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 Annals of Mathematics, 127 (1988), 521-545

 Martin's Maximum, saturated ideals and
 non-regular ultrafilters. Part II

 By M. FOREMAN+, M. MAGIDOR*, and S. SHELAH4

 Abstract

 We prove, assuming the existence of a huge cardinal, the consistency of

 fully non-regular ultrafilters on the successor of any regular cardinal. We also

 construct ultrafilters with ultraproducts of small cardinality. Part II is logically

 independent of Part I.

 0. Introduction and notation

 Non-regular ultrafilters arose in the study of ultraproducts. Early model

 theorists were interested in the cardinality of ultrapowers. They isolated a

 property of ultrafilters which they called "regularity" which implied that the

 cardinality of an ultraproduct was the expected one.

 The question of whether all ultrafilters were regular naturally arose. In

 particular a question in [C-K] is:

 Can there be an ultrafilter D on o1 such that IwL"/DI = -ip?
 Non-regular ultrafilters became interesting to set theorists because of their

 analogy to large cardinals. (See [Ka-M].) They were used as combinatorial

 devices in several papers, notably Magidor's, [M4].

 In [M5], Magidor was able to get the consistency of non-regular ultrafilters

 on cardinals above t1 but these ultrafilters did not have the greatest degree of
 non-regularity.

 Laver in [L2] showed that there is a non-regular ultrafilter on o1 in a model
 constructed by Woodin assuming the consistency of the theory "ZF + ADR +

 0-regular".

 f The first author would like to thank the NSF for partial support.
 *The second author would like to thank the US-Israel Binational Science Foundation for its

 partial support under grant 2691/82.
 #The third author would like to thank the US-Israel Binational Science Foundation for its

 partial support under grant 2541/81.
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 522 M. FOREMAN, M. MAGIDOR, S. SHELAH

 After the authors obtained the results in this paper, Woodin showed how to

 get the consistency of an t 1-dense ideal on t 1 from an almost-huge cardinal.
 This allows one to use Laver's results directly to get a non-regular ultrafilter on

 8I Woodin's results also get non-regular ultrafilters on other cardinals.
 It was not known before the results of this paper were proved how to

 construct fully non-regular ultrafilters on any cardinal bigger than 8,.
 In Section 1 we introduce a refinement of the notion of a saturated ideal

 and show that under fairly common conditions the existence of an ideal with this

 property implies that we can force the existence of a fully non-regular ultrafilter.

 In Section 2 we show that from much less than a huge cardinal we can

 construct models with these ideals on any successor of a regular cardinal.

 In Section 3 we refine our construction to show that we can produce
 ultrafilters that yield ultrapowers of small cardinality.

 Theorems 2, 3 and Corollary 4 were shown by the first author. Theorem 9 is

 due to the third author.

 For notation, we advise the reader to consult Part I of this paper [F-M-S].

 1. Layered ideals

 We introduce the concept of a layered ideal. Layered ideals are saturated

 and can be made centered. Further, one can force over a layered ideal to get a
 fully non-regular ultrafilter. If one forces over a model with a layered ideal on w,

 then one can get an ultrafilter D on oi such that Ico"L/DI = wl. Finally one can
 force over a model with huge cardinal K to get a layered ideal on K, with K = A+

 for a preselected ti < K.
 Thus we will prove the consistency of a non-regular ultrafilter on tt? from a

 huge cardinal. All ideals will be normal and countably complete, and all
 ultrafilters will be uniform.

 Definition. An ultrafilter U on K iS (, -y)-non-regular if and only if whenever
 KXa: a < y) c Uthereisan Sc y, IS} =y andnfaesXa # 0.

 There is an extensive literature on non-regular ultrafilters (see [T2], [Ka-T]
 or [Ka]).

 If K- X+ then the greatest degree of non-regularity an ultrafilter on K can
 have is (X, X+)-non-regularity. We will call such ultrafilters fully non-regular.

 There is another kind of ultrafilter very similar to non-regular ultrafilters.

 Definition. An ultrafilter U on K iS weakly normal if and only if whenever
 we have a regressive function f: X -- K for some X c U then there is a y < K
 such that {a: f(a) <y} e U.
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 MARTIN'S MAXIMUM. PART II 523

 Notice that an ultrafilter U on K is normal if and only if U is weakly normal

 and K-complete.

 Kanamori proved the following theorem:

 THEOREM ([Ka]). Suppose X is regular. Then there is a weakly normal

 ultrafilter U on X + such that { a: cof(a) = X } c U if and only if there is a fully
 non-regular ultrafilter on XA.

 For the readers' convenience we show the direction of this theorem that we

 will use:

 PROPOSITION 1. Let X be regular. Suppose U is a weakly normal ultrafilter

 on X) such that { a < XA: cof(a) = X} c U. Then U is fully non-regular.

 Proof Let (KXa: a < A+) c U be a counterexample to non-regularity. We
 may assume that Xa n a = 0. Define a function f: {a: cof(a) = X} -* X+ by
 f(a) = least /3 for all y > ?, a X X'Y Then f(a) < a and if f were not
 regressive at ao then { /: ao C X,,} would show that (Xa: a < X+) is not a
 counterexample to non-regularity.

 Hence f is regressive. By weak normality there is a y < X+ such that { a:

 ft a) < y)} e U. But then X X U, a contradiction. M

 We want to express a sufficient condition for weak normality in terms of

 ideals.

 Suppose that J is a normal, K-complete, K+w-saturated ideal on K. By a
 theorem of Shelah ([Sh3]), if X+= K then { a: cof(a) = cof(X)} e f.

 Suppose YVC 9a(K) is an ultrafilter extending f such that whenever

 Xa: a < K) is a maximal antichain in ??(K)/f there is a y < K such that

 V a< Y X ie Y, then Y is weakly normal.
 To see this we consider any regressive function f: X -- K where X e S.

 Let Xa = { /3: f(/) = a}. Then { X} U {(xa: a < K)} is a maximal antichain in
 .9L(K)/J since J is normal. But then Va<,Xa c Y for some y < K; hence
 { a: ft a) < y } E( as desired.

 We want to find an ideal f that allows us to construct such an S.

 Definition. Suppose K = X + and J is a K-complete, normal ideal on K.
 Then f is layered if and only if I = 9a(K)/>= Ua<K+a where

 i) I ~aI = K and Kpa: a < K+) is a continuous, increasing chain.
 ii) There is a stationary set S C K+ COf(K) such that for all a c S and all

 x E - {O- } there is a y e ha -{O} such that for all z E ha -{O}, z < y
 implies z A x * 0.

 iii) .a is < K-complete for a & S.
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 524 M. FOREMAN, M. MAGIDOR, S. SHELAH

 We note that there are several equivalent versions of ii) which is the

 algebraic equivalent of ha being a regular subalgebra of a (or pa being neatly
 embedded in A), i.e. a maximal antichain A C h_ is also a maximal antichain

 in A.

 A layered ideal J C 9a(K) is K a-saturated for the following reason:

 If A C K is a maximal antichain then {ca: A n ha is maximal in ha} is
 closed and unbounded in K+. Hence there is an a c S such that A n ha is

 maximal in ha. But then A n h is maximal in A. Hence A n ha = A. But

 laI = K so that |A < K.
 If W is a regular subalgebra of - then there is a projection map

 77: 2 --compl( W)

 where compl(W) is the completion of W. Then for each x c - { 0) and all
 z E W {O}, z < 7T(x) implies z A x # 0. This map S7 does not, in general, take
 values in W. Thus the projection of x may not exist; hence we define what a
 projection of x is:

 Definition. Suppose 2 and W are Boolean algebras and W c 2 and b E A.
 Then c c W {O} is a projection of b if and only if for all d E W {O}, d < c
 implies d A b # 0. Note that { c c W: c is a projection of b } is closed under <

 and joins that exist in W.

 THEOREM 2. Let X be regular. Suppose that there is a layered ideal on

 K = X- and OK. Then there is a (K', oo)cdistributive partial ordering P that
 adds a weakly normal ultrafilter on K extending f.

 (We note K- = K implies O<K for regular K > W,.)

 Proof. Let 2 = 92(K,)/f= Ua<K?a and S be as in the definition of
 layered. We view the iads as approximations to a and ultrafilters on Ha as
 approximations to ultrafilters on A.

 We call an ultrafilter U C Ha semi-normal if and only if whenever (xft:

 /3 < K) _ Ha is a maximal antichain in Pa then there is a y < K, V eO < YX13 C U.
 If we have an ultrafilter Yc such that for all a C S, , r Pa is

 semi-normal, then Y viewed as a ultrafilter on 922(K) is easily seen to be weakly
 normal. Thus we force with conditions that are semi-normal ultrafilters to build
 such an Y.

 More precisely a condition U in our partial ordering P is a semi-normal
 ultrafilter on Ha for some a E S.

 If U, V E P then U 1F V if and only if U is an ultrafilter on fa' V is an

 ultrafilter on ,, for some a > /3 and U D V.
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 MARTIN S MAXIMUM. PART II 525

 Main Claim. Suppose 0 < j < K and (Ki: i < j) C S is an increasing
 sequence of ordinals and (Ui: i < j) is an increasing sequence of semi-normal
 ultrafilters, Ui c ,. Then for any 4, S, 4 > supi < j i, there is a semi-normal
 ultrafilter V c A,,, V D Ui < j U i.

 Proof We imitate Laver [L2]. Let (KSa: a < K) be a c-sequence on K. Since

 12,pi = K we can construe the c-sequence as a c-sequence on A,: let =
 (bo: O < K); then if X c {a: Sa= {bo: O < a} n X} is stationary
 in K.

 We define V be induction on a. At stage a we have defined Va so that

 Ui < jU, u Va has the finite intersection property (f.i.p.).

 If V U UiU< jU4, u {VSa} has the f.i.p. then let

 VK+ = Va U {VSa}

 Otherwise, let Va.i = V. Let V be the filter generated by Ua <KVa. We claim
 that V is a semi-normal ultrafilter.

 Let X = (xa: a < K) be a maximal antichain in A,,.
 For each d e Ap let d A X = {d A x: a < K and d A Xa # 0). Then

 d A X is a maximal antichain below d.

 Let KCf: /3 < K) be the elements of U a<KV in the order that they were
 added. Let (d/3: /3 < K) be all finite intersections of (cft: /3 < K). Then { y:
 (d/3: /3 < y) = all finite intersections of (cf: /3 < y)} is closed and unbounded
 in K.

 Consider some d and i < j. Then there is a maximal antichain AA _
 such that for all a C AM, either a A d = 0 or a is a projection of some element
 of dA X.

 Enumerate AA = (at: ( < K). Since U., is semi-normal there is a < K
 such that b/ = Veal: t < A) C U

 Since { do} has the finite intersection property with U4,, we may assume
 that for all t < 8A, d A a 0.

 Each at is a projection of d A Xa for some a. Hence there is a 7A < K
 such that for all c e g,,, c < b,

 (*) c A V (d/3 A xa) 0.

 Choose a y such that

 1) {dft: 3 < -y} = all finite intersections of Kcft: 3 < y).
 2) For all /3 < y and all i < j, yf3 < -y.
 3) Sy = {xa: a < y}.
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 526 M. FOREMAN, M. MAGIDOR, S. SHELAH

 Claim. V UU< jUi U {V(xa: a < y)} has the f.i.p.

 Otherwise there is a /3 < y, i < j and a b E U,,, such that df A b A
 V a<yxa= 0. By shrinking b we may assume that b < bi. So

 bA V a<y(dfa Xa) = 0

 Since y/P < y this contradicts (*). Hence VSy = V(xa: a < y) E V. Hence V is
 weakly normal. We note that V is an ultrafilter because for each b E E there is

 a stationary set of y, S, = { b }. Thus we have proved the main claim. F1

 We remark that to build the ultrafilter V in the main claim we could have

 let V0 = { b } for an arbitrary b E it such that { b } has the f.i.p. with U < j Up.
 Two facts follow immediately from the main claim.

 First, the main claim shows that our partial ordering is not the empty set

 and for any 4 Ee S, any U E P can be extended to a V E P that is semi-normal

 on some AV, q ? 4. Hence our generic object is an ultrafilter on A.
 Secondly it shows that the forcing conditions are K-closed. We will be done

 when we show that P is (K+, oo)-distributive.

 Let (Da: a < K) be a sequence of dense open sets in P and U E P. We
 want to show that there is a V [- U such that V E nfa<KDa. Let , >> K be
 regular. Let M -< H(1i) be such that

 a) IMI = K, PK (Da: a < K), U E M
 b) 4 E M n K+-C S and M- c M.
 We define a game. Players W and B take turns to build a sequence

 K(aa, U): a < K) (Player W plays the aa's, B plays the Ua's) such that each
 UaE M,Ua2 < j4 U {aal and Ua is a semi-normal ultrafilter on some

 Further, each aa has the f.i.p. with Uf < aUA U U. W goes first at limit ordinals:

 W a0 al ... aa aal

 B U0 U1 ... Ua + l

 The game has length K. Player W wins if and only if Ua < KUa is a

 semi-normal ultrafilter on id,;
 If player W has a winning strategy a, then by playing this strategy against B

 while B plays elements of the sets (KDa: a < K) gives a V E na <,KD,. (In fact it
 gives a master condition in P over M.)

 Thus we must see that W has a winning strategy. Note that by the Main

 Claim, B is never stuck without a move at any stage a.

 Let i, = (be: 9 < K) and <> = (Sa: a < K) where S_ C (be: 9 < a) and
 for any X c i,;' { (a: Sa = X n ( be: 9 < a)) is stationary. At stage a(, player W
 plays aa = VSa if Ua < aUA U {VSa has the f.i.p. Otherwise he plays arbitrarily.
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 MARTIN'S MAXIMUM. PART II 527

 Using arguments similar to the proof of the main claim it is easy to check

 that this is a winning strategy for W.

 Let YWC P be generic. Then V[Y] has the same subsets of K that V does.

 Further, if (xft: /3 < K) is a maximal antichain with respect to g(K)/f, then for

 some a < K+, a E- S, (Xf: 3 < K) is a maximal antichain in H. Hence for some

 y < K, VP < xi X EY_ 2; hence VP<Yx# EY. Thus Y is a weakly normal
 ultrafilter. LI

 Note that the weakly normal ultrafilter in Theorem 2 extends Y and hence

 concentrates on points of cofinality K. Thus it is (X, X+)-non-regular.

 2. The consistency of layered ideals

 To show the consistency of non-regular ultrafilters from large cardinals we

 show that we can get a layered ideal by forcing over a model with a large

 cardinal.

 We recall some definitions. Let j: V -> M be an elementary embedding
 with critical point K. Then j is a huge embedding if and only if Mi(') c M.

 Similarly j is an almost huge embedding if and only if MjLK C M (i.e. whenever

 (Xa: a < /) c M and /3 < K, Kxa: Xa < /3) E M). We will use a fair amount of
 technology involving huge cardinals and refer the reader to [S-R-K] as a primary
 source of information on these techniques.

 THEOREM 3. Suppose j: V -* M is an almost huge embedding and K is the
 critical point of j and j(K) is Mahlo. Let yI < K be regular. Then there is a

 < It-closed partial ordering P such that

 VP l= It carries a layered ideal and

 We note that if K iS a huge cardinal then there is such an embedding j with

 critical point K. Thus we deduce:

 COROLLARY 4. If It is regular and there is a huge cardinal K > I then there
 is a (It, oo)-distributive partial ordering Q such that VQ l= there is a (Ii, ni')-
 non-regular ultrafilter on ,iu.

 To prove Theorem 3 we need to prove a lemma coming from [S-R-K]:

 LEMMA 5. Suppose j: V -* M is an almost huge embedding with critical
 point K and j(K) is Mahlo. Then there is a stationary set S c j(K) and almost

 huge embeddings (jKa: a c S) and factor maps (ka,#: a < /3 e S) such that:
 a) ja: V -> Ma has critical point K and ja(K) = a.
 b) ka f:M, Ma is elementary and crit(ka) = a.
 c) If a < /3#E S then jf = kio A ja.
 d) For all a < /3 < Y, ka y =kfg i ? ka A .
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 528 M. FOREMAN, M. MAGIDOR, S. SHELAH

 We will sketch a proof of this lemma. For details we refer the reader to

 [S-R-K].

 Proof. For each X, K < X < j(K) we let f(X) = sup{j(g)(j"X):

 g: [X] <K ). There is a closed unbounded set C c j(K) such that for all
 y e C and X < y, f(X) < y.

 Let S = {a e C: a is regular). Then fora E( S we can let Na be the class
 of all sets of the form j(g)( j"X) where X < a and g: [X] <K -- V. Then
 j: V- Na is an elementary embedding. If a < PEB S then we can map
 iaa:Na Na by the identity map, which is an elementary embedding. Letting
 Ma be the transitive collapse of Na and ka A be the "transitive collapse" f oaa A3
 we get a commutative system of elementary embeddings.

 We must check that a = Na A j(k) and Nr'y c Na
 If X < a, let g: [X] <K V be defined by g(x) = o.t. x. Then j(g)(ja"X)

 X A. Hence a C N.

 Suppose y c Na A j(k) and y 2 a. Then y = j(g*)(j"X*) for some X* < a

 and g*: [X*]<K - V. We note that a = sup{j(g)(j"): X < a and
 g: [X] <K - )K. Hence we may assume that j"X* E j({x E [X*] <Klg*(X) 2 K}).
 But then j(g*)(j"X*) 2 j(K), a contradiction.

 Let ,8 < a and (x : y < /) c Na. Choose a X E [/3, a) so large that for all

 y < / there is a XT < X and a g,: [X] <K -- V such that j(gy)(j" X) = xy.
 Let g: [X] <K -- V be defined by g(x) = {gy(x n X): y E x n /31. Then it is
 easy to check that j(g)(j"X) = (x : y < /3). Hence (x : y < /3) E Na. []

 Our construction of the partial ordering will be a slight modification of the

 Kunen partial ordering for producing an 82-saturated ideal on 81. The Kunen
 construction was first done with infinite supports by Laver who proved the chain
 condition. The construction we give here is a variation on Laver's version of the
 Kunen construction. We refer the reader to [L3], [KI], [FL] and [F3] for a
 detailed exposition of the Kunen construction.

 For regular 8 and inaccessible y we define the Silver collapse S(&, y) to be
 the partial ordering of partial functions p: y X 8 -y such that:

 a) Ijp < 8,
 b) for all (a,/ ) E dom p, p(a, 1) < a, and
 c) there is an E < 8 such that dom p c y x e.

 The ordering on S(8, y) is reverse inclusion. Standard facts show that S(&, y) is
 6-closed and y-c.c.

 Let j: V -> M be an almost huge embedding with critical point K, and let
 [ <K be a regular cardinal. Let X = j(k). Our partial ordering P wil be of the
 form Q * SQ(K, j(k)) where SQ(K, j(k)) is the Silver collapse of j(k) to be K+ as
 defined in VQ. We define Q as an iteration of length K with < i supports.
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 MARTIN'S MAXIMUM. PART II 529

 Let Q0 = S(1I, K). At stage a, if id: Qa n QV is a neat embedding

 then we let Qa~i*SQa v-(a, K). Otherwise we let Qa+i = Qa * 1 Having
 described the supports of Q and what happens at successor stages, we com-

 pletely specify Q by letting Q = Q,.
 Standard arguments show that Q is < I-closed and K-C.c. and makes

 K = IL1

 Since Q is K-C.C., id: Q " j(Q). Further, j(Q) n Vq = Q. Thus j(Q)?1 -
 (Q)K * SQ(K, X). Hence there is a neat embedding i: Q * SQ(K, X) c j(Q).

 Inspecting the arguments showing the K-C.C. of Q in V we see that if

 j: V -> M then j(Q) is X-c.c. in V. Hence in Vj(Q), any sequence of conditions
 (pa: a < /3 < X) C j (SQ(K, X)) lies in M'9Q). (Here we are using the fact that j
 is an almost huge embedding.)

 Let K < a < X and a be inaccessible. Let G * H c Q * SQ(K, X) be generic

 and G c j(Q) be generic for j(Q)/i"G*H.
 In Si(Q)(X, j(X)) there is a condition ma = Uj"H r a. (We will call this a

 master condition.) Further ma E Si(Q)(X, j(a)) and if a < a' and we construct

 ma,, then ma, 1- ma.
 Let H c Si(Q)(X, j(a)) be generic with ma E H. It is easy to check that j

 can be extended to j: V[G * H r a] -- M[G * H] (see [Bi]). The map j takes
 the realization of the Q * SQ(K, a)-term T to the realization of j(T) in
 Mj(Q) * Si(Q)(X, j(a))

 Working in V[G] we claim that in S(X, j(a)) if Sa 1K ma then there is an

 ra = Sax ra G S(X, j(a)) for all x c K, X E ?A (K)V[G*Hra] either

 M[G] Iral F- K E j(x) or M[G] r= rU- K 0 j(X)

 To see this we note that in M[G], I9(K)V[G*H a] < X and in M[G], S(X, j(a))

 is X-closed. Thus we can build r. in a tower of length a.

 Claim 6. Suppose ro E S(X, j(X)) is compatible with each ma and there is
 a 8 < X such that supp rO C j(S). Then there is a sequence of conditions
 (ra: 8 < a < X and a is inaccessible) such that for all a, r. 1k- ma and for all
 x e Y9(K)V[G*H] for some a,

 M[G] t ra 1k- K e j(x) or M[G] t= ra 1- K 0 ftX).

 Further, if a < a', ra, 1k- ra and for a > S. supp r. C j(a).
 (Here we should remark what exactly we mean by "M[G] t= ra -- K E

 j(x)". The map i is determined by j' and the generic object H [ a. If a < a'
 and H [ j(a') extends H r j(a) then j: V[G * H [ a'] M[G *H [ j(a')]
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 530 M. FOREMAN, M. MAGIDOR, S. SHELAH

 A A A

 extends j: V[G * H [ a] M[G * H r j(a)]. Thus the relation

 AM[G] Ta IF K E A

 is well defined without specifying exactly what the domain of j is.)

 Proof of claim. We repeatedly apply the remarks previous to the claim to

 build the tower of conditions ( ra: 8 < a < X and a is inaccessible) by an
 induction of length X. First, let r,6 = ro U m,;.

 At stage a, let ta = Us6< arj, Let y = sup{ /3: /3 < a and /3 is inaccessible}.
 Then y < a and supp ta c sup j"y. Further, ta 1F ma [ suppj"y. Hence ma

 and ta are compatible. Let s? = ma U t.. Then s? e SV[G](X, j(a)) so that we
 can apply the previous remarks to find an r. as desired. E

 We will call a tower with the properties of Claim 6 a strong tower.

 Let G * H C Q * SQ(K, X) be generic. Let G C j(Q) be generic extending
 i"G * H. Let T = (ra: 8 < a < X and a inaccessible) be a strong tower. Then
 in V[G] we get an ultrafilter on 9(K)V[G*H] by letting x e Y if and only if for

 A A

 some a, M[G] I= r. IF- K E j(x).
 It is easy to check that this defines an ultrafilter on A(K)V[G * H] that is

 closed under < K-intersections of sequences that lie in V[G * H]. We define an
 ideal JfC gZ(K)V[G* H] in V[G * H], by:

 x E f if and only if lix E gllj(Q)/i11G*H = 0.

 We claim that f is K-complete, normal and K-'-saturated in V [G * H].
 Since Y is closed under < K-intersections that lie in V [G * H], f is

 K-complete. To see that f is normal we consider (x : y < K) C f. Then there is
 an inaccessible a < X such that (x : y < K) e V[G * H r a]. Choose an arbi-
 trary G : i"G * H and an a' ? a such that for all y, M[G] = r., IF- K 0 X. Let
 H C SM[G](X, j(a)) be an arbitrary generic object containing r.[ r j(a).

 Then we can extend j to j: V[G * H [ a] M[G * H]. Then for all
 Y < K, K & j(xy). Hence K j i(VY<KXY). Thus M[G] r ra IF K X i(VY<KXy)
 and hence M[G] I= VY<KXY ( Y. Since G was arbitrary, VY<.Xy e Sf.

 Since j(Q)/i"G * H is X-c.c. and X = K+ in V[G * H], 9a(K)/f is K'-C.C.

 (If (xa: a < X) is an antichain in 9a(K)/f then (lixa eGYI: a < X) is an
 antichain in (j(Q)/i"G * H).)

 Finally we want to argue that Y viewed as an ultrafilter on 9p(K)/f is
 generic over V[G * H]. To see this, we examine a maximal antichain A C
 3(K)/f. We must find an x E A such that x E S.

 Since f has the K -C.C., {AI = K. We can enumerate A, A = K[xD,:
 y < K) where x c K. By choosing representatives carefully we may assume that
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 MARTIN'S MAXIMUM. PART II 531

 for all y > 0, xY n (y + 1) = 0 and UY<KXY = K. Choose an inaccessible a
 such that (x: y <K) G V[G * H r a].

 Let G c j'(Q) be an arbitrary generic ultrafilter extending i"G * H. Let Y
 be the corresponding ultrafilter on K. Choose a' > a so that for all x E
 9(K)V[G*Hra] either

 M[G] t rW- I KEj(x) or

 M [G']I ra, IF- K AJ(X )

 Let H C SM[6](X, j(a)) be generic with ran r j(aa) E H. Consider
 ^ A ^ ^ ^ ^ A A

 j: V[G * H r a] -> M[G * H]. Then M[G * H] W Uj((x,: y < K)) = j(K) and
 hence, if we call j((x,: y < K)) by (x : y < j(K)) there is a y, such that
 K EE x. But since xi n y + 1 = 0 for y > O, K E Xy for some y< K. But then

 XI = j(x,). Thus K E j(x,) so that xy E S. But [xy] E A, hence Y meets the
 maximal antichain A. Further, by the definition of f, if x E ?(K)V[ *H] and

 x 0 fy then there is a G such that x E S.
 If a < X is inaccessible we can consider 3a = iln 9(K)V[G *HI a] and form

 the ultrapower Na = V[G * H [ a]K/,Y a of V[G * H [x a] with respect to

 functions f: K -- V[G * H [ a] that lie in V[G * H r a]. Then we can define a
 map k: Na M[G * H] by letting k([f]) = j(f)(K). Standard arguments show
 that k is well defined and elementary and if i: V[G * H [ a] - Na is the usual

 embedding of V[G * H r a] into an ultrapower then j = k o i. Thus, N is
 well-founded and we identify Na with its transitive collapse.

 Since a=c K' in V[G* H ra] and gA(K)V[G*HIa] c N i(K)> a and
 Na l= K is not a cardinal. Since j = h o i, crit(k) ? K and since crit(k) must be a

 cardinal in Na, crit(k) ? a.
 We now have developed most of the tools we need to see that knowing J;

 is equivalent to knowing G.

 Claim 7. Consider a generic object G * H _ Q * SQ(K, X). Suppose q E

 j(Q) is compatible with i"G * H. Then there is a set x C K) x E V[G * H] such
 that:

 x Ce if and only if q _ G.

 Proof. We will first show that there is a term T in the forcing language of
 R = 9A(K)/f for a function from K into V[G * H] lying in V[G * H] such that

 for some a, ||[T]Na = qIIR = 1
 Since q c j(Q) there is a /3 < X such that q E j(Q) n V/3. Let a > /3

 be inaccessible. Let G be any generic object and H C SMEC](X, j(a)) be generic
 such that for some ra determining sa, ra r j( a) E H. Consider the commuta-
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 tive triangle

 i: V[G*Ht a] - M[G*H]

 Na.

 As we argued earlier, crit(k) 2 a. Since /3 < a, V[G * H r a] V {: = K and

 thus in Na we have an enumeration of i(Q) n (V,,)Na = (q,: y < ,u). By
 elementarity k(( q: y < iu)) is an enumeration of j(Q) n Vow. Hence for some y,

 k(q,) = q. But k is the identity on Vq and hence q, = q. Thus q is represented
 in Na by some function T: K -> V[G * H [ a]. Further, V[G * H][Y] can
 recognize T. Thus in V[G * H] we have the R-term T as desired.

 By standard theory of saturated ideals (see [So 2]) in V[G * H], there is a

 function f: K -> V[G * H] such that IIfy: fly) = T(Y)} E GIIR = 1. Note that
 without loss of generality f: K -* Q.

 Let x = {y < K: fty) E G}. Then q E G if and only if Na t= q E i(G) if
 and only if x E Y.

 We now return to the proof of Theorem 3.

 Fix a j: V -> M and a u satisfying the hypothesis of Lemma 5. Let S, ( ja:
 a E S), (ka,i,: a < 3, a,13 e S) beasinLemma5. Since kaa [ V. n Ma = id
 and ja(Q) is (really) a-c.c. when we force with lim k (Q): a E S) (taken over
 the maps (ka a < a ' <a e S)), we get a generic object G* such that for each
 a < a' E S, G* induces a generic Ga C ja(Q) and k'atGa c Gaf Hence ka a,
 induces an elementary embedding ka ao: Ma[Ga] Ma'[ Gaj

 Each Ga induces a generic object G * Ha c Q * SQ(K, at). If a < a' E S
 then G * Ha c G * Hl,.

 We want to build a sequence of strong towers (Ta: a E S) by induction on
 a so that Ta is a strong tower for ja and if a, a' E S, a < a' and p c Ta, then

 there is a q E Ta,, and q V- kaa (P).
 We construct Ta by induction on a E S. Our induction hypothesis is that

 for each /3 < a, T?, is a strong tower and if a' < /3 < a, a', /3 c S then for all

 p E Ta. there is an r E T?I such that r U- kat f(P).

 Case 1. There is a /3 E S U {O} such that a is the least member of S
 above /.

 Consider k"'aTU. Then in Ma[Ga] this is a directed set of conditions in
 S(a, ja(a)) of cardinality < a and hence ro = Ukj" aTq E c S(a, ja(a)). Consider
 the tower of master conditions (my K < y < a and y is inaccessible), where
 each m = Uj.7Hy.
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 MARTIN'S MAXIMUM. PART II 533

 We want to see that ro is compatible with each my. If ro is not compatible

 with some my then there is some p E T1B such that my is incompatible with
 ka a(p). But then there is an inaccessible 3' < 3 such that supp p C jC(3).

 Hence ka a(P) is incompatible with my [ (kr a 0 j)(91)
 Since T,, is a strong tower, p is compatible with UjX'HX~. Since k, a is

 elementary and ja = ka o j' k, a(P) is compatible with Uja'Hs. But
 my r ja(/3M ) = Uj 'HO3 and ja(/3') = (k/3 a jq)(#'). Hence k, a(p) is compati-
 ble with my r (kr, a o j1q)(/3') as desired.

 We similarly check that supp ro C sup(k8 a o j,)"/ < jIa(3). Thus by Claim
 6 we can build a strong tower Ta starting with ro. It is easy to check the
 induction hypothesis.

 Case 2. a 0 lim S but not where Case 1 holds.

 Then there is a y < a, y c limS and S n [y, a) = 0. We let ro=
 U Sn yUk aTX* Again this is a condition since Uk " aTi3 is a condition and by
 the induction hypothesis if /3' < /, /3', / e S then

 Uk jaTf 1 Uk/a' at'.

 Hence ro is a union of a chain of length less than a. Now we argue as in Case 1
 to see that we can build a strong tower below ro.

 Case 3. a E lim(S) n S.

 Consider { p: there are a /3 e S n a and a q E Tp, p = kq a(q)}. We claim
 that this set can be regrouped to form a strong tower. For each /3 E S n a let

 S = Uk 11 aT*. Then, as in Cases 1 and 2, sB is a condition and further, by our

 induction hypothesis if /3' < /, /3, /3' E S, then S, 1 s,.

 Let ( r,: K < / < X and / is inaccessible) be defined as follows. For each

 inaccessible 3 Ee [K, X) let /3* > /3 be the least element of S such that s,8 * 1I- m,,.
 Let r,, = s,,* ja(/). Then for all /3, r,, 1- mq and for each /3' E S there is a /3
 such that r8 1- sB. To see that the sequence (r,,: /3 is inaccessible between K and
 X) is a strong tower we must show that for all x E 9P(K)V[G * Hj] there is a /3 such
 that either

 M[Ga] t rv - K E ja(X) or

 M[Ga] t= r 1- K 0 ja(X).

 If x E .9(K)V[G*Ha] then, since a is a limit of elements of S and S(K, a) has
 the a-c.c., there is a ,B E S such that x E 9P(K)V[c*HP 1. Hence there is a q E TB
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 such that either

 M[G,8] t q 1- KO j(x) or

 M[G8] t q I- K E j8(X).
 But then

 M [Ga] ka a(q) F- K 0 ja(X) or

 M[Ga] J ka( q) v- K E ja(X)

 Since s. 1- ka a( q) we get that there is an rq such that

 M [ Ga ] t= r,- - K 0 ja(X) or

 M[ Ga] t= rW IF K E ja(X)

 as desired.

 Thus we have defined the tower Ta to satisfy the induction hypothesis.
 Recall that we formed the direct limit of the K 1a(Q)a Ea S) by the maps

 (ke, a': a < a' and a, a' E S). Forcing with this partial ordering gave us a
 generic object G* which induced generic Ga c ja(Q)- Further each Ga gave us
 a generic object G * Ha C Q * SQ(K, a) and the G * Ha cohere as a varies.

 If we let H = U a<j(,) Hea' then H C SQ(K, j(K)) and, since every initial
 segment of H is generic and S(K, j(K)) has the j(K)-c.c., H is generic. Further,
 HnfVa=Ha.

 In each V[Ga] we get an ultrafilter sa on 9(K)V[G * Ha] as described earlier.

 Since k a is elementary and k8Ta is majorized by TB, B n P( K)V[G*Ha]

 Similarly in V[G * Ha] we get an ideal Ja from ja and the tower Ta. We
 claim that if a < / and a, /3 eS then Y- = 9(K)V[G*Ha] n -4

 To see that f C 9A(K)V[G*Ha] fl 4 we note that if x E JOa no matter what

 the choice of GB is, x 0 sa. Since RF n A(K)V[G * Ha] = no matter what the
 choice of GB is, x 0 ,. Hence x E- ,4 Similarly if x can never be in

 n 9(K)[ * H a] then x can never be in Ji. (Here we are using that any Ga
 can be extended to a GB.)

 Define an ideal J on gi?(K)V[G *H] by f = Ua < (K)f. Then -f is a normal,
 K-complete ideal and f n A(K)V[G* H_] = Je for a E S.

 For a E S we let 4a = 9A(K)V[G*Ha]/Ya and we interpolate to make a
 continuous chain (9a: a < K+= j(K)). Then each a is a subalgebra of
 9.P(K)/f and = =9z(K)/=f UaeK+a. Further, for a S, 9a is K-Complete
 and for all a EC K+ I-aI = K.

 We will have shown that f is a layered ideal on K if we can show that each
 Ma is neatly embedded in . for a E S.
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 Our algebraic equivalent of this is to show that no x E X is disjoint from a

 dense subset of 4,a
 Let [x]_,f C A. Then [x] is represented by some set x E .(K)V[*H-] for

 some /E c S. Let a E S. We must show that there is no set D c 9(K)V[G*Ha]

 such that {[y],>: y c D} is dense in 4a and for all y cD, y n x E 43.

 Suppose that there is such a D.

 Let Qa = Ja(Q) and Q0 = j,,(Q). Since x 0 Jfq there is a q E QaiG * Hp
 q If Q- x e B Let q' = q fl V.. By the construction of Qa and Q, we see that
 q' e QaiG * Ha and for all r it q', r' c QaiG * Ha, r = ka /3(r) is compatible
 with q. (Remember, Q C V, so ja(Q) C V. and crit(ka,3) = a. Hence
 kap [' Qa = identity.)

 Let y E .9(K)V[G * Ha] be the set guaranteed to exist by Claim 7 such that
 y E 3a if and only if q' E Ga. Let z E D with [z] < [y] in Ha - {O}. Then
 there is a condition r E QaiG * Ha such that r 1k- z E V. Then r 1k- y C Ha so

 that r 1k- q'. But then ka(r) and q are compatible. Let G,, c j,,(Q) be generic
 containing both ka(r) and q. Then z e v,, and x E SUB. Hence x n z Ec ,5
 But x n z e , by the definition of D, a contradiction.

 Hence we have shown that there is no such set D. Thus Ha is a regular

 subalgebra of e and J is a layered ideal.

 Further, Q * SQ(K, X) is < n-closed and VQ l= K = ,j,+ and X = K+. Since

 SQ(K, X) is K-closed in VQ, VQ l= OA+. This proves Theorem 3. El

 3. Small ultraproducts

 We now turn to the problem of the cardinality of ultrapowers. We say that a

 K-complete, normal ideal f C 9(K) is strongly layered if and only if we can
 write 9(K-)/>= Ua<K?a where the sequence Kea: a < K+) is increasing and

 continuous and for each a E cof(K) n K , a is < K-complete, I I, = K and
 a is a regular subalgebra of 9(K)/>.

 Shelah has shown that strongly layered ideals are K-centered. If f is a
 layered ideal on K and S C K+ fl COf(K) is the stationary set witnessing layered-
 ness then we can force to shoot a closed unbounded set through

 S U {a < K+: cof(a) < K)

 without adding any new subsets of K (see [A]). In this forcing extension, 9(K)/>

 has not changed and S is the intersection of a club set with { a < K +: cof( a) = K}.

 Thus by rearranging the sequence (Kia: a < K+) witnessing layering we get a
 sequence witnessing strong layering. Thus we have shown:

 PROPOSITION 8. If f is a layered ideal on K then there is a (K +, x)-distribu -

 tive partial ordering P such that in V', f is a strongly layered ideal.
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 536 M. FOREMAN, M. MAGIDOR, S. SHELAH

 Shelah has shown that a strongly layered ideal on K iS K-centered. If
 d= 9(o1)/J is strongly layered then 1.1 = (o2 and we can identify . with (2

 by a function H: 2 ( CO 2 so that if cof(a) = co then f"g. = a.
 onto

 THEOREM 9. Suppose 0 co, and there is a strongly layered ideal on o,. Then
 there is an (w2, c10)-distributive forcing adding an ultrafilter D on co such that

 lcool/Dl = co,.

 Proof Let 2 = 9(col)/> and (Kg,: a < @2) be a strong layering of f. We
 assume that Igo I co and go is a regular subalgebra of A. Our strategy will
 be as follows. We want to construct an ultrafilter D f on o1 so that for all

 : c Xthere is a g: o1 o such that for each n,

 g'-(n) E go and [f D = [gI Do

 If we succeed then ljo"/Dj = 1.01' = 14l 1 = c,
 We translate this into the language of Boolean algebra. To do this we

 consider D as an ultrafilter on (o)/f. Every function f: w, -* co induces a
 partition of A, ( xn: n c co) by letting xn = [if{ 1 n }] ,. Similarly any partition
 (Xn: n E co) gives rise to a function when we choose disjoint representatives Xn
 for xn and let f { Xn = { n }. Thus an equivalent statement to the property of
 functions mentioned in the previous paragraph is that for any partition

 (Xn: n E X) of g there is a partition (yn: n E w) c 0 of 20 such that
 V. .,~x. A y) E D.

 To motivate our construction we perform a sample computation. Let

 (Xn: n G o) be a partition of 9 and X >> o,. Let M -< (H(X), ?, a,
 (Xn: n E w)) be countable and let D* be an ultrafilter on M n - such that
 for all m, Vn<mXn 0 D*. We want to find (yn: n Eo) C go so that
 Vn -&xn y Yn has the finite intersection property with D*. Then, if D' is the
 filter generated by D* U {Vnx /\A yn} then (Xn: n E o) and (yn: n E co
 give rise to equivalent functions modulo D'.

 Enumerate D* = { ba: j E c}o. We must find (yn: n E o) such that for all

 j, bi A Vn , (yn A Xn) # 0; i.e. for each j there is a yn, such that b A yn1 A
 xnj # 0. We have countably many tasks corresponding to the b's and countably
 many opportunities corresponding to the yr's.

 Suppose we have inductively chosen (nj: j < j*) and (Ynj: j < j*) such
 that yn1 0 j n M and V<j*ynj1 t D. Then b (V1<1*y )e D*. Since
 Vn< sup nXn D*, there is an nj#> supj< jnj such that (b Vj < j*yn1) A Xnj* j<j*

 #0. Let Yj* be a projection of (bi* - Vj< j*ny) A xnj* that lies in (M n 0)
 D*. The ( yj: j E o), suitably re-indexed with dummy indices give a

This content downloaded from 132.64.72.6 on Sun, 20 Jan 2019 13:16:55 UTC
All use subject to https://about.jstor.org/terms

Sh:252



 MARTIN'S MAXIMUM. PART II 537

 partition of go such that Vn E- w Xn A Yn has the finite intersection property with
 D*.

 Our approach will be to try to build our final ultrafilter D by building

 countable approximations to it. The main problem that arises is that D has

 cardinality 82 and there are 82 many partitions of A. The construction just
 reviewed only works for countable D*.

 To overcome this problem, we view each Ala, a E cof(coi) fl 25 as an
 approximation to A. Since 2A has cardinality w, we can enumerate all

 countable partitions of 2A in order type w1 and build an ultrafilter U. c A_
 such that any partition (xn: n E ad C Ac is equivalent modulo U. to a
 partition ( yo: n E co C 0. If we succeed in building U. C -A_ for each
 a E cof(w1) n c2 which has this property and also coheres (i.e. if a < / then
 U - UB) then U a< (,,. will be an ultrafilter with the desired property. We will
 force with conditions of the form U. where U. will have characteristics that
 allow us to perform this construction.

 The problem with this strategy is extending a U. C A_ to a U. C , where
 a </3.

 At a countable stage in our construction of U, any set we want to add to U
 must have the f.i.p. with all of Us, i.e. be a filter of cardinality co. This prevents
 a naive construction of this form.

 We overcome this obstacle by requiring that a projection of the set we want

 to add to U4 lies in Ua* A priori this seems to add 8 2-requirements to the

 construction of U, but we can use a C-sequence to thin this set of requirements
 down to a set of size wi.

 To define what these requirements are we introduce the notion of the

 preprojection of an x E E by a descending sequence of ordinals a' Ee

 (W2 n cof(w )) < I'.
 By induction on the length of a, for all x E E we define ppa(x). If

 a E (2 fl cof(co) let ppa(x) = {y E 2,: y is a projection of x}. If a' is a
 descending sequence of elements of c2 n cof(ol) and /3 < min a' then

 ppd (x) = { y e A: there is a z c pp;(x) such that y is a projection of z

 We list some properties of pp(x) which we shall use:

 1) If a /3 C 2 fl cof(ol) is a descending sequence and y E ppa (x) and
 z < y, z # 0 then z E ppan (x).

 2) If a') is a subsequence of /3 and a and /3 have the same last element then

 PP,'(x) c pp(x)

 3) If x < y then pp`(x) c pp(y).
 4) Vpp;(x) ? x.
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 5) If a/3 is a descending sequence of elements of cof(ol) n C2 and
 a e , then

 pp n(x) A a c pp5n(x A a).

 (Here we are again using the convention that if X C F and a E R then

 X A a = { x A a: x E X }.)

 6) If x E and a i7 is a decreasing sequence of elements of cof(o,) n @2
 then ppan(x) = {y E of: y < x and y * 0).

 7) If arB is a decreasing sequence of ordinals in cof(ol) n 2 and b E 2
 then UZE Ppa(b)ppO(b A z) Q ppa (b).
 These properties are easy to verify and we leave this to the reader.

 Let A >> 02. Consider a countable well-founded structure d=

 (X, 6, W, ( x: n E o)) such that there is a partition (Ky.: n E o) of 9 with the
 property that _/ (H(X), a, A, ( y: n E o)). Let (Ka: a E (cof(wl) n q 2))
 be the strong layering of W and let D* C W be an ultrafilter such that for no

 m E co is Vn<mxn E D*. We want to construct a sequence (anj: j E ah C Wo
 so that for all b E D* and all descending sequences aE E (cof(co) n 2 there

 are a j and a c E pp(anj Axnj) such that c A b * 0. We do this exactly as in

 the sample calculation; i.e. we enumerate D* = {bj: j E a) and choose {ani:
 j E a} _ W0 by induction so that for all j*, Vi<j*an1 D and a
 PP ((b j* - Vi<i*anj) A xnj*).

 Let a' be any descending sequence of elements of (cof(wl) n W2) and

 j E a. Then by property 4, _/i= Vpp'(anj A xnj) > an; A xnj. Since anj A
 xnj A bJ 0 O.

 s/i= there is acE ppd(anj A xnj) such that cA b1 0.

 For each 2/ and D* we fix such a choice (ani: j E o). We are now ready
 to work towards the notation of an obedient ultrafilter.

 For each /B E cof(co) n c2 let (Ks, s'): 8 < l) be a continuous ap-
 proximation to ,B and /3; i.e. the sequence K 8 < 1) is a continuous

 increasing chain of countable elementary substructures of ,B and U36,100' -
 '. Further, { s3: 8 < Jl} is a continuous increasing chain of countable subsets

 of /3, U <,,S' = /3 and we have identified ,P with s' by the function H (see
 the remarks before Theorem 9). Note that any two such approximations agree on
 a closed unbounded set.

 Let (Kad D3): 8 < ,) be a (-sequence of structures such that each
 ad = (X3, , cr3, KXn: n E (0)3, Hz)

 where X3 is a countable transitive set and ?13(H(A), E, I, (fy: n E c), H)
 for some partition (Yn: nE ) C M I. Further, D19 is an ultrafilter on W^.
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 The c-property we want ((KK , D 1): 8 < co,) to satisfy is that for each
 well-founded structure M = (X, EM, WM, (xn: n o), HM) of cardinality X1,
 that is elementarily equivalent to (H(X), a, t, (y,,: n E o), H) for some parti-
 tion (Ky1: n E a) of 2 and for each ultrafilter U C WM and all continuous
 approximations (M3: 8 < ,) and (U3: 8 < l) to M and U, there are a 8 and
 an isomorphism 4: Ma > s&6 such that 4"U3 = D3. (Note that this is equivalent
 to there being a stationary set of such 6.) Such a O-sequence is gotten from an
 ordinary O-sequence by coding.

 For /3 E cof( ol) q @2 and an ultrafilter U c Ad we say that a limit ordinal
 8 is a risky ordinal if:

 a) o.t. s" < o.t. 4W8 and if 7r: s3 o y is the transitive collapse map, then
 for a E s , cof(a) = co if and only if 91 _ = cof 7T(a) = o1 and &1 i= cof(y)

 Let (W)y be the yth element in s-'s layering of Ca.
 b) The map 7r induces an isomorphism CAB onto (W3)y (Here we are using

 H to identify C with s3 and H3 to identify (W,)y with y.)
 c) PJ"U = D,, n (@)
 d) If b E A and a E cof(o1) n s6 and /& 13- c E pp'(a)(7(b)) then

 7Tr1(c) E pp'(b).

 If 8 is a risky ordinal and P: fi ?' is the canonical monomorphism and
 AE= cof(Wl) n s8 and a' is a descending sequence of elements of (cof(l) n

 co2) and b E D3, we can form ppa ( A an A x ) inside p1. Then
 r-l(ppaT(aP)(b A an A xn,)') is a countable subset of Ad. Hence it has a join
 in A,. We let

 ZdnP,b = V V7v'(PPt n)(b A an A

 This join is not zero since for some j, c E ppi ((an A xn ), b A c $ 0.

 From properties 1-7, we see that (ZdfP, b: a"7T(4) is a descending
 sequence of elements of cofinality o1 in s/ and b E Da6} = Ts + is a filter in A+
 and U. G s n cof co1T3,, has the f.i.p. with U r A,,. Similarly we can form

 Zinfb = V V7- (pp Y(b A an. A xn )

 where b E D3. Then T3 . = { z a b' a is a descending sequence in (cof(ol) n
 (o2 Y))i and b E Da}) is a filter in 2, and has the f.i.p. with U F ?B and
 U41 E= Sn cof(L01), T6*P

 An ultrafilter U c is obedient if and only if there is a closed unbounded

 set C c w such that for all 8 E C that are risky for U fl ,a and all A E
 cof(w 1) (s u {}), T, c U.

 Note that obedience is independent of the representation of ,B and /3.
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 Claim 10. a) For all /3 E cof(w 1) n W2 there is an obedient ultrafilter
 on

 b) If a < /, a, /3 E cof(w1) n W then for any obedient ultrafilter U C P
 there is an obedient ultrafilter UL C M extending Ua*

 Proof a) Represent

 -4,:>=K( Use, Us8.
 8<,W <@

 Build U in xo-stages, (FT8: 8 < w ,). At a stage 8, if FT" C M and TTB is an
 ultrafilter on Ad, and 8 is a risky ordinal for TT4, let

 "-,O = U"-I U{T: E (sl U { n3) q cof(l)).

 At non-risky 8, extend TT48 to a filter TB8'+' such that L4B'+l n q +1 is an
 ultrafilter on A ' +1 and I UT''+1 < ?o.

 Since KHIS: 8 < c1) is a >-sequence, there is a stationary set of non-risky 3

 and hence U < , c is an ultrafilter. Further, it is obedient since at all risky
 8 we put

 U{T;o,: T E (sl u { n3}) q cof(wl)} in U'.

 b) Let Ua C Fl_ be obedient and let ((a sn): 8 < w1) be a continuous

 increasing representation of Ad and 3 so that a c s0. Let 2 = Ad n IC and SO a / a
 t8 = Sq n a. Then without loss of generality, ((2", t): 8 < w1) is a continuous
 increasing representation of Ad

 We build Up extending Ua in a continuous increasing sequence K USA:

 8 < ,1). Let a c 2 be an arbitrary countable set having the f.i.p. with Ua. Let
 U T = Ua U a. At non-risky stages 8, let TSA+ 1 extend U8 so that TS?+ 1 n I, q
 is an ultrafilter on 0, + 1 and I LB8 + 1 iI < X.

 Claim. Suppose that 8 is a risky ordinal for USA n be; then 8 is a risky

 ordinal for Ua n 2.

 Proof tV8 is an initial segment of s3; so if M: sa to y is the transitive
 collapse map and y < o.t. 2wa then 7 r Vt is the transitive collapse map of to

 and 7 r t: t0 t y' < y. Hence a) in the definition of "risky" holds for t8.
 We see that b) holds since / h= 7T(a) E cof(o1) n w2 and His:

 1-1
 (@8XTr(a) 1 * 7T(a). Hence vT r t0 induces an isomorphism from 2 to

 Since 7T "UI = D, n (W,)y and USA n tIa = Ua n 8, 7T"Ua8 =
 Da n (8),(a)* Thus c) holds. Clause d) is a local condition so it holds also.
 Hence 8 is a risky ordinal for Ua n q .

This content downloaded from 132.64.72.6 on Sun, 20 Jan 2019 13:16:55 UTC
All use subject to https://about.jstor.org/terms

Sh:252



 MARTIN S MAXIMUM. PART II 541

 Since Uay is obedient there is a closed unbounded set C C w1 such that for

 all risky 8 E C and all 4 E (t' U { a)) n cof(w1)), T8 + c Ua.
 We now show that for all risky 8 e C if q8 n (4 - g) c then

 U{ T E =,I' e cof(o1) n (sa u { ,3)) has the finite intersection property with L8.

 Otherwise there are a d cUanda UoTT and n1 < 42 < ... <
 Z1, Zk with such that d A b A 0i.= =

 Since zi E T , Z =Zn1,,b for some qi Ee [(cof(wl) n W2) ]<w and
 b E D8. By decreasing the b 's we may assume that for some b' < b and all i,
 = b'. By property 2), adding more ordinals to 'i decreases zi, so without loss
 of generality we may assume that if i' < i, njn7( 4) is an initial segment of nj.

 By the obedience of U., Zin j(,p1) a, W E Uo. So d A Zj? -KT(41)'a b' W 0. Since

 Zji j(4,)na,Wb= V Vyl W (b' A an* A xn )

 there are a j and a c E W A anj A xn )5 such that d A 'TV'(c)
 # 0.

 Subclaim. In , '7V- (c) e pp'(b A AVlZi)

 Proof Let c0 = c. Choose cD,..., Ck such that 2 1= ci c ppGWi Wr(1'(b' A
 a n A x n) and - V= ci_ 1 E pp7T(Pi-1)(cj)(c0 E pp7*)(cj)). (This is possible since
 -i-n7j( ) is a subsequence of 'ijl and property 2 of the preprojections.) Then

 7''(ci) < zi and since 28 1= b' < b, 528 h= ci E pp7T(410(b). Thus, by clause d)
 of the definition of riskyness we have that in -, 7'- (ci1) E pp"i-17V-'(cl) and
 7T-1(cl) C= ppif(b).

 Let c' < 7r -(c), c' E ya' then an easy induction shows that c' A 7T '(c1)
 A ... A7'-(ck) A b # 0. Since 7V'(ci) <zi,

 c' A zl A .. AZk A b * O.

 This proves the subclaim.

 Since 7r (c) E ppa(b A Ai=lzi) and d A c # 0, d A b A Aik=Zi # 0.
 This proves that U{ T, 4,,I4 C cof(w1) n (sa u { 13)) has the finite intersection

 property with UT. Let U8+1 T T8 u U{ T4 , ep C cof(w1) n (S U {B1))) be a
 filter such that q + 1 n +1 is an ultrafilter and I TT+ 1 < W.

 Let U =U8 <,TO
 Then for all 3 c C n {3*: U* n ( a /a) c A*) that are risky for

 fl n and for all 4 E ({,B) u s8) n cof(w1)T ,, _u. Hence U is obedi-
 ent. g

 Note that we have shown that we can extend U. to U'O with one arbitrary
 choice of countably many elements of U i Ua*
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 We now show a lemma that justifies our work.

 LEMMA 11. Let Pe e cof( S1) n 2 ln lim(cof o,). Suppose that ( Xn: n e c)
 is a partition of 2 and U is an ultrafilter such that U 7 2 =U is obedient.

 Then there is a partition (Yn: n e c) of R such that Vn ,,xn A Yn y U&0-

 Proof Let M -< (H(X), 8, /3, (Xn: n e co), H) be an elementary substruc-
 ture of cardinality w1 such that (Xn: n E o) e M. Represent M by a continu-

 ous increasing sequence K(M: 8 < w1) and UL by (U8: 8 < w1). Since (K2:
 8 < O 1) is a K-sequence there is a stationary set S of 8 such that there is an
 isomorphism P: M a -2 ; and 4"U8 c D8. Let s3 = M; n /3 and ,6 =
 M n 2 Then each 8 e S is risky for 0 and U8. Since UA is obedient, there is
 a risky 8 E S such that U C (of (w )i n c . Since /3 e limcof(o1), there is a
 4 e cof(wl) n s" such that (Xn: n c o) ce,

 Let 77: M 21 be the isomorphism. Since pp'(41)(an A v(x n)) =

 {y& J(4) y < an A 7r(xnj)}; we get

 V V7T (pp) (an A 7T(xn.))) < V 7TV(an) A x,,.
 j~a jE

 Since T8 ,C , VC U V7 L(ppT(?)(an A 7T(xn))) C U n; hence VjE ,7T an)
 A Xn) C (4. Let yn = 7V-'(a n) if there is a j, n = n1 and yn = 0 otherwise. O

 Claim 12. Suppose that (ai: i e ) _ cof(ol) n @2 is an increasing se-
 quence of ordinals and (Ui: i e w) is an increasing sequence of obedient
 ultrafilters with each Ui _ * Then for all / > supi a ai, there is an obedient
 ultrafilter V _ such that for all i, V D Ui.

 Proof. Let / > sup ai, /3 c cof(o1) n o2. Let ((02, s3): 8 < o1) be a
 continuous representation of and / so that for all i e w, ai c s?.

 Then without loss of generality, ((06 n 2a' s8 n ai): 8 < wl) is a con-
 tinuous representation of tfa and ai for each i.

 Since Ua is obedient there is a Ci C c1 closed and unbounded such that for
 all risky 8 E Ci and all 4 c cof(ol) n (sa n Ci), T,6,, c Uai.

 Let C = l,ci We build the ultrafilter Up c in c1 stages (UT":
 8 < o1) such that U ? D Ui, Ua and TT8 nf is an ultrafilter.

 As we argued in claim 10, if 8 is a risky stage for T8 n then 8 is risky

 for each U1 I a = UaU n 28. Hence, if 8 e C and %U( n (,, - u ) _
 then for all 4 < sup ai, if 4 e cof(ol) n s8 then Ta , _ Ui & ,Ua*. As in claim 10
 this implies that U, cof(w1) fl(sS u 4, has the f.i.p. with l4B. (Essentially, since

 for any b c TU3 n 2' and any z e T, , there is a projection of b A z in Ua and
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 hence every element of Ua is compatible with b A z.) For such 8, we let T+ 1

 be any filter extending U4 U {Tii,: E E cof(w1) n (s U {u3})} such that
 (,B8' 1n is an ultrafilter on IA extending UT and IU+ 1 U I < ?o.

 At other 8 we let U,+1 extend U8 arbitrarily so that U '8+1 n q +1 is an

 ultrafilter on A and IjUr+1 4I < S.
 By construction, at risky 8 c C n { 8*: (4, n (8A - U Ra) c for

 all 4 c ({/3} u sl) n cof(w1), Ta ,, C Us. Hence U(i is obedient. This proves
 claim 12. As in claim 10 we could prove something stronger, namely, if a C -4

 is countable and has the f.i.p. with U? Ew.Ua, then there is an obedient ultrafilter
 U C ,B such that U aiC Ua3. 0

 We are now in a position to define our forcing conditions P: A condition

 U E P is an obedient ultrafilter U C Fl_ for some a c cof(wl) n W2. If U C_
 and V_ C are obedient ultrafilters and a < 1, a, 13 c cof(wl) n w2 then
 V l- U if and only if V D U.

 Claims 10 and 12 show that if G C P is generic then U = UG c D is an

 ultrafilter such that for all a cz cof(o) n q 2 U n ~A is obedient and P is
 countably closed forcing.

 If we can show that P adds no new cgsequences, then by Lemma 11 we

 will have shown that I lwl/UI = o1 in VP. Thus we will have proved Theorem 9
 if we can show:

 Claim 13. P is (w2, oo)-distributive.

 Proof Let (Da: a < c) C P be a collection of open dense sets and
 UO E P.

 Let M -< (H(X), 8, A, H, (Da: a < w1), UO, Kds: 8 < co1), A) be an ele-
 mentary substructure of H(X) of cardinality c1 such that MwL C M. Let

 13 = M n C02. Let (yi: i c w1) be a continuous increasing sequence of ordinals
 cofinal in /P such that for all i E c1, Yi+1 E cof(o1).

 We construct a sequence of obedient ultrafilters Uj C Yin some aj, and
 Ui1 4 D such that U .iUa is an obedient ultrafilter on Ad and aci ? Yi.

 Represent Ad and 13 by a continuous increasing sequence (((a, s8):
 8 < o1). Then for 8* < 1, ((SB,0 s8): 8 < 8*) E M. For each a < 1, the
 sequence ((qa n A,, sa n a): 8 < w1) is a continuous representation of Fly
 and a.

 Suppose we have chosen (Uj: i < 8). Then for each i < 8 there is a closed
 unbounded set Ci C o, witnessing reliability of Uj for the representation
 ((Ka ni q ,' n as ) 8a) 3 1). Let U. = Uj<,Uj and a8 = supi<8aci.

 Case 1. 3 Ef nj,<6C? and 8 is risky for 0, s and U i < MUi n 0d and {a a :
 i < 8} is cofinal in s3.
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 544 M. FOREMAN, M. MAGIDOR, S. SHELAH

 In this case we want to claim that T A has the f.i.p. with Uj 8Uj. Otherwise

 there is a d E Ui and a z enO b C T , such that d A zn #, b 0. But d A
 Zjn T(b) aj, b * 0, a contradiction.

 By claims 10 and 8 we can find an obedient UQ+1 c - a such that
 U^+1 E ?^, cv^+l 2 Y^E1 and U8+1 2 u U2<4U.

 Case 2. Otherwise. Let UQ+1 cE D, be an arbitrary obedient ultrafilter on

 some f-a with U8 +1 2Uj<LUh and a8+1 >? Y8+1
 We claim that U= Uj, Uj is an obedient ultrafilter on ??,. Since (Kai:

 i E C1) are cofinal in , UilUi is an ultrafilter on -.
 Let Ci witness the reliability of Uj for the sequence (K n q a: 8 <

 Let

 C = A/ q Ci n 6 8: {a a: i < 8} is cofinal in s}.
 i<cl

 Let 8 E C be risky for 0 and U. Then 8 is risky for all U.a, i < 6. Hence for all
 4 e s8, T c U. Hence we are in case 1. Thus T8 c U.

 But then for all risky 6 E Cand all 4 E (s' u {UB}) n 1, T 4, C U;hence

 U is obedient and U c fl ,,,1D, g
 This completes the proof of Theorem 9.
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