Xpi

0 + (yw′)p
i
0 + 1

)
for w �= w’ (they relatively prime) so

v (RHS) < 0. On the other hand, since v (yr) = 0, v (RHS) ≥ 0 — contradiction.
Hence we can consider this equation as one in the polynomial ring L [yt | t ∈ T ].

Moreover, since these elements are algebraically independent, each one appearing
in the left hand side must appear in the right hand side and vice versa, i.e. T =
X0 ∪ Y0 =

⋃
E0.

By examining the free factor, εp
k

3 = 1.
By substituting yr and yw with 0 for some r, w , we can show that E0 = {{r, w}}

(so k = i{r,w}) and that there are no mixed monomials in the left hand side, i.e.
we get an equation of the form

(
ε1 (yr)

pi−ir
0 mr + ε2 (yw)

pi−iw
0 mw + 1

)pk

=
(
(yr)

pi
0 + (yw)

pi
0 + 1

)m{r,w}
.

Suppose i = ir and i �= 0, then p0 � mr, by examining the degree of yr, we get a
contradiction, so i = 0 and by choice of i, iw = 0 as well. In the same way we can
deduce that k = 0. From this it follows that ε1 = ε2 = 1 and mr = mw. So we
have

f1 + f2 + 1 =
(
x0
r

)mr
+

(
x0
w

)mw
+ 1 =

(
x0
r + x0

w + 1
)m{r,w} = f.

So {r, w} is an edge of color l, m := m{r,w} = mw = mr, and m = 1 or a power of
r (the characteristic).

So finally we have that ϕ
(
x0
t0

)
is a power of m which is a power of r. This

implies that x0
t0 itself has an m-root. But if m > 1, this is a contradiction, because

x0
t0 has no r-roots by Lemma 6.21.

This concludes the proof of the proposition. �

Corollary 6.23. The map σ : Aut (Γ) → Aut (KΓ) is a bijection.

Proof. Recall that all that is left is to show that σ is onto (by Proposition
6.19).

Let ϕ ∈ Aut (KΓ). Let t ∈ X and suppose {t, t0} ∈ E. By Proposition
6.22, ϕ

(
x0
t

)
= x0

t′ for the some t′ ∈ X. Since the graph Γ is connected, we can
define ε ∈ Aut (Γ) by ε (t) = t′ (note that t′ does not depend on the choice of t0).
Proposition 6.22 implies that ε is indeed an automorphism.

Since there are no pi-roots of unity in L for all the primes we chose, it follows
then that ϕ

(
xi
t

)
= xi

ε(t) and that ϕ
(
xi
e

)
= xi

ε(e), and hence ϕ = σ (ε). �

We still have to prove that |KΓ| ≤
∣∣X〈<ω〉∣∣.
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Lemma 6.24. If Xi ⊆ X (i = 1, 2) are two subsets of the vertices set then
KX1

∩KX2
= KX1∩X2

.

Proof. We may assume that X1, X2 are finite. Assume x ∈ KX1
∩KX2

and
that |X1| is minimal with respect to x ∈ KX1

. If X1 ⊆ X2 then we are done. If
not, let t ∈ X1\X2 be some vertex, and let X ′ = X1\ {t}. So x /∈ KX′ , and x is
transcendental over KX′ while x0

t is algebraic over KX′ (x). Let X ′
2 = X ′ ∪ X2,

X3 = X ′
2 ∪ {t}. We have x ∈ KX2

⊆ KX′
2
, and x0

t ∈ KX3
is transcendental over

KX′
2
. This is a contradiction, because x0

t is algebraic over KX′ (x) ⊆ KX′
2
. Hence

there is no such t i.e. X1 ⊆ X2. �

And now it is easy to define an injective map Ψ : KΓ → X〈<ω〉. Define
by induction on n injective functions ΨY : KY → X〈<ω〉 for |Y | ≤ n such
that Y1 ⊆ Y2 implies ΨY1

⊆ ΨY2
. This is enough, since by the lemma above,⋃

{ΨY |Y ⊆ X, |Y | < ω } is an injection from KΓ to X〈<ω〉.
For the construction of ΨY : KY → X〈<ω〉, the idea is that given x ∈ KY such

that x /∈ KY ′ for any Y ′ � Y we can code x using the set Y and the set of codes
that Lemma 6.8, clause (6) gives us for any choice of Y ′ � Y of size |Y | − 1.

This (and Lemma 6.8, clause (6)) was the reason we chose X〈<ω〉 and not X<ω:
in order to code x ∈ KΓ, we need first to code the minimal set Y such that x ∈ KY ,
and then x can be coded in |Y | different ways, depending on the choice of |Y ′| as
above. However, there is no well ordering of Y , so we have no way of ordering these
codes. For instance, the code of x0

t + x0
s for s, t ∈ X, should be {〈s〉 , 〈t〉 , . . .}.
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