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ON REFLECTION OF STATIONARY SETS IN P\

THOMAS JECH AND SAHARON SHELAH

ABSTRACT. Let x be an inaccessible cardinal, and let Ey = {z € Purt :
cf Az = cf Ko} and E1 = {z € Pkt : kg is regular and Ay = xF}. It is
consistent that the set Fj is stationary and that every stationary subset of Ey
reflects at almost every a € Fy.

1. INTRODUCTION

We study reflection properties of stationary sets in the space P\ where k is an
inaccessible cardinal. Let k be a regular uncountable cardinal, and let A O k. The
set P, A consists of all z C A such that |z] < k. Following [3], a set C C P, A is
closed unbounded if it is C-cofinal and closed under unions of chains of length < k;
S C P, A is stationary if it has nonempty intersection with every closed unbounded
set. Closed unbounded sets generate a normal x-complete filter, and we use the
phrase “almost all 2” to mean all x € P, A except for a nonstationary set.

Almost all x € P, A have the property that N is an ordinal. Throughout this
paper we consider only such z’s, and denote x Nk = k. If Kk is inaccessible, then,
for almost all z, &, is a limit cardinal (and we consider only such 2’s.) By [B], the
closed unbounded filter on P, A is generated by the sets

Cr={z:2Nk €k and F(z=¥) C z}

where I ranges over functions ' : A<%¥ — A. It follows that a set S C P, A is
stationary if and only if every model M with universe O A has a submodel N such
that |[N| <k, NNk € k and NN A € S. In most applications, A is identified with
|A|, and so we consider P, A where A is a cardinal, A > k. For € P, A we denote
by A, the order type of x.

We are concerned with reflection of stationary sets. Reflection properties of
stationary sets of ordinals have been extensively studied, starting with [7]. So have
been reflection principles for stationary sets in P, A, following [2]. In this paper
we concentrate on P, \ where s is inaccessible.

Definition. Let x be an inaccessible and let a € P, be such that x, is a regular
uncountable cardinal. A stationary set S C P, reflects at a if the set SN P, a is
a stationary set in P, a.

The question underlying our investigation is to what extent can stationary sets
reflect. There are some limitations associated with cofinalities. For instance, let
S and T be stationary subsets of A such that every o € S has cofinality w, every
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v € T has coﬁnahty w1, and for each v € T, S N~ is a nonstationary subset of Y
(cf. M]). Let S = {z € P.A:supz € S} and T = {a € P\ :supa € T}. Then 5
does not reflect at any a € T.

Let us consider the case when A = kt. As the example presented above indicates,
reflection will generally fail when dealing with the z’s for which cf A\, < k., and so
we restrict ourselves to the (stationary) set

{z € P : cfky <cf A}

Since A = k1, we have A\, < x} for almost all .
Let

Eo={x € Puxt : K, is a limit cardinal and cf r, = cf A\, },
By ={z € P.xt : K, is inaccessible and \, = x}}.

The set Ey is stationary, and if & is a large cardinal (e.g. xT-supercompact), then
FE; is stationary; the statement “F; is stationary” is itself a large cardinal property
(cf. [1]). Moreover, Ey reflects at almost every a € E; and consequently, reflection
of stationary subsets of Ey at elements of F; is a prototype of the phenomena we
propose to investigate.

Below we prove the following theorem:

1.2. Theorem. Let k be a supercompact cardinal. There is a generic extension in
which

(a) the set By = {z € Pk : Ky is inaccessible and N\, = k1 } is stationary, and
(b) for every stationary set S C Ey, the set {a € Eq : S NPy, a is nonstationary
in Pr,a} is nonstationary.

A large cardinal assumption in Theorem 1.2 is necessary. As mentioned above,
(a) itself has large cardinal consequences. Moreover, (b) implies reflection of sta-
tionary subsets of the set {a < k% : ¢f @ < K}, which is also known to be strong
(consistency-wise).

2. PRELIMINARIES

We shall first state several results that we shall use in the proof of Theorem 1.2.
We begin with a theorem of Laver that shows that supercompact cardinals have
a {-like property:

2.1. Theorem ([6]). If x is supercompact, then there is a function f : k — V;, such
that for every x there exists an elementary embedding j : V. — M with critical point
K such that j witnesses a prescribed degree of supercompactness and (§(f))(k) = x.

We say that the function f has Laver’s property.

2.2. Definition. A forcing notion is < k-strategically closed if, for every condition
p, player I has a winning strategy in the following game of length x: Players I and
II take turns to play a descending k-sequence of conditions pg > p1 > -+ > pe >

-, & < K, with p > pg, such that player I moves at limit stages. Player I wins if|
for each limit A < k, the sequence {p¢}¢<x has a lower bound.

It is well known that forcing with a < k-strategically closed notion of forcing does
not add new sequences of length < x, and that every iteration, with < k-support,
of < k-strategically closed forcing notions is < k-strategically closed.
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2.3. Definition ([8]). A forcing notion satisfies the < k-strategic-x™ -chain condi-
tion if, for every limit ordinal A < k, player I has a winning strategy in the following
game of length A:

Players I and II take turns to play, simultaneously for each o < kT of cofinality
k, descending A-sequences of conditions p§ > pf* > --+ > pg > --+ £ < A, with
player II moving first and player I moving at limit stages. In addition, player I
chooses, at stage &, a closed unbounded set Ee C k™ and a function f¢ such that,
for each o < K of cofinality &, fe(a) < a.

Player I wins if, for each limit n < A, each sequence <p? : £ < n) has a lower
bound, and if the following holds: for all «, 3 € ﬂ§</\ Ee¢, if fe(a) = fe(B) for all

& < A, then the sequences <p? : € < A) and <pf : £ < A) have a common lower
bound.

It is clear that property (2.3) implies the xT-chain condition. Every iteration
with < k-support, of < k-strategically x*-c.c. forcing notions satisfies the < -
strategic k*-chain condition. This is stated in [§] and a detailed proof will appear
in [9].

In Lemmas 2.4 and 2.5 below, H(A) denotes the set of all sets hereditarily of
cardinality < A.

2.4. Lemma. Let S be a stationary subset of Ey. For every set u there exist a
reqgular X > kT, an elementary submodel N of (H(\),€,A,u) (where A is a well
ordering of H()\)) such that NNk € S, and a sequence (N, : aw < ) of submodels
of N such that |No| < & for every o, NN kT =J,.5(Na N&T) and for all § <6,
(No:a< ) €N.

Proof. Let u > T be such that v € H(u), and let A = (2#)*; let A be a well or-
dering of H(X). There exists an elementary submodel N of (H(\), €, A) containing
u, S and (H(u),€,A | H(u)) such that NNkt € S and N Nk is a strong limit
cardinal; let a = NN k™.

Let § = cf Kq. As a € S, we have cf (supa) = §, and let 74, a < §, be an
increasing sequence of ordinals in a — k, cofinal in supa. Let (fo : v < a < k) € N
be such that each f, is a one-to-one function of o onto k. (Thus for each « € a,
fo maps aNa onto k,.) There exists an increasing sequence (4, a < 6, of ordinals
cofinal in kg, such that, for each £ < o, f,, (7¢) < Ba.

For each o < ¢, let N, be the Skolem hull of 5, U {v,} in (H(u),€,A |
H(p),{fa)). Ny is an elementary submodel of H(p) of cardinality < k,, and
N, € N. Also, if € < «, then 7¢ € N, (because f,, (7¢) < Ba) and so Ne C N,. O

As NNk is a strong limit cardinal, it follows that, for all 5 < §, (N, : a < 3) € N.
Also, Ny C N for all o < 4, and it remains to prove that a C |J, s Na-

As sup{fla : a@ < 0} = Kq, we have ks C o5 Na- If v € a, there exists a
§ < a < dsuch that v < v¢ and f,,(7) < Ba. Then 7¢ € N, and so v € N,

2.5. Lemma. Let S be a stationary subset of Ey and let P be a < k-strategically
closed notion of forcing. Then S remains stationary in VT .

Proof. Let C be a P-name for a club set in P.x", and let py € P. We look for a
p < po that forces SN C # 0.

Let o be a winning strategy for I in the game (2.2). By Lemma 2.4 there exist a
regular A > k1, an elementary submodel N of (H()),¢, A, P, po, 0, S, C’) (where A
is a well-ordering) such that |[N| < x and NNx™ € S, and a sequence (N, : o < §)
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of submodels of N such that |N,| < & for every o, NN kT =J,5(Na N&T) and,
forall 8 <, (Ny:a < f3) €N.

We construct a descending sequence of conditions (p, : a < &) below pg such
that, for all 8 < 6, (po : @ < B) € N: at each limit stage o we apply the strategy
o to get po; at each o+ 1 let ¢ < p, be the A-least condition such that, for some
M € Puk™ NN, Mo 2 NaNkt, Mo, 2 Uge, Mp and g - M, € C (and let M, be
the A-least such M,,), and then apply o to get po+1. Since M, € N, N E |M,| < &
and so M, C N; hence M, C N Nx™. Since, for all 8 < 3§, (N, : a« < 8) € N, the
construction can be carried out inside N so that, for each § < 0, (p, : @ < ) € N.

As T wins the game, let p be a lower bound for (p, : a < J); p forces that
CN(NNkT) is unbounded in NNkt and hence NNkt € C. Hencep - SNC # 0. O

3. THE FORCING

We shall now describe the forcing construction that yields Theorem 1.2. Let &
be a supercompact cardinal.

The forcing P has two parts, P = P, « P*, where P, is the preparation forcing
and P”" is the main iteration. The preparation forcing is an iteration of length x,
with Easton support, defined as follows: Let f : kK — V be a function with Laver’s
property. If v < k and if P, | 7 is the iteration up to 7, then the 4" iterand Q7
is trivial unless ~ is inaccessible and f(v) is a P,; [ y-name for a < 7-strategically
closed forcing notion, in which case QA, = f(v) and Pyy1 = Py * Qv~ Standard
forcing arguments show that s remains inaccessible in V* and all cardinals and
cofinalities above k are preserved.

The main iteration P* is an iteration in V=, of length 2(”“+)7 with < k-support.
We will show that each iterand Q7 is < k-strategically closed and satisfies the < k-
strategic kT -chain condition. This guarantees that Pris (in VP*) < k-strategically
closed and satisfies the x*-chain condition, therefore adds no bounded subsets of x
and preserves all cardinals and cofinalities.

Each iterand of P* is a forcing notion Q7 = Q(S) associated with a stationary

set § C Pkt in VEs*Ps 17, to be defined below. By the usual bookkeeping method
we ensure that, for every P-name S for a stationary set, some Q7 is Q(S)

Below we define the forcing notion Q(S) for every stationary set S C Fy; if S is
not a stationary subset of Ey, then Q(S) is the trivial forcing. If S is a stationary
subset of Ey, then a generic for Q(S) produces a closed unbounded set C' C Pyx™
such that, for every a € B4 NC, SN P, a is stationary in P, a. Since P* does not
add bounded subsets of k, the forcing Q(S ) guarantees that, in V7, S reflects at
almost every a € F;. The crucial step in the proof will be to show that the set F;
remains stationary in V.

To define the forcing notion Q(S) we use certain models with universe in P,x*.
We first specify what models we use:

3.1. Definition. A model is a structure (M, m, p) such that

(i) M € Pyx™; M Nk = ks is an ordinal and Ay = the order type of M is at
most |kar| .

(ii) = is a two-place function; 7(a, () is defined for allaw € M —k and 8 € M Na.
For each « € M — K, 4 is the function 7, (8) = 7(a, 8) from M N « onto
M N «, and moreover, 7, maps kj; onto M N a.
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(iii) p is a two-place function; p(a, 3) is defined for all « € M — k and § < K.
For each o« € M — K, pqo is the function po(8) = p(a, 5) from ks into Kz,
and 8 < po(8) < ks for all B < kpy.

Two models (M, 7 pM) and (N, 7V, pV) are coherent if 7 (a, 3) = 7V (a, B) and

oM(a,B) = pN(a, B) for all a, 3 € M N N. M is a submodel of N if M C N, and

M C 7N and pMQpN.

3.2. Lemma. Let M and N be coherent models with kpr < kn. If MNN is cofinal

in M (i.e. if for all « € M there is a v € M NN such that o < 7y), then M C N.

Proof. Let o« € M; let v+ € M N N be such that < 7. As 7T,JY\/I maps Kjs onto
M Ny, there is a 3 < Kkps such that Wy(ﬁ) = . Since both 3 and ~ are in N, we
have a = 7 (v, 8) = 7V (v, 3) € N. O

We shall now define the forcing notion Q(S):

3.3 Definition. Let S be a stationary subset of the set Ey = {x € PyrT : Ky
is a limit cardinal and cf A, = cf kz}. A forcing condition in Q(S) is a model
M = (M, 7™ pM) such that

(i) M is w-closed, i.e. for every ordinal v, if ¢f v = w and sup(M N~) = ~, then
yeM.

(ii) For every « € M — k and 8 < Ky, if Ky < v < oy and if {G, : n < w}is a
countable subset of 3 such that v = sup{7} (8,) : n < w}, then there is some
¢ < p(8) such that v = 7 (¢).

(iii) For every submodel a C M, if

a€ Ey = {x € PukT : Ky is inaccessible and \, = x },
then S NPy, a is stationary in P, a.
A forcing condition N is stronger than M if M is a submodel of N and |M| <
k|-
The following lemma, guarantees that the generic for Qg is unbounded in P.xt.

3.4. Lemma. Let M be a condition and let 6 < Kk and k < e < kt. Then there is
a condition N stronger than M such that § € N and e € N.

Proof. Let A < k be an inaccessible cardinal, such that A > ¢ and A > |M|. We let
N =MUMU{A}U{e}; thus ky = A+ 1, and N is w-closed. We extend 7 and
pM to mV and p as follows:

If k <a<eand a € M, welet 7 (3) = 8 for all 3 € N such that ky < 8 < A
If « € M and € < a, we define 7%V so that 72 maps ky — ks onto (kx —kar)U{e}.
For a = ¢, we define 7V in such a way that 7%¥ maps A onto N Ne.

Finally, if a, 3 € N, 8 < k < a, and if either a = € or 8 > ks, we let pY (3) = .

Clearly, N is a model, M is a submodel of N, and |M| < |kn]|. Let us verify
(3.3.ii). This holds if « € M, so let o = €. Let B < A, let {8, :n < w} C B and let
v = sup{7¥(3,) : n < w} be such that kK <y < e. There is a ( < A = p~(B) such
that 7V (¢) = ~, and so (3.3.ii) holds.

To complete the proof that N is a forcing condition, we verify (3.3. iii). This we
do by showing that if a € F; is a submodel of N, then a C M.

Assume that a € Ey is a submodel of N but @ ¢ M. Thus there are o, 3 € a,
B < k < a such that either & = ¢ or 8 > kp. Then p2(3) = pY(3) = A and so
A € a, and kK, = A+ 1. This contradicts the assumption that k. is an inaccessible
cardinal. O
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Thus if G is a generic for Qg, let (Mg, 7a, pc) be the union of all conditions in
G. Then for every a € Fj, that is a submodel of Mg, S NP, a is stationary in
Pr,a. Thus Qg forces that S reflects at all but nonstationary many a € Ej.

We will now prove that the forcing Qg is < k-strategically closed. The key
technical devices are the two following lemmas.

Lemma 3.5. Let My > My > --- > M, > ... be an w-sequence of conditions.
There exists a condition M stronger than all the M, , with the following property:

If N is any model coherent with M such that there exists some v €
(3.6) NNM buty¢ U M,, then ky > lim Ky, .
n

n=0

Proof. Let A = UM, and 6§ = ANk = lim xyp,, and let 74 = (J 7#™» and

n=0 n n=0
o0
= U pMn. We let M be the w-closure of (§ + ) U A; hence kpr = 6+ + 1. To

define 7TM we first define 7 > 72 for a € A in such a way that 77 maps 6 + §

onto M N a. When a € M A and o > K, we have |[M Nal = |(5| and so there
exists a function 7 on M N« that maps 0+ 9 onto M N a we let 7TM be such
with the addltlonal requirement that 72 (0) = 6. To define pM, we let p™ D pA be
such that p™(«, 8) = 0 + § whenever either o ¢ A or 3 ¢ A.

We shall now verify that M satisfies (3.3. ii). Let o, 8 € M be such that a > &
and 8 < kand let y € M, k < v < a, be an w-limit point of the set {7 (¢) : £ < }.
We want to show that v = w2 (n) for some n < pM(3). If both a and 3 are in A4,
then this is true, because «, 8 € M, for some n, and M,, satisfies (3.3 ii). If either
a¢ Aor 3¢ A, then pM(3) = 6+ 6, and since 7 maps § + J onto M N a, we are
done.

Next we verify that M satisfies (3.6). Let N be any model coherent with M,
and let v € M N N be such that v ¢ A. If v < k, then v > ¢ and so ky > §. If
v > K, then 7rf>4(0) =4, and so § = WéV(O) € N, and again we have Kk > 6.

Finally, we show that, for every a € Ey, if a C M, then S NP, a is stationary.
We do this by showing that, for every a € Fy, if a C M, then a C M, for some
M,,.

Thus let a C€ M be such that r, is regular and \, = k). As ko < kpr = 5+5+1,
it follows that r, < § and so k. < ki, for some ng. Now by (3.6) we have

a C U M,,, and since ), is regular uncountable, there exists some n > ng such
that M Na is cofinal in a. It follows from Lemma 3.2 that a C M,,. O
Lemma 3.7. Let A < & be a regular uncountable cardinal and let My > M; >

- > Mg > -+, £ < A, be a A-sequence of conditions with the property that, for
every n < A of cofinality w,
(3.8) If N is any model coherent with M, such that there exists some vy €
NN M, but v ¢ Ue,, Me, then Ky > Ehg:] KM, -

Then M = g, Me is a condition.

Proof. 1t is clear that M satisfies all the requirements for a condition, except per-
haps (3.3 iii). (M is w-closed because A is regular uncountable.) Note that because
|Me| < kinr,, for all £ < A, we have |[M| = [k].
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We shall prove (3.3 iii) by showing that, for every a € Ey, if a C M, then a C M,
for some € < A. Thus let a € M be such that r, is regular and A\, = s .

As Ay = |a| < |M| = [kum], it follows that K, < ka and so kg < Kar, for some
&0 < A. We shall prove that there exists some £ > & such that M¢ Na is cofinal in
a; then by Lemma 3.2, a C M.

We prove this by contradiction. Assume that no Mg N a is cofinal in a. We
construct sequences §p < & < - <&, < - and v < e < - <y < --- such
that, for each n,

Tn €@, Yn > Sup(Min n a)v and v, € MEn+1'

Let n = lim, &, and v = lim,, 7,,. We claim that v € a.

As ), is regular uncountable, there exists an « € a such that o > ~. Let G,
n € w, be such that 72(3,) = v, and let 5 < K, be such that 5 > 3, for all n. As
M satisfies (3.3. ii), and v = sup{7M(8,) : n < w}, there is some ¢ < pM(3) such
that v = 7 (¢). Since ¢ < pM(B) = p2(B) < ka, we have ¢ € a, and v = 72(() € a.

Now since v € a and v > sup(Me, Na), we have v ¢ M, , for all n. As M, is
w-closed, and v, € M, for each n, we have v € M,,. Thus by (3.8) it follows that
Kq > lim, Kk M, & contradiction. O

Lemma 3.9. Qg is < k-strategically closed.

Proof. In the game, player I moves at limit stages. In order to win the game, it
suffices to choose, at every limit ordinal n of cofinality w, a condition M,, that
satisfies (3.8). This is possible by Lemma 3.5. O

We shall now prove that Qg satisfies the < s-strategic xT-chain condition. First
a lemma:

Lemma 3.10. Let (My,m1,p1) and (Ma, 72, p2) be forcing conditions such that
Ky, = Kum, and that the models My and My are coherent. Then the conditions
are compatible.

Proof. Let A < k be an inaccessible cardinal such that A > |M; U My| and let
M = M; UMy UAU{A}. We shall extend 7; U and p; U pa to 7™ and pM so
that (M, 7™ pM) is a condition.

If a € M; — k, we define 7 O 7; so that 7 maps A\ — kpr, onto M N a, and
such that 7 (8) = A\ whenever k < 3 < a, « € My — My and 3 € My — M; (or
vice versa). We define pM O p; by pM () = A for kpr, < 3 < . It is easy to see
that M is an w-closed model that satisfies (3.3 ii).

To verify (3.3 iii), we show that every a € E; that is a submodel of M is either
a C My or a € Ms. Thus let a be a submodel of M, a € E7, such that neither
a € My nor a C Ms. First assume that k, < kpr,. Then there are o, 8 € a such
that kK < § < a and o € My — My while § € My — My (or vice versa). But then
7%, B) = 7™ (e, 8) = X\ which implies A\ € a, or K, = A + 1, contradicting the
inaccessibility of k.

Thus assume that kK, > kar,. Let o € a be such that o > &, and then we have
0%, kar, ) = pM (v, kar, ) = A, giving again A\ € a, a contradiction. O

Lemma 3.11. Qg satisfies the < k-strategic k™ -chain condition.

Proof. Let A be a limit ordinal < x and consider the game (2.3) of length \. We
may assume that ¢f A > w. In the game, player I moves at limit stages, and the key
to winning is again to make right moves at limit stages of cofinality w. Thus let n

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



Sh:671

2514 THOMAS JECH AND SAHARON SHELAH AND SAHARON SHELAH

be a limit ordinal < A, and let {M? :a < k1, cf @ = Kk} be the set of conditions
played at stage &.

By Lemma 3.5, player I can choose, for each «, a condition M;" stronger than
each Mg, £ <, such that M;" satisfies (3.8). Then let E,, be the closed unbounded

subset of KT
En:{’7</€+1M$‘C'y for all «a<~},

and let f, be the function f,(a) = My | a, this being the restriction of the model
My to a.

We claim that player I wins following this strategy: By Lemma 3.7, player I can
make a legal move at every limit ordinal £ < A, and for each a (of cofinality ),
M = Jg\ Mg is a condition. Let v < 3 be ordinals of cofinality r in (., E¢
such that fe(a) = fe(B) for all € < A\. Then M® C B and MP | 3= M® | a, and
because the functions 7 and p have the property that 7(v,d) < v and p(v,d) < v for
every v and 4, it follows that M® and M? are coherent models with ke = K jys.
By Lemma 3.10, M and M” are compatible conditions. O

4. PRESERVATION OF THE SET FEj
We shall complete the proof by showing that the set
Ey = {z € Purt : K, is inaccessible and A, = k)

remains stationary after forcing with P = P, % P*.

Let us reformulate the problem as follows: Let us show, working in V=, that for
every condition p € Pr and every Pr-name F for an operation F: (kT)<¥ — kT
there exist a condition p < p and a set z € E; such that p forces that x is closed
under F.

As k is supercompact, there exists, by the construction of P.; and by Laver’s
Theorem 2.1, an elementary embedding j : V — M with critical point x that
witnesses that « is k1-supercompact and such that the x** iterand of the iteration
j(Py) in M is (the name for) the forcing Pr. The elementary embedding j can be
extended, by a standard argument, to an elementary embedding j : VFx — MI(FPx),
Since j is elementary, we can achieve our stated goal by finding, in M7(F<) a
condition p < j(p) and a set € j(E7) such that p forces that z is closed under
i(E). o

The forcing j(P,) decomposes into a three step iteration j(P.) = P, * P" *« R
where R is, in MP=*F" a < j(k)-strategically closed forcing.

Let G be an M-generic filter on j(P,), such that p € G. The filter G decomposes
into G = G, * H * K where H and K are generics on Pr and R respectively, and
p € H. We shall find p that extends not just j(p) but each member of j”H
(p is a master condition). That will guarantee that when we let z = j”"P.x™

(which is in j(F1)), then p forces that z is closed under j(F): this is because
Pk j(F) | & = j”Fy, where Fy is the H-interpretation of F.

We construct p, a sequence (pe : & < j(2"+)), by induction. When £ is not in
the range of j, we let p¢ be the trivial condition; that guarantees that the support
of P has size < j(k). So let £ = j(~y) be such that p [ £ has been constructed.

Let M be the model |J{j(N) : N € H,} where H., is the 4" coordinate of H.

The v** iterand of P* is the forcing Q(S) where S is a stationary subset of Ey. In
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order for M to be a condition in Q(j(S)), we have to verify that, for every submodel
a C M, ifa € j(Er), then j(S5) reflects at a.

Let a € j(F1) be a submodel of M. If k, < kpr = K, then a = j"a = j(a) for
some @ € Fp, and @ is a submodel of some N € H,. As S reflects at @, it follows
that j(.9) reflects at a.

If kg = K, then A\, = kT, and a is necessarily cofinal in the universe of M, which
is j”k*. By Lemma 3.2, we have a = M, and we have to show that j(5) reflects
at j”kT. This means that jS is stationary in P,(j”x7), or equivalently, that S is
stationary in PerT. '

We need to verify that S is a stationary set, in the model MIP)*I (P while
we know that S is stationary in the model VP+*F"17 However, the former model
is a forcing extension of the latter by a < k-strategically closed forcing, and the
result follows by Lemma 2.5.
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