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Abstract We produce a model of ZFA+PAC such that no outer model of ZFAC has
the same pure sets, answering a question asked privately by Eric Hall.
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1 Models of ZFA

The axiom system ZFA is a natural modification of Zermelo–Fraenkel set theory (ZF)
allowing for the existence of non-set elements, called atoms. We refer the reader to
Chapter 4 of [7], pages 249–261 of [6] or Chapter 7 of [3] for a specific definition,
and background for some of the techniques below. Sets in a model of ZFA whose
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transitive closures do not contain atoms are called pure sets. The pure sets form an
inner model of ZF; the axiom PAC asserts that this inner model satisfies the Axiom
of Choice. The theory ZFAC extends ZFA with the statement that Choice for all sets
(given ZFA+PAC, this amounts to asserting that the set of atoms can be wellordered).
In this paper we produce a model of ZFA + PAC such that no outer model of ZFAC
has the same pure sets, answering a question asked privately by Eric Hall.

Given a nonempty set A disjoint from {∅}, we define the following hierarchy over
A, indexed by ordinals:

• P0,∗(A) = A;
• Pα+1,∗(A) = (Pα,∗(A) ∪ P(Pα,∗(A)))\{∅};
• Pβ,∗(A) = ⋃

α<β Pα,∗(A) when β is a limit ordinal;
• P∞,∗(A) = ⋃

α∈Ord Pα,∗(A).

Let us say that an atom set is a nonempty set A such that no member of A is in the
transitive closure of any other member. Letting any one element of an atom set A
represent the emptyset, and the other members of A represent atoms, P∞,∗(A) is the
domain of a model of ZFA.

Remark 1.1 A bijection ρ : A → B between atom sets A and B naturally induces a
class-sized isomorphism πρ : P∞,∗(A) → P∞,∗(B) which restricts, for each ordinal
α, to a bijection from Pα,∗(A) to Pα,∗(B).

Our approach to models of ZFA differs from the traditional Fraenkel–Mostowski
method (see [3,6,7]), and we do not know how to produce our result in their way.
The models we consider will have as their domains subclasses of classes of the form
P∞,∗(A). We concentrate on subclasses of P∞,∗(A) (for a given atom set A) which
are constructed over A using certain elements of P∞,∗(A) as predicates.

Given sets X and B inP∞,∗(A), we let DefB(X) denote the collection of nonempty
subsets of X which are definable over X using parameters from X and predicates
corresponding to the members of B. We then define:

• U A,B
0 = A;

• U A,B
α+1 = U A,B

α ∪ DefB(U A,B
α );

• U A,B
β = ⋃

α<β U
A,B
α when β is a limit ordinal.

• U A,B∞ = ⋃
α∈OrdU A,B

α .

Finally, given a ∈ A, we let U(a, A, B) be the model of ZFA with domain U A,B∞ ,
where a is interpreted as the emptyset. Then U(a, A, B) is (up to isomorphism) the
smallest wellfounded proper class model of ZFA with A\{a} as its set of atoms and a
as its emptyset which is closed under intersections with the members of B. A standard
proof by induction shows that every element ofU(a, A, B) is definable inU(a, A, B)

from a finite set of its ordinals, a finite subset of A and finitely many predicates from
B (i.e., restrictions of elements of B to U(a, A, B)).

Remark 1.2 Let A be an atomset, leta be an element of A, let B be a set inP∞,∗(A) and
letρ : A → A be a permutation. ByRemark 1.1,ρ induces a class-sized automorphism
πρ ofP∞,∗(A). Ifρ(a) = a andπρ(b) = b for each b ∈ B, thenwe have the following
standard facts.
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• The restriction of πρ to U(a, A, B) is an automorphism of U(a, A, B).
• If X is a set inU(a, A, B)which is definable from sets which are fixed by πρ , then

X is fixed by πρ .

The following is one version of our main theorem.

Theorem 1.3 In a c.c.c. forcing extension L[G] of L there is a model U of ZFA of
the form U(a, A, B), for some atom set A in L, some element a of A and some B in
P∞,∗(A), such that the pure part of U is isomorphic to L and such that in no outer
model of L[G] is there a model of ZFAC containing U whose pure part is isomorphic
to L.

More specifically, the model U in the statement of Theorem 1.3 will contain a set
such that any outer model of U wellordering this set will contain an injection from
(ωL

3 )U to P(ωL
1 )U, and therefore will have a subset of (ωL

3 )U which is not in LU.
In Sect. 2wegive a proof of Theorem1.3.Our proof uses amodel theoretic construc-

tion due to Hjorth which produces a sentence inLℵ1,ℵ0 homogeneously characterizing
ℵ1 (in a sense which will be made precise). We briefly discuss this construction and
related results in Sect. 3. Section 4 illustrates the need for such a construction. We
refer the reader to pages 25–27 of [5] for a definition of Lℵ1,ℵ0 .

2 The proof

Our proof requires sets (in a model of ZFA) which are not wellordered (and moreover
admit sufficiently many automorphisms) and fixed upper or lower bounds for the
cardinalities of these sets in outer models of ZFAC. In Sect. 4 we show that simply
choosing a large or small set of atoms does not suffice for this. In our proof we use
a partition into ℵ3 many infinite sets to get a lower bound of ℵ3 for one set (K ), and
Theorem 2.1 below to get an upper bound of ℵ1 for another (Q).

Theorem 2.1 There exist in L a definable countable relational vocabulary τ contain-
ing a unary predicate Q and a definable sentence φ in Lℵ1,ℵ0(τ ) such that ZF proves
the following:

• φ has a unique countable model, up to isomorphism;
• φ has no model of cardinality greater than ℵ1;
• if M is a countable model of φ and M is the domain of M, then QM is infinite,
and for each finite M ′ ⊆ M there is a finite Q′ ⊆ QM such that every permutation
of QM fixing Q′ pointwise extends to an automorphism ofM fixing M ′ pointwise.

Theorem 2.1 is an immediate consequence of arguments in each of [4] and [8] (in
the latter case, as exposed in [1]). We discuss in Sect. 3 how to get Theorem 2.1 from
the arguments in [4]. A result of Gao [2] shows that the cardinality bound of ℵ1 for
models of φ cannot be replaced with ℵ0 in the statement of Theorem 2.1.

Beginning the proof of Theorem 1.3, fix sets A, I and M in L such that

• M is a countably infinite subset of I disjoint from {∅} ∪ (ωL
3 × ω);

• I = {∅} ∪ (ωL
3 × ω) ∪ M ;
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• A = {ai : i ∈ I } and, for all i, j in I , if i �= j then ai �= a j ;
• A is an atom set;
• ai = i for all i ∈ M .

Let ρ∅ be {(∅, a∅)}; this is a bijection between atom sets. For each x ∈ L, we let x∗
denote πρ∅(x) as defined in Remark 1.1 (so x∗ is the copy of x in P∞,∗({a∅})). We
let L∗ denote the class of sets of the form x∗ for x in L.

Fix a vocabulary τ and a sentence φ as in the statement of Theorem 2.1, and let
M be a model of φ∗ with domain M . Let C be the set of M-interpretations of the
relations in τ ∗. Treating finite sequences as iterated ordered pairs, each element of C
is in P∞,∗(M).

Working in L, let

• K denote the set of pairs {(α∗, aα,i ) : α < ωL
3 , i ∈ ω},

• for each α < ωL
3 , Kα denote the set {(α∗, aα,i ) : i ∈ ω} and

• for some enumeration 〈Tn : n ∈ ω〉 in L of the relation symbols in τ , T be the set
of pairs (n∗, c) for which c is in theM-interpretation of T∗

n .

Let B0 = {K , M, T }. The model U0 = U(a0, A, B0) is definable in L, so L∗ is its
class of pure sets. The model M is a member of U0.

We let P be the forcing whose conditions are finite partial functions

p : K × QM → 2∗,

ordered by containment. Then P is in U0.
Let G ⊆ P be a U0-generic filter. Let F = ⋃

G, and let B = B0 ∪ {F}. The model
U(a0, A, B) (which we will call U) is equivalent to U0[G].

The following lemma is the key step in the proof of our main theorem.

Lemma 2.2 The pure sets of U are exactly the members of L∗.

Proof Suppose that τ is a P-name in U0 for a set of ordinals, and that some condition
p0 ∈ P forces the realization of τ not to be an element of L∗. Then for each condition
p below p0 there exist an ordinal γ and conditions q, q ′ below p such that q � γ̌ ∈ τ

and q ′ � γ̌ /∈ τ . Using this one can find a sequence Ȳ = 〈Yi : i ∈ ω〉 in U0 such
that each Yi is a nonempty set of P conditions below p0, closed under strengthenings,
and such that members of distinct Yi ’s are incompatible. We aim to show that such a
sequence cannot exist.

The sequence Ȳ is ordinal definable in U0 from a finite subset of A ∪ {K , M, T },
which implies that it is definable from

• a finite set of U0-ordinals,
• K , M, T ,
• a finite set M ′ ⊆ M and
• a finite set K ′ ⊆ K .

Let Q′ = M ′ ∩ QM. Expanding Q′ if necessary, we may assume (using the fact that
φ witnesses Theorem 2.1) that every permutation of QM fixing Q′ pointwise extends
to an automorphism of M fixing M ′ pointwise. For each i ∈ ω let Y ∗

i be the set of
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p ∈ Yi whose domain contains K ′ ×Q′. Since each Yi is closed under strengthenings,
the sets Y ∗

i are also nonempty.
Let Z be the set of permutations of A which

• fix the members of {a∅} ∪ K ′ ∪ M ′ pointwise,
• fix K , M and the members ofC setwise (i.e., restrict to automorphisms ofM) and
• for each α < ωL

3 , fix Kα setwise.

Eachmember of Z induces an automorphismof themodelU0 whichmaps the sequence
〈Y ∗

i : i ∈ ω〉 to itself. As no two members of different Y ∗
i ’s are compatible, it follows

that no permutation in Z induces an automorphism which moves a member of one Y ∗
i

to a condition compatible with a member of another. We will derive a contradiction
by finding an element of Z which does this.

Let us say that the type of a condition p ∈ P is its restriction to K ′ × Q′. As there
are only finitely many possible types, the following claim finishes the proof of the
lemma.

Claim 2.3 If P-conditions p and q have the same type, then there is a permutation ρ

in Z mapping p to a condition compatible with q.

We fix p and q and prove the claim. We have that ρ must fix the members of
{a∅} ∪ K ′ ∪ M ′ pointwise and restrict to an automorphism of M. The rest of ρ � K
can be chosen so that each Kα (α < ωL

3 ) is fixed setwise and (ρ(a), c) /∈ dom(q), for
all (a, b) ∈ dom(p)∩((K\K ′)×QM) and c ∈ QM. Nowwecan chooseρ � (QM\Q′)
so that for all (a, b) ∈ dom(p) ∩ (K × (QM\Q′)) there is no (a′, b′) ∈ dom(q) with
ρ(b) = b′. Finally, we can extend ρ to M to form an automorphism of M. Any
permutation ρ satisfying these conditions witnesses the claim. ��

Now suppose that U+ is an outer model of U satisfying ZFAC. By Theorem 2.1,
the set QM has cardinality at most ℵ1 in U+. Since K is partitioned into ℵL∗

3 many
nonempty disjoint sets in U0, K has cardinality at least |ℵL∗

3 | in U+. For each pair of
distinct elements a, a′ of K , however, there exists by the genericity of G a b ∈ QM

such that F(a, b) �= F(a′, b). This gives |ℵL∗
3 | many distinct functions from ωL∗

1 to 2
in U+, and thereby a pure set not in U (either an injection from ωL∗

3 to ωL∗
2 or a new

subset of ωL∗
1 , since L∗ |� 2ℵ1 = ℵ2).

3 Hjorth’s construction

In this section we briefly discuss how to get a proof of Theorem 2.1 from Hjorth’s [4]
and its extension as exposed in [1]. The difference between the two presentations is
that the relation Q does not appear in [4]. The addition of Q in [1] requires only routine
modifications.

The vocabulary τ consists of

• a unary relation symbol Q,
• binary relation symbols P and Sn (n ∈ ω),
• (k + 2)-ary relation symbols Rk for each k ∈ ω.

Modifying Hjorth’s argument slightly, we define a preliminary sentence φ0 consisting
of the conjunction of the following assertions:
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• ∀x, y (P(x, y) → (¬Q(x) ∧ Q(y)),
• ∀x (¬Q(x) → ∃!y P(x, y)),
• (for each n ∈ ω) ∀x, y (Sn(x, y) → ¬Q(x) ∧ ¬Q(y) ∧ x �= y),
• for each k ∈ ω, the assertion that for all x0, . . . , xk+1

Rk(x0, . . . , xk+1) → ((x0 �= x1) ∧
(

∧

i<k+2

¬Q(xi )

)

,

• the sentence asserting that for all x �= y such that ¬Q(x) and ¬Q(y), there is a
unique n ∈ ω such that Sn(x, y) holds,

• the sentence asserting that for each k ∈ ω and all x0, x1, y1, . . . , yk−1, if
Rk(x0, x1, y0, . . . , yk−1) holds, then {y0, . . . , yk−1} has size k and is the set of
z such that for some n ∈ ω, Sn(x0, z) ∧ Sn(x1, z) holds,

• the sentence asserting that for all x0 �= x1 such that ¬Q(x0) and ¬Q(x1), there
exist k ∈ ω and y0, . . . , yk−1 such that Rk(x0, x1, y0, . . . , yk−1) holds.

We list some examples of finite models of φ0:

• the unique τ -structure with empty domain;
• for any finite set M , the τ -structure M with domain M such that QM = M and
all other relations in τ are interpreted as ∅;

• a τ -structure M with two elements a and b, with PM = {(a, b)}, QM = {b} and
all other relations in τ interpreted as ∅.
Lemma 3.1 below is essentially Lemma 3.1 of [4]. The only difference is that in

in Lemma 3.1 of [4] there is no predicate Q, so in effect the models there are simply
the ¬Q part of the models here. Extending the argument there to accommodate the
predicate Q causes no additional difficulties, and no additional work, as we can take
QM2 to be QM0 ∪ QM1 and π1 and π2 to be identity functions in the case where
M0 ∩ M1 = M . We note that the lemma holds even in the case where M = ∅. The
lemma shows that we can build a countable limit model M∗ (in the sense of Section
7.1 of [5]) with the following properties:

• M∗ |� ∀y (Q(y) → ∃∞x P(x, y));
• every finite subset of the domain of M∗ is contained in a finite substructure of
M∗ satisfying φ0;

• every isomorphism between finite substructures satisfying φ0 extends to an auto-
morphism of M∗.

The sentence φ from the statement of Theorem 2.1 is the Scott sentence of the limit
modelM∗, which characterizesM∗ up to isomorphism (see [5], for instance). Lemma
3.3 of [4] shows that φ has no model of cardinality ℵ2 or greater (briefly, if N ≺ N ′
are models of φ, and b ∈ (¬Q)N ′ \(¬Q)N , then the map that sends each a ∈ (¬Q)N
to the unique n such that (a, b) ∈ SN ′

n is injective). Theorem 2.1 then follows from
Lemma 3.1, since for each finite M ′ we need only to find a finite substructure M′ of
M∗ satisfying φ0 with domain containing M ′, and let Q′ be QM′

.
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Lemma 3.1 If M is a finite model of φ0 with domain M and M0, M1 are finite
models of φ extending M with domains M0 and M1 respectively, then there exist a
finite model M2 of φ0 and, letting M2 be the domain of M2, τ -embeddings

π0 : M0 → M2, π1 : M1 → M2

such that π0 � M = π1 � M. Moreover, if M = M0 ∩ M1 then M2 can be taken to be
M0 ∪ M1.

4 Cardinalities of atom sets

In this section we show that the cardinality of an atom set A in L has no effect, for
any a0 ∈ A, on the cardinality of A in outer models of U(a0, A,∅) satisfying Choice
and having the same pure part. Note that a model of the form U(a0, A, {gA}) satisfies
Choice if gA is a bijection between some ordinal of of LU(a0,A,∅) and A.

Theorem 4.1 Let A be an infinite atom set in L, let a0 be an element of A and let κA

be an infinite cardinal of LU(a0,A,∅). In any outer model of L in which |A| = |κA|,
there is a bijection gA : κA → A such that U(a0, A, {gA}) has the same pure sets as
U(a0, A,∅).

Proof Let ρA be the set {(∅, a0)}. Then there is an infinite cardinal κ of L such that
κA = πρA (κ) (where πρA is as defined in Remark 1.1).

Let B be an atom set of cardinality κ in L, and let b0 be an element of B. Let ρB be
the set {(∅, b0)} and let κB be πρB (κ). Let g : κ → B be a bijection, and let gB be the
set {(πρB (α), g(α)) : α < κ}. Then gB is a bijection from κB to B, andU(b0, B, {gB})
has the same pure sets as U(b0, B,∅).

Now suppose that ρ : B → A is a bijection in some outer model of L sending b0
to a0. Let gA be the set {(πρA(α), ρ(g(α))) : α < κ}. Then the restriction of πρ to
U(b0, B, {gB})maps it isomorphically toU(a0, A, {gA}), and sends κB to κA. Then gA
is a bijection from κA to A, and U(a0, A, {gA}) has the same pure sets as U(a0, A,∅).

��
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