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ABSTRACT

The abelianization is a functor from groups to abelian groups, which is left

adjoint to the inclusion functor. Being a left adjoint, the abelianization

functor commutes with all small colimits. In this paper we investigate

the relation between the abelianization of a limit of groups and the limit

of their abelianizations. We show that if T is a countable directed poset

and G : T −→ Grp is a diagram of groups that satisfies the Mittag-Leffler

condition, then the natural map

Ab(lim
t∈T

Gt) −→ lim
t∈T

Ab(Gt)

is surjective, and its kernel is a cotorsion group. In the special case of a

countable product of groups, we show that the Ulm length of the kernel

does not exceed ℵ1.

0. Introduction

The abelianization functor is a very fundamental and widely used construction

in group theory and other mathematical fields. This is a functor

Ab : Grp −→ Ab,

from the category of groups to the category of abelian groups, equipped with a

natural projection map

πG : G −→ Ab(G),
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for every group G. This construction is universal in the sense that for any group

G, any abelian group A and any morphism of groups f : G → A, there is a

unique morphism of (abelian) groups f : Ab(G) −→ A such that the following

diagram commutes:

G
πG ��

f ���
��

��
��

��
Ab(G)

f

��
A.

Expressed in the language of category theory, the above universal property

implies that the functor Ab : Grp −→ Ab is left adjoint to the inclusion functor

inc : Ab −→ Grp. Being a left adjoint, the functor Ab commutes with all

small colimits. That is, given any small category D, and any functor (diagram)

F : D −→ Grp, the natural morphism

colim
d∈D

Ab(Fd) −→ Ab(colim
d∈D

Fd)

is an isomorphism. However, the abelianization functor certainly does not com-

mute with all small limits. That is, given a small category D and a diagram

G : D −→ Grp, the natural morphism

Ab( lim
d∈D

Gd) −→ lim
d∈D

Ab(Gd)

need not be an isomorphism. Since this is a morphism of abelian groups, a

natural way to “measure” how far it is from being an isomorphism is to consider

its kernel and cokernel. Thus, a natural question is whether the kernel and

cokernel of the natural map above can be any abelian groups, or are there

limitations?

In this paper we consider the case where the diagram categoryD is a countable

directed poset, considered as a category which has a single morphism t → s

whenever t ≥ s. We show

Theorem 0.0.1 (see Theorem 2.0.6): Let T be a countable directed poset and

let G : T −→ Grp be a diagram of groups that satisfies the Mittag-Leffler

condition. Then the natural map

Ab(lim
t∈T

Gt) −→ lim
t∈T

Ab(Gt)

is surjective, and its kernel is a cotorsion group.
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Recall that G satisfies the Mittag-Leffler condition if for every t ∈ T there

exists s ≥ t such that for every r ≥ s we have

Im(Gs → Gt) = Im(Gr → Gt).

If G has surjective connecting homomorphisms orG is a diagram of finite groups,

then G satisfies the Mittag-Leffler condition.

Remark 0.0.2: A generalization of Theorem 0.0.1 to arbitrary directed posets,

as well as the question of which cotorsion groups can appear as the kernel of a

map as in Theorem 0.0.1, will be addressed in future papers.

Recall that a group G is called perfect if Ab(G) = 0. We thus obtain the

following corollary:

Corollary 0.0.3: Let T be a countable directed poset and let G : T −→ Grp

be a diagram of perfect groups that satisfies the Mittag-Leffler condition. Then

Ab(lim
t∈T

Gt)

is a cotorsion group.

Cotorsion groups are abelian groups A that satisfy

Ext(Q, A) = 0

(or, equivalently, Ext(F,A) = 0 for any torsion free abelian group). That is, an

abelian group A is cotorsion iff for every group B, containing A as a subgroup,

and satisfying B/A ∼= Q, we have that A is a direct summand in B. This

is a very important and extensively studied class of abelian groups. There is

a structure theorem, due to Harrison [Har], which classifies cotorsion groups

in terms of a countable collection of cardinals together with a reduced torsion

group. We note that the functor

lim1 : GrpN −→ Set∗

is used in the proof of Theorem 0.0.1, and it is known that an abelian group is

cotorsion if and only if it is in the image of this functor when restricted to AbN

(see [WaHu] and Section 1.2).

Our main tool in proving Theorem 0.0.1 is the following result, which we

believe is interesting in its own right:
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Theorem 0.0.4 (see Theorem 2.0.4): Let G : N −→ Grp be a tower of groups.

We denote by Gω = limn∈N Gn its limit and by

φn : Gω → Gn

the natural map, for every n ∈ N. Suppose that F � Gω is a normal subgroup

such that the quotient Gω/F is abelian and for every n ∈ N we have

φn(F ) = φn(Gω).

Then the abelian group Gω/F is cotorsion.

Now suppose that we are given a countable collection of groups (Hn)n∈N.

Then we can construct from them a diagram G : N −→ Grp by letting Gn be

the product H1 × · · · × Hn, for every n ∈ N, and Gm → Gn be the natural

projection, for every m ≥ n. Since for every n ∈ N we have

Ab

(∏
i≤n

Hi

)
∼=

∏
i≤n

Ab(Hi),

we see that the natural map in Theorem 0.0.1 is the natural map

Ab

(∏
i∈N

Hi

)
−→

∏
i∈N

Ab(Hi).

Clearly all the structure maps in the diagram G are surjective, so by Theorem

0.0.1 we have that the natural map is surjective, and its kernel is a cotorsion

group. But in this case we are able to say more about the kernel of the natural

map. Namely, we show

Theorem 0.0.5 (see Theorem 3.0.8): Let (Hn)n∈N be a countable collection of

groups. Then the natural map

Ab

(∏
i∈N

Hi

)
−→

∏
i∈N

Ab(Hi)

is surjective, and its kernel is a cotorsion group of Ulm length that does not

exceed ℵ1.

For a definition of the Ulm length of an abelian group, see Definition 1.3.2.

Remark 0.0.6: A generalization of Theorem 0.0.5 to arbitrary products, as well

as the question of whether our bound on the Ulm length of the kernel of the

map in Theorem 0.0.5 is strict or can be improved, will be addressed in future

papers.
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Remark 0.0.7: It is not hard to find examples where the natural map in Theorem

0.0.5 (and in particular, in Theorem 0.0.1) is not an isomorphism. We explain

in Remark 3.0.9 that if G is any group, the natural map

Ab(GN) −→ Ab(G)N

is an isomorphism if and only if the commutator width of G is finite. This gives

a lot of examples where this map is not an isomorphism. For instance, one can

take G to be a free group on more than one generator.

Again, we obtain the immediate corollary:

Corollary 0.0.8: The abelianization of a countable product of perfect groups

is a cotorsion group of Ulm length that does not exceed ℵ1.

This paper originated from a question posed to the second author by Em-

manuel Farjoun, from the field of algebraic topology. For the following discus-

sion, the word space will mean a compactly generated Hausdorff topological

space. It is known that the homology groups of a homotopy colimit of spaces

are computable from the homology groups of the individual spaces, by means

of a spectral sequence, while this is not true for the homology groups of a ho-

motopy limit. Farjoun asked what can be said about the natural map from

the homology of a homotopy limit to the limit of homologies. Since the homo-

topy groups of a homotopy limit are computable from the homotopy groups of

the individual spaces, by means of a spectral sequence, and we have a natural

isomorphism

H1(X) ∼= Ab(π1X),

for every pointed connected space X (see [GJ, Corollary 3.6]), a good place to

start seems to be the investigation of the behaviour of the abelianization functor

under limits. And indeed, using our results, we can say something also about

Farjoun’s question as the following corollary demonstrates:

Corollary 0.0.9:

(1) Let X : N −→ Top∗ be a diagram of pointed connected spaces. Suppose

that for every n ∈ N the structure map Xn+1 → Xn is a Serre fibration

and both π1X and π2X satisfy the Mittag-Leffler condition. Then the

natural map

H1(lim
n∈N

Xn) −→ lim
n∈N

H1(Xn)

is surjective, and its kernel is a cotorsion group.
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(2) Let (Yn)n∈N be a countable collection of connected spaces. Then the

natural map

H1

(∏
i∈N

Yi

)
−→

∏
i∈N

H1(Yi)

is surjective, and its kernel is a cotorsion group of Ulm length that does

not exceed ℵ1.

Proof. We begin with (1). Since X is a tower of pointed fibrations, we have for

every i ≥ 0 an exact sequence (see, for instance, [GJ, VI Proposition 2.15])

∗ −→ lim1
n∈Nπi+1Xn −→ πi lim

n∈N

Xn −→ lim
n∈N

πiXn −→ ∗.

Since π1X and π2X satisfy the Mittag-Leffler condition, we have that

lim1
n∈Nπ1Xn

∼= lim1
n∈Nπ2Xn

∼= ∗.

Thus, from the exact sequence in the case i = 0 we can deduce that limn∈NXn

is connected, so we have a natural isomorphism

H1(lim
n∈N

Xn) ∼= Ab(π1 lim
n∈N

Xn),

while from the exact sequence in the case i = 1 we obtain a natural isomorphism

π1 lim
n∈N

Xn
∼= lim

n∈N

π1Xn.

It is not hard to see that these isomorphisms fit into a commutative diagram

H1(limn∈NXn)
∼= ��

��

Ab(limn∈N π1Xn)

��
limn∈N H1(Xn)

∼= �� limn∈N Ab(π1Xn),

where the vertical maps are the natural ones. Now the result follows from

Theorem 0.0.1.

The proof of (2) is identical to (1), but we use Theorem 0.0.5 instead of

Theorem 0.0.1.

0.1. Organization of the paper. In Section 1 we recall some necessary

background from the theory of groups and abelian groups. In Section 2 we

prove Theorem 0.0.1 and in Section 3 we prove Theorem 0.0.5.
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0.2. Notations and conventions. We denote by N the set of natural num-

bers (including 0), by Z the ring of integers and by Q the field of rational

numbers. We denote by P the set of prime natural numbers and, for every

p ∈ P, we denote by Zp the ring of p-adic integers. Whenever we treat a ring

as an abelian group we mean its underlying additive group.

If G is a group, we denote its unit element by eG or just by e if the group is

understood.

If T is a small partially ordered set, we view T as a small category which has

a single morphism u → v whenever u ≥ v.

Acknowledgments. We would like to thank Emmanuel Dror-Farjoun for sug-

gesting the problem and for his useful comments on the paper. We also thank

Manfred Dugas, Brendan Goldsmith, Daniel W. Herden and Lutz Strüngmann

for helpful correspondences. Finally, we would like to thank the referee for his

useful comments and suggestions.

1. Preliminaries

In this section we recall some necessary background from the theory of groups

and abelian groups. The material is taken mainly from [Fu1], [GJ] and [Wei].

We assume basic familiarity with category theory [ML].

1.1. The abelianization functor. Let G be a group. Recall that the com-

mutator of two elements x and y of G is

[x, y] := x−1y−1xy ∈ G.

The commutator subgroup of G, denoted C(G), is the subgroup of G gener-

ated by the commutators. It is easily seen that C(G) is a normal subgroup of

G and we have

C(G) = {[x1, y1] · · · [xn, yn] |n ∈ N, xi, yi ∈ G}.
The commutator length of an element x in C(G) is the least integer n,

such that x is a product of n commutators in G. The commutator width of

G is the supremum of the commutator lengths of the elements in C(G) (which

is either a natural number or ∞).
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If f : G → H is a group homomorphism, then

f |C(G) : C(G) −→ C(H),

so C can be naturally extended to a functor from the category of groups to itself

C : Grp −→ Grp .

The abelianization of G is defined to be the quotient group

Ab(G) := G/C(G).

Clearly Ab(G) is an abelian group and if f : G → H is a group homomorphism,

we have an induced map

Ab(f) : Ab(G) −→ Ab(H).

This turns Ab into a functor from the category of groups to the category of

abelian groups

Ab : Grp −→ Ab .

We have a projection map

πG : G −→ Ab(G),

and this map is natural in G in the sense that it defines a natural transformation

of functors from groups to groups

π : IdGrp −→ Ab .

1.2. The Mittag-Leffler condition and lim1
. Let T be a poset. Recall

that according to our convention (see Section 0.2), we view T as a small category

which has a single morphism t → s whenever t ≥ s. Recall also that T is called

directed if for every t, s ∈ T there exists r ∈ T such that r ≥ t and r ≥ s.

Definition 1.2.1: Let T be a directed poset and let G : T −→ Grp be a diagram

of groups. Then G is said to satisfy the Mittag-Leffler condition if for every

t ∈ T there exists s ≥ t such that for every r ≥ s we have

Im(Gs → Gt) = Im(Gr → Gt).

Clearly every directed diagram of groups with surjective connecting homo-

morphisms satisfies the Mittag-Leffler condition, as does every directed diagram

of finite groups.
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Let G : T −→ Grp be a directed diagram of groups. For every t ∈ T we define

G′
t :=

⋂
s≥t

Im(Gs → Gt) < Gt.

Clearly, by restriction of the structure maps, we can lift G′ into a diagram

G′ : T −→ Grp. It is not hard to see that we have a natural isomorphism

limG′ ∼= limG. If G satisfies the Mittag-Leffler condition, then all the structure

maps of G′ are surjective.

Let G : N −→ Grp be a diagram of shape N in the category of groups. Such a

diagram will be called a tower of groups. For every n ∈ N we have a unique

morphism n+ 1 → n in N, and we define

gn+1 := G(n+ 1 → n) : Gn+1 → Gn.

Let limG denote the following subgroup of the product group:

limG :=

{
(xn) ∈

∞∏
n=0

Gn | ∀n ∈ N. gn+1(xn+1) = xn

}
.

Restricting the natural projections

∞∏
m=0

Gm −→ Gn,

we obtain maps limG −→ Gn, for every n ∈ N. Then limG, together with the

maps limG −→ Gn, is a limit of the diagram G in the category of groups Grp.

If for every n ∈ N the group Gn is abelian, that is, if G : N −→ Ab,

then clearly limG is also abelian. In fact, limG, together with the maps

limG −→ Gn, is a limit of G in the category of abelian groups Ab.

Definition 1.2.2: We define an equivalence relation∼ on the pointed set
∏∞

n=0Gn

by letting (xn) ∼ (yn) iff there exist (an) ∈
∏∞

n=0 Gn such that

(yn) = (anxngn+1(an+1)
−1).

We now define lim1 G to be the quotient pointed set

lim1G :=

∞∏
n=0

Gn/ ∼ .

It is not hard to see that lim1 can be lifted to a functor from the category of

towers of groups to the category of pointed sets.

Sh:1084



464 I. BARNEA AND S. SHELAH Isr. J. Math.

Remark 1.2.3: If for every n ∈ N the groupGn is abelian, that is, if G :N −→ Ab,

then limG and lim1 G are naturally identified with the kernel and cokernel of

the homomorphism
∞∏

n=0

Gn
∂−→

∞∏
n=0

Gn,

defined by

(an) 
→ (an − gn+1(an+1)).

In particular, in this case lim1 G is an abelian group (and not just a pointed set).

Furthermore, lim1 is a functor from the category of towers of abelian groups to

the category of abelian groups.

Theorem 1.2.4 ([GJ, Lemma VI.2.12]): The functor lim1 has the following

properties:

(1) If 0 → G1 → G2 → G3 → 0 is a short exact sequence of towers of

groups, then we have an exact sequence

0 → limG1 → limG2 → limG3 → lim1G1 → lim1G2 → lim1G3 → 0,

where the morphisms (except the middle one) are the ones induced by

the functors lim and lim1.

(2) If G is a tower of groups that satisfies the Mittag-Leffler condition, then

lim1 G = 0.

Remark 1.2.5: Exactness of the sequence appearing in the conclusion of Theo-

rem 1.2.4 (1) just means that the image of every map equals the inverse image

of the next map at the special point. If 0 → G1 → G2 → G3 → 0 is a short

exact sequence of towers of abelian groups, then this exact sequence becomes

an exact sequence of abelian groups.

1.3. Divisibility and the Ulm length.

Definition 1.3.1: Let A be an abelian group.

(1) If n ∈ Z, we denote nA := {na | a ∈ A}.
(2) If a ∈ A and n ∈ Z, we denote by n|a the statement that a ∈ nA.

(3) We say that A is divisible if

∞⋂
n=1

nA = A,

that is, if for every a ∈ A and every n ≥ 1 we have n|a.

Sh:1084



Vol. 227, 2018 ABELIANIZATION OF INVERSE LIMITS OF GROUPS 465

Definition 1.3.2: Let A be an abelian group. We define, recursively, for every

ordinal λ, a subgroup Aλ ⊆ A, called the λth Ulm subgroup of A, by:

(1) A0 := A.

(2) For every ordinal λ we define Aλ+1 :=
⋂∞

n=1 nA
λ.

(3) For every limit ordinal δ we define Aδ :=
⋂

λ<δ A
λ.

Clearly we have defined a function A(−) from ordinals to sets, that is monotone

decreasing and continuous. In particular, A(−) stabilizes, that is, there exists

an ordinal λ such that Aλ+1 = Aλ. The smallest such ordinal is called the Ulm

length of A, and is denoted by u(A). We always have u(A) ≤ |A|.
Clearly, for every ordinal λ, we have that Aλ is divisible iff u(A) ≤ λ. We

also have that Au(A) is the biggest divisible subgroup of A, and we denote

DA := Au(A).

Theorem 1.3.3 ([Fu1, Theorem 24.5]): Let A be an abelian group. Then the

following conditions are equivalent:

(1) A is divisible.

(2) A is an injective Z-module.

(3) A is a direct summand of every group containing A.

Definition 1.3.4: Let A be an abelian group. Then A is called reduced if A

has no divisible subgroups other then 0.

An easy consequence of Definition 1.3.2 and Theorem 1.3.3 is:

Theorem 1.3.5: Let A be an abelian group. Then there exists a reduced

subgroup RA of A, unique up to isomorphism, such that

A = DA ⊕RA.

The discussion on divisibility and the Ulm length can also be conducted for

every prime separately.

Definition 1.3.6: Let A be an abelian group and p a prime number. We say that

A is p-divisible if pA = A, that is, if for every a ∈ A we have p|a.
Definition 1.3.7: Let A be an abelian group and p a prime number. We define,

recursively, for every ordinal λ, a subgroup pλA ⊆ A, by:

(1) p0A := A.

(2) For every ordinal λ we define pλ+1A := p(pλA).

(3) For every limit ordinal δ we define pδA :=
⋂

λ<δ p
λA.
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Clearly we have defined a function p(−)A from ordinals to sets, that is monotone

decreasing and continuous. In particular, p(−)A stabilizes, that is, there exists

an ordinal λ such that pλ+1A = pλA. The smallest such ordinal is called the

p-length of A, and is denoted lp(A).

Clearly, for every ordinal λ, we have that pλA is p-divisible iff lp(A) ≤ λ. We

also have that plp(A)A is the biggest p-divisible subgroup of A.

1.4. The Ext functor and cotorsion groups.

Definition 1.4.1: Let A and C be abelian groups. We denote by Ext(C,A) the

set of equivalence classes of short exact sequences of the form

0 → A → B → C → 0,

where an exact sequence as above is called equivalent to an exact sequence

0 → A → B′ → C → 0,

if there exists an isomorphism B → B′ such that the following diagram com-

mutes:

0 �� A �� B ��

��

C �� 0

0 �� A �� B �� C �� 0.

The set Ext(C,A) can be given the structure of an abelian group by defining

[0 → A
f−→ B

g−→ C → 0] + [0 → A
f ′
−→ B′ g′

−→ C → 0]

to be

[0 → A
f
∏

f ′
−−−−→ B ⊕B′ g

∐
g′

−−−−→ C → 0].

The zero element in Ext(C,A) is the splitting short exact sequence

[0 → A → A⊕ C → C → 0].

It is also possible to lift the above construction to a functor

Ext : Abop ×Ab → Ab,

using pullbacks and pushouts in the category of abelian groups.
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Theorem 1.4.2 ([Wei, Application 3.5.10]): Let B be an abelian group and

A : Nop → Ab a diagram of injections of abelian groups:

A0 ↪→ A1 ↪→ · · · .
Then there is a short exact sequence

0 −→ lim1
n Hom(An, B) −→ Ext(colim

n
An, B) −→ lim

n
Ext(An, B) −→ 0.

Definition 1.4.3: An abelian group G is called cotorsion if Ext(Q, G) = 0.

In other words, an abelian group G is cotorsion iff for every abelian group H ,

that contains G as a subgroup, such that H/G ∼= Q, we have that G is a direct

summand of H .

2. Countable directed limits

The purpose of this section is to prove Theorem 0.0.1. We begin with a few

preliminary definitions and propositions.

In [Fu1, Section 22], Fuchs defines the notion of a system of equations over

an abelian group. There is an equation for every i ∈ I, with unknowns (xj)j∈J ,

where I and J can be arbitrary sets. We will only be using this notion with

I = J = N.

Definition 2.0.1: Let H be an abelian group. A system of equations over H

is the following data:

(1) An N×N matrix with entries in Z, denoted (ln,m), such that for every

n ∈ N the set

{m ∈ N | ln,m �= 0}
is finite.

(2) An element (vector) (an) in HN.

Note that for every n ∈ N we have an equation

∞∑
m=0

ln,mxm = an,

with unknowns (xm).

A solution, in H , to the system of equations is a vector (gn) in HN such that

substituting (xm) = (gm) in the system above yields correct statements.
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Proposition 2.0.2: Let H be an abelian group. Then the following conditions

are equivalent:

(1) The group H is cotorsion.

(2) Every system of equations over H , with matrix

1 −1 0 0 · · ·

1 −2 0 · · ·

1 −3 · · ·

1 · · ·

· · ·
has a solution in H .

(3) Every system of equations overH , with a matrix that is upper triangular

and has identities in its diagonal, has a solution in H .

Proof. (2)⇒(1). It is not hard to see that

Q := colim(Z
1−→ Z

2−→ Z
3−→ · · · ),

where n denotes multiplication by n. So, by Theorem 1.4.2, there is a short

exact sequence

0 −→ lim1
n Hom(Z, H) −→ Ext(colim

n
Z, H) −→ lim

n
Ext(Z, H) −→ 0.

There is a natural isomorphism Hom(Z,−) ∼= idAb and, since Z is a free abelian

group, we know that Ext(Z, H) ∼= 0. Thus we obtain an isomorphism

lim1(· · · 3−→ H
2−→ H

1−→ H) ∼= Ext(Q, H).

By implementing condition (2) above, we see that for every (an) ∈ HN there

exists (bn) ∈ HN such that for every n ∈ N we have bn = an + (n+ 1)bn+1. By

Remark 1.2.3, it follows that

lim1(· · · 3−→ H
2−→ H

1−→ H) ∼= 0.

Thus, Ext(Q, H) ∼= 0 so H is cotorsion (see Definition 1.4.3).
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(1)⇒(3). Let (ln,m), (bn) be a system of equations over H , and suppose that

ln,n = 1 and ln,m = 0 if n > m. Let us recall from [Fu1] the notion of an alge-

braically compact group. By [Fu1, Theorem 38.1], an algebraically compact

group can be defined as an abelian groupG such that every system of equations

over G, for which every finite subsystem has a solution in G, also has a global

solution in G. Since H is cotorsion, we know, by [Fu1, Proposition 54.1], that

there exists an algebraically compact group G and a surjective homomorphism

p : G → H . For every n ∈ N let us choose cn ∈ G, such that p(cn) = bn. Then

(ln,m), (cn) is a system of equations over G, and it is easy to see that every finite

subsystem of it has a solution in G. (If N ∈ N we can find a solution to the

first N equations as follows: First define xN+1, xN+2, . . . to be any elements in

G. Now define xN ∈ G according to the N ’th equation. Then define xN−1 ∈ G

according to the (N −1)’th equation, and so on.) Thus, we have a solution (gn)

to this system of equations in G. Now it is easily seen that (p(gn)) is a solution

to our original system of equations in H .

(3)⇒(2) is obvious so we are done.

Let H : N −→ Grp be a tower of groups. If m ≤ n, then we have a unique

morphism n → m in N. We define

φm,n := H(n → m) : Hn → Hm.

We denote by Hω the limit

Hω = lim
n∈N

Hn

and by

φn : Hω → Hn

the natural map, for every n ∈ N (see Section 1.2).

Lemma 2.0.3: Suppose that F < Hω is a subgroup and for every n ∈ N we

have

φn(F ) = φn(Hω).

Then for every f ∈ Hω and every n ∈ N, there exists f̄ ∈ Hω, such that:

(1) F f̄ = Ff .

(2) For every i < n we have φi(f̄) = eHi .
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Proof. Let f ∈ Hω and let n ∈ N. If n = 0 let us choose f̄ := f . Suppose

n > 0. By the hypothesis of the lemma we know that

φn−1(F ) = φn−1(Hω).

Since φn−1(f) ∈ φn−1(Hω), we obtain that there exists f ′ ∈ F such that

φn−1(f
′) = φn−1(f).

We now define

f̄ := (f ′)−1f ∈ Hω,

so clearly F f̄ = Ff .

Now let i < n. The following diagram commutes:

Hω

φn−1 ��

φi ���
��

��
��

� Hn−1

φi,n−1

��
Hi.

It follows that

φi(f
′) = φi,n−1(φn−1(f

′)) = φi,n−1(φn−1(f)) = φi(f),

so we have

φi(f̄) = (φi(f
′))−1φi(f) = eHi ,

which finishes the proof of our lemma.

Theorem 2.0.4: Suppose that F�Hω is a normal subgroup such that T :=Hω/F

is abelian and for every n ∈ N we have

φn(F ) = φn(Hω).

Then the abelian group T is cotorsion.

Proof. Let (fn) be an element in TN. By Proposition 2.0.2, we need to show

that there exists an element (gn) in TN such that for every n ∈ N we have

gn = fn + (n+ 1)gn+1.

Let n ∈ N. We have

fn ∈ T = Hω/F,

so we can choose f ′
n ∈ Hω such that

[f ′
n] := Ff ′

n = fn.
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By Lemma 2.0.3, there exists f̄n ∈ Hω, such that:

(1) [f̄n] = [f ′
n] = fn.

(2) For every l < n we have φl(f̄n) = eHl
.

For every n > l we define ḡn,l := eHl
.

Now, let l ≥ 0 be fixed. We have defined ḡn,l ∈ Hl for every n > l. Let us

now define ḡn,l ∈ Hl for every n ≤ l recursively, using the formula

ḡn,l = φl(f̄n)ḡ
n+1
n+1,l.

That is, we define

ḡl,l =φl(f̄l)ḡ
l+1
l+1,l = φl(f̄l),

ḡl−1,l =φl(f̄l−1)ḡ
l
l,l = φl(f̄l−1)φl(f̄l)

l,

and so on.

We have now defined ḡn,l ∈ Hl for every n, l ∈ N, and clearly the formula

ḡn,l = φl(f̄n)ḡ
n+1
n+1,l

is now satisfied for every n, l ∈ N. (Note that whenever n > l we have

φl(f̄n) = eHl
by (2) above.) For every n ∈ N we now define

ḡn := (ḡn,l)l∈N ∈
∏
l∈N

Hl.

Recall from Section 1.2 that

Hω
∼=

{
(xl)l∈N ∈

∏
l∈N

Hl | ∀l ∈ N. φl,l+1(xl+1) = xl

}
.

We want to show that for every n ∈ N we actually have ḡn ∈ Hω, that is, that

for every n, l ∈ N we have

φl,l+1(ḡn,l+1) = ḡn,l.

Clearly, this follows from the following lemma, taking i = l + 2:

Lemma 2.0.5: Let l ∈ N be fixed. Then for every i ≤ l+2 and every n > l−i+1

we have

φl,l+1(ḡn,l+1) = ḡn,l.

Proof. We prove the lemma by induction on i. When i = 0 then n > l + 1 so

we have

ḡn,l+1 = eHl+1
, ḡn,l = eHl
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and the lemma is clear. Now suppose we have proven the lemma for some

i < l+ 2, and let us prove it for i+ 1. Let n > l − i. We know that

ḡn,l+1 = φl+1(f̄n)ḡ
n+1
n+1,l+1.

It follows that

φl,l+1(ḡn,l+1) = φl,l+1(φl+1(f̄n))φl,l+1(ḡn+1,l+1)
n+1.

Since n+ 1 > l− i + 1, we can use the induction hypothesis to obtain

φl,l+1(ḡn,l+1) = φl(f̄n)ḡ
n+1
n+1,l = ḡn,l,

which proves our lemma.

Let n ∈ N. We have shown that ḡn ∈ Hω. We define

gn := [ḡn] ∈ Hω/F = T.

For every l ∈ N we have an equality in Hl

ḡn,l = φl(f̄n)ḡ
n+1
n+1,l.

Thus in Hω we have

ḡn = f̄nḡ
n+1
n+1.

Passing to equivalence classes we obtain the following equality in T = Hω/F :

[ḡn] = [f̄n][ḡn+1]
n+1.

But T is abelian, so in additive notation we obtain

gn = fn + (n+ 1)gn+1,

which finishes the proof of our theorem.

We now turn to the main result of this section.

Theorem 2.0.6: Let T be a countable directed poset and let G : T −→ Grp

be a diagram of groups that satisfies the Mittag-Leffler condition. Then the

natural map

ρ : Ab(lim
t∈T

Gt) −→ lim
t∈T

Ab(Gt)

is surjective and its kernel is cotorsion.
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Proof. Since T is a countable directed poset, there exists a cofinal functor

N −→ T. Thus we can assume that T = N.

We have the following short exact sequence of towers of groups:

0 → C(G) → G → Ab(G) → 0.

Thus, by Theorem 1.2.4, we have an exact sequence

0 → limC(G) → limG → limAb(G) → lim1C(G) → lim1G → lim1 Ab(G) → 0.

Since G satisfies the Mittag-Leffler condition, it is not hard to see that C(G)

also satisfies the Mittag-Leffler condition. (Note that for every structure map

φ : Gn → Gm we have φ(C(Gn)) = C(φ(Gn)).) Thus, by Theorem 1.2.4, we

have lim1 C(G) = 0 so we obtain a short exact sequence of groups

0 → limC(G) → limG → limAb(G) → 0.

In particular, limG → limAb(G) is surjective, so the map it induces

ρ : Ab(limG) → limAb(G)

is also surjective.

Moreover, we have a natural inclusion limC(G) ⊆ limG and a natural iso-

morphism

limG/ limC(G) ∼= limAb(G).

Under this isomorphism, ρ becomes the obvious map

limG/C(limG) −→ limG/ limC(G),

so we have a natural isomorphism

ker(ρ) ∼= limC(G)/C(limG).

We know that C(limG) is a normal subgroup of limG and thus it is also a

normal subgroup of limC(G).

We defineG′ : N −→ Grp and C(G)′ : N −→ Grp as in the beginning of Section

1.2. Since for every structure map φ : Gn → Gm we have φ(C(Gn)) = C(φ(Gn)),

it is not hard to see that

C(G)′ = C(G′).

Let n ∈ N. Since all the structure maps G′
m+1 → G′

m are surjective, it follows

that the map φn : limG ∼= limG′ → G′
n is surjective. Thus

φn|C(limG) : C(limG) → C(G′
n)
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is also surjective and

Im(φn|C(limG)) = C(G′
n).

Since all the structure maps C(G′
m+1) → C(G′

m) are surjective, it follows that

the map

φn|limC(G) : limC(G) ∼= limC(G′) → C(G′
n)

is surjective and

Im(φn|limC(G)) = C(G′
n).

Thus, for every n ∈ N we have

Im(φn|C(limG)) = Im(φn|limC(G)).

Using Theorem 2.0.4 with

H := C ◦G : N −→ Grp,

we see that ker(ρ) ∼= limC(G)/C(limG) is cotorsion.

3. Countable products

Let (Hn)n∈N be a countable collection of groups. We can construct from this

collection a diagram G : N −→ Grp by letting Gn be the product H1×· · ·×Hn,

for every n ∈ N, and Gm → Gn be the natural projection, for every m ≥ n.

Since for every n ∈ N we have

Ab

(∏
i≤n

Hi

)
∼=

∏
i≤n

Ab(Hi),

we see that the natural map in Theorem 2.0.6 becomes

ρ : Ab

(∏
i∈N

Hi

)
−→

∏
i∈N

Ab(Hi).

Clearly all the structure maps are surjective so, by Theorem 2.0.6, ρ is surjective

and ker(ρ) is cotorsion. The purpose of this section is to show that ker(ρ) cannot

be any cotorsion group in this case. Namely, by Harrison’s structure theorem

for cotorsion groups [Har], we know that any torsion group is the torsion part

of some cotorsion group. Since a torsion group can have arbitrary large Ulm

length, it follows that the same is true for a cotorsion group. However, we show

in Theorem 3.0.8 that u(ker(ρ)) ≤ ℵ1.

We begin with a few preliminary definitions and propositions.
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Proposition 3.0.1: Let A be an abelian group and p a prime number. Sup-

pose that (ym)m∈N is an element in AN such that for every m ∈ N we have

ym = pym+1. Then y0 ∈ plp(A)A.

Proof. Clearly it is enough to show that for every ordinal λ we have y0 ∈ pλA.

We show this by induction on λ.

Clearly y0 ∈ p0A = A. Let λ be an ordinal and suppose we have shown that

y0 ∈ pβA, for every β ≤ λ. Applying what we have shown to (ym)m≥1 we see

that y1 ∈ pλA. Thus we obtain

y0 = py1 ∈ p(pλA) = pλ+1A.

Now suppose that λ is a limit ordinal and we have shown that y0 ∈ pβA for

every β < λ. Then

y0 ∈
⋂
β<λ

pβA = pλA,

which finishes the proof by induction.

Definition 3.0.2: Let λ be an ordinal. We define

des(λ) := {(μ1, . . . , μn) | n ≥ 0 and λ > μ1 > · · · > μn}.
Note that des(λ) contains also the empty string φ, corresponding to n = 0.

Let μ = (μ1, . . . , μn) ∈ des(λ). We define

l(μ) :=n ≥ 0,

min(μ) :=

⎧⎨
⎩
λ if μ = φ,

μn if μ �= φ,

and if n ≥ m ≥ 0 we define μ|m := (μ1, . . . , μm).

The following proposition gives some motivation for the previous definition:

Proposition 3.0.3: Let H be an abelian group and let λ be an ordinal. Then

for every x ∈ pλH there exist

x̄ = (xμ)μ∈des(λ) ∈
∏

μ∈des(λ)

pmin(μ)H,

such that the following hold:

(1) xφ = x.

(2) If μ ∈ des(λ) and l(μ) = n > 0, then pxμ = xμ|n−1
.
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Proof. We define xμ∈pmin(μ)H for every μ∈des(λ) recursively, relative to l(μ).

Suppose first that l(μ) = 0. Then μ = φ and we define

xφ := x ∈ pmin(φ)H = pλH.

Let n≥0 and suppose that we have defined xμ∈pmin(μ)H for every μ∈des(λ)

with l(μ)≤n, in such a way that condition (2) above holds where it is defined.

Now let μ ∈ des(λ) such that l(μ) = n + 1. Clearly min(μ) < min(μ|n) so

min(μ) + 1 ≤ min(μ|n) and we have

xμ|n ∈ pmin(μ|n)H ⊆ pmin(μ)+1H = p(pmin(μ)H).

Thus there exist xμ ∈ pmin(μ)H such that pxμ = xμ|n.

Proposition 3.0.4: Let N be an infinite set and κ a cardinal such that

κ > |N |. Suppose we are given kμ ∈ N , for every μ ∈ des(κ). Then there

exists a sequence of triples (kn, Sn, μ(n))n∈N, such that for every n ∈ N:

(1) kn ∈ N .

(2) Sn ⊆ κ and |Sn| = κ.

(3) μ(n) = (μ(n)α)α∈Sn and for every α ∈ Sn we have

(a) μ(n)α ∈ des(κ).

(b) l(μ(n)α) = n+ 1.

(c) min(μ(n)α) = α.

(d) For every l ≤ n we have kμ(n)α|l+1
= kl.

Proof. We define the triple (kn, Sn, μ(n)) recursively with n.

We begin with n = 0. For every α < κ we have (α) ∈ des(κ), so k(α) ∈ N .

Since κ is a cardinal and κ > |N |, there exists k0 ∈ N such that

|{α < κ | k(α) = k0}| = κ.

We define

S0 := {α < κ | k(α) = k0},
and for every α ∈ S0 we define

μ(0)α := (α) ∈ des(κ).

Clearly, for every α ∈ S0 we have

(1) l(μ(0)α) = 1.

(2) min(μ(0)α) = α.

(3) kμ(0)α|1 = k(α) = k0.
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Now let m ∈ N and suppose we have defined a triple (kn, Sn, μ(n)) for every

n ≤ m such that the conditions in the proposition are satisfied where they are

defined. Let us define the triple (km+1, Sm+1, μ(m+ 1)).

First we define recursively a strictly increasing function fm : κ → Sm such

that for every α < κ we have α < fm(α).

We define

fm(0) := min(Sm \ {min(Sm)}).
Clearly 0 < fm(0).

Let β < κ and suppose we have defined fm(α) ∈ Sm for every α ≤ β. Let

us now define fm(β + 1) ∈ Sm. We have fm(β) < κ. Since κ is a cardinal, it

follows that |fm(β)| < κ and thus

|Sm \ fm(β)| = |{λ ∈ Sm | λ ≥ fm(β)}| = κ.

In particular

{λ ∈ Sm | λ > fm(β)} �= φ

and we can define

fm(β + 1) := min{λ ∈ Sm | λ > fm(β)} ∈ Sm.

Clearly we have

fm(β + 1) > fm(β) ≥ β + 1.

Suppose that β < κ is a limit ordinal and we have defined fm(α) ∈ Sm for

every α < β. Since κ is a cardinal, we have that |fm(α)| < κ for every α < β,

and also |β| < κ. Thus ∣∣∣∣
⋃
α<β

fm(α)

∣∣∣∣ < κ,

so ∣∣∣∣Sm \
⋃
α<β

fm(α)

∣∣∣∣ = |{λ ∈ Sm | ∀α < β.λ ≥ fm(α)}| = κ.

Since |β| < κ we obtain in particular that

{λ ∈ Sm | ∀α < β.λ > fm(α)} \ {β} �= φ

and we can define

fm(β) := min({λ ∈ Sm | ∀α < β.λ > fm(α)} \ {β}) ∈ Sm.

For every α < β we thus have

fm(β) > fm(α) > α,
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so fm(β) ≥ β. But fm(β) �= β so we obtain fm(β) > β. This finishes our

recursive definition of fm : κ → Sm.

For every α < κ we have (μ(m)fm(α), α) ∈ des(κ), so k(μ(m)fm(α),α) ∈ N .

Since κ is a cardinal and κ > |N |, there exists km+1 ∈ N such that

|{α < κ | k(μ(m)fm(α),α) = km+1}| = κ.

We define

Sm+1 := {α < κ | k(μ(m)fm(α),α) = km+1},
and for every α ∈ Sm+1 we define

μ(m+ 1)α := (μ(m)fm(α), α) ∈ des(κ).

Let α ∈ Sm+1. Using the induction hypothesis, we have:

(1) l(μ(m+ 1)α) = l(μ(m)fm(α)) + 1 = m+ 2.

(2) min(μ(m+ 1)α) = α.

Let l ≤ m+ 1. If l = m+ 1 we have

kμ(m+1)α|l+1
= kμ(m+1)α = km+1 = kl,

while if l ≤ m we have, using the induction hypothesis,

kμ(m+1)α|l+1
= kμ(m)f′

m(α)|l+1
= kl,

which finishes the proof of our proposition.

Theorem 3.0.5: The natural map

ρ : Ab

(∏
i∈N

Hi

)
−→

∏
i∈N

Ab(Hi)

is surjective and ker(ρ) is cotorsion and satisfies lp(ker(ρ)) ≤ ℵ1 for every

prime p.

Proof. By Theorem 2.0.6, ρ is surjective and ker(ρ) is cotorsion.

Now let p ∈ P. For convenience of notation let us denote S := ker(ρ). Recall

from the proof of Theorem 2.0.6 that

S ∼= lim
n∈N

C(Gn)/C(lim
n∈N

Gn).

Since for every n ∈ N we have

C(Gn) ∼= C(H1 × · · · ×Hn) ∼= C(H1)× · · · × C(Hn),
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we see that

S ∼=
∏
n∈N

C(Hn)/C

( ∏
n∈N

Hn

)
.

We need to show that pℵ1S is p-divisible. It is clearly enough to show

pℵ1S ⊆ plp(S)S.

So let x ∈ pℵ1S. We define

x̄ = (xμ)μ∈des(ℵ1) ∈
∏

μ∈des(ℵ1)

pmin(μ)S,

as in Proposition 3.0.3.

For every μ ∈ des(ℵ1) we have

xμ ∈ pmin(μ)S ⊆ S =
∏
n∈N

C(Hn)/C

( ∏
n∈N

Hn

)
,

so let us choose a representative

fμ = (fμ(n))n∈N ∈
∏
n∈N

C(Hn)

such that [fμ] = xμ.

Let μ ∈ des(ℵ1) with l(μ) = n > 0. Then by Proposition 3.0.3 we have (in

multiplicative notation)

xp
μ = xμ|n−1

.

Thus

x−1
μ|n−1

xp
μ = e ∈ S,

so

f−1
μ|n−1

fp
μ ∈ C

( ∏
n∈N

Hn

)
.

Let kμ ∈ N be the commutator length of f−1
μ|n−1

fp
μ, so there exist

gμ,t = (gμ,t(n))n∈N ∈
∏
n∈N

Hn

for every t < 2kμ such that

f−1
μ|n−1

fp
μ =

∏
l<kμ

[gμ,2l, gμ,2l+1].

Let us define kφ := 0. By Proposition 3.0.4, applied for the set N = N, the

cardinal κ = ℵ1, and (kμ)μ∈des(ℵ1) defined above, we see that there exists a

sequence of triples (kn, Sn, μ(n))n∈N, such that for every n ∈ N we have:
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(1) kn ∈ N.

(2) Sn ⊆ ℵ1 and |Sn| = ℵ1.

(3) μ(n) = (μ(n)α)α∈Sn and for every α ∈ Sn we have

(a) μ(n)α ∈ des(ℵ1).

(b) l(μ(n)α) = n+ 1.

(c) min(μ(n)α) = α.

(d) For every l ≤ n we have kμ(n)α|l+1
= kl.

For every m ∈ N we define αm := min(Sm), and we define

hm = (hm(n))n∈N ∈
∏
n∈N

C(Hn)

by

hm(n) :=

⎧⎨
⎩
eHn if n < m,

fμ(n)αn |m(n) if n ≥ m.

For every m > 0 and t < 2km we define

dm,t = (dm,t(n))n∈N ∈
∏
n∈N

Hn

by

dm,t(n) :=

⎧⎨
⎩
eHn if n < m,

gμ(n)αn |m,t(n) if n ≥ m.

Let n > m ≥ 0. Since μ(n)αn |m+1 ∈ des(ℵ1) \ {φ}, we have as above

f−1
μ(n)αn |mfp

μ(n)αn |m+1
=

∏
l<kμ(n)αn |m+1

[gμ(n)αn |m+1,2l, gμ(n)αn |m+1,2l+1].

In particular, we get an equality in Hn:

fμ(n)αn |m(n)−1fμ(n)αn |m+1
(n)p =

∏
l<kμ(n)αn |m+1

[gμ(n)αn |m+1,2l(n), gμ(n)αn |m+1,2l+1(n)].

But n ≥ m+ 1 so we obtain

hm(n)−1hm+1(n)
p =

∏
l<km

[dm+1,2l(n), dm+1,2l+1(n)].

For every fixed m ∈ N, the equality above holds for almost all n ∈ N. Passing

to equivalence classes in

S =
∏
n∈N

C(Hn)/C

( ∏
n∈N

Hn

)
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we thus obtain

[h−1
m hp

m+1] =

[ ∏
l<km

[dm+1,2l, dm+1,2l+1]

]
= e,

or

[hm] = [hm+1]
p.

By Proposition 3.0.1 we obtain

[h0] ∈ plp(S)S.

But for every n ∈ N we have h0(n) = fφ(n) so h0 = fφ and

x = xφ = [fφ] = [h0] ∈ plp(S)S,

as required.

We now wish to prove a variant of Theorem 3.0.5 which uses the Ulm length

instead of the p-length.

Proposition 3.0.6: Let p be a prime number and let G be an abelian group

that is a module over the p-adic integers. Then for every ordinal λ we have

u(G) ≤ λ iff lp(G) ≤ ωλ.

Proof. It is shown in [Fu1, on page 154] that

Gλ =
⋂
p∈P

pωλG.

Since G be a module over the p-adic integers we know that G is q-divisible for

every prime q �= p, so we otain

Gλ = pωλG.

Using transfinite induction it is easily seen that Gλ is a sub Zp-module of G, so

Gλ is q-divisible for every prime q �= p. Thus, Gλ is divisible, iff it is p-divisible.

We now see that the following statements are equivalent:

(1) u(G) ≤ λ.

(2) pωλG = Gλ is divisible.

(3) pωλG = Gλ is p-divisible.

(4) lp(G) ≤ ωλ.

Proposition 3.0.7: Let G be a cotorsion group and let λ be an ordinal. Then

u(G) ≤ λ iff lp(G) ≤ ωλ for every p ∈ P.
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Proof. By decomposing G into its divisible part and reduced part, as in Theo-

rem 1.3.5, we may assume that G is reduced.

Since G is reduced and cotorsion, G can be written as a product of the form

G ∼= ∏
p∈P

Gp, where every Gp is a module over the p-adic integers (see [Fu1, on

page 234]). Thus, using Proposition 3.0.6, we see that the following statements

are equivalent:

(1) u(G) ≤ λ.

(2) Gλ is divisible.

(3) Gλ
p is divisible for every prime p.

(4) u(Gp) ≤ λ for every prime p.

(5) lp(G) ≤ ωλ for every prime p.

We now turn to the main result of this section.

Theorem 3.0.8: The natural map

ρ : Ab

(∏
i∈N

Hi

)
−→

∏
i∈N

Ab(Hi)

is surjective and ker(ρ) is cotorsion and satisfies u(ker(ρ)) ≤ ℵ1.

Proof. By Theorem 3.0.5 ρ is surjective and ker(ρ) is cotorsion. By Proposi-

tion 3.0.7, applied for the ordinal λ := ℵ1, we see that u(ker(ρ)) ≤ ℵ1 if and

only if lp(ker(ρ)) ≤ ωℵ1 = ℵ1 for every p ∈ P. Thus the result follows from

Theorem 3.0.5.

Remark 3.0.9: The natural map in Theorem 3.0.8 (and in particular, in Theo-

rem 2.0.6) need not be an isomorphism in general. As we explain in the begin-

ning of the proof of Theorem 3.0.5, the kernel of this natural map is isomorphic

to the quotient

∏
C(Hn)/C

(∏
Hn

)
,

of the product of the commutators by the commutator of the product. It is not

hard to see that the group C(
∏

Hn) consists of those sequences (hn) ∈
∏

C(Hn)

for which the commutator length of hn is bounded, as n ranges through the

natural numbers. It follows that if G is any group, the natural map

Ab(GN) −→ Ab(G)N
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is an isomorphism if and only if the commutator width of G is finite. This gives

a lot of examples where this map is not an isomorphism. For instance, one can

take G to be a free group on more than one generator.
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