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SPLITTING STRONGLY ALMOST DISJOINT FAMILIES

A. HAJNAL, I. JUHÁSZ AND S. SHELAH

ABSTRACT. We say that a family A C [A]K is strongly almost disjoint if

something more than just \A n B\ < n, e.g. that \A f! B\ < a < k, is assumed

for A, B G A. We formulate conditions under which every such strongly a.d.

family is "essentially disjoint", i.e. for each A E A there is F(A) G [A]<K

so that {A \ F(A) : A G A} is disjoint. On the other hand, we get from a

supercompact cardinal the consistency of GCH plus the existence of a family

A C [ww-|-i]wi whose elements have pairwise finite intersections and such that

it does not even have property B. This solves an old problem raised in [4].

The same example is also used to produce a graph of chromatic number 012 on

u)u+i that does not contain [w,w], answering a problem from [5].

We also have applications of our results to "splitting" certain families of

closed subsets of a topological space. These improve results from [3, 12 and

13].

0. Introduction. One of the oldest results of set theory applied to topology

is Bernstein's theorem [2] which says that the real line R can be split into two

disjoint parts, say Xo and X\, in such a way that every Cantor set in R (or,

equivalently, every uncountable closed subset of R) intersects both Xo and Xi.

Using the terminology introduced in [8], this means that the family C(R) of all

Cantor sets in R has property B.

There is another, by now classical, result due to Miller [8] which states that if

A is any strongly almost disjoint family of countably infinite sets (here "strongly

almost disjoint" means that there is a n G oj such that if A, B G A and A^ B then

\A fi B\ < n), then A has property B.

In this paper we propose to show that both of these classical results, as well

as numerous further strengthenings and generalizations of them, boil down to the

same thing. More precisely, we will show that all of these results (see e.g. [3, 4,

7, 8, 12, 13]) are relatively easy consequences of a single general theorem that we

call the Main Theorem. It should not come then as a surprise that such a general

result has a somewhat complicated formulation.

The two classical results we mentioned above are, of course, proved in ZFC, but

some of the strengthenings and/or generalizations did require assumptions going

beyond ZFC. We shall also present here several results that show that some of these

extra set-theoretic hypotheses are indeed essential. Thus we shall solve problems

raised to this effect, e.g., in [4].

1. The Main Theorem. Our set-theoretic notation is standard. We shall list

below some (really simple) definitions, notations and terminology that we need to

give a transparent formulation of our Main Theorem.
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370 A. HAJNAL, I. JUHÁSZ AND S. SHELAH

Given a set X, a family of subsets of X, say J, is said to be a semi-ideal on X

if B C A G J implies B G J, i.e. J is downward hereditary. An ideal on X is a

semi-ideal that is also closed under finite unions. An ideal is said to be «-additive

(for some infinite cardinal k) if it is closed under unions of subfamilies of size < k.

(Thus every ideal is w-additive.)

For any A C P(X) we let A denote the semi-ideal generated by A, i.e.

Â = {BcX:3AgA s.t. B C A}.

Moreover, if I is any (semi-)ideal on X then we define the /-restriction of A to a

subset Y C X (in symbols A  \i Y) as follows:

A  \i Y = {AnY:A\YGlkAGA}.

Semi-ideals are families of sets that could be thought of as small in some sense.

Thus if J C P(X) is a semi-ideal on X we shall put

J+ = P(X) \ J.

The elements of J+ are the sets which have "J-positive measure". Also, a family

A C J+ is said to be J-almost disjoint (in short J-a.d.) if A D B G J holds for any

two members A,B G A.

If a is a (finite or infinite) cardinal then J = [X]<<T is clearly a semi-ideal on X.

A family which is J-a.d. for this J is called cr-a.d.

If M is any family of sets (and r is a fixed cardinal) then \JM (Ú<TM) denotes the

family of all possible unions of increasing chains (of length less than r) consisting

of elements of M.

If $ C P(P(X)) then we say that $ is a property of families of subsets of X

and instead of A G $ we usually write $(A). Now if J is an ideal on X then the

property $ is said to be I-hereditary if, for any A C P(X) and Y C X, $(A) implies

$(A \¡ Y). Finally, $ is said to be I-additive if the following holds: Suppose S is
a disjoint subfamily of P(X) and A C P(X) is such that for every A G A there is

S G S with A\SGl. Then if $(A  \i S) holds for each S G S so does <¡>(A).
After these preliminaries we formulate a lemma that will be instrumental in the

proof of the Main Theorem.

1.1. MAIN LEMMA. Suppose k > w, X is a set with \X\ = X > k, I is an

ideal and J is a semi-ideal on X; moreover A C [X]-K D I+ and $ C P2(X) are

such that

(1) Â n (ÚJ) C /;
(2) there is a set of infinite cardinals C C A cofinal in the set of all cardinals

preceding X such that for every 7 G C and every Y G [X]-1

\{AGA: adyg J+}\ <r,

(3) $ is I-additive and for every Y G [X]<x we have $(A \i Y). Then $(A) is

valid.

PROOF. Let us start by writing

X = {xa : a G X}.

Next, for any ordinal a G A we put, using (2),

7(0) = min{7 G C: \a\ < 7}.
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SPLITTING STRONGLY ALMOST DISJOINT FAMILIES 371

Then we define sets Ya C X by transfinite recursion as follows: If a is limit then

we put

Ya=\J{Y0:ßGcx}.

If a = ß + 1, then we put

Y0+i = Ya = Y0 U {xß}u{J{A G A: AnYß G J+}.

One shows by an easy induction, using (2) again, that we have |YQ| < 7(0) < A

for all a G X. It is also obvious that \J{Ya : a G X} — X. Now, let us put for each

ae A

Za = *o>-(a-rT) \ Yu-Cf

Then clearly {Za : a G A} is a disjoint decomposition of X with \Za\ < X for all a.

Thus we have, by (3), 9(A \i Za) for each a. Consequently, since 9 is /-additive,

9(A) is valid if we can show that for each A G A there is some a G X such that

A\ZaGl.
To this end, let us first note that since A is the increasing union of the A D Ya's

and A G I+, by (1) there is some a G A such that A n Ya G J+. Let cxo be minimal

with this property and assume that ui ■ ß < o¿o < u> • (ß +1). Then for each a < w ■ ß

we have A n Ya G J; consequently, using (1) again, we have

A n Yu.ß = \J{A r\Ya:a<uj-ß}Gl.

On the other hand, since A n Yao G J+ we have A C YQo + i C Y^.^+i). Hence,

indeed,

A\Zß = A\ (Yw.(/9+1) \ yu./î) = A n Y^/j Ê /.

In order to facilitate the formulation of our main result and several of its conse-

quences we introduce the following technical definition.

1.2. DEFINITION. Let a and k be cardinals satisfying k = k° > w. Then a

quintuple (X, J, A, K, 9) is said to be (a, /c)-good provided that J is a 6-+-complete

ideal on X, A C [X]-K D /+, K is a semi-ideal on X, $ is a property of families of

subsets of X and the following conditions (i)-(iv) are satisfied:

(i) K n À c /;
(ii) A is K-a.d.;

(iii) for each Y G K+ C\ Â there isaZe [Y]^ff n K+;

(iv) $ is /-additive, /-hereditary and $(B) is valid for each S G [A]-K.

Now, our Main Theorem will be of the following form: If (X, I,A,K, 9) is (a, k)-

good then 9(A) holds, provided that some further set-theoretic assumptions are also

satisfied. Our next definitions are needed for the formulation of these assumptions.

1.3. DEFINITION. Let ct,k,X,I,A and AT be as in 1.2. We say that condition

A(a, k;X,I, A, K) holds if for every cardinal p with k < p < \X\ and ci(p) < a

there exists a cardinal r > a and a semi-ideal J on X such that

(a) u\m{p°, |X|} < p+T (= the rth successor of p);

(b) AnKcJ;
(c) Â n Ú<TJ C J;

(d) Â n ÜJ c /.
Next we define a combinatorial principle which, as we shall see, is a weak form

ofD.
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372 A. HAJNAL, I. JUHÁSZ AND S. SHELAH

1.4. DEFINITION. Let a, k, p be cardinals. Then Sp(<r, k, p) denotes the following

statement: There exists a sequence (Pa: a G p+) such that for all a G p+ we

have Pa C [a]" with \Pa\ < p; moreover if a G p with a < cf(a) < k and A

is a cofinal subset of a of cardinality < k, then A can be written in the form

A = \JiAv : v G a} where for each v G a we have [A„]<T C Uaea ?ß- ^ K = CT+

then instead of Sp(<7,o~+,p) we simply write Sp(a,p).

The following assumption to be used in our Main Theorem involves Sp(<7, k, p).

1.5. DEFINITION. Let a,K and A be cardinals. Then B(a, k, X) denotes the

following statement: r? — k and for every cardinal p if /c < p < X and cî(p) < a

then pa = p+ and Sp(<r, K,p) holds. We write B(o-,k) to denote that B(a, k, X) is

valid for all cardinals A.

We are now ready to formulate and prove our main result:

1.6. MAIN THEOREM. Let a, n be cardinals satisfying k" = k and suppose that

(X, I, A, K, 9) is (a, K)-good.  Then 9(A) is valid provided that either

(i) A(a, /c;X, /, A,K) is valid or

(ii) B(a, k, \X\) holds.

In the proof of 1.6 we are going to make use of the following lemma.

1.7. LEMMA. If (X, I, A,K,9) is (o,K)-good and X' is any subset of X then,
putting /' = / n P(X'), A' = A \i X', K' = K n P(X') and 9' = 9 n P2(X'),
we have that (X',I',A',K',9') is also (a, k)-good. (Note that A' is not defined as

AnP(X').)

The straightforward (and somewhat tedious) checking required to show that

all the conditions of Definition 1.2 are satisfied by (X', /', A', K', 9') is left to the

reader.

PROOF OF 1.6. Assume, indirectly, that for some fixed a and k there is a (a, k)-

good quintuple (X, /, A, K, 9) such that 9(A) fails though either A(o, k; X, /, A, K)
or B(a, k, \X\) holds true. We may, of course, assume that |X| = A is minimal

among all such quintuples. Let us now consider any X' C X. Then, by 1.7,

the quintuple (X',T, A', K',9') is (<T,rc)-good (with I',A',K' and 9' defined as

in 1.7). Moreover, we claim that A(a, k;X, I, A, K) implies A(a, k;X',I', A', K')

and B(a,K,\X\) implies B(g,k;\X'\). The latter implication being trivial, let us

consider the first.

Now, if k < p < |X'| (< |X|) and cf(p) < a then let us choose r and J as in

1.3 for X, /, A and K. We claim that r and J' — J C\ P(X') will be as required for

X',I',A' and K'. However, it is again straightforward to show that the "primed"

versions of (b)-(d) in 1.3 follow immediately from their "unprimed" versions and

the definitions of /', A' and K', respectively.

Putting this together with the minimality of |X| = A we get that 9(A \i Y)

must be valid for every Y G [X]<A; hence condition (3) of Lemma 1.1 is satisfied.

Our aim now is to show that the other conditions of 1.1 are also satisfied. This will

of course imply that 9(A) is valid, in contradiction to our assumption that 9(A)

fails, and thus conclude the proof of 1.6.

Let us note that conditions (ii) and (iii) in 1.2 immediately imply that if Y C X

then

(*) \{AgA:AHYgK+}\ <\Y
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SPLITTING STRONGLY ALMOST DISJOINT FAMILIES 373

In particular, if |Y| < /c then, since k" = k, we have by (iv) that 9({A G A : AOY G

K+}) holds, hence we must have |X| = A > k.

In order to apply 1.1 we still have to find a set of cardinals C and a semi-ideal

J as required there. As it turns out, the choice of these will depend on A and

on whether A(a, /c;X, /, A,K) or B(a, k, X) was assumed; hence we shall have to

distinguish cases accordingly.

Case 1. For each p < X we have pa < A. Then we put C — {p < X: p" — p}

and J = K. Note that in this case (*) immediately implies condition (2) of 1.1;

hence it remains only to show that condition (1) holds, i.e. that A ("I lîJC C /. Thus

let {Fv: v G ex} be an increasing chain of elements of P(A) n K for some A G A,

i.e. such that Fv C Fv> if v G v' G ex. Then by (i) from 1.2 each Fv G I; hence if

cf(a) < a then, since / is tr+-additive, F = \J{FU : v G a} G I as well. If, on the

other hand, cf(a) > a, then [F]a = IJ{[^]CT : u ^ Q}i hence by (iii) in 1.2 we have

F G K; hence by (i) again F G K <~)Â C I.

Case 2. There is a p < X with p" > X and A(a, k; X, I, A, K) holds. Let po be

the smallest cardinal p with p" > A, then we have k < po < X and cî(po) < er;

hence there exists a cardinal r > a and a semi-ideal J on X as required in 1.3. In

this case we put C = {p: po < p < X} and use J as the semi-ideal needed in 1.1.

Now, condition (d) in 1.3 is simply identical with condition (1) in 1.1; hence

only (2) remains to be verified. This is going to be done by induction on p G C.

To begin with, we show that for any Y G [X]''0, \{A G A: A n Y G J+}\ < p0-

To see this, let us note first that we have cî(po) < er; hence Y can be written as

an increasing union, Y = [J{Y„ : v G ex}, where a < a and |Y„| = 7^ < po for all

v G a. Now if A G A and A n Y G J+ then a < a < r and (c) in 1.3 imply that

A Cl Y„ G J+ for some v G a; moreover (b) implies that

{A G A: An Yv G J+} C {A G A: A n Y„ G K + }.

But then, using (*) again, we get

\{AgA: AflY,G J+}\ < \YV\* < no.

Hence, as we claimed,

\{AgA: AnY GJ+}\ <po-cx = Po-

Now, assume that po < p < X and for every cardinal v with po < v < p

and every Y G [X]" we have \{A G A: Af)Y G J+}\ < v. By condition (a) of

1.3 we have p0 < p < X < Pqt which implies that p = p£a for some ordinal

a < t; consequently either p is a successor (and therefore regular) cardinal or

cf(p) = cf (a) < t. In other words, we either have cf (p) = p or cf(p) < r.

Let us now take any set Y G [X]M and write Y = UIY*: ex G ci(p)} as an

increasing union with |YQ| < p for ail a G cî(p). If ci(p) — p then, since k, < po < p

and every A G A has size < k, we get that A D Y = A n Ya for some a G p; hence

\{Ag A: j4nYGJ+}| < p follows from our inductive assumption.

If, on the other hand, cf(p) = 7 < r then condition (c) from 1.3 implies that if

A D Y G J+ for some A G A then there is some a G 7 with A n Ya G J+ as well;

hence again we get \{A G A: A n Y G J+}\ < p immediately from our inductive

assumption.

Case 3. There is a p < X with p" > X and B(o~, k, X) holds. Note that in this

case we must have p" = p+ = X, and also, as above, cf(p) < a.  In this case we
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374 A. HAJNAL, I. JUHÁSZ AND S. SHELAH

simply put C — {p} and we shall use Sp(cr, k, p) to define the semi-ideal J still

needed for the applicability of 1.1. In order to make notation easier we shall put in

what follows X = A.

Now, let (Pa: a G p+ — X) be as required in 1.4, the definition of Sp(<r,re,p).

Then our semi-ideal J is defined as follows:

J = {H C A: V/3 < supH(P0 n K+ n P(H) = 0)},

i.e. H belongs to J if no subset of H belongs to Pß n K+ for any ß < sup H. It is

clear that J is a semi-ideal and K C J.

Next we show that condition (1) of 1.1, i.e. A fl (ÚJ) C / is satisfied. In fact,

our first aim is to prove the weaker relation A 0 J C /. Assume, indirectly, that

/+ n Â fi J j¿ 0 and let H G I+ n Â n J be such that sup // = a is minimal. Since

/ is <7+-complete and |i/| < k it clearly follows that a < cï(cx) < k. Then, by

Sp(<r, k, A), we can write H in the form

H = \J{Hv:vÇ:a},

where [Hv\a C \J{P0 : ß G a} for all vGo.

Using the &-+-additivity of / we see that there is a v G a such that Hv G I+.

By the minimality of a we then have sup Hu = a as well; moreover Hv G A fl /+ C

Ar\K+ and condition (iii) of 1.2 imply that there is a set Z G [Hu]anK+. But then

there is some ß G ex = sup//„ with Z G Pß, implying that //„ G J+, contradicting

Hu C H G J. Consequently, we indeed have A (1 J C /.

Now, to show A fl (iJJ) C /, we again argue by contradiction. Thus we suppose

H G I+ PI A fl (ÜJ) and we also assume that a = sup // is minimal. Similarly as

above, then k > cf (a) > a. We can write H in the form of an increasing union

H = [){He:t€p},

where each H¿ G P(A) Cl J for a fixed A G A. In particular, then we have H j G /

for all £ G p in view of the above; hence if cf (p) < a then H G I by <r+-additivity,

a contradiction.

Thus we must have cf(p) > a; hence

\nr = \]{\Eyy:iGp}.

But now we have H G I+; hence by A fl J C I, also H G J+, and therefore

we must have a ß G a = sup H with Pß n K+ f) [H\a ^ 0. Since the H{s are

increasing and cf(p) > a then we also must have a £ G p such that /3 G sup //^ and

P/3 C K+ n [i/fl" ^ 0. This, however, would mean that H$ G J+, which is again

impossible.

It now remains only to show that condition (2) of 1.1 holds for C — {p} and the

above J. For this it will clearly suffice to prove that \{A G A: APta G J+}\ < p

holds for each a G p+ = X.
Let us fix a G p+ and pick any A G A with Af]a G J+. Then, by the definition of

J, there is some ß G sup(ACla) < a and a set Za such that Za G P/gnX'+ri[Ana]'7.

Since A is K-a.d. we have Za ^ Zb if A ^ B; hence clearly

\{AGA:AncxGJ+}\< \\J{Pß:ßea}\ < p.
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SPLITTING STRONGLY ALMOST DISJOINT FAMILIES 375

Thus we have shown that our Main Lemma 1.1 applies in all three cases; hence

9(A) is valid, yielding a contradiction that proves the Main Theorem.

We close this section by giving some conditions that imply the, admittedly rather

peculiar looking, assumption Sp(a,K,p) involved in the formulation of B(a, k, A).

1.8. THEOREM. If p ando are infinite cardinals such thatcî(p) <a < p, D^,

holds and Xa < p whenever X < p then Sp(<r, k, p) holds for all k < p.

PROOF. Let us start by recalling that since p is singular, D^ can be formulated

as follows: with every limit ordinal a G p+ we can associate a closed unbounded

subset Ca of a in such a way that

(i) if ß G C'a (i.e. ß is a limit point of Ca) then C0 = ß n Ca;

(ii) |CQ| < p.
Since cf(p) < a we can write p = ^2{pu '■ v G a} where pv < p for each v G a;

moreover each a G /x+ can be written as a = U{-^": v e °~}, with \B°\ < pv for

v Go. Next, for every limit ordinal a G p+ we put

AZ=\J{Bß:ßGCa}.

Note that \A°\ < \Ca\ -pv < p. Moreover, if ß G C'a then Aß C A" for every v G a.

Now we define the sequence (Pa : a G p+) as follows: if a is a successor ordinal

we put Pa = 0; if a is limit then we put Pa = \J{[A"}° : v G o}. Since |A°| < p

we have, by our assumption, |[A"]CT| < p; hence \Pa\ < p for all a.

Next, if a G p+ and cf(a) > a then we have a = \J{A% : v G a}; moreover, for

each v G a,

At=\J{Aß:ßGCa},

where /?, 7 GC'a and ß < 7 implies Aß C A^. This implies that, since cf (a) > a,

Pa=\J{Pß:ßGC'a}.

Now, if A is an arbitrary subset of a then we can write A = \J{A n A% : v G a},

and we have

[A n AZT C [AZY cPaC \J{P0 :ßGcx}

for every v G a, which is clearly much more than required by Sp(a, K,p).

As an immediate corollary of the above result we get the following sufficient

condition for B(a, k, X) to hold.

1.9. COROLLARY. If k" = k and for every cardinal p with k < p < X and
cí(aí) <o~ we have p" = p+ and Oß then B(a, k, X) is valid.

2. Splitting strongly almost disjoint families. The aim of this section

is to apply our Main Theorem 1.6 to show that certain strongly almost disjoint

families are "essentially disjoint". These results turn out to be generalizations

and/or strengthenings of results of Miller [8], Komjáth [7], Erdös and Hajnal [4].

Let us start by introducing some notation and terminology. Given a cardinal

k, a family A C [X]K is said to be «-essentially disjoint (in short fc-e.d.) if to

every A G A we can assign a subset F (A) G [A]<K in such a way that the family

{A \ F(A): A G A} is disjoint. We are going to write ED(/t, a; X) to denote the

following statement: Whenever |X| < A and A C [X]K is <r-a.d. then A is K-e.d.

Moreover, ED(/c, a) means that ED(/c, <r;A) holds for all cardinals A.
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376 A. HAJNAL, I. JUHÂSZ AND S. SHELAH

Let us start by formulating a result which is clearly the basis for the applicability

of our Main Theorem to strongly almost disjoint families.

2.1. THEOREM. Ifn = k" and A C [X]K is a-a.d., then the quintuple (X, [X]<K,

A, [X]<cr, k-ED(X)) is (a,n)-good. (Here /c-ED(X) denotes the collection of all n-

e.d. subfamilies o/[X]K.)

PROOF. Since k" — k implies a < cf(/c) it follows that [X]<K is a <j+-additive

ideal on X. Clearly, [X]<CT is a semi-ideal for which (i)-(iii) of Definition 1.2 are

satisfied. It is also straightforward to check that /c-ED(X) is both [X]< "-additive

and [X]<"-hereditary. Hence the only thing left to show is that if S G [A]-K then

S is /c-e.d. In fact, if -< is a well-ordering of B of order type < /c then the <7-almost

disjointness of B clearly implies that, for any A G S,

F(A) = \J{B G B : B -< A} n A

is of cardinality less than /c; moreover the family {A \ F(A): A G B} is disjoint.

This completes the proof of 2.1.

Now we are ready to formulate the main results of this section.

2.2. THEOREM.   If k, = k° > w then ED(/c, <t; «;+") holds.

PROOF. Assume that |X| < /c+w and A C [X]K is <r-a.d. Now, if k < p < \X\

then p — K+n for some positive natural number n; hence cf(p) = p > a. Thus

A(a, k;X, [X]<k,A, [X]<CT) and B(a, k, \X\) are both trivially satisfied. Conse-

quently, from 2.1 and the Main Theorem we immediately conclude that A is /c-e.d.

We shall see later that 2.2 is sharp in the sense that, modulo some large cardinals,

the failure of ED(/c, a; n+ul+1) can be consistent. On the other hand, our next results

show that some reasonably mild set-theoretic assumptions enable us to replace k+u

with larger cardinals in 2.2.

2.3. DEFINITION. If a, /c, X are cardinals then A(a, k; X) denotes the following

statement: Ka = k and for every cardinal p, if k < p < X and cf(p) < a then there

is a regular cardinal t < k such that min{pCT,A} < p+T. Moreover, A(a, k) means

that A(a, k; X) is valid for all A.

Note that if k = k" > oj then A(a, k; k+u) is trivially valid; hence if a+ < k

then 2.3 is an immediate consequence of our next result.

2.4. THEOREM. If a+ < k then A(a,K,;X) implies ED(/c,a, A). In particular

cr+ < k and A(o~,n) imply ED(k,a).

PROOF. Of course, given X with |X| < A and A C [X]K that is o--a.d., we

start again by considering the (cr, rc)-good quintuple (X, [X]<K, A, [X]<tT, /c-ED(X))

and show that it satisfies the condition A(a, k; X, [X]<K, A,[X\<<J). Then the Main

Theorem implies that A is /c-e.d.

Thus we consider any cardinal p with k < p < \X\ < X and cf(p) < a; by

A(a, k, X) there is a regular cardinal r < /c with min{pCT, A} < p+T. Since o+ < /c

we may also assume that a < r. Having chosen r we take [X]<T as the semi-ideal J

required in 1.3. It is obvious that r and J = [X]<T will satisfy conditions (a)-(d) of

1.3: Indeed (a) holds by the choice of r, (b) holds because a < t, (c) holds because

r is regular and (d) holds because r < /c.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:249



SPLITTING STRONGLY ALMOST DISJOINT FAMILIES 377

Now, if k is an arbitrary infinite cardinal and (a =) n G w then A(n, /c) is trivially

valid; hence we immediately obtain the following strengthening of Miller's theorem,

which for k = uj is due to P. Komjáth [7].

2.5. COROLLARY.   For every infinite cardinal /c and n Guj ED(/c,n) holds.

As we shall see later, the assumption a+ < n in 2.4 is necessary, i.e. A(a, a+, X)

(or A(a,a+)) does not imply ED(<t+,<t, A) (or ED(<r+,o-)). Our next result shows

that the stronger assumption B(a, a+, X) does imply ED(<r+, a, X). Of course, since

B(a, o-+,a+M) is trivially valid, it also yields the case /c — a+ of 2.2 that was not

covered by 2.4.

2.6. THEOREM. // a > uj then B(a,a+,X) implies ED(<t+,ct, A); therefore

B(a,a+) implies ED(ct+ ,a).

PROOF. Assume B(o, a+,X) and let A C [X]CT+ be <r-a.d. with |X| < A. Then we

may directly apply our Main Theorem to (X, [X]<CT+, A, [X]<<T,tr+-ED(X)), which

is (a,<r+)-good by 2.1, to conclude that A is <r+-e.d.

Let us finally formulate a consequence of 2.5 and 2.6 which we think is particu-

larly interesting.

2.7. COROLLARY. Let a be any infinite cardinal. Then ED(2<t,ct) holds if
either (i) 2° > a+ and .4(<7,2CT) holds or (ii) 2" = a+ and B(a,2°) is valid.

The above results all remain valid if the families A C [A]K are only assumed to

be a-a.d. for some ordinal a with |a| = a. Of course, by a-a.d. we mean that the

order-type of the intersection of any two members of A is less than a.

3. Splitting families of closed sets. In this section we deduce several topo-

logical consequences of our Main Theorem. They will all have the form that certain

families of closed subsets of any topological space can be "split simultaneously",

i.e., the underlying set can be split in such a way that every member of the family

is split by it. Since these families of closed sets are not almost disjoint in any sense,

we cannot apply the Main Theorem or its consequences to them directly. In fact,

our next result will be the key in introducing some kind of almost disjoint family

into the picture.

In order to make the formulation of this lemma easier we introduce the following

terminology: Let A and S be families of sets; we say that A supports B if for every

B G B there is an A G A with A c B, and B is said to cover A if for every A G A

there is a B G B such that A C B.

3.1. LEMMA. Let X be a set, I an ideal and K a semi-ideal on X with K C /;

moreover Z and P. are subfamilies of I+ satisfying conditions (l)-(3) below:

(1) Z supports £;

(2) ifRGRandLGC then RnLG K or RHLGI+;
(3) for each R G Z there is a K-a.d. family A(R) C P(R) H /+ that supports

{RnL:LGL}nI+.
Then there is a K-a.d. family A C /+ that supports Z and is covered by Z.

PROOF. Let S be a maximal iC-a.d. subfamily of Z and put

A = \J{A(R):RgB}.
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We claim that A is as required. It is immediate from the choice of A that A C I+,

A is K-a.d., and that Z covers A. To see that A supports Z, take any L G Z and

note that there is some B G B such that Inß G /+. Indeed, otherwise we had

L n B G K for all B G B and since by (1) there is some R G Z with R C L we had

R £■ S but R Cl B G K for all B G B, contradicting the maximality of S. Thus we

have some A G A(B) with Ac LnB c L, which was to be shown.

Before we formulate our next result we introduce some more notation and termi-

nology. A family A of subsets of X is said to be /c-colorable (in symbols: co\K(A))

if there is a map p : X —> /c such that for every A G A one has p[A] = /c. In other

words, co\K(A) means that the points of X can be colored by /c colors in such a way

that every element of A has all the possible colors. Note that col2(A) is the same

as saying that A has property B.

Let a,K,X be cardinals. Then COL1(k, <t;A) denotes the following statement:

Every <r-a.d. family A C [A]K is 7-colorable. We also write C0L7(/c, a) to de-

note that COL-y(/c,a; X) is valid for all A. Let us note here that ED(/c,cr;A) obvi-

ously implies COLK(/c,a; A); hence the results of §2 yield conditions under which

COLK(/c,er; X) (or COLK(/c,o-)) is valid.

3.2. THEOREM. Let a and k be cardinals satisfying /cCT = /c, X an arbitrary

topological space and Z a family of closed sets in X such that if L G Z then \L\ > /c;

moreover for every closed subset F of L we have either \F\ < a or \F\ > /c. Then

COL~,(/c, a, |X|) implies col1(Z).

PROOF. Let us put / = [X]<K and K = [X)<a; then we have Z C /+. We also

define a family Z C I+ such that 3.1 could be applied.
Let us say that a set Y G [X]K is /c-homogeneous if every set H closed in the

subspace Y satisfies \H\ < a or \H\ = k. We choose Z to be the collection of all

/c-homogeneous subsets of X.

Next we show that conditions (l)-(3) of 3.1 hold. First, to show that Z supports

^consider L G Z and fix for every H G \L}" a set F(H) G [L}K with H C F(H) C

H. Then, by transfinite recursion on a G a+ we define sets YQ C L as follows: Let

Yo G \L]K be arbitrary. If a G a+ \ {0} and we have already defined Y0 for all ß G a

then we put

Ya={j\F(H):HG    [JY0
{ [ßeoc

It is easy to check that then R — \Ja€(T+ Ya G Z, because if H G [R]a then we have

H C Ya hence

|7Jnfí| = |//nYQ+1| = k

for some a G er+. Moreover we also have R C Yo C L, since L is closed; hence Z

supports Z.
Next, if L G Z and R G Z then L n fi is closed in R; hence L n R G K or

L CI R G I+ by the definition of /c-homogeneity. This implies that (2) is valid.

Finally, to check (3) let us first note that if L D R G I+ then in fact L Cl R G Z;

hence if H G [LilR}" is arbitrary then HnR = HnLnRGZas well. This means

that the family of sets closed in R and having a dense set of size a supports the

family {L (1 R: L G Z} D /+; hence it suffices to find a K-a.d. A(R) C P(R) n /+
that supports the former. However, /cCT = /c implies that there are at most /c many
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sets closed in R with a dense set of size a; hence it is well known that we may even

have a disjoint family A(R) C P(R) fl I+ that supports these sets.

Thus we can apply 3.1 now and obtain a cr-a.d. family A C [X]K that supports

Z. Then COL-/(/c, a, |X|) implies that A is 7-colorable; hence clearly so is also Z.

As an immediate corollary of 3.2 and 2.4 we obtain the next result, which is a

significant improvement of (10.1) from [3]. It is based on the following well-known

fact (see e.g. [6]): If X is an infinite compact Hausdorff space with no nontrivial

convergent sequences then |X| > 2*"1. Since ßu is such a space and \ßw\ — 22 we

see that if /cn is the minimum cardinality of a compact T2 space with no convergent

sequences then 2Wl < /Co < 22 .

If X is an arbitrary topological space then we denote by S(X) the family of

all closed subspaces of X that are infinite, compact T2 and contain no convergent

sequences.

3.3. THEOREM. If X is a topological space, k = /cw < /co and COL->(/c, u, \X\)

holds, then S(X) is ^-colorable. In particular, A(2UJi,oj) or if Kq = /Co then even

A(ko,oj) implies that for any space X we have col2"i(S(X)) or colKo(S(X)), re-

spectively.

In view of the above it would be of some interest to know whether /Cq = /Co is

always valid, but this question seems to remain open.

Another direct application of 3.2 could be obtained from the following result of

Malychin: If K is a compact Ti space of countable pseudocharacter then \K\ < uj

or \K\ > 2W. In particular this would imply certain results about splitting the

family C(X) of all closed Cantor sets in a space X. We do not, however, bother

to write these down because applying our Main Theorem rather than 3.2 we get a

much stronger result.

To this end, let us first list a few definitions and facts. A subset R of a space X

is called relatively countably closed (in short r.c.c.) if for every countably infinite

subset A C R if A has a limit point in X it also has one in R. Clearly, if F c X is

closed and R C X is r.c.c. then F fl R is also r.c.c. The following easy lemma taken

from [3] will play an essential role below.

3.4. LEMMA. Suppose that Y is a Ti space, f is a closed and continuous map

of Y into the Cantor set C and R C Y is r.c.c. Then f\R] is closed in C.

PROOF. If f[R] is not closed then we can choose a sequence {yn : n Goj} C f[R]

of pairwise distinct elements that converges to a point y £ /[/?]■ Let us pick for

each n G uj a point xn G R such that f(xn) = yn. Then the set A — {xn: n G u>}

cannot be closed in Y since the map / is closed and f[A] — {yn: n G to} is not

closed. Since R is r.c.c. there is a limit point x of A in R. We claim that f(x) = y.

Indeed, since / is continuous, Y is Ti, every neighborhood of x contains infinitely

many xn's; hence f(x) is a limit point of {yn : n G u>}, i.e. f(x) = y. Thus we

arrived at a contradiction with y G' f[R}; hence f[R] must be closed.

3.5. THEOREM. LetX be a topological space with \X\ = X, and let Z(X) denote

the family of all closed Ti subspaces of X that admit a closed and continuous map

onto C. Then Z(X) is 2"-colorable if either (a) A < (2U)+U, or (b) wi < 2W and

A(oj,2u,X) holds, or (c) 5(^,2",A) holds.
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PROOF. For each L G Z(X) let us fix a closed continuous onto map f¿, : L —> C

and put 7 = {/l: L G Z(X)}. We then define an ideal / on X by stipulating

A G I if and only if |/[A]| < 2" for all f G 7. Since cf(2w) > w, it is clear that /
is countably (i.e. oji-) additive. Next we define a (semi-)ideal K on X by putting

A G K if |/[A]| < w (i.e. the closure of f\A] in C is countable) for all / G 7.
Obviously, we have K C /. Finally, we denote by Z the collection of all r.c.c.

subsets R of X of cardinality 2W and such that R G I+.

Now we show that Lemma 3.1 can be applied to Z = Z(X),I, K and Z. To see

that (1) holds, i.e. Z supports Z(X), we note first that for every closed L C X and

for every A G [L]2" there is an r.c.c. set Ra such that A c Ra C L and \Ra\ — 2"+

Indeed, to get such an Ra we have to start out with A and then add limit points

to countable sets (that have any) iteratively uii times. Now, if L G Z(X) we may

choose A G [L]2" in such a way that Ïl[A\ = C and then the set Ra constructed

as above will clearly belong to /+, hence to Z as well.

Next, to check (2), take L G Z(X) and R G Z such that Lf)R g K. This

means that there is an M G Z(X) such that $m\L fl R] is uncountable. However,

MDLDR is clearly r.c.c. in M; hence by 3.4, /m[LflÄ] = /m[MHLni?] is closed
in C; hence according to the above it must have cardinality 2"+ But this means

that L Cl R G I+. Let us note that we have actually shown that if L fl R £ K then

LhRgZ.
Finally, to verify (3), let us first note that for every R G Z there is Ri G Z

which is separable and closed in R. Indeed, let / G 7 be such that \f[R}\ = 2W and

S C f[R] be a countable dense set in f[R}. It is quite straightforward to check that

if Z is a countable subset of R such that f[Z] — S then the closure Ri of Z in R is

r.c.c. in X; hence by 3.4 f[Ri] is closed in C and since S C f[Ri] C f[R] we must

have f[Ri] — f[R}. This shows, of course, that Ri G Z.
In particular, if L G Z(X) and L n R G I+ (hence L n R G Z) then L n R

contains a separable member of Z that is closed in L fl R and thus in R as well.

Consequently it will suffice to show that there is a family A(R) C P(R)DI+ which

is K-a.d. (in fact it will be disjoint) and supports the family of separable closed

subsets of R belonging to Z.
It is quite easy, however, to construct such a family because \R\ — 2W implies

that there are at most 2" many separable closed subsets of R. (Indeed, this makes

use of the same idea as Bernstein's original result.)

What we actually show is that if B is any subfamily of /+ with | S | < 2W then

with every B G B we can associate a subset F(B) C B such that F(B) G I+ and

F(Bi)DF(B2) = 0 if B, ^ B2. To see this, let us first fix for each B G B a function

gs G 7 such that |c/b[5]| = 2W and then consider an enumeration (Ba: ex G 2W) of

S such that for each B G B we have

\{cxG2": Ba = B}\=2".

We also put ga — 9Ba for ex G2UJ.

Now, by transfinite recursion on a G 2W we define points pa G X as follows. If

a G 2" and p0 has been picked for all ß G a, then since |c;a[ßQ]| = 2W we can pick

a point Pa G Ba\ {pß: ß Ga} such that ga(pa) ¥" 9a(Pß) for every ß G a. Having

completed the recursion, we put for B G B

F(B) = {Pa: B = Ba}.
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It is clear from the above construction that F(B) C B and if Bi ^ B2 then

F(Bi) n F(B2) = 0; moreover we have \gB[F(B)}\ = 2"; hence F(B) G /+.

We have now checked that conditions (l)-(3) of Lemma 3.1 are valid; hence there

is a K-a.d. family A C I+ that supports Z(X) and is covered by Z. Since \R\ — 2"

for RG Z this clearly implies that A C [X]2".

Let 9 be the following property of subfamilies B of P(X): for each B G B there

is F(B) C B with F(B) G 1+ such that F(Bi) DF(B2) = 0 if Bi ¿ B2. Note that
9 is obviously /-additive and /-hereditary; moreover we have just established that

9(B) holds for each B G [/+]^2".

We now claim that the quintuple (X,I,A,K,9) is (w,2a')-good. Since I,A,K

and 9 are the right types of objects, moreover conditions (i) and (ii) of 1.2 are

obviously satisfied, and (iv) follows immediately from what we have noted about 9

above, only (iii) remains to be checked.

Thus let Y G K+; i.e. there is some / G 7 for which f[Y] is uncountable. Now,

if S is a countable dense subset of f[Y] then there is a countable set Z C Y with

f[Z] = S; hence f[Z] — S = /[Y] is uncountable, showing that Z G K+; hence (iii)

is clearly satisfied.

Now, in cases (a) and (c) we know that B(oj,2u, \X\) is also valid; hence the

Main Theorem immediately implies that 9(A) holds. In order to arrive at this

conclusion in case (b), we shall show that A(w, 2"; X, /, A, K) is valid.

Indeed, given a cardinal p with 2" < p < X = |X| and cf(/¿) < a we may choose

by A(ui,2",X) and wi < 2W an uncountable regular cardinal r < 2W such that

min{pCT, A} < p+T. Then we define a (semi-)ideal J on X as follows:

J = {//CX:V/G/(|/[//]|<r)}.

Then K C J C / is obvious from w < r < 2W, \J<TJ C J holds because r is

regular, and CJ C / follows from t < 2W. Thus r and J satisfy conditions (a)-(d)

of 1.3, showing that A(oj, 2"; X, /, A, K) is valid; hence by the Main Theorem 9(A)

is valid.

It is obvious, however, that, since [X]<2" C /, every disjoint subfamily of /+ is

2'"-colorable, and since A supports Z(X) this implies that Z(X) is also 2CJ-colorable.

Since every countably compact Uryson space with no isolated points has a closed

subset that has a closed and continuous map onto C (see e.g. [3]), we obtain the

following result (a slight strengthening of (8.4) from [3]) as an immediate corollary

of 3.5.

3.6. COROLLARY. For any space X, if either (i) wi < 2" and A(w,2w,\X\)

or (ii) B(u),2", \X\) holds then the family of closed, countably compact and dense

in itself Uryson subspaces of X is 2W-colorable. Note that this family includes all

closed compact T2 subspaces with no isolated points.

Comparing this corollary with the case a — ui of 2.7 we see that ED(2w,w),

hence COL2^(2u',ijo), and say "col2"(C(X)) for all X" are both valid under the

same assumptions. This raises the problem whether e.g. COL2"(2w,cj) and the

statement that "col2"(C(X)) holds for all X" are equivalent. In fact, our next

result shows that the latter statement actually implies the former.

3.7. THEOREM. Let 2 < 7 < 2W and suppose that C(X) is ^-colorable for
every compact Ti space X. Then COL7(2a,,o;) holds.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:249



382 A. HAJNAL, I. JUHÁSZ AND S. SHELAH

PROOF. Let A C [X]2 be w-a.d., where we may assume without any loss of

generality that X = \]A. Let us fix for every A G A a Cantor set topology ta on

A; i.e. ta is such that (A, ta) is homeomorphic to C. Next we define a topology on

X by stipulating that F C X be closed if and only if F — X or F can be written as

a finite union F = í\ U • • • U Fn of sets Fi closed in some (Aí,ta¡) with A¿ G A. It

is straightforward to check that this way we indeed get a topology on X such that

every ta for A G ii coincides with the subspace topology on A and A is also closed

in X. The fact that every two different members of A have a finite intersection is

essentially used here. It is also easy to see that X is compact and Ti. Thus by our

assumption and A C C(X) we get that A is 7-colorable.

The reader should note that the method of proof of 3.7 is very general and can

be applied to yield converses of results obtained from 3.2. Let us just mention two

such results.

3.8. THEOREM.   If ko = /Cq, then COL-y(/co,u;) is equivalent to the following:

for every (compact Ti) space X we have col-/(S(X)).

3.9. THEOREM.   The following are equivalent:

(1) COL^2",uj);

(2) for every (compact Ti) space X the family B(X) of all closed copies of ßoj in

X is 7-colorable.

These results are significant because, in view of the independence results of the

next section, they show that some set-theoretic assumptions in results like 3.3 or

3.5 are necessary. However, it would be topologically much more interesting to

find counterexamples of this type which are at least Hausdorff (without insisting,

of course, that they be compact). We believe this to be possible, though probably

not very easy. Let us formulate one such problem explicitly.

3.10. Problem. Is it consistent with ZFC (or with ZFC+GCH) that there is a
Hausdorff space X such that C(X) is not 2-colorable?

4. Independence results. The aim of this section is to show that some of

the results of the previous sections are not provable in ZFC. The set-theoretically

initiated reader will not be surprised to see that these results, necessarily requiring

the negation of statements of the form A(a, k, X) or B(a, k, A), involve certain large

cardinals.

Before turning to the actual consistency results, however, we formulate several

observations that will justify the choice of methods used to produce these coun-

terexamples.

Let 9 be any property of families of sets. In accordance with our earlier practice

we write 9(k,o~,X) to denote the statement that if A C [X]K is <r-a.d. then 9(A).

We shall say that "9 goes up" if 9(A) implies 9(B) whenever A supports B. 9 is

called additive if it satisfies the following condition: If S is a disjoint collection of

sets and for every S G S we have a family As C P(S) with 9(As) then we also have

$(|J{iîs: S G S}). Note that, for instance, 7-colorability or (/c-)disjointifiability

go up and are additive.

4.1. THEOREM. Suppose that 9 is additive and goes up; moreover K,a,X are

cardinals such that for every p < X we have 9(x,,a,p). Then ^9(k, a, X) implies

that there exists a stationary subset S C A and a a-a.d. family {Aa: ex G S} such
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that \jAa = ex and tpAa — /c for each a G S. In particular, this implies that

cf(A) >cf(/c).

PROOF. Let A C [A]K be tr-a.d. such that 9(A) fails. Since 9 goes up, we may

clearly assume that tp A = /c for every A G A. Let us now put

S=\\JA:AgA};
it will obviously suffice to show that S is stationary in A.

Thus assume that G C A is closed unbounded and C il S = 0. Let C — {cxu :

v G t} be the increasing enumeration of C and for every v G r put

Av — {A\ av: A G Ahcxv < sup A < au+i}.

Then for all v G r we have 9(AV) by our assumption; hence 9(\J{AU : v G r})

because 9 is additive. But (J{iL: v G t} supports A; consequently we would also

have 9(A) since 9 goes up, a contradiction.

Since 2-colorability (i.e. property B) is the weakest "splitting" property used in

practice, hence its negation is the strongest among the negations of such properties,

we may consider the next result as a kind of converse to 4.1.

4.2. THEOREM. Let S be a stationary subset of X satisfying §(S) and let

{Aa : ex G S} be a family of infinite sets such that Aa C a for all a G S. We may

then find for every a G S a set Ba C Aa with \Ba\ — \Aa\ such that {Ba : a G S}

is not 2-colorable.

Ba = {

PROOF. Let {Sa : a G S} be a <)(5)-sequence and with its help we define Ba

for a G S as follows:

J±a ' ' ^ct     U   ./Ick I I &ot\ "—   -<lc

Aa \ Sa    otherwise.

Clearly we have |Aa| = |JBQ| for all a G S.

Now let X C A be arbitrary and a G S be such that X D a = Sa- Clearly, we

must then have either Ba C Sa C X or Ba C a \ Sa C A \ X, which shows that

{Ba : a G S} is not 2-colorable.

Note that if {Aa : a G S} is <r-a.d. (i.e. such that |,4Q n A0\ < a if a ^ ß) then

so is {Ba: ot G S}.

Our topological applications of the independence results (cf. 3.7-3.9) require u;-

a.d. families. As we shall see, 4.2 can be used to obtain an w-a.d. family of sets of

size oji; however to find analogous families consisting of sets of larger size we shall

need a different approach, based on the following simple observation.

4.3. THEOREM. Let {Aa: a G 2A} be a family of infinite subsets of X. Then

we can choose for each a G 2X a set Ba C Aa with \Ba\ = \Aa\ in such a way that

{Ba : ex G 2A} is not 2-colorable.

PROOF. Let {Xa: a G 2X} enumerate P(X). Then for every a G 2A we define

Ba by stipulating

A*nxQ   if |AQ nXa| = |A0

Aa \ Xa    otherwise.

It is immediate to check that {Ba : a G 2À} is as required.

An immediate consequence of 4.3 is the following result obtained originally by

Miller in [8], using a different method.

Ba = {
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4.4. COROLLARY.   There is anoj-a.d. subfamily of[uJ\w which is not 2-colorable.

PROOF. Indeed, we need only to apply 4.3 to any w-a.d. family A C [w]w of

cardinality 2"+

In order to get another corollary we first recall a result of Baumgartner [1] which

says that it is consistent to have arbitrarily large regular cardinals k such that an

w-a.d. family A C [/c]K with \A\ = 2K exists. Applying 4.3 to this A we immediately

get the following.

4.5. COROLLARY. It is consistent to have arbitrarily large regular cardinals k

such that COL2(k,oj,k) fails.

Of course, if A C [/c]K is w-a.d. then we have /cw > |^|; hence in Baumgartner's

above model we must have 2K = /cu > /c. This sheds some light on the importance

of the assumption k" — k in the results of §2.

It seems to be a much harder problem to find a cardinal A such that e.g.

COL2(2u,uj, A) fails. If 2" > oji then by 2.7 A(u, 2W) must also fail, which means a

strong violation of the singular cardinal hypothesis, hence the consistency of large

cardinals. We could not establish the consistency of the existence of a A as above,

although we conjecture that it can be done.

The situation is different if we also assume that 2W = wi, or even GCH. In

this case, again by 2.7, the first cardinal A for which COL2(wi,w, A) may fail is

ujui+i; moreover then DWu must also fail. Again, this implies that e.g. measurable

cardinals exist in some inner models; hence the use of a large cardinal in our next

result is essential.

4.6. THEOREM. IfV satisfies GCH and /c is supercompact in V then there is

a generic extension WofV such that

W f= GCH &-.COL2(wi)w)u>u+i).

PROOF. Let us put A = /c+w and then, using that /c is A+-supercompact, pick

a normal ultrafilter U on [A+]<K. Since (X+)" — X+ we also may fix a one-to-one
map G: [X+]u -» A+.

Using a result of Solovay and some obvious reflection properties of /c (cf. [9 and

11]) we may choose a set A G U such that

(i) the map P —> \J P is one-one on A;

(ii) each P G A is closed under G; i.e. if o G [P]u then G(a) G P;

(iii) for each P G A we have that P D /c is an inaccessible cardinal and the order

type of Pis (Pn/c)+"+1.

Let us put Si = {\JP: P G A}. Then Si is stationary. Indeed, if C C A+ were

a club disjoint from Si then for every P G Awe could choose some f(P) G P with

C n (f(P),[)P] = 0 and then, by the normality of U, we could find B c A with
B G U and some a G X+ such that f(P) = a for all P G B. This, however, is

impossible because, by (i), {\JP: P G B} is clearly cofinal in A+.

Also by (i), for every a G Si there is a unique P(cx) G A with a = \J P(cx). The

map a i—> /c n P(cx) is clearly regressive on Si; hence there is a stationary subset

S C Si and a cardinal /c* such that /c n P(cx) = /c* for each a G S.

Next we show that for any two a,ß G S we have \P(cx) n P(ß)\ < A* = (/c*)+a;.

Indeed if Q = P(a) n P(ß) had size > A* then by (ii) we also had |Q| = |[Q]W| =
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(A*)w = (A*)+, which is impossible because both P(cx) and P(ß) have order type

(A*)+ but have different suprema.

Let P be the notion of forcing that collapses A* to u> with finite conditions. Then

Vp N uii = (A*)+. Let Q denote the Levy collapse of /c to ui2 in Vi = Vp; it is

easy to show that in V2 = (Vi)2- we have GCH; moreover ww = A and ww+i = A+.

Also in this model A* is a countable ordinal and the sequence (P(cx) : a G S), where

P(a) G [a]"1 for cxGS, satisfies tp(P(a) n P(ß)) < X* for any two a,ßeS.

Now we can use III, 7.2 of [10] to find a proper poset Z such that in W — V^

cardinals are preserved; moreover there is a set X G [wi]Wl such that if o C u¡i is

any element of the ground model V2 with tpa < A* then X n o is finite. Note that

S remains stationary in W.

Now, for every a G S let ha : wi —► P(cx) be the increasing enumeration of P(a)

in V2 (note that the order type of P(a) is uji here because of (iii)). Then for every

a G S we define the set Aa G [a]Wl in W as follows:

Aa = ha[X\.

We claim tht Aa fl Aß is finite for any two a, ß in S (i.e. {Aa : a G S} is w-a.d.).

Indeed this follows immediately from

hy1(AanA0)cXnhy1(P(ß))^xnh-1[P(a)nP(ß)}

where the right-hand side set is finite because h~1[P(a) ("1 P(ß)\ G V2 has order

type less than A*.

Now, to finish the proof, note that since every a G S has, in W, cofinality wi,

GCH implies that 0(S) is valid (cf. [9]); hence by 4.2 there is an oj-a.d. family

{Ba: a G S} C [ww+i]Wl that is not 2-colorable; hence COL2(wi,o;,wu,+i) indeed

fails in W.

As we have mentioned it in the introduction, 4.6 solves negatively the problem

raised by Erdös and Hajnal in [4] whether GCH implies COL2(wi,w,wa)+i). Our

next result shows that the w-a.d. sequence (Aa : a G S) establishing this solution

also serves to solve another problem of Erdös and Hajnal from [5].

4.7. THEOREM. Assume GCH. Let S C ww+i be a stationary set of uji -limits

and (Aa: a G S) be such that \\Aa = ex, tpAa = oji and \Aar\A0\ < w if a, ß G S,

a t¿ ß. Then there is a graph E C [wu+i]2 on wu+i of chromatic number u)2 such

that [ui, ui] does not embed into E.

PROOF. Let us put n = ww+i. We may assume that S = U{S-v 7 G /c} where

the S-y's are disjoint and stationary and S-, fl (7 +■ 1) — 0 for each 7 G /c. Since

GCH holds, we have by [9] that 0(S-,) holds for every 7 G /c; thus we can choose for

each such 7 a sequence (ha : ex G S-f) such that ha : ex —> wi and for any function

h: k —y uii the set {a G S-,: ha = h \ a} is stationary in /c.

For every a G S we have a unique 7(a) G /c with a G S-y(a); clearly we have

7(0) < a. We are going to put

T1=\J{SS:6>1}.

In order to define the graph E we first define for each a G S a set Da C uii as

follows:

Da = {V G uji : tpt/i"1^} n Tl(a)) = a}.
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Then we define a map fa: Da —* a by stipulating that fa(v) be equal to the

a(cx, i^)th member of/i„1{i/}nT7(Q), where a(cx, u) denotes the via element of Aa.

Next we define, by induction on a G S, sets Ea C a as follows:

E   =i R^a">    if for sl\ß<a E0n R(fa) is finite,
\0 otherwise,

and then put E — \J{[Ea, {ex}] : a G S}; i.e. the vertices less than a and connected

to a in E are exactly the elements of Ea-

It is immediate then that [w: 2] does not embed into E; moreover since ß < a

and {ß, a} G E imply ^(ß) > 7(a) it follows that there is no infinite increasing

path in E. It follows then easily that [u,u] does not embed into E either.

It now remains only to show that E is not wi-chromatic. Assume, indirectly,

that h : n —y uii is a good coloring of E. For each 7 G k let us put

S1 — {a G S^: h \ a — ha},

and let

N = {uGuji:\{1: ^{u} H S;| = /c}| = k}.

It is standard to show that if v G N then

C„ = {qG/c: (V7< a) tp(/i_1{i/} n T^ n a) = a}

is closed and unbounded in /c; hence so is C = f){C„ : v G N}.

On the other hand, if u G uii \N then there is a 7„ G /c such that if 7 G «\7„ then

|fo_1{f} fl S^| < k; hence if 6 = sup{7^ : v G uii \ N} then there is a final segment

S* of S's such that S* C {Jih-1^}: v G N}. Of course, since S's is stationary, so

is S*, and consequently C fl S* as well.

By tracing back our definitions we see that if a G C fl S* then JV C Da and

thus, since /i(q) G N and /i is assumed to be a good coloring of E, a cannot be

connected to every element of R(fa)', i-e. Ea ^ R(fa)- (Of course, we also use here

that h Ï a — ha.) This implies then that for every a G CDS* there is some ordinal

g(cx) < a such that R(fa) l~l R(fg(a)) ls infinite. By the pressing down lemma and

a simple counting argument we get that there are a stationary set Z C C fl S*, an

ordinal ß and a set X G [R(fß)]u such that g(a) = ß and X C R(fa) if a G Z.

But if a G Z and a; G X then x — fa(v) for some v G Da (actually, we must

have v — h(x) = ha(x)), i.e. x is the a(a, u)th element of hä1^} fl T-y(Q) =

h~1{v}r\TgDa. But for a' G Z with a < a' we get that x is the a(a', i/)th element

of h_1{u} n T¿ fl a', of which the above set is clearly an initial segment; hence we

must have a(a, u) = a(cx',v). Since X is infinite, this would immediately imply

that Aa fl Aai is also infinite, a contradiction. Thus the proof of 4.7 is completed.
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