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ABSTRACT 

We prove t ha t  two basic ques t ions  on ou te r  m e a s u r e  are undecidable .  

Fi rs t  we show t ha t  cons is ten t ly  

�9 every s u p - m e a s u r a b l e  func t ion  f :  R 2 ---+ llr is measurab le .  

T h e  interest  in s u p - m e a s u r a b l e  func t ions  comes  f rom differential  

equa t ions  and  the  ques t ion  for which func t ions  f :  ]R 2 ----+ ]R the  Cauchy  

prob lem 

y' = f(x,y), y(xo) = yo 
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62 A. ROSLANOWSKI AND S. SHELAH Isr. J. Math. 

has a unique almost-everywhere solution in the class ACI(R ) of locally 

absolutely continuous functions on ~. 

Next we prove that consistently 

�9 every function f:  ]~ - -+  R is continuous on some set of positive 

outer Lebesgue measure. 

This says that in a strong sense the family of continuous fimctions (from 

the reals to the reals) is dense in the space of arbitrary such flmctions. 

For the proofs we discover and investigate a new family of nicely de- 

finable forcing notions (so indirectly we deal with nice ideals of subsets 

of the reals - -  the two classical ones being the ideal of null sets and the 

ideal of meagre ones). 

Concerning the method, i.e., the development of a family of forcing 

notions, the point is that  whereas there are many such objects close to 

the Cohen forcing (corresponding to the ideal of meagre sets), little has 

been known on the existence of relatives of the random real forcing (cor- 

responding to the ideal of null sets), and we look exactly at such forcing 

notions. 

0. I n t r o d u c t i o n  

The present paper deals with two, as it happens closely related, problems con- 
cerning real functions. The first one is the question if it is possible that all 
superposition-measurable functions are measurable. 

De~nition 0.1: A function f: ~2 ~ II~ is s u p e r p o s i t l o n - m e a s u r a b l e  (in 
short: s u p - m e a s u r a b l e )  if for every Lebesgue measurable function g: ~ ---+ R 

the superposition 

fg: ~ ~ ~: x ~ f (x ,g (x) )  

is Lebesgue measurable. 

The interest in sup-measurable functions comes from differential equations 

and the question for which functions f: ll~ 2 ) ll~ the Cauchy problem 

y' = f ( x ,  y(x0 )  = 

has a unique almost-everywhere solution in the class ACt (ll~) of locally abso- 
lutely continuous functions on ~. For a detailed discussion of this area we refer 

the reader to Balcerzak [2], Baleerzak and Ciesielski [3] and Kharazishvili [20]. 
Grande and Lipifiski [14] proved that, under CH, there is a non-measurable 
function which is sup-measurable. Later, the assumption of CH was weakened 
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(see Balcerzak [2, Thin 2.1]); however, the question if one can build a non- 

measurable sup-measurable function in ZFC remained open (it was formulated 

in Balcerzak [2, Problem 1.10] and Ciesielski [7, Problem 5], and implicitly in 

Kharazishvili [20, Remark 4]). In the third section we will answer this ques- 

tion by showing that, consistently, every sup-measurable function is Lebesgue 

measurable. 

Next we deal with von Weizs~cker's problem. It has enjoyed considerable 

popularity, and it has origins in measure theory and topology. In [27], von 

Weizs~cker noted that  if 

(*) non(J~f) de f min{iXl  : X C ~ has positive outer Lebesgue measure} = c, 

then 

(| there is a function f:  [0, 1] > [0, 1] such that the graph of f is of (two 

dimensional) outer measure 1 but for every Borel function g: [0, 1] 

[0, 1] the set {x E [0, 1] : f(x) = g(x)} is of measure zero. 

Then he showed that (| implies 

([]) there is a countably generated a-algebra A containing Borel([0, 1]) such 

that the Lebesgue measure can be extended to A, but  there is no extremal 

extension to ,4. 

So it was natural to ask if the statement in (| can be proved in ZFC (i.e., 

without assuming (*)). A way to formulate this question was to ask 

(| Is it consistent to suppose that for every function f :  ]~ ) I~ 
there is a Borel measurable function g: N ---+ N such that the set 

{x �9 l~: f(x) = g(x)} is not Lebesgue null? 

One can arrive at question (| also from the topological side. In [6], 

Blumberg proved that if X is a separable complete metric space and f :  X ) R, 

then there exists a dense (but possibly countable) subset D of X such that the 

restriction f [ D is continuous. This result has been generalized in many ways: 

by considering functions on other topological spaces, or by aiming at getting 

'% large set" on which the function is continuous. For example, in the second 

direction, we may restrict ourselves to X = l~ and ask if above we may request 

that the set D is uncountable. That  was answered by Abraham, Rubin and 

Shelah who showed in [1] that, consistently, every real function is continuous on 

an uncountable set. The next natural step is to ask if we can demand that the 

set D is of positive outer measure, and this is von Weizsgcker's question (| 

It appears in Fremlin's list of problems as [9, Problem AR(a)] and in Ciesielski 

[7, Problem 1]. 

We will answer question (| in the affirmative in the fourth section. The 
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respective model is built by a small modification of the iteration used to deal 

with the sup-measurability problem (and, as a matter of fact, it may serve for 

both purposes). We do not know if ([]) fails in our model (and the question if 

~(~]) is consistent remains open). 

Let us note that the close relation of the two problems solved here is not very 

surprising. Some connections were noticed already in Balcerzak and Ciesielski 

[3]. Also, among others, these connections motivated the following strengthening 

of (| 
+ (| Is it consistent that  for every subset Y of ~ of positive outer measure and 

every function f :  Y > ~, there exists a set X C_ Y of positive outer 

measure such that f r X is continuous? 

However, as Fremlin points out, the answer to + (| is NO: 

PROPOSITION 0.2 (Fremlin [10]): There are a set Y C_ ~ of positive outer 

measure and a function f:  Y ---4 ~ such that f I X is not continuous for any 

X C_ Y of positive outer measure. 

Proof: Recall that a Hausdorff space Z is un ive r sa l ly  null  if there is no Borel 

probability measure on Z that vanishes at singletons. By Grzegorek [15], there 

is a universally null set Z _C ~ of cardinality non(A/') (see also [11, Volume 
IV, 439E(c)]). Pick a non-null set Y C I~ of size non(Y) and fix a bijection 

f : Y  ~Z.  

If X _C Y is such that f r X is continuous, then we may transport Borel 

measures on X to Z, and therefore X is universally null and thus Lebesgue 

null. (See also [11, Volume IV, 439C(f)].) II 

The notion of sup-measurability has its category version (defined naturally by 

replacing "Lebesgue measurability" by "Baire property"). It was investigated in 

E. Grande and Z. Grande [13], Balcerzak [2], and Ciesielski and Shelah [8]. The 

latter paper presents a model in which every Baire-sup-measurable function has 

the Baire property. Also, von Weizs~cker's problem has its category counterpart 

which was answered in Shelah [24]. What  is somewhat surprising, is that the 

models of [8] and [24] seem to be totally unrelated (while for the measure case 

presented here the connection is striking). Moreover, neither the forcing used 

in [8] (based on the oracle-cc method of Shelah [26, Chapter IV]), nor the one 

applied in Shelah [24], is parallel to the method presented here. 

The present paper is a part of the authors' program to investigate the family 

of forcing notions with norms on possibilities, and we here further develop the 

theory of those forcing notions introducing measured creatures. This enrichment 
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of the method of norms on possibilities creates a bridge between the forcings of 

[21] and the random real forcing (including the latter in our framework), and 

we present here w~ friends of the random forcing. Though they are 

not ccc, they do make random not so lonely. [One of the points is that  we know 

many forcing notions in the neighbourhood of the Cohen forcing notion (see, 

e.g., Rostanowski and Shelah [22], [23]), but this is the first time that  we find 

many relatives of the random real forcing.] 

Our presentation is self-contained, and though we use the notation of [21], the 

two basic definitions we need from there are stated in somewhat restricted form 

below (in 0.3, 0.4). The general construction of forcing notions using measured 

(tree) creatures is presented in the first section, and only in the following section 

do we define the particular example that  works for us. The forcing notion 

~lt (K*, ~*, F*) (defined in section 2) is the basic ingredient of our construction. 

The required models are obtained by CS iterations of ~lt (K*, ~*, F*); in the 

fourth section we also add in the iteration random reals (on a stationary set of 

coordinates). 

Let us point out that  "measured creatures" presented here have their ccc 

relative which appeared in [23, w 

Notation: Most of our notation is standard and compatible with that  of clas- 

sical textbooks on Set Theory (like Bartoszyfiski and Judah [4]). However, in 

forcing we keep the convention that  the stronger condition is the larger one (i.e., 

p < q means that  q is stronger than p). 

(1) ~>0 stands for the set of non-negative reals. For a real number r and a set 

A, the function with domain A and the constant value r will be denoted 

rA. 

(2) For two sequences z/, u we write u <~ U whenever u is a proper initial 

segment of ~, and u _ 71 when either u ,3 ~ or u = ~/. The length of a 

sequence ~l is denoted by lh(u ). 

(3) A t r ee  is a family T of finite sequences such that  for some root(T) E T 

we have 

( V u c T ) ( r o o t ( T ) ~ , )  and r o o t ( T ) ~ u _ _ _ u C T ~ u E T .  

(4) For a tree T, the family of all w-branches through T is denoted by [T], 

and we let 

max(T) def {u E T : there is no p E T such that  u <~ p}. 
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If 7/is a node in the tree T, then 

succT(~) = {~ 6 T : ~ <1 v&lh(v) = lh(~) + 1} and 

T [~] = {v 6 T:~ 9 v}. 

Aset FCTisa front of Tif 

(V,I �9 [T])(~k �9 w)(~ [ k 6 F). 

(5) The Cantor space 2 W (the spaces of all functions from w to 2) and the 

space l-Ii<w Ni (where Ni are positive integers thought of as non-empty 

finite sets) are equipped with natural (Polish) topologies, as well as with 

standard product measure structures. 

(6) For a forcing notion P, Fp stands for the canonical P-name for the generic 

filter in F. With this one exception, all P-names for objects in the exten- 

sion via ? will be denoted with a dot above (e.g. %, X), but we do not 

notationally distinguish between objects in the ground model and their 

names in the forcing language. 

(7) For a relation R (a set of ordered pairs), rng(R) and dom(R) stand for 

the range and the domain of R, respectively. 

(8) We will keep the convention that  sup(0) is 0. Similarly, the sum over an 

empty set of reals is assumed to be 0. 

Let us recall the definition of tree creating pairs. Since we are going to 

use local tree creating pairs only, we restrict ourselves to this case. For more 

information and properties of tree creating pairs and related forcing notions we 

refer the reader to [21, w 2.3]. 

Det~nition 0.3: Let H be a function with domain w. 

(1) A local  t r e e - c r e a t u r e  for H is a triple 

t = (nor, val, dis) = (nor[t], val[t], dis[t]) 

such that  nor  �9 ~>0, dis �9 7/(~1) (i.e., dis is hereditarily countable), 

and for some sequence ~ 6 1-[i<n H(i),  n < w, we have 

@ # v a l C { ( ~ , , ) : ~ < v � 9  I I  H(i)}. 
i<m(o) 

(Thus for (~, , )  �9 val we have lh( ,)  = lh(7/) + 1.) For a tree-creature t we 

let pos(t) ~ f  rng(val[t]). 

The set of all local tree-creatures for H will be denoted by LTCR[H], and for 

�9 [-Jn<~ I'Ii<n H(i) we let LTCRn[H ] = {t �9 LTCR[H] : dom(val[t]) = {~}}. 

Sh:736



Vol. 151, 2006 MEASURED CREATURES 67 

(2) Let K C LTCR[H]. We say that a function E: K ) 7)(K)  is a local  

t r e e  c o m p o s i t i o n  on  I(  whenever the following conditions are satisfied. 

(a) I f t  �9 KNLTCR,,[H],  ~? �9 l-li<n H(i) ,  n < w, then E(t) C_ LTCRv[H ] 

and t �9 E(t). 

(b) If s �9 E(t), then val[s] C_ val[t]. 

(c) [transitivity] If s �9 E(t), then E(s) C_ E(t). 

(3) If K C_ LTCR[H] and E is a local tree composition operation on K, then 

(if, E) is called a local  t r e e - c r e a t i n g  pa i r  for H.  

(4) We say that (I(, E) is s t r o n g l y  f ln i t a ry  if H(m)  is finite (for m < w) 

and LTCRo[H ] fq K is finite (for each 7/). 

Definition 0.4 (see [21, Definition 1.3.5]: Let (K,E)  be a local tree-creating 

pair for H.  The forcing notion Q~ee (If, E) is defined as follows. 

A c o n d i t i o n  is a system p = (t, : ~1 �9 T) such that 

(a) T C_ I.J,~c~ 1-I/<,~ H(i)  is a non-empty tree with max(T) = 0, 

(b) for all 7? �9 T, t~ E LTCR,I[H ] fq K and pos(t,7) = succT(r/), 

(c)4 for every n < w, the set 

{u �9 T :  (Vp �9 T)(u <1 p :~ nor[tp] _> n)} 

contaius a fl'ont of the tree T. 

T h e  o r d e r  is given by: 
(t,11 : ,! e T 1} < (t 2 : ,! �9 T 2} (remember, this means that /tT~ : '1 �9 T2) is 

stronger than (t~ : 71 �9 TI)) if and ouly if 

T ~ C T '  and t,~ �9 Z(t~,) for each '1 e T 2. 

If p = (t,  : r / � 9  T), then we write root(p) = root(T), T p = T, t~ = t ,  etc. 

Tile forcing notion Q~ree(I(, E) is defined similarly, but  we omit the norm 

requirement (c)4. (So Q~ee (K, E) is trivial in a sense; we will use it for notational 

convenience only.) 

1. M e a s u r e d  crea tures  

Below we introduce a relative of the mixtures with random presented in [23, 

w Here, however, the interplay between the norm of a tree creature t, the 

set of possibilities pos(t) and the averaging function Ft assigned to t is different. 

BASIC NOTATION. In this section, H stands for a function with domain w and 

such that (Vm E w)(IH(m) [ k 2). Moreover, we demand H E 7/(}tl) (i.e., H is 

hereditarily countable). 
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Definition 1.1: 
(1) A m e a s u r e d  ( t ree)  c r e a t u r e  for H is a pair (t,F) such that  t E 

LTCR[H] and 
F: [0, 1] p~ ~ [0, 1]. 

(2) We say that  (K, E, F) is a m e a s u r e d  t r ee  c rea t ing  t r ip le  for H if 

(a) (K, E) is a local tree-creating pair for H, 

(b) F is a function with domain K, F : t ~ Ft, such that (t, Ft) is a 

measured (tree) creature (for each t E K).  

(3) If ( K , E , F )  is as above, t E K,  X C pos(t), and {r, : v E X) E [0, 1] x,  

then we define Ft(r~ : v E X) as Ft(r* :v  E pos(t)), where 

�9 r r .  if v E X ,  
r ~ =  ~0  i f v E p o s ( t ) \ X .  

We think of Ft as a kind of averaging function. At the first reading the reader 

may think that pos(t) is finite and 

Ft(rv: v E pos(t)) = y'~{r~ : v E pos(t)} 
I pos(t)l 

For this particular function, our construction results in the random real forcing. 

However, in general, our averaging function does not have to be additive (as 

long as it has the properties stated in 1.2 below), and the result is not the 

random forcing (and this is one of the points of our construction). Also having 

Ft depend on t allows us to "cheat": if we do not like the results of our averaging 

we may pass to a tree creature s E E(t) (dropping the norm a little) with an 

averaging function Fs that  is better for us. 

Regarding the requirements of 1.2, note that  they are meant to provide us 

with some features of the Lebesgue measure, without imposing additivity on 

the averaging functions Ft (specifically see 1.2(fl)). 

De~nition 1.2: A measured tree creating triple (K, E, F) is nice if for every 

t E K :  
(a) if {r, : v E pos(t)},(r~ : v E pos(t)} G [0,1], r~ < r~ for all v E pos(t), 

then 

Ft(r~, :v  E pos(t)) _< Ft(/~ : v E pos(t)), 

(fl) if nor[t] > 1, {~} = dom(val[t]), rv,r~ E [0,1] (forv E pos(t))are such 
~__21h('D 

o 1 > r .  and Ft(r. : v E pos(t)) _> 2 , then there are real that  r~ + r .  

numbers Co, cl and tree creatures So, Sl E E(t) such that  

Co + c, = (1 - 2-2""'))Ft(rv : v E pos(t)) 
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and 

(| if g < 2, ce > 0, then nor[se] _> nor[t] - 1, pos(se) c_ {v E pos(t)  : 

0}, and r u 

Fs~(r~ : v  E pos(se)) > cg, 

(3') if b E [0, 1] and rv E [0, 11 (for v E pos(t)) ,  then 

Ft(b.r~.: v E pos(t))  = b. Ft(r~ : u E pos(t)) ,  

(6) if ( r ,  : u E pos(t))  _C [0, 1], e > 0, then  there  are r~ > r ,  (for u E pos(t))  

" " ' ( f o r  such tha t  for each ( r .  : v E pos(t))  C_ [0, 1] satisfying r .  _< r ,  < r ,  

v E pos(t))  we have 

Ft(r~ : u  E pos(t))  < Ft(r, : u  E pos(t))  + e .  

(Why do we have " '  r ,  s above? Only to  avoid nota t ional  difficulties 

when r ,  = 1 for some u. Otherwise,  one may think tha t  we demand  just  

Ft(r" : v  E pos(t))  < Ft(rv : u  E pos(t))  + e . )  

Prom now on (till the end of this section),  let (K, E, F)  be a fixed s t rongly 

finitary and nice measured  tree creat ing triple for H .  Note t ha t  then  

the condit ion (c)4 of Definition 0.4 is equivalent to 

(c)5 (Vk E w) (?n  E w)(VT1 E TV)(lh(t/) > n @ nor[tn] _> k). 

P R O P O S I T I O N  1.3: Let t E K. Then: 
(e) Ifr~ = 0 for u E pos(t) ,  then Ft(r~ : u E pos(t))  = 0. 

t ( f o r  12 (() If (r~ : u E pos(t))  C_ [0, 1], e > O, then there are r~ < rv E pos( t ) )  

_ ' " <__ r .  ( fo r  such that for each (r',' : u E pos(t))  C [0, 1] satisfying % < r, 
v E pos(t))  we have 

Ft(rv: u E pos(t))  - e < Ft(r~: u E pos(t)) .  

Proof." (e) Follows from 1.2(3`) (take b = 0). 

' (for u E pos(t))  works. So (() If Ft(rv : v E pos(t))  < e, then any r~ < r ,  

assume Ft(r, : v E pos(t))  >_ e and let 

b= F t ( r , :u  E pos(t))  - e / 2  

Ft(r~ : v  E pos(t))  

Then  0 < b < 1. For u E pos(t)  put  

I ( - 1  if r .  = 0, 
r ,  = ). b. r~ otherwise. 
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We are going to show tha t  these r v' 's are as required. To this end suppose tha t  

' " _< rv (for all v E pos(t)). Then (r~ : v E pos(t)) C_ [0,1] is such tha t  r~ < r~ 

also b. rv _< r~ (for v E pos(t)) and by 1.2(a, 7) we get 

Ft(r",: v E pos(t)) ~ F t ( b . r , :  u E pos(t)) = b. F t ( r , :  v E pos(t)) 

= Ft(rv : t, E pos(t)) - e /2  > Ft ( r , :  v E pos(t)) - E. . 

Definition 1.4: Let p = (t p : ~ E T p) E ~ree (/x', ~). 
(1) For a front A C_ T p o f T  p, we let T ~ , A ]  = {~] E TP: (3p E A)(~ ~ p)}. 

(2) Let A be a front of T p and let f :  A ~ [0, 1]. By downward induction on 

E TIp, A] we define a mapping #f,A: TiP, A] ~ [0, 1] as follows: 

�9 if ~ E A then #f,A(~) = f (~) ,  

�9 if # f ,A( ' )  has been defined for a l l ,  E pos(tP), ~ E Tip, A] \ A, then 

we put ,pf, m (r]) ---- Ft~,(pf, A(P):L ' E pos(t~)). 

(3) For ~ E T p we define 

#pF(~) _-- inf{#fE,,j,A(O): A is a front of (TP) [v] and f = 1A}, 

and we let #F(p) = #pF(root(p)). 

(4) For e E {0, 4} we let* 

(~t  (~', ~,F) : {pE ~ree(/( ,  ~ ) :  ,F(p) > 0}. 

It is equipped with the partial  order inherited from ~ e ~  (K, E). 

PROPOSITION 1.5: Assume p E Q~ree(K, E) and A is a front o f t  p. 

(1) I f  fo, f l:  A ~ [0, 1] are such that fo(v) <_ f l  (v) for all v E A, then 

A (V, e TLo, A])(p;"A(,) < ,p ,A( , ) ) .  

(2) ! f f o : A  ) [O, 1 ] , b E [ O , X ] , a n d f x ( u ) = b . f o ( l J )  (fort, EA) ,  then 

fl fo (YT1 E Tip, A])(#p,A(,) = b. #p,m(,)) .  

(3) I rA '  is a front o f T  p above A (that is, (V.'  E A' ) (~ .  E A)(t, <~ t/)) and 
1AI 1 A E TIP, A], then #;,A'(~) <-- #;,A(O)' 

Definition 1.6: Let p E Q~ee (I(, E, F).  

(1) A function #: T p --+ [0, 1] is a s e m i - F - m e a s u r e  on  p if 

(Vy E Tv)(#(~) _< Ft~,(p(v) : t ,  E pos(t~P))). 

(2) If above the equality holds for each ~? E T p, then # is called a n  F- 

m e a s u r e .  

* "mt" stands for measured tree 
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PROPOSITION 1.7: Let p E ~ree(/s E). 
(1) if/z: T p ) [0, 1] is a semi-F-measure on p, then for each ~ E T p we have 

/Z(~) </Z~('7). 
(2) I f  there is a semi-F-measure it on p such that p(root(p)) > 0, then p E 

(K, F). 
(3) I f p  E ~ t  (K, E, F), then the mapping ~ ~ #F0]): T p - -~  [0,1] is an 

F-measure on p. 

LEMMA 1.8: Assume p E ~ , t  (K, E ,F)  and 0 < e < 1. Then there is ~/ E Tp 

such that/z[(rl) >_ 1 - e. 

Prool~ Assume towards a contradiction that  /Z[(~/) < 1 - ~ for all 7/ E Tp. 

Choose inductively fronts Ak of T p such that 

�9 A0 = {root(p)}, 

�9 (V~ E Ak+l)(3u e Ak)(u <3 ~), 
1Ak-['l (l.I) 

�9 /Zp,Ak+~, - < 1 -- e for all u E Ak. 

Note that then (by 1.5(1,2)) for each k < w we have 

/z(p) ~ /zlp?2~21 (root(p))~_~ (1- ~)k~-I 

Since the right hand side of the inequality above approaches 0 (as k ~ c~), we 

get an immediate contradiction with the demand #F (p) > 0. | 

Definition 1.9: A condition p E Q~,t (K, E, F) is called n o r m a l  if for every 

~ Tv we have pF(~) > 0. We say that p is spec ia l  if for every ~ E Tp we have 

_ 2-2 '''')+' 

P R O P O S I T I O N  1 . 1 0 :  

(1) Special conditions are dense in ~ t  (K, E, F). (So also normal conditions 

are dense.) 

(2) I f  p is normal, and A is a front of TP, then #F(p) = #f,A(root(p)), where 

f (u )  = #F(v) (for u E A). 

Proof: (1) Let p E Q~1t (K, E, F); clearly we may assume that nor[t~] > 1 

for all 71 E T p. Also we may assume that pF(p) > 3/4 (remember 1.8) and 

lh(root(p)) > 4. 

Fix ~ E T p such that/ZF(~I) _> 2 -2'''('1 for a moment. Let 1 < a < 2. For each 

u E pos(t~) pick a front A~ of (TP) M such that 

if/ZF(u) < 2 -2'''(''1+1, then 1A, (u) �9 /zpl'd,A,~, - < 2-2u ' I ' )+~ ' 
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'A,, ( ' )  < a .  l ' [ ( ' ) .  �9 if ItF(u) > 2 -2'h('l+~, then ltv!~lA~ 
= 9 - 2  Jh('l}+~ ~ Let Xo {u E pos(t p) : pF(u) < - , ,  X 1 = p o s ( t ~ ) \  X0, r .  = 

1~  ru) and ~ t p I ~ l , A  ~ k . ,  

t ( r .  ift, EXe, 
r .=~,O ifvEXl_e. 

p .o r~,rv (note that  Fg;(rv : r .  E pos(t~)) > pF(~) > Apply 1.2(/?) for t w 7., _ _ 

2 -2'''~''~) to pick s] ,s~ E E(t~) and c],c~ such tha t  

c3 + c'~ = (1 - 2 -2'' '"' '  )1~, ( r . :  u E pos(t,~)), 

and 
(| if ~ < 2, c~ > 0, then nor[s~] _> nor[tVn] - 1, pos(s~) C Xt,  and 

Note that ,  if c~ > 0, then c~) < F~?,(r~. : u E pos(s~)) < 9-2"""1+~, and thus 

a 2u't'~) ~ "  > 0.  c 1 _> (1 - 2 -  ) rg  I (r ,  : u E pos(t~)) - 2 -2u't ' '+' 

Also, let t ing r* = min{a-  i t[(u) ,  1}, 

F~i,(r. : u E pos(s~)) < F~?(r; : u E pos(s?)) _< a-Fsi,(#pF(U) : u  E pos(s[')). 

Together 
. . . . .  . ~ l h � 9 1  

(.)~ (1-2-2'"~"~)Ft,,(r.  : u E pos ( t~ ) ) -2  ~ < a.F~;(pF(u) : t ,  E pos(s~)). 

Since (K, E) is strongly finitary, considering a -~ 1 (and using 1.2(~)), we 

find s~ E E(t~) such tha t  nor[s~] > nor[t~] - 1 and p[ (u )  > 2 -2'''1''~+' for all 

u E pos(sv), and 

: u E pos(sn)) + 
ppF(~) = Fg;(#~(u) : u E pos(t,~)) < - 1 - -  2 -21hi ' I )  

Note tha t  also, as 2 -2~h("l < pF0?), 

itF(,,l)(1 - 2--2 ''"'')) _ 2-2 "'('')+' > ItF(,l)(1 -- 2,-2'"(")), 

s o  

(**) (1 - 2 < : e p o s ( s . ) ) .  

Now, s tar t ing with root(p), build a tree S and a system q = (s n : r/ E S) 

such tha t  succs(rl) = pos(s,7). It should be clear tha t  in this way we will get 

a condition in Q~ree (K, E) (stronger than p). Why  is q in Q~,,t (K, E, F)?  Let 
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k* > lh(root(q)), A = {v �9 S : lh(u) = k*} and f = 1A. Using (**), we may 
show by downward induction that for every 7/ �9  T[q, A] we have 

k* -1  

H 
k=lh(71) 

>_ 2 -2n'~ (1 - 2 2-2'''~ ) > 2 -2''~ . 

Now we may easily conclude that q �9 Q~t (K, E, F) is special. 

(2) Let A be a front of TP, p normal (so, in particular, #F (u) > 0 for u �9 A). 

Fix a > 1 for a moment. 
'A. #pF(V). Let For e a c h .  �9 A pick a front A~ of (T~) ["] such that ltp,A~ (p) < a. 

B = U~eA A~ and f ( . )  = #pF(.) for u �9 A. By downward induction one can 

1 .  -- Pfp,A(P)" Then, in particular, show that for all p �9 TIP, A] we have #p,B(P) < a" 

we have 

_ ' 1 "  ( r o o t p )  a #F(p) < t~p,B, ( ) -< " "p/,A(root(p)), 

and hence (letting a ~ 1) #F(p) < #pf,A(root(p)). The reverse inequality is even 

easier (remember 1.5(1)). I 

LEMMA 1.11: Let p C Q~t (K ,E)  be a normal condition such that/~F(p) > 1, 

nor[t,~] > 2 for all 7] �9 T p, and let k0 = lh(root(p)) > 4, 0 < e _< 2-0+ko). 

Suppose that B is an antidlain of TP, and that for each v �9 B we are given a 

normal condition q, >_ pM such that 

root(q,) = u  and #F(qu) > 1 - 6 .  

Then at least one of the following conditions holds. 

(i) There is a normal condition q E ( ~ t  (K, E, F) such that 

q_>p, root(q) = roo t (p ) ,  and T q M B = 0 .  

(ii) There is a normal condition q E ~ , t  (K, E, F) such that 

�9 q >_ p, root(q) = root(p), #F(q) >__ (1 -- 2-k~ and 

�9 T q f-I B is  a front o f T  q, and q[~] = q, for u E T q N B ,  and 

�9 if 7] e T q, ~ <3 u E B, then nor[t~] _> nor[t  p] - 2. 

Proof: Let ee = 21-2~ (for ~ < w); note that (ee) 2 = 2ee+l. 
Fix k > lh(root(p)) for a while. Let A be a front of T p such that 

{ , e B : l h ( u )  < k } C _ A  and ( V u E A ) ( u ~ B ~ l h ( u ) = k ) .  
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o 1 [0, 1] and By downward  induction, for each v E TIp, A], we define r.,r~. �9 

s.,~ s.1 �9 E(t~) such that  
0 O, 1 (a)  If v �9 A N B, then r .  = r~ = #F(q~). 
0 ~tpF(p), 1 0�9 (/3) I f u � 9  t h e n r . =  r . =  

(7) If u C Tip, A] \ A, lh(v) = m, then: 
i f  #pF (/2) (1 ~') k-I  0 1 0, �9 - �9 Me=m(1 - 3ee) < era, then r .  = r .  = 

n k - 1  l1 3ee). else r~ o + r ~  _> pF(u )"  (1 --~) " t i e=m,  - 
Clauses (a),(/3) define o 1 for u �9 A; o 1 r~,r~ s ~ , s .  are not defined then (or are 

arbi t rary) .  

Suppose  q �9 Tip, A] \ 
O= 1 = 0  then we let rn rv 

A, lh(T}) = k - 1. If ppF(7}). (1 - ~). (1 - 3ek_l)  < ek_l,  

0 1 are not defined)�9 So assume now that  (and sn, sv 

#pF(q) �9 (1 -- e)" (1 -- 3ek-1) > ek-, �9 

o a > ppF(.) .  (I Then also (as r~ + r~ 

1 + �9 pos(t )) __ 

> ,pF(r])�9 (1 - 

and we may apply 1�9 to pick rv~ , 

e) f o r .  �9 pos(t~)) 

, [ ( , )  �9 (1 - 

~).  (1 - 3ek-1) >_ ek-1 > 2 -2~- ' ,  

rvl and s ~ s~l C E(t~) such that  

(i) r v + r  1 > ( 1 - - e k _ , ) . F d ; ( r ~  �9 pos(t~)) > pF(~) . (1- -r  
(ii) if re > 0, g < 2, then nor[s~] > nor[ t  p ] -  1, pos(s~) C {v �9 pos(t~) : re > 0} 

and Fs~,, ( r ~ : u  �9 pos(s~)) > r~. 

Suppose  now that  ~ �9 TIP, A] \ A, lh(~) = m - 1 < k - 1, and r.~ r.1 have 

been defined for all u �9 pos(t  p) (and they satisfy clause (7)). If 

k - 1  

I t [0?)"  (1 - e)" 1-I (1 - 3ee) < era- l ,  
g = m - 1  

0 1 = 0 (and o 1 are not defined). So assume then we let rv = r~ sv, sn 

k - 1  

p F ( ~ ) .  ( l - - e ) .  I I  (1 -- 3ee) >__ e.~_,.  
g = m - 1  

Then for v �9 pos(t~) we let 

1 if O + r ~ > O ,  r ;  = r~ + r "  
em otherwise,  

and we note tha t  
k--1 

* _ 2 - 2  . . . .  i Ft~ ~ ( r~:  u �9 pos(tP)) > iLpF(r/) �9 (1 -- e)" I I  (1 -- 3ee) > era-, > 
g = m  
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Applying 1.2(r choose t~  1 E E(t~) and co,c1 such tha t  co + C1 k 

(1 -- e m _ l ) F g , ( r * :  v e p o s ( t P ) )  and 
o 1 0}, nor [ t  ~ _> n o r [ t ~ ] -  1 �9 if Co > 0, then  pos(t  ~ _C {u C pos(tnP ) : r .  + r .  = 

and Fro(r* : u E pos(t~ -> Co, 
0 1 0}, nor [ t  1] -> nor[t~] 1 �9 if cl > 0, then pos( t ' )  C_ {u E pos( tP) :  r~+r~  > 

and Ftl (r~*: u E pos( t l ) )  _> O- 
Now look at  the definition of r~,. If Co > 0, then  Fro(r* : u E pos(t~ _< era, so 
Co <_ em _< (em-1) 2. Therefore  

k--1 

Ftl(r*~: u e pos(P) )  _> 0 _ (1 - era--i)" ]-tpF(T]) ' (1 - ~).  IX  (1 - 3e~) - e m  
e----m 

k-1  k - ,  
_>(1 - ern_l)#pF(r])(1 - ~).  H (1 - 3ee) - em-,#pF(T])(1 - e) .  H (1 - 3ee) 

e=m e=m 

k -1  
_ 2 -  2 . . . .  1. =PF(~])(1 ~)" H (1 - 3ee)" (1 - 2em- , )  _> e m - l "  (1 - 2era-i) > 

e:---m 

Hence we ,nay apply 1.2(/?) again and get r ~ r~ and .~r1,0 8r I1 E E(t  1) C_ Y](t p) snch 

tha t  

r,~ + r~ _> (1 - e ra - l ) "  Ft , ( r* :  u e pos( t ' ) )  
k-1  

_> #FoI)(1  -- ~)" H (1 -- 3ee)" (1 -- 2era- l )"  (1 -- era- l )  
s 

k -1  

_> p [  (,]) . ( 1 -  s) . H (1-3e~), 
g- -m-1  

2, then  pos(s~) C_ {u E pos(t~) : rt~ > 0}, nor[s~] _> n o r [ t ~ ] - 2  
o 1 o and 1 e This  finishes the definition o f r~ , r~ , s~  s~ pos(s~)) _> r,,. 

and if ren > 0, g < 

and Fs[ (r~ : u E 

for u E TiP, A]. 
Note tha t  (as ko > 4) 

Therefore,  

k-X 1 oo 1 3 

g=ko ~=ko 

k -1  k - 1  

#F(r~176 " H (1 -- 3ee).  (1 -- r -> ppF(root(p)).  (1 -- (r + E 3ee)) 
g=ko e=ko 

a 1 29 
_ 2 < + 2 )  > > e < .  
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Hence also (by (~/)) 

k-1 
3 0 1 

#F( roo t (p) ) (1 -  ~ )  --< #P F(r~176 " 1-I ( 1 -  3ee). ( 1 -  E) _< rroot(p ) + rroot(p ). 
t=ko 

t Now, if rroot(p ) > 0, g < 2, then we build inductively a finite tree S k C_ 

TiP, A] as follows. We declare that root(S k) = root(p), s e'k e root(p) ~ 8root(p)' and 
succs~(root(p)) = pos(s[okot(p)). If we have decided that ~ E S~, r] • A (and 

e > 0), then we also declare sen ,k = s~, succs~ (~) = pos(s~; k) (note r~ > 0 for r~ 

v E pos(s~'k)). 

Then, if So is defined, So n B = 0, and, if is defined, Sl n A c B. Also, 

if we "extend" So k using p[~] (for u E So k (3 A), then we get a condition qo k __> p 

such that if(qo k) _> rr~ de__=f rO,k" Likewise, if we "extend" S~ using q~ (for 

u E $1 k AA), then we get a condition q~ > p such that #F(qlk ) _> r~oot(p ) de__f rl,k" 

If for some k > lh(root(p)) we have r 1,k _> (I - 2-k~ then we use the 

respective condition q~ to witness the demand (ii) of the lemma. So assume 

that for each k > lh(root(p)) we have r 1,k < (I - 2-k")ItF(p), and thus 

r ~ > (1 3 1 F 1 F 
2ko+2)pF(p) -- (1 -- ~-~)# (p) = 2ko+2p (p) > 0. 

Apply the K6nig Lemma to find an infinite set I _C w \ (ko + 1) such that for all 
k ,k ~,k" E I, k < k ~ < k", we have 

_ q k  H ~ o O , k  ~ 0 k ( V r / E S 0 k ' ) ( l h ( y ) < k ~ E ~ o  ~~ = % '  )" 

~o,k (for sufficiently large k E I) Then S q = {r/: (V~k E I)(~/ E Sok)}, sq = ~ 
determine a condition q witnessing the first assertion of the lemma. I 

LEMMA 1.12: Assume that  r is a Q~nt (K, E, F)-name for an ordinal, n <_ m < w 

and p E Q~nt (K, E, F) is a normal  condition such that  ILF(p) > �89 and nor[t  p] > 

n + 2 for ~l E T p. Let  ko = lh(root(p)) > 4. Then there is a normal condition 

q E (~ l t  (K,  E, F) such that  

(a) q :> p, root(q) = root(p), tLF(q) _> (1 -- 2-k~ and 

(b) (V~ E Tq)(nor[ t  q] >_ n),  and 

(c) there is a front A of  Tq such that for every v E A: 

�9 the condition q['] forces a value to i-, 

�9 #F(•) > 3, lh(u) :> k0, 

�9 i f u ~ E T  a, t h e n n o r [ t  q ] > m .  

Proof" Let B consist of all u E Tp such that 
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(a) lh(v) > ko and there is a normal condition q E ( ~ t  (K, E, F) stronger than 
p['] and such that root(q) = v, #F(q) _> (1_2-(2+ko)), (V~ E Tq)(nor[t q] >_ 

m), and for some front A of Tq, for every ~l E A: 

(| #qF0l ) > 7/8 and the condition q[~] decides the value of ~, 

and 

(/3) no initial segment of ~/has the property stated in (a) above. 

Note that  B is an antichain o f T  p, and B N T  p' ~ ~ for every condition p' > p such 

that root(p') = root(p) (by 1.8). For each v E B fix a condition q. witnessing 

clause (a) (for v). Now apply 1.11: case (i) there is not possible by what we 

stated above, so we get a condition q as described in 1.11(ii). It should be clear 

that it is as required here. | 

THEOREM 1.13: Suppose that p E ~ ' t  (K, E, F), and /'n are (I~t (K, E, F)-  

names for ordinals (n < w). Then there are a condition q >_ p and fronts An of 

T q (for n < w) such that for each n < w and v E An, the condition qM decides 

the value of in. 

Proof: We may assume that p is normal, ko = lh(root(p)) > 4, #F(p) > �89 and 

nor[t~] > 3 for 71 E T p. We build inductively a sequence (qn, An : n < w} such 

that 

(I) qn E ~t (i(, E, F) is a normal condition, root(qn) -- root(p), qn _< qn+l, 

qo =P, 
(2) An C_ Tq"+ 1 is a front of T q'+l, (V/2 E An)(3~ E An+l)(V <~ ~), 
(3) if u E An, then F 7 #g,,+~ (u) > g, and for each ~ E T q"+~ such that v <] ~ we 

have nor[t~ "+~] _> n + 4, 

(4) if root(p) ~ ~1 <I u E An, then t q"+l = t q~+2, 

(5) for each v E An, the condition (qn+l)[ ~1 decides the value of/-n, 
-- KIk~ (1 (6) #f(qn+l)  > lie=ko ~ -- 2-e) " #f (p) .  

The construction can be carried out by 1.12 (ql, A0 are obtained by applying 

1.12 to p and/-0; if qn+l, An have been defined, then we apply 1.12 to/-~+~ and 

(qn+l) ['1 for v E An; remember 1.5). Next define q = (t~ : ~] E Tq) so that  

root(q) = root(p), each A~ is a front of Tq, and if root(p) ~_ q ~ v E An then 

~q"+~ It is straightforward to check that q is as required in 1.13. | tq = ~n �9 

COROLLARY 1.14: Let (K, E, F) be a strongly finitary nice measured tree cre- 

ating triple. Then the forcing notion ~4 ~t ( K,  E, F) is proper and co ~~ 

Let us recall the following definition. 
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Definition 1.15 (Goldstern [12, Definition 7.17]): Let (P,_~,) be a definable 

forcing notion, P _C w ~, and let epd• be a relation on P x [P]~. We say that 

(P, _<~,, epdp) is a Souslin + proper forcing notion if 

(1) _<p is an analytic subset o f t  ~ x w ~, epdp is a E l set (both definitions are 

with a parameter r), 

(2) for each (p, A) E P x [P]~, epdp(p, A) implies that A is predense above p, 

(3) if (M, E) is a countable model of ZFC*, r E M and p E pM, then there is 

a condition q E P stronger than p and such that 

(.) if A E M and M ~ "A is predense above p", then epdp(q, A). 

Souslin + proper forcing notions are nep, so the results of [25] apply to them; 

see also Kellner [17], [18] and Kellner and Shelah [19]. 

COROLLARY 1.16: Let ( K , E , F )  be a strongly finitary nice measured tree- 

creating triple. Let P = Q~t (K, E, F) and for p E P and A E [P]~ let 

epd~,(p, A) r 
there is a front F C T p such that (VT) E F)(3p' E A)(p' <_ pill). 

Then (]?, <, epd~,) is a Souslin + proper forcing notion. 

The arguments for properness (and Souslin + properness) of the forcing notion 

~ t  (K, ~, F) is essentially an Axiom A argument. However, to have an explicit 

representation of what was discussed above in the language of Axiom A, we 

need a small technical adjustment to our forcing. 

Definition 1.1 7: Let (K, E, F) be a strongly finitary nice measured tree-creating 

triple and p E Q~,t (K, E, F). 

(1) For n < w let 

1 
Bn(p) = {~ e T ' :  t ' [ (~)  > 5~1{" e T" : ,  < = 

(2) We say that the condition p is s u p e r  n o r m a l  if it is normal and for each 

n < w the set Bn (p) is a front of T ~. 

(3) Let Q~'~ (K, E, F) = {p E ~lt  (/(, ~, f ) :  p is super normal}. 

PROPOSITION 1.18: ~ n  (K, E, F) is a dense subset o f ~  It (/(, E, F). 

Proof: It follows from the proof of 1.13 - -  the condition q constructed there is 

super normal. I 
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Definition 1.19: Let n < w. We define a binary relation <_n on ~ n  (I(, E, F) 

by: p <~ q if and only if (p, q E Q~n (I(, E, F) and) 

(a) p < q (in ~ n  (K, E, F)),  root(p) - root(q), and 

(fl) TiP, B~(p)] C_ T q and (V~l e T ~ ,  Bn(p)])(t~ = tP), and 
(7) if ~ e T a and nor[t~] < n, then t~ = t~, 
(6) if ~/ �9 B~(p), then #Fir/) > (1 -- r2-n-4)  �9 #[(r/), where 

1 
r = min({ppF(v) -- ~ : v  �9 T~,Bn(p)]& #pF(U) > }). 

PROPOSITION 1.20: 

(1) For each n < w, <_~ is reflexive and <_n+lC_<nC_<. 

(2) If  a sequenee (Pn : n < w) C_ ~ n  (I(, E ,F )  satisfies (Vn �9 w)(p~ Gn pn+l), 

then there is a condition q �9 ~ n  (K, E, F) such that (Vn �9 w)(Pn+l <_n q). 

(3) I f Z  C_ Q~n(K,E,F)  is an antichain, p �9 ~ " ( K , E , F ) ,  n < w, then 

there is a condition q �9 ~ " ( K ,  E, F) such that p <,~ q and the set 

{r �9 T : r, q are compatible} is finite. 

(4) If  p, q, r �9 ~'~ (K, E, F), n �9 w and p <n+l q <n+X r, then p <n r. 

Remark 1.21: The relations <n on Q~n(K,E,F)  are not exactly like those 

needed to witness Baumgartner 's  Axiom A (see Baumgartner [5, w However, 

the properties stated in 1.20 are enough to carry out the arguments of [5, w 

We will use this in 4.7. 

2. T h e  forc ing  

In this section we define a nice, strongly finitary measured tree creating triple 

(K*, E*,F*),  and we show several technical properties of it and of the forcing 

notion ~lt (/(*, ~*,F*). This forcing will be used in the next two sections to 

show our main results 3.2 and 4.15. 

For each k < w, fix a function qOk: w > w such that 

22k+7 
(2 2~+3 q0k(0) = 2 k+4 and ~k(i + 1) > + 1). qok(i) + 

log2 (1 + 2-22k+~) " 

Let Nk = 2 l+[l~ (where [rJ is the integer part of the real number r), 

and let H*(k) = 2 Nk. 

Let K* consist of tree creatures t E LTCR[H*] such that 

�9 dis[t] = (kt,~]t,nt,gt,Pt), where nt < kt < w, ~t E I-L<k, H*(i),  gt is a 
partial function from Nk, to 2 such that [gtl < ~k, (kt - n t ) ,  and 

0 # P~ C {f E H*(kt ) :  gt C f} ,  
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,, nor[t] = nt, 

�9 val[t] = {(Nt, ~'): Nt '~ ~ E 1]i_<k~ H*(i) & ~'(kt) E Pt}. (So pos(t) = Pt.) 
The operation E* is trivial, and for t E K*: 

E*(t) -= { s E  K* :~s =~t  ~ n s  ~ nt ~ gt C_gs & Ps C_Pt}. 

Finally, for t E K* and (r .  : v E pos(t)) C_ [0, 1] we let 

F ; ( ~  : .  e pos(t)) = 

rain{2 IhI-N~ �9 E { r . :  h C_ u(kt) E Pt} :h is a partial function from Nk~ to 2, 

gt C_ h and I h \ gt] <_ 2k'+3}. 

(So this defines F* = (Ft* : t E K*).) 

It should be clear that (K*, E*, F*) is a strongly finitary measured tree cre- 

ating triple. (And now we are aiming at showing that it is nice, see 1.2.) 

LEMMA 2.1: Assume that t E K*, nor[t] > 1, and g~ is a partial function from 
Nk~ to 2 such that g' ~ gt and [g' \ gt[ ~ 2kt+3. Furthermore, suppose that 

r .  E [0, 1] ( f o r .  E pos(t)) are such that 

2 -2k'+a _~ 2 ]g'l-gk* E { r v : u  E pos(t) & g' C u(kt)} def  �9 - - - -  a .  

Then there is s E E*(t) such that 

(a) nor[s] = nor[t] - 1, g' _C gs, 

(/~) F*(r .  :~, E pos(s)) > a .  (1 - 2-2~*+3), 

(7) i fh  is a partial function from Nk~ to 2 such that g~ C h and [h\gs[ < 2 k~+3, 

then 
E { ~ :  ~ e pos(s) ~ h c ~(k~)} 

2N~-Ihl 

is in the interval [F*(r.  : .  E pos(s)) ,F*(r.  : v E pos(s)) �9 (1 + 2-2~+3)]. 

Proof." Let k = kt, n = nt. 

We try to choose inductively partial flmctions ge from Nk to 2 such that 

(a) g' = go c gl c_ . . . ,  Ige \ g'l < e" 2k+3, 
(b)e 2,g~l-N~. E { r . : ,  e pos(t) ~ ge c , (k)}  > a .  (1 + 2-2~§ ~ 

Note that in (b)e, the left hand side expression is not more than 1, so if the 

inequality holds, then (as a > 2 -2~+3) 

2k+3 
(e)  e < 

- loge( 1 + 2-22k+7) " 
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Consequently, in the procedure described above, we are stuck at  some go satis- 

fying (G). Let 

g s = g e o ,  u s = n - l ,  k s = k ,  ~ /8=qt ,  P s = { f E P t : g e o  C_f}. 

So this defines s, but  we have to check tha t  s E K*. For this note tha t  

2 2 k + 6  

Igs[ _< [g'[ + 6 "  2 k+3 _< vk(k  - n) + 2 k+3 + log2( 1 + 2_22k+7) _< ~k(k -- as). 

(So indeed s E K*, and plainly s E E*(t).) Also note tha t  

2 Ig'i-N~= �9 E { r ~ :  u C pos(s)} > a .  (1 + 2-22k+7) e~ ~ f  a* >_ a. 

Now, suppose tha t  u C_ Nk \ dom(gs), lul _< 2 k+3. Let h: u > 2. We cannot  

use gs~h as 9eo+1, so the condition (b)eo+l fails for it. Therefore 

bh def 21g~l+lhl_gk. E { r ~  : v E pos(t) & gs~h C_ u(k)} 

< a .  (1 + 2-2~+~)  ~o+' = a* .  (1 + 2 - 2 ~ + ' ) .  

CLAIM 2.1.1: For each h: u ---+ 2, we have 

bh >_ a* �9 (1 - 2-2k+4). 

Proof of the claim: Assume tha t  ho: u > 2 is such tha t  bho < a*. (1 --2-2k+4). 

We know tha t  bh < a* �9 (1 + 2 -22k+7) for each h: u > 2, so 

a*.  2 Nk-lg~l < E { r ~ :  u e pos(s)} 

<a* (1 2 -2k+4) 2 N~-lg"l-lu[ -b a* (1 + . . . .  2 -22k+~) �9 (2 I~I - 1) �9 2 N~-Ig,'l-i'd 

Hence 
2 .ul _< (1 - 2 -2k+4) + (1 + 2-22k+') �9 (2 lu[ - 1) 

= 21u[(1 + 2 -2~k+~) (2-2 ~+4 - + 2 - 2 ~ + ~ ) ,  

2_2,~+4 - , 22,~+3_22k+7 and so <__ 2 -2k+4 + 2  -2=k+r < 21ul .2  -22k+7 < , a contradiction. 

Consequently, we get tha t  

, 2k+ 3 . F; ( r ~ : ,  e pos(s) )  > a* .  (1 - 2 -2~+~) > a - ( 1  - 2 -  ), 

so s satisfies the demand (/3). 
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But  we also know tha t  for each part ial  function h from Nk to 2, if 9s C h and 
I h \ 9~1 -< 2k+3, then 

bh < a*. (1 + 2 -22k+T) < F * ( r , :  u �9 DOS(S)). 1 + 2 -22k+7 
- -  1 - -  2 - 2 k + 4  

, 2k+3 .  
_< F i ( r , :  u �9 DOS(S)). (1 + 2- ), 

and thus s satisfies the demand  (7) as well. | 

PROPOSITION 2.2: ( K * , E * , F * )  is a nice (strongly finitary) measured tree 
creating triple. 

Proof: Clauses 1.2(c~, 3', (~) should be obvious, so let us check 1.2(/3) only. 
Let  t �9 K*,  k kt, o 1 = r~,r~,r ,  be as in the assumptions of 1.2(/3). So in 

par t icu lar  

219'l-Nk" E { r v : u  �9 Dos(t)} > F ? ( r ~ : u  �9 Dos(t)) _> 2 -2k > 2 -2k+a. 

For e < 2 let ae = 219,1-N~. ~ { r ~  : u �9 Dos(t)}. 

First ,  we consider the case when both  a0 and al are not  smaller than  2 -2k+3. 

Then  we may  apply 2.1 and get So, Sl �9 E*(t)  such tha t  nor[s t ]  = nor[t]  - 1, 
pos(se) C {u �9 Dos(t) : r e > 0} and 

ce ( ~ f F * ( , ' ~ : u  �9 pos(se)) > ae. (1 - 2-2k+a). 

Then  

CO -{- C1 __~ (a0 + a l ) .  (1 - 2 -2~+a) > F ~ ( r , :  u C Dos(t)) �9 (1 - 2-2k), 

and we are done. 
2k+3 

So suppose now tha t  ae < 2 -  . Then  

al-g > 2 [9'j-Nk �9 E { r u  : r, E Dos(t)} - 2 -2~+a > 2 -2~ - 2 -2~+a _> 2 -2k+a, 

and using 2.1 we find Sl-e  c E*(t)  such tha t  nor[s l_e]  = n o r [ t ] -  1, pos(s l_e)  _C 
1-e 0}, and {v E Dos(t) : r ,  > 

~ f  F* 1--e Cl-e - ~ _ , ( r .  : u  G pos(s l_e))  _> al-e"  (1 - 2 -2~+~) 

> (Ft*(r~:  u e Dos(t)) - 2-2~+a). (1 - 2 -2k+3) 

= F ; ( r , :  u E Dos(t)) .  (1 - 2 -2k + 2 -2~ - 2 -2k+3) - 2 -2k+a + 2 -2k+4 

> F~(r ,  : u E Dos(t)) .  (1 - 2--2k)+2--~(2--2k -- 2--2~+3)--2--2~+3 +2--2~+4 

= F ; ( r , :  u e Dos(t)) .  (1 - 2 -2k) + 2 -2~+' - 2 -9"~k - 2 -2k+3 + 2 -2k+4 

2 ~ >_ F?(r ,  :u  C Dos(t)) .  (1 - 2 -  ). | 
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The following lemma and the proposition are, as a matter  of fact, included in 

2.6, 2.7. However, we decided that 2.3 and 2.4 could be a good warm-up, and 

also we will use their proofs later. 

LEMMA 2.3: Assume that: 

(i) t �9 K*, nor[t] > 1, k = kt, 7 �9 [0,1], 
(ii) (r~ : �9 pos(t)) C_ [0,1], a = F [ ( r , :  v �9 pos(t)), 7 . a  >_ 2 -6'2k, 

(iii) Y is a finite non-empty  set, 

(iv) for u �9 pos(t), u~ is a function from Y to [0, 1] such that 

7 . r ~  . lYl < ~-~{u~(y) : y �9 Y } ,  

(v) for y �9 Y we let 

u(y) = sup{b :there is s �9 E*(t) such that nor[s] > nor[t] - 1 and 

b < F*(u~(y) : v �9 pos(s))}. 

Then 

7 . a . ( 1 - 2  -2k) _< 

Proos Let k = kt, N = Nk~, g = 91. 

First note that 

E { ~ ( y )  : y �9 Y} 
IYI 

a = F~(r~:  u �9 pos(t)) _< 2 IgI-N �9 E { r ~ :  u �9 pos(t)} 

<_ 2[g[_ N . I 1 

vEpos(t) NEY 
1 1 (2lgl_ N uv(y)) 

= 7 " l y l ' v e ~ y  " E " vEpos(Q 

Let C de=f {y E Y : 2 M - N .  Evepos(t) uv(y) > 2-2k+3}. For each y E C we may 

use 2.1 to pick sy e E*(t) such that nor[sy] >_ nor[t] - 1 and 

F*s~(u~(y):vEpos(sy))>_2DI-N. E u~(y).(l-2-2k+~). 
vEpos(Q 

Hence, 

I I v \ c l  ~ 1 1 ~ F * s . ( ~ ( y ) : ~ e p o s ( s ~ ) )  a<-. 'Z -2k+3-6 " - - "  , ) ,  
-~ Irl ~ IV1 -- T=2=~ yEC 

1 2 2~+3 1 1 1 <__. - + . . . . .  u(y). 
"r IYI 1 - 2 -~+~ ycC 
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Consequently, 

(Ta - 2-2k+3)(1 _ 2-2 ~+3) < E y  ccu (y )  
I v l  

and hence 
- IYI  ' 

o~a( 1 _ 2_2k) _< ~ y e y  u(y) I IYI 
PROPOSITION 2.4: The forcing notion ~ t ( K * , E * , F * )  

(Lebesgue) measure one. 
preserves outer 

Proo~ Assume that A C_ 1-Ii<~ Ni is a set of outer (Lebesgue) measure 1. We 

are going to show that, in VQ~'t(K*'~*'F*), it is still an outer measure one set. 

Let 5 b be a ~ l t ( g * ,  P,*, F*)-name for a tree such that /~ C_ Uie~ 1-Ij<~ N.~ 

and the Lebesgue measure mLeb([T]) of the set [hb] of w-branches ttlrough lb 

is positive, and suppose that some condition p forces "[lb] M A = 0". Take a 
condition q _> p such that 

(a) q is special (remember 1.10) and lh(root(q)) = k0 > 5, and nor[t~] > 2 
for all ~/E Tq, and/tF* (q) > �89 

09) for some p 6 1-Ij<n Nj,  n < w, the condition q forces that mLeb([(~b)[P]]) �9 

1]j<  Nj >_ 
(7) for some k0 < kl < k2 < . . . ,  letting Fi = Tq M ]-Im<k, H*(m),  we have 

that for each u 6 Fi, the condition q["] decides the value of TM 1-[j<~+i Nj 
(remember 1.13). 

Fix i < w for a moment, and let Y{ = {y 6 1-]j<n+i Nj  : p <~ y}. 
For u 6 T[q, Fi] and y E ~ we let 

= * , :q, uu(y) sup{# f (q) is a condition stronger than q and such that 

root(q') = ,  and (Vy 6 Tq')(nor[t~ '] >_ n o r [ t ~ ] -  1) 

and q' It- y E T}. 

CLAIM 2.4.1: 

I f  ~] 6 T[q, F~], ko < lh0]) = k < ki, then 

7 ki-1 
]] (1 - _< y e 

e:k 

[I lk  = ki, then we stipulate l-lk'-l(1 -- 2 -2.) = 1.] 1 ls  

Proof  of  the claim: We show it by downward induction on q E T[q, Fi]. If 

k = lh0/) = ki, then qb] decides T M Yi, and if q[n] forces that y E %fl M Yi, then 
F* 7 un(y) _> #q (~/). Hence, by (~), we have ~.  [Yi[. #F*(~) _< ~ { u ~ ( y ) :  y E Yi}. 
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Let us assume now tha t  k = lh(~) = ki -1 .  Apply 2.3 to t q, 3' = 7, Y = ~ ,  u .  

defined as before the formulation of the claim, and r ,  = #F* (v) (for u e pos(tq)) .  

Note  that ,  as q is special, #F*(~]) _> 2 -2k+1, so 3`. Ft*,3(r. : u �9 pos(t~)) = 
7 F* 2-6.2k. g#q (~]) > Also note tha t  

(*) u(y) defined as in 2.3(v) is u,(y). 
[Why? First  suppose tha t  u(y) < u~(y). By the definition of uv we may  find 

q' >_ q such that  root(q ')  = r], nor[t~'] _> nor[tq,] - 1 for v �9 T q' , and q' IF- y �9 ~/', 

and #F*(q,) > u(y). Note that  #qF,* (v) _< u,(y) for all v �9 pos(tq') ,  and thus 

* . t * 

< y ( q ' )  = ( ,q  F, ( , ) : ,  �9 pos(t  )) _ : �9 

By the definition of u(y), the last expression is < u(y),  a contradict ion.  Now 

suppose u(y) > u,(y). Take s �9 E*(t~) such that  nor[s] >_ n o r [ t q ] -  1 and 

F~(u,(y) : u �9 DOS(S)) > u , (y ) ;  clearly we may request  tha t  u~(y) > 0 for 

v �9 DOS(S). Let z ,  < u~(y) (for v �9 DOS(S)) be positive numbers  such tha t  if 

z, <_ r, <_ u,(y) for v �9 DOS(S), then F*(r, : v �9 DOS(S)) > u,(y) (compare  

1.3). Pick conditions q~ such that  #f*(q~) > Z,, q~, as in definition of u,(y), 
I 

and let q' be such tha t  root(q ')  = 7], t~ --- s, and (q')M __= q~ for v �9 DOS(S). 
Then pF* (q,) :> ltv(y) giving an easy contradiction.] 

Thus  we get 

7 . p [ . ( , ~ ) .  ( 1 -  2 - ~ " - ' )  �9 IY~l < Z { u , ( y ) :  y �9 ~ } ,  
8 

as required. 

Now suppose k0 _< k = lh0] ) < ki - 1, and we have proved the assert ion 

of the claim for all v �9 pos(t~). We again apply 2.3, this t ime to 3` = 
7 .ll~=k+l,ll--lk,-1 (- _ 2-2~), and t q, u , ,  r ,  = #F* (v) (for v �9 pos(t~)) and Yi. We note 

tha t  

ki - I  
7 7 k~-I 
~"  I I  (1 -- 2-2~).  Ft*~(r, : ,  �9 pos(t~)) = ~ .  I I  (1 - 2-2~) . , F * ( ~ )  

e----k+l ~=k~l 

7 . (1 - 21-2k+1) �9 2 -2k+~ >__g 
> 2 -6"2~ ' 

so the assumptions  of 2.3 are satisfied. Therefore we may conclude that  

7 k~-1 
g"  H (1 - 2-2e) �9 pF*(7]). (1 -- 2-2~) �9 ]Y/[ -< ~ { u v ( Y ) :  Y �9 Y/}, 

~=k+l 
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as needed. This finishes the proof of 2.4.1. I 

Applying 2.4.1 to ~/= root(q) we get 

ki -1 
8" H (1 - 2 -2~) " ItF" (q) < E{Ur~176 : y E Yi} 

~--k,, - IYil ' 

and hence 3. F* Z# (q)" IY/I -< ~--~{Uroot(q)(Y): Y E Yi}. Then necessarily 

~lYil-< I{Y e Y~: Uroot(,)(y) _> ~/,F" (q)}l 

(remember pF*(q) > !):. Let Zi = {y E Y/ : Uroot(p)(Y) _> �88 and note 

that  

j<w jKn  

Look at the set (x E 1-Ii<~ Ni : ( 3 ~ i  < w) (x  [ (n + i) E Zi)}  - -  it is a Borel 

set of positive (Lebesgue) measure, and therefore we may pick x E A such that 

( 3 ~ i  < w) ( x  [ (n + i) E Zi).  For each i < w such that x [ (n + i) E Zi choose a 

condition qi E ~ l t  (I(*,  ~*, F*) such tha t  

�9 qi > q, root(qi) = root(q), pF* (qi) > ~#F* (q), and 

�9 (Vr/E Tq~)(nor[t q~] > nor[t q] - 1), and 

�9 qi I~-x I ( n + i )  E T. 

By Khnig's Lemma (remember (K*, 2*) is strongly finitary) we find an infinite 

set I C w such that for each i < jo < j l  from I we have 

,q,,, = tq~). T a j 0 M H H ( k ) = T  q s ~ M R H ( k )  and ( V ~ E T O J o ) ( l h ( q ) < k i ~ ,  
k<ki k<ki 

Let q* = (% : q E S) be such that root(S) = root(q), 

S - - - U {  O E T qj : j E Z & i < j & lh ( , / )<k i} ,  
iEI 

and if ~ E S, then succs(q) = pos(sv) and s v = t q' for sufficiently large i E I. 

It should be clear that q* E ~4 nt (/(*, ~*, F*) is a condition stronger than q, and 

it forces that  x E [7 ~] M A, a contradiction. | 

R e m a r k  2.5: It follows from 1.16 and the proof of 2.4 that (the definition of) 

the forcing notion P = ~ l t  (/(,, 2*, F*) satisfies: 

((3) For any transitive model N of ZFC*, 

N ~ "]~ is a Souslin + proper forcing notion and it forces that 

the old reals are of positive outer Lebesgue measure". 
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By Kellner and Shelah [19, Corollary 9.4], any CS iteration of forcing notions 

satisfying (~P) (in particular, a CS iteration of Q~t(K*, E*, F*)) preserves the 

outer measure of sets from the ground model. 

LEMMA 2.6: Assume that: 

(i) t �9 I(*, nor[t] > 1, k = kt > 1, 7 �9 [0, 11, 
(ii) (r~ : �9 pos(t)) C [0, 1], a = Ft*(r~ : t. �9 pos(t)), 7 " a  > 2 -6'2~, 

(iii) Y* is a finite set, Y = Y* x Nk,  

(iv) for u �9 pos(t), u .  is a function from Y to [0, 1] such that  

7",',," IYI < ~--~{u.(y) : y �9 Y},  

(v) for y = (yo,y l )  �9 Y* x Nk and 6 < 2 we let 

u(y ,6)  = sup{b :there is s �9 E*(t) such that  nor[s] > n o r [ t ] -  1 and 

(Vu �9 pos(s ) ) (u (k ) (y l )  = 6) and 

b <_ F ~ ( u ~ ( y ) : u  �9 pos(s))}. 

Then 
1 ~{~(y,e) :y �9 Y s~ e< 2t. 7 . a .  (1 - 2 -2~) <_ ~-. IY---/ 

Proof: Let k = kt, N = Nk,  g = gt. Note that 

a = F t * ( r , : u  �9 pos(t)) < 2191-N-~-~{r.:  u �9 pos(t)} 

1 ( ) 
IYl ~ Z Z(~-(y0,~,) : (yo,y~)eY S~,(k)(y~)=et 

uEpos(t) ~<2 

< 21gl_ N . 1 
7 

1 1 
7 2. IYI 

(Yo,Yl ,~)E Y x2 

Let C consist of all triples (yo ,y l ,6)  E Y* x N • 2 such that yl ~ doin(9) and 

2 LgL+t-N" E { u , ( y o ,  yl) : u e pos(t) &: u(k) (y l )  = e} >__ 2 -2k+3, 

and fix (yo ,y t ,6)  E C for a moment. Let g': dora(g) U {Yl} ~ 2 be such 

that g C_ g' and g'(y~) = 6. Apply 2.1 (to t ,g '  and u , ( y o , y l )  for u E pos(t), 

g' C u(k))  to pick s = s(yo,y~,6) E E*(t) such that nor[s] > nor[t] - 1, g' C_ gs 

and 

F ; (uu(y0 ,y t )  : .  e pos(.~)) 
1 - 2 -2~§ >2  'g'~l-N " ~ { u . ( u 0 , ~ )  : .  �9 pos(t) ~ 9' C ~(k)}. 
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Next note that ~ < 2 -~+a, so 

1 

7" [rl (yo,yl,e)EY• 

7 Ig['lV 1 2_2~+3 1 21_2~+~ <_ + - .  <__ .  . 

7 7 

Therefore, 

< 1  21_2k+3 a 
7 

1 1 
+ - ' - -  E 

2"IYI (yo,y~,e)ec 

1 21_~k+3 1 1 < _ .  + - .  _ _  

- 7  7 2. [Y[ 

F:(yO,y I ,~)(Up (Yo' Yl) : ~' ~ pOS(S(y0, Yl, e))) 

Hence, 

1 - 2 -2~+a 

1 

(y,e)cc' 

(Ta - 21-2k+3)(1 - 2 -2~+3) ~ - -  1 
u(y~ f), 

Ir  • 21 
(y,/)EY• 

and therefore, as 7a > 2 -6.22 and k > 1, 

1 
7a(1 - 2 -22) < iy  • 2----~L F ,  u(y, e). . 

Let I)d be the canonical (~_4nt (/(  *, ~*, F*)-name for the generic real (so 1~ is 
a name for a function in YL<~ H*(i) such that p [t- root(p) C VV). Also, let it 
be a name for the function from [Ii<~ N~ to 2 ~ such that ]t(x)(i) = l/V(i)(x(i)). 

Clearly, h is (a name for) a continuous function. 
Now comes the main property of the forcing notion (~lt (K*, E*, F*). 

PROPOSITION 2.7: Suppose that A C_ l-Ii<~ Ni x 2 ~ is a set of outer (Lebesgue) 
measure 1. Then, in V Q~'t(K*'E*'F*), the set 

i<w 

has outer measure 1. 

Proo~ Assume, towards a contradiction, that ib is a ~ l t  (/~,, E*, F*)-name for 
a tree included in [Jk<~ I-Ii<k Ni, and p E ~ t  ( /( . ,  ~. ,  F*) is a condition such 
that 

P I~-Q~,,(K*,~*,F*) "mLeb([ib]) > 0 and (Vx e [i~])((x, it(x)) • A)". 
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(Here ,  m Leb stands for the product measure on 1-'[i<• Ni.) Passing to a stronger 

condition and shrinking the tree ~b (if necessary) we may assume that 

(a) p is special and lh(root(p)) = k0 > 5, and nor[t~] > 2 for all z/E T p, and 
> �89 

(fl) for some p E l--Ij<n Nj, n < ko, the condition p forces that  

.~Leb([(~-)[p]]).  I I  Nj ~_ ~, 
j<n 

('y) for some k0 < kl < k2 < " ", letting Fi = TPM[Im<k, H*(m),  we have that  

for each ~ E F~+I, the condition p['] decides the value of T M l-Ij<k, Nj. 
Fix i < w for a moment, and let Yi** = {Y E 1-Ij<k~ Nj :p <3 y}. 

Let v0 E Fi, and for v E TIp [~~ F~+I] and y E Yi** let 

* I :pl u~(y) = s u p { #  F (p)  is a condition stronger than p and such that 

root(p') = u and (CO E TP')(nor[t p'] >__ nor[t~] - 1), 

and p~ I~" y E T}. 

So we are at the situation from the proof of 2.4 (with q there replaced by p), 

and we may use 2.4,1 to conclude that 

ki+1-1 
7 �9 

(| I I  (1 - I **l < y E 

. . . .  2 [m(')'k') [0, 1] by Now, for each u E TiP, Fi] we define u , .  Y/ • 

= 

sup{#f* (pl) :pr is a condition stronger than p and such that 
pp pt _ root(p') = v and (Y~ 1 E T )(nor[tn ] > nor[t~] - 1), 

and p' IF- "y E ~b & (Vj E [lh(u), ki))(lfV(j)(y(j)) = a( j ) )"} .  

(If u E Fi, so lh(u) = ki, then 2 [m('),k~) = {0} and u*(y,O) = uv(y).) 

CLAIM 2.7,1: IfT/ E T[p, Fi], ko <_ lh(~) = k <_ ki, then 

k~+~ -1  
7 U* i 

t=k 

where X~ = :l~** • 2[ll'(~),k'). 

Proof of the claim: The proof, by downward induction on r/, is similar to that  

of 2.4.1, but  this time we use 2.6. 
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First note that if k = ki, then our assertion is exactly what is stated in (| 

So suppose that rj �9 Tip, Fi], lh(rl) = k < ki, and that we have proved our claim 
7 i--ik,+l-1 (1_2-~1), for all p �9 pos(tP). We are going to apply 2.6 to t = t~, 7 = g "1 le=k+l 

Y* = {Y I (ki \ {k}) : y �9 Y/**} • 2 [k+l'kd (and Y = Y* x Nk being interpreted 
** F* aS Y/ x 2[k+l'ki)), and r~ = ~tp (/1), and u , ( y , a )  = u* (y ,a )  (for u �9 pos(tP), 

(y ,a)  �9 x i ) ,  so we have to check the assumptions there. Note that (as p is 

special) 

�9 7 
~ .  F ; ( ~ :  ~ �9 pos(t)) = "7. t ,[  (,1) > 

ki+1-1 

H ( 1 -  2-2')  �9 2 -2~+' > 2 -6'2~ 
~=k+l 

(so the demand in 2.6(ii) is satisfied). Also, by the inductive hypothesis, for 

each u �9 pos(t~) we have 

I'" IY* x Nkl .r, < ~{u*(y ,a) :  (y,a) �9 X~} 

(so 2.6(iv) holds). Finally, note that if (y ,a )  �9 Y~** x 2 [k+l,k'), t <2 2, and 

a': [k, ki) > 2 is such that a ' (k )  = ~, a'  r [k + 1, ki) = a, then u(y,  a, ~) defined 

by 2.6(v) is u; (y ,  a') (by the same argument as for (.) in the proof of 2.4.1). 

So, by 2.6, we may conclude that 

ki+l--1 
7 F* 
g"  H (1 - 2-2').pp (r/).(1 - 2-2k) �9 2- I~**1"  2k'-~-' 

g=k+l 

< ~{u;( , j ,o ' ) :  (y, ~') �9 x~}, 

as needed. | 

In particular, it follows from 2.7.1 that  

ki+1-1 
7 F* 
g I I  (1 -2-~) . I ,  (p)_< 

s 

and hence 

E{%ot(p) (~ ,o)  : (y,~) �9 W* • 2rko,k,)} 

3 
4" Y ( P )  -< I~**1" 2k,-ko 

IY~**L. 2k,-ko 

E{%ot ( , )  (y, ~ ) :  (y, ~ �9 W* • 2tk,,,k,) } 

Let 7r: I-[j<ko Nj  ----4 2 k~ be such that 7r(y)(j) = ( roo t (p ) ( j ) ) (y ( j ) ) .  Now we 

define: 

Z i ---- {(y,  or) e Y/** x 2[k~ ~root(p)(y,o') ~_ ~ F * ( p ) } ,  and 

z + = {(y,~) �9 Y?* • 2 k' : ~(yrk0) = ~ r ko ~ (y,~f[ko, k~)) �9 Zd .  
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1 2[ko,ki) I > i k~ Note that IZ+l = IZil _> ~IY/** • - ~" I-[j=n N j .  2 k~-a~ and therefore 

IZ+I > 1 

2k' "Ylj<k, Nj - 2 ko+2 " I-Ij<ko Nj" 

Now we may finish like in 2.4: the set 

((Xo,Xl) E H Nj •  ~ : (3~i  < w)((xoIki ,x l lk i )  c Z + ) }  
j<~ 

is a Borel set of positive (Lebesgue) measure, so we may choose (x0, Xl) C A 

such that for infinitely many i < ~ we have (Xo Iki, xl Iki) c Z +. For each such 

i pick a condition qi _> P such that 
1. F* �9 root(qi) = root(p), #F* (qi) > ~ (p), and 

�9 (V,1 e rq')(nor[t~ '] >_ nor[t~] - 1), and 

�9 qi Ib "x0 I ki C T and (Vj E [ko, ki))(IiV(j)(xo(j)) = xl ( j ) )" .  
By K6nig's Lemma, we may find a condition q E Q~,t (K*, ~*, F*) stronger than 

p, and an infinite set I C co such that 

(| if i < j are from I, t h e n i + l < j a n d  

TqJn H Nk = Tqn  H Nk and (WJ e TqJ)(lh(v) < ki+l =~ t~J = t q ) .  
k<~k~+l k,(ki+l 

Then clearly q IF "Xo E ~b ~: h(xo) = xl" ,  a contradiction. | 

3. T h e  first  mode l :  s u p - m e a s u r a b i l i t y  

To prove the first of our main results, let us start with a reduction of the sup- 

measurability problem. 

LEMMA 3.1: The following conditions axe equivalent: 
(5~)lup Every sup-measurable function f:  1~ • ~ ~ ]I( is Lebesgue measurable. 

([~)S2up For every non-measurable set A C_ ~ x ~ there exists a Borel function 

f: ~ ~ 1~ such that the set {x E I~ : (x, f (x))  E A} is not measurable. 

(N)~3up For every non-measurable set A C_ 2 ~ x 2 ~ there is a Borel function 

f: 2 W ~ 2 ~ sudl that the set {x C 2 ~ : (x, f (x))  E A} is not measur- 

able. 

(N)4up For every set A C_ [Ik<w Nk • 2 ~ of outer measure one and inner measure 

zero, there is a Borel function h: I-Ik<~o Nk ~ 2 ~~ such that the set 

{x e 1-[ Nk : (x, h(x)) E A} 
k<w 
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is not measurable. 

(Here, the sequence (Nk : k < w) is the one defined at the beginning of 

the second section.) 

Proof: The equivalences ([])slup r ([])s2up r (~)3up are well known (see Bal- 

cerzak [2, Proposition 1.5]; also compare with the proof of Ciesielski and Shelah 

[8, Corollary 3]). 
3 4 __ 2 ~ 2 ~ ([~])4up ~ ([~)sup: Assume suppose x ([])sup, and that  A C is a non- 

measurable set. Then we may find a closed set C C_ 2 ~ x 2 W of positive Lebesgue 

measure and such that  

�9 for each x E 2 ~, the set {y E 2 ~ : (x,y) E C} is either empty or is of 

positive Lebesgue measure, 

�9 for every Borel set D C_ C of positive measure, both A M D ~ 0 and 

D \ A ~ q} (that is, both A M C and C \ A are of full outer measure in C). 

By shrinking C if necessary, we may also pick a Borel isomorphism r = (r r ) : 

C ---4 1--L<w Nk x 2 ~ such that  

�9 if (x,y), (x ' ,y ')  E C, then r  = r r162 x = x', 

�9 if  B C_ C is Borel, then B has measure 0 if and only if its image r has 

measure zero. 

Now note that  the set r has outer measure 1 and inner measure 0 (in 

1-Ik<w Nk x 2~), so we may apply (~)s4p to get a Borel function h: l-Ik<~ Nk 

2 ~ such that  the set (x  E [Ik<o~ Nk : (x, h(x)) ~ r is not measurable. Let 

B = {x C 2 ~ : (3y)((x,y)  E C)}, and let f*: B ~ 2 ~ be defined by 

f* (x)) = r  ((Co(x, h(r y)))) 

for some (equivalently: all) y such that  (x, y) C C. Easily f* is a Borel function. 

Take any Borel extension f :  2 ~ --4 2 ~ of f* - -  it is as required in ([)s~p for A. 
4 . ([~)s3up ~ ([])sup" Even easier. (Note that, since all Nk'S are powers of 2, we 

have a very nice measure preserving homeomorphism r 1-Ik<~ Nk ~ 2~.) 

I 

THEOREM 3.2: It is consistent that every sup-measurable function is Lebesgue 

measurable. 

Proof'. Start with universe V satisfying CH. Let (~ = (P~, (~a : a < w2) be 

countable support iteration such that  each iterand ~ is (forced to be) the 

forcing notion ~ l t  ( / ( . ,  E*,F*) (defined in the second section; of course it is 

taken in the respective universe Ve-) .  It follows from 1.14 (and [26, Ch. VI, 
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2.8D]) that the limit I?~ 2 is proper and w~-bounding. Also it satisfies N2-cc, 

and consequently the forcing with lPw 2 does not collapse cardinals nor changes 

cofinalities (and H-p~2 "c = R2"). 

We are going to prove that 

I~-~, 2 "every sup-measurable function is Lebesgue measurable". 

4 By 3.1, it is enough to show that I~-~, 2 (5~)sup. To this end suppose that  .~l is a 

l?w2-name for a subset of I-L<w Na • 2 ~ such that both A and its complement 

are of outer measure one. By a standard argument using t%-cc of F ~  (and the 

fact that each I?, for a < w2 has a dense subset of size R1), we may find 5 < w2 

of cofinality Wl, and a IP~-name ii~ such that 

lt-~,~2 "A n ( I I N k  x 2~) v~'~ = ,~i~ ", and 
k<w 

I~-~ "~i,5 has outer measure 1 and inner measure 0". 

Let h be the I?~+l-name for the continuous function from I-Ik<w Ark to 2 "j added 
at stage 6+  1 by Q5 = (Q~t (K*, E*, F*)) v ~  (as defined right before 2.7). Then, 

by 2.7 (applied to A~ and to its complement), in V P~+I the set 

= x e I I  Nk: (x, h(x)) e 
k<w 

has outer measure 1 and inner measure 0. Now, in V ~'~+~ we may use 2.5 

to conclude that IP~o~/l?~+l preserves the Lebesgue outer measure of sets from 

V P~+~. Consequently, 

I~-p~2 "the set X~ and its complement have outer measure one", 

finishing the proof. | 

Remark 3.3: Note that for the iteration (I?~,(~ : a < w2) to work for the 

proof of 3.2 we do not need that all iterands are ~ t  (K*, E*, F*). It is enough 

that for some stationary set Z C {5 < w2 : cf(5) = Wl}, for every a E Z, we 

have IL-~, Qa = Q~' t (K*,E*,F*) ,  and that the forcings used in the iteration 

are such that each I ? ~ / ~ + 1  preserves non-nullity of sets from V e~+~. So, in 

particular, we may use in the iteration also other forcing notions satisfying (q)) 

of 2.5. This will be used in the next section, where we will add the random 

forcing "here-and-there". 
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4. P o s s i b l y  e v e r y  rea l  f u n c t i o n  is c o n t i n u o u s  on  a non -nu l l  se t  

The aim of this section is to show that  a slight modification of the iteration 

from the previous section results in a model in which every function f :  ~ ---+ 

agrees with a continuous function on a set of positive outer measure. Let us 

start  with a reduction that  shows how the tools developed earlier are relevant 

for our problem. 

PROPOSITION 4.1: Assume:  

(a) the condition ([~)3up of  3.1 holds, 

(b) for every f imction f*: 2 ~ > 2 ~ there are functions f l , f 2  and a set A 

such that  

�9 A C_ 2 W and f l :  A ) 2 ~ is such that  the set 

{(x,  f l ( x ) )  : x E A}  C_ 2 ~ x 2 ~ 

has posi t ive outer  measure,  

�9 f 2 : 2  ~ • 2 ~ ~ 2 ~ is Borel, and 

�9 (Vx E A ) ( f * ( x )  = f2(x ,  f l ( x ) ) ) .  

Then  for every function f:  ~ --+ ~ there is a continuous f imction g: ]~ --+ ]~ 

such that  the set {x  E ~ : f ( x )  = g ( x ) )  has posi t ive  outer measure.  

Proof" Assume f :  ~ > ~. Let ~: ~ > 2 ~ be a Borel isomorphism preserving 

null sets (see, e.g., [16, Thm 17.41]), and let f* = ~p o f o ~-1.  Let f l ,  f2, A be 

given by the assumption (b) for f*.  Put  A* = {(x,  f l ( x ) )  : x E A )  C_ 2 W x 2% 

We know that  A* is a non-null set (and consequently it is non-measurable), so 

applying (~l)s3up we may pick a Borel function go: 2 ~ > 2 ~ such that  the set 

B dz--f {x E A :  f l (x )  : g0(x)} 

has positive outer measure, and so does ~-I [B] .  Let gl: R ~ II~ be defined by 

g l ( X )  : ~9-1(f2(~(x),go(~O(X)))). 

Clearly gl is Borel and for each x E ~- I [B]  we have gl (x)  = f ( x ) .  Finally, using 

Lusin's theorem (see, e.g., [16, Thm 17.12]) we may pick a continuous function 

g: ~ ) ~ such that  the set {x E ~- I [B]  : gl (x )  = g(x)} is not null (just take 

g so that  it agrees with gl on a set of large enough measure). I 

The iteration of 3.2 will be changed by adding random reals on a stationary 

set. So just for uniformity of our notation we represent the random real forcing 
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as Q~t (K~, E~, F~). Let H~(i) = 2 (for i < w). Let K ~ consist of tree creatures 

t E LTCR[H ~] such that 

�9 dis[t] = (k t ,~ t ,Pt ) ,  where kt < w, ~t E 1-Ii<k~ H~(i), 0 r Pt C_ 2, and 

�9 nor[t] = kt, 

�9 val[t] = {('lt, t,): 'h <1 v E 1-Ii<_k, Hr(i )  &: ~(kt) E Pt}.  
The operation E r is trivial: 

Er( t ) = {s �9 I f  ~ : 'ls = 'lt ~ Ps C Pt}. 

For t �9 K ~ and a sequence (r .  : v �9 pos(t)} C_ [0, 1] we let 

Ft~(r~ : v �9 pos(t)) = }--]~{r~ : v E pos(t)} 
2 

It is easy to check that (K r, E r, F ~) is a (nice) measured tree creating triple for 

H ~, and that the forcing notion ([~t (K~, E~, F r) is (equivalent to) the random 

real forcing. 

Like in 3.2, we start with universe V satisfying CH. Let 

Z C_ {5 < we : cf(6) = wl} 

be a stationary set such that {6 < w2 : cf(6) = Wl } \ Z is stationary as well. Let 

= ( ~ ,  {}a : a < w2} be countable support iteration such that 
�9 if a �9 Z, then tFp. Q~ = Q~,t (K r, E ~, F ) ,  

�9 if a �9 w2 \ Z, then lt-p. Q~ = R at (K*, ~*, F*). 

We are going to show that 

lt-p~ "every real function is continuous on a non-null set", 

and for this we will show that the assumptions of 4.1 are satisfied in VP~2. 

First note that  s IF (~ )ap  (see 3.3; remember 3.1). To show that,  in Ve~=, 

the assmnption (b) of 4.1 holds, we need to analyze conditions and continuous 

reading of names in the iteration. 

Detlnition 4.2: Let (K, E ,F )  be a measured tree creating triple for H (say, 

either (K*, E*, F*) defined in the second section, or (K ~, E ~, F ~) defined above). 

(1) A fini te  c a n d i d a t e  for (K, E ,F )  (or just for (K, E)) is a system s = 

(s, : rl �9 S \ max(S)) such that 

�9 S C_ (-Jn<~, 1-Ii<n n ( i )  is a finite tree, s ,  �9 K fq LTCRv[H ] for rl �9 
S \ max(S),  

�9 max(S) C_ [Ii<m H(i)  for some m = ht(s) (we will call this m the 

height of the candidate s), 
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�9 if r/E S \ max(S), then suecs0/) = pos(sn). 

We may also write root(s) for root(S) (and call it the root of the candidate 

s), and write max(s) for max(S). 

(2) Let FC(K, E) be the family of all finite candidates for (K, E). 

(3) For candidates s~ 1 E FC(K,E) ,  we say that s I e n d - e x t e n d s  s o 

(in short: s o _<end s l) if root(s 1) = root(s~ ht(s 1) _> ht(s ~ and, letting 

s t = (s,el : ~] E S e \ max(Sg)), we have S O C_ S 1 and (Vr/E S O \ max(S~ 

(,o = 4 ) .  
(4) We say that a condition p E Q~re~(K, E) e n d - e x t e n d s  a candidate s = 

( s , :  'l e S \ max(S)) e FC(K,Z)  if 

�9 root(p) = root(s), S C_ T p, and 

�9 s~ = t,~ for ~ E S \ max(S), and 

�9 #pF(U) > 0 for all u E max(S). 

Definition 4.3: 
(1) A f ini te  p r e - t e m p l a t e  is a tuple 

t = ( w  t , k t , c t , 3; t )  = ( w ,  k ,  c ,  3))  

such that 

(a) w is a finite non-empty set of ordinals below w2, w = {ao . . . . .  (2~} 

(the increasing enumeration); 

let xi be r if (2i E Z,  and Xi be * if (2i E w2 \ Z, 

(3) k: w ----+ co, c = (c,~,,,..., c,,,), f; = (Y~o, . . . ,  Y , .  ) (we treat e, 3? as 

functions with domain w), 

(7) c,~o E FC(I/~' ' ,  Er ht(c.o) = k((2o), Y~o = {(s) : s E max(c,~o)}, 

and for 0 < i < n: 

(5) ca, : Ya,_, ) FC(K x', E z') is such that ht(c~, (O)) = k((2i) for each 

# E Yai-1, 

y ~ ,  = { ~ - ( v ~ , )  : o = (u,~o,... ,u~,_,) e Y~,-1 & v~, e m a x ( % ( o ) ) } .  

(We think of elements of Y~ as functions from {(20,. . . ,ai} with 

vahms being sequences in appropriate 1-Ij<k(~,)H~' (J)') 

y~,, will be also called 3;, or y,t. 

(2) We say that  a finite pre-template t '  p r o p e r l y  e x t e n d s  a pre-template t 

(and then we write t 5 U) if 
((2) W t C_ W t' , and (V(2 E wt)(k t ( (2)  ~ kt ' (a)) ,  and 

(3) let w t' = {ao , . . . ,  (2~} (the increasing enmneration). 

If f* = min{i _< n : (2i E wt} ,  then for every (u,~), . . . ,u~,._,)  E 
y t '  we have c t "~end t' a~._~ "ae* ca~.  ( V e t o , .  �9 � 9  u a , .  _ ~ ). 
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If g > g* is such tha t  a t  E w t and k < g is such tha t  ak is the 

predecessor of at in w t, then for every (u~0 , . . . ,  uae_~) E Yt't_ , we 

have 

(Pa, r kt(o~i) : i < f & a i  E w t) E Yt  k m~d 

t u k t Cat( ai r (C~i) : i  <~ e ~Z O~ i E W t)  "~end C ~ t ( b ' a o , . . . , I / a t - 1 ) "  

(3) For an ordinal  ~ < w2 and a finite pre- templa te  t we define the rest r ic t ion 

t r = t [ ~ o f t  in a natural  way: W t'  ~-- w t N r  k t' = k t I H)t', Ct' = Ct ! wt '  

and ~ t '  = j~t [ w t ' .  (Note that  t [ ~ ~ t.) 

(4) We say tha t  finite pre- templates  t ,  t '  are i s o m o r p h i c  if Iwtl = ]w t' l, and 

if h: w t > w t' is the order  preserving isomorphism, then 

�9 h[w t N Z] = W t' N Z, and 

�9 k t _- k t' o h, c t -- ct '  o h, and ~ t  = ~ t '  o h. 

We also may say tha t  h is an  i s o m o r p h i s m  f r o m  t t o  t ~. 

Definition 4.4: By induct ion on n = Iwtl - 1 we define 

(a) when a condit ion p E ~,2 obeys a pre- templa te  t ,  and 

(b) if w t = { a o , . . . , a ~ } ,  0 = ( u a o , . . . , u a , )  E y.t, and p E s obeys t,  then 

we define a condit ion p[t,o] E ~,~2 s t ronger  tha t  p. 

First  consider the case when n = 0. Let  t be a pre- templa te  such tha t  w t = {ao} 

and let p E ~ .  We say tha t  p obeys t if 

t , ,  P r ao I}-p,,. "P(~0) end-extends the candidate  cao . 

I f p  obeys t as above, and 0 = (uao) E Yt~ o, then p[t,~l is defined as follows: 

. pit,v] I (w2 \ {ao}) = p r (w2 \ {C~o}), and 

�9 p[t,v] r ao IbP. o "P[t'P](O~O) =: (P(aO)) [u'~~ 

(Plainly, p[t,-I E ~w2; remember  the last demand  in 4.2(4).) Now, suppose tha t  

w e = { a o , . . . ,  a . }  (the increasing enumerat ion;  n > 0), and tha t  we have dealt  

with n - 1 already. We say tha t  a condit ion p E P ~  obeys t if 

�9 p obeys t r an,  and 

�9 for every # = (Uao, . . . ,  ua,,_l) E Y t _  1, the condit ion p[tla,,o] [ a n  forces 

(in ~a ,  ) tha t  p (an)  end-extends the candidate  ct~,, (P). 

In tha t  case we also def ine  p[t,~] for t9 --  ( v a o , . . . ,  tJa,,) E ~ t  : 

�9 p[t,~] I ~2 \ {~n} = p[tr . . ,~r. , ,]  [ w2 \ { ~ } ,  

�9 p[t,vl r a~ ib~ .... ,,p[t,~](e~,~) = (p(c~n)) [.,..] ' ' .  

Definition 4.5: 
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(1) A w e a k  t e m p l a t e  is a -<-increasing sequence [, = (tn : n < co) of finite 

pre-templates such tha t  

(Va E U wt")( l i~  n k t " ( a )  = co). 
n,(r 

(2) We say tha t  w e a k  t e m p l a t e s  t,  t '  a r e  i s o m o r p h i c  if 

�9 otp([.Jn<", w t ' )  = o tp(Un<,  ~ w t:, ), and 

�9 letting h: U,~<,, wt" > On<", wt' '  be the order isomorphism, we 

have tha t  all restrictions h I w t'' (for n < w) are isomorphisms from 

t,~ to t ' .  

(We will also call the mapping h as above t h e  i s o n m r p h i s m  f r o m  t to  
['.) 

(3) A condition p E F",2 o b e y s  t h e  w e a k  t e m p l a t e  [, = (tn : n < w) if 

supp(p) = Un<~ wt' ' and p obeys each pre-template tn (for n < w). 

(4) A w e a k  t e m p l a t e  w i t h  a n a m e  is a pair ([,, "?) such tha t  [, = (tn : n < w) 

is a weak template,  and ~ = (Tn : n < w} is a sequence of functions such 

tha t  rn: y.t,, ..___+ 2 n, and if (u~ : c~ E w t''+~ ) E y.t,,+~, then 

r ~ ( . .  r k~"(~) :  a c w ~') < ~ .+~( -~  : ~ e w~"+'). 

(5) Let ([ , r  ([ ' , '? ')  be weak templates  with names. We say tha t  they are 

isomorphic provided tha t  [ and [ '  are isomorphic, and the isomorphism 

maps "? to r (To be more precise, if h is the isomorphism from [, to [ ' ,  

then for each n < w it induces a bijection gn: 3/, t" > 3;,t:'; we request 

tha t  Tn = T" o gn.) 

(6) Let ([, r be a weak template  with a name, p E F", 2 and let "/- be a ?",_~- 

name for a real in 2". We say tha t  (p,/-) o b e y s  ([, ~) if 

�9 the condition p obeys the weak template  t,  and 

�9 for each n < w and 0 E y.t ,  we have: p[t,,,~] [}-P~2 /- I n = "In(P). 

LEMMA 4.6: 

(1) There are only eountably many isomorphism types of finite pre-templates. 

(2) There are r many isomorphism types of weak templates with names. 

LEMMA 4.7: Suppose that 4- is a ]P",~-naane for a real in 2 • and p E ?",2. Then 

there is a condition q E ~",2 stronger than p, and a weak template with a name 

([, "f) such that (q, 4") obeys ([, ~). 

Proof." Let Q/ = ( F ' ,  ~ : a  < w2) be a CS iteration such tha t  
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(1) if a �9 Z, then I[-~, ~ = Qs. (K r, E ~, F~), 

(2) if a �9 w2 \ Z, then IF-p, ~ = ~'~ (If*, E*, F*) 

(where Qsn is aS defined in 1.17). Then F~2 is a dense subset of l?" 2 (remember 

1.18). For F �9 [w2] <" and n �9 w we define a binary relation <_V,n on ]P' by "2 
P _<v,~ q if and only if (p,q �9 ~ 2  and) 

p < q and qla I[-e- "p(a) <~ q(a)" for each a �9 F 

(where _<~ is a ?~-name for the binary relation <~ on ~ defined in 1.19). As 

we said in 1.21, one can carry out the proofs of Baumgartner [5, w for _<F,n, 

in particular getting the following two claims. 

CLAIM 4.7.1 (Baumgartner [5, Lemma 7.2]): Suppose that a sequence 

((Pn, Fn) : n < w} satisfies 

(a) p~ �9 ~'~, Fn �9 [~2] <" (for each n < ~), and 

(b) Pn _~F,,,n+I Pn+l, Fn C Fn+l (for each n < w), and 

(C) U { F n : n  < w} = U{supp(pn) :re < co}. 

Then there is a condition p �9 IP" a such that p,~ < F,,,n p for all n < co. 

CLAIM 4.7.2 (Baumgartner [5, Lemma 7.3(c)]): Suppose that a < fl <_ w2, 

F e [~1<', n < ~ and p e ~ ' .  Let ] be a ~ ' -name  such that I ~ ,  ] e ~' (~/3" 

Then there are f E l?a~ and q' E ]P~ such that p <_Y,n q and q I}-w ] = f .  

Now we may start the actual proof of 4.7. The following observation should 

be clear. 

CLAIM 4.7.3: Suppose that t = <w, k, c, 3)} is a finite pre-template and a con- 

dition p e l?' obeys t. Let N = m a x ( k ( a )  : a E w) and F E [w2] <" be sudl 
. , 2  

that w C_ F. Then p <_F,N q implies that q obeys t.  

The main part of the inductive construction of a weak template with a name 

(t, r as required in our Lemma will be done by the following claim. 

CLAIM 4.7.4: Assume that a condition p E IP' obeys a finite pre-template 
" 2  

t = (w, k, c, 39} and ~ is a ~2-name  for an ordinal. Let N > max(k(a)  : a E w). 

Then there are a pre-template t '  = (w', k', c', 39'} and a condition q E ]P~2 such 

that 

(1) t ___ t ' ,  w = w' and (Va C w)(k(a)  < k ' (a)) ,  and 

(2) p <_~,g q and q obeys t', and 

(3) i f  ~ C Y . ,  then the condition q[t',v] decides i~. 

Proof of the claim: We are going to show the claim by induction on Iwl. First, 

let us assume that w is a singleton, say w = {/3}. Let m = N + 5. It follows 
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from 4.7.2 that we may pick a condition P0 E P'~ and a P~+l-name bo such that 

p_<~o,mpo and polF-P" h = h o .  

Now, working in VPS, we may choose a condition r E QIZ and an integer k' > 

k(/~) such that 

�9 po(a) <~ r and - -  TI/, 

' r["] ' �9 for each v E T ~ with lh(v) = k', for some a ,  we have IF ho = a ,  

(possible by 1.12; remember that po(a) is super normal). Next, back in V, pick 
I a condition qr3 E ?Z, a finite candidate c'(~) and a system (a, : u E max(c'(fl))) 

so that  ht(c'(3)) = k'(/3) and the condition q[/3 forces that k'(fl),q(fl), 

(a,  : u E max(c'(3))) are like k' ,r ,  (a', : u E T ~ & lh(u) = k') above and q(/3) 
end-extends c(fl). Let q = qrl~(q(/3))~Po[[fl + 1,w2) and let t '  be determined 

by w, c'(fl), k'(/3). It should be clear that  they are as required. 

Now suppose that  Iwl = n + 1 (and for n we are done). Let/3 = max(w). We 

follow the procedure from the case when w is a singleton with small changes at 

the end only. So let m = N + 5. Choose P0 E I ~  and a IP~+l-name/~0 such 

that  

P<w.mP0 and polFp5 2c i=5o .  

Then, in VP'I ~, we may find a condition r E ~ and an integer k' > k(/~) such 

that 

�9 p0(a) <r r and 
I ] �9 for each u E T ~ with lh(u) = k !, for some a ,  we have r [~] II- ?to = a ,  

and let q(/3) be a IP}-name for r as above. 

Using tim inductive hypothesis (for w \ {~}) we may pick a condition q' E IP~ 

and a pre-template t"  = (w !', k", c", 33") such that  

(a) w" = w \ {/~}, t [w" J t "  and (Ya C w")(k(a)  < k"(a)) ,  

(b) Po IS _<w",m q! and qt obeys t" ,  and 
(c) if P E Y',', then the condition (qt)[t",o] decides k ~, q(/3) up to the level k ! 

! 
and the respective values of a , .  

Let kt(3) be an integer larger than all the values forced to k' by conditions of the 

form (q')[r in (c) above. Now use the inductive hypothesis again to choose a 

condition q+ E IP~ and a pre-template t -~ = (w +, k +, c +, 3)+) such that  

(d) w + = w" = w \ {/3}, t "  ~ t + and (Yc~ E w+)(k"(a)  < k+(cr)), 

(e) q~ <_w",m q+ and q+ obeys t +, and 

(f) if F E Y+, then for some finite candidate c(D) of height k'(/3) and a 

sequence (a~ :7/E max(c(F))) we have 

(q+)[ t+,v] It-?, "q(fl) end-extends c(F) and q(/3)[o] II-/to ~" a t /  �9 
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Let q = q+~(q(13)}~po r[/3 + 1, w2) and let t '  = (w', k ' ,  c', 3~'} be a finite 

pre-template such that  w' = w, krtw + = k + and kr(/3) is as chosen earlier, 

c'rw + = c + and if # C Y.+ then c~(P) is the c(~) given by (f) above, and y '  is 

determined appropriately. It should be clear that  q, t ~ are as required. | 

Now we may easily finish the proof of the lemina. By a repeated use of 4.7.4 

with a suitable bookkeeping we may construct a sequence (Pn, Fn, tn, mn :n < w) 

such that  for each n < w: 

(1) Pn E l?~, F,~ C [w2] <~ and tn is a finite pre-template and p,~ obeys tn 
and w t" : Fn, and m n :  max(k t" (a) : a C w t'~) + 7, 

(2) if ~ E yt,~ then the condition (pn)[ t"'~l decides the value of {-~n, 

(3) Pn "(F,,,m. Pn+l, tn -~ tn+l and (Ya E wt ' ) (k t~(a)  < ktn+~(a)), 

(4) U{F~ : n e w} = U{supp(p,) : n e w}. 

Finally we use 4.7.1 and 4.7.3. | 

Note that  there are weak templates t such that  no condition p C ?w2 obeys 

t - -  there could be a problem with norms and/or  measures! From all weak 

templates we will select only those which correspond to conditions in s (and 

they will be called just templates; see 4.11 below). 

Definition 4.8: 
(1) A cover  for a cond i t i on  p e ~ree (ir~'*, ~]*) is the condition 

q e ~ree ( I i* ,E  *) 

defined so that  root(p) = root(q), q _< p and: 

if 'l �9 TP, k = lh(~), then nor[t~] = nor[tP], g,,~ = g,~, and 

P,,~ = {f  �9 H*(k) :  gt,~ C_ f},  

if ~ ~ T p, k = lh(7/), then gt~ = 0, P,~ = H*(k) and nor[t q] = k. 

(2) Let p �9 Q~ee (K*, Z*), and let q be the cover ofp  (note that  T q is a perfect 

tree). T h e  cover ing  m a p p i n g  for p is the mapping hv: [Tq] > 2 ~ 

defined as follows. First we define a mapping hp: T q ) 2<~: we let 

hp(root(Tq)) = 0. Suppose that  hp(r}) has been defined, ~ �9 Tq, and 

say hp(~) �9 2 n, n < w. We note that  [ pos(t~)[ is a power of 2, and thus 

we may pick k > n such that  I pos(tq)[ = [2[n'k)l. Now, hp maps pos(t~) 

onto {u �9 2 k : hp(t q) <3 u} (preserving some fixed well-ordering of 7-/(R1)). 

Finally we let hp(p) = [.Jn<~ hp(p I n). 
(3) T h e  cover  of  a c o n d i t i o n  p �9 ~0ree(K ~, E r) is the condition p itself 

and t h e  cover ing  m a p p i n g  hp: [T p] - ~ 2 ~ is defined by hp(p)(n) = 
p(no + n), where no = lh(root(p)) (and p �9 [TP], n < w). 
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Remark 4.9: 

(1) The reason for "preserving some fixed well-ordering" in 4.8(2) is that  we 

want that  the covering mapping can be read continuously from p: if two 

conditions p, p~ agree up to level n, then also the covers and the covering 

mappings agree up to that  level. (This statement, however, should be 

interpreted in the right way.) 

(2) Suppose that  p E ~ree(K*,~*)  and q is a cover o fp .  Then IT q] is a 

Polish space with the topology generated by {[(Tq)[v]] : ~/E Tq}. It is also 

equipped with a probability Borel measure m such that  for each ~/ E T q 

we have 
lh(n)-a 

t q 
m([(Tq)[']]) ~-'~" ~ 2 [9 ',I~ [-Nk 

k:no 

where no = lh(root(q)). Plainly, the covering mapping hp is a measure 

preserving homeomorphism from [Tq] onto 2 w (where 2 ~ carries the stan- 

dard product measure and topology). The measure m on [Tq] will also be 
called m Leb. 

(3) If p, q are as above, p E Q~t (K*, E*, F*), then IT p] is an m-positive closed 

subset of [Tq]; as a matter  of fact we have 

m([TP]) _> #~(root(p)) > 0. 

In 4.10 below we will show a kind of converse. 

(4) The parallel statements for the case of p E ~ree (Kr, ~r) and/or  p E 

~ t  (/(r ,  ~r, F r) should be clear. 

LEMMA 4.10: Suppose t ha tp  E ~ t ( / ( * , ~ * , F * ) ,  and q* E ~ a ( / ( * ,  ~..*,F*) is 

a cover for p. Let C C_ [TP] C [T q* ] be a dosed set of positive Lebesgue measure 

in [Tq*]. Then there is a condition p* E ~lt ( /( ,  y~, F*) stronger than p and 

such that [T p*] C C. 

Proof." For t E K* let Ft: [0, 1] p~ ) [0, 1] be defined by 

Ft ( r ,  : u e pos(t)) = E{r~:. e pos(t)} 
2Nkt-[9,1 

This defines a function F on K*. Plainly, (K*, E*,F) is a nice measured tree 

creating pair (we are going to use it to simplify notation only). 

Let T C_ T p be a tree such that  max(T) = O and C = [T]. For ~/ E T l e t  

t ,  E E*(t p) be such that  

pos(tv) = SUCCT(~/), nor[tv] = nor[t~] and gt,, = 9t~. 
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Let q = (t .  : 7} E T). It should be clear that  (as C has positive Lebesgue 

measure) q is a condition in Q~ , t (K . ,E . ,F )  (note: F, not F*!). Moreover, 

possibly shrinking T and C, we may request that  

�9 nor[t.]  > 2 for all ~ E T, 
�9 /IF(q) > 1/2, and #F(TI) > 2 -21h(')+l for each ~ E T 

(remember 1.10, or actually its proof). Let k0 = lh(root(T)). 

Fix an integer k > k0 for a moment. Let A = {7} E T : lh(~) = k} (so it is a 

front of T). For each ~ E T[q, A], by downward induction, we define s .  �9 E* (tv) 

and a real a .  �9 [0, 1] such that 

k-1 

(* )7  a , >  I I  ( 1 - 2 - 2 ~ + 3 ) ' ~ [ ( ~ )  �9 
e=lh(.) 

If ~ �9 A, then we let a .  = 1 (and s.  is not defined). 

Suppose that  av has been defined for all v E pos(t.) so that  (~)v  holds. Then 

k-1 

F,.,(a~ : ~ �9 pos(t,)) > I I  (1 - 2-2*§ F , . , (~ (~)  : ~ c pos(t,)) 
t----lh(~7)+l 

k-1 

= H (1 - 2-2~+3) " #F(~) --> 2-2'"~ 
*=lh(.)+l 

(remember our requests on q). Consequently, we may apply 2.1 (for t = t. ,  
r .  = a~ and g~ = gt,,) to pick s .  E E*(t.) such that  

(a) nor[s.] = nor[t.]  - 1, and 

(~) a. def F* (a. : u �9 pos(s.)) > (1 - 2-2"""'+3) �9 Ft,(a. : v �9 pos(tv) ) > 
8 7 1  - -  T - -  

k-1 IL=~h(,) (1 - 2-~+3) .  ~[( , I )  
This completes the choice of s,~'s and a, 7,s. Now we build a system 

( ~ :  7j �9 sk \ max(Sk)) 

such that  Sa C T[q,A] is a finite tree, root(Sk) = root(T), s~ = s .  and 

succsk(~/) --- pos(s k) for ~ �9 Sk \ max(Sk). 

Next, applying KSnig Lelnma, we pick an infinite set I C_ w and a system 

P* = ( tp* :7 �9 TP*} �9 Q~(K*,E*) such that  root(TP*) = root(T) and 

�9 k2 ~l �9 Tp* & kl, k2 �9 I ~ lh(~}) < kl < k2 =*" t p = s . .  

It follows from our construction that  necessarily p* �9 q~_4nt (K *, E*,F*), and it 

is a condition stronger than p, and [T p'] C [T] = C. I 
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Now we are going to introduce the main technical tool involved in the proof 

that our iteration is OK. Fix a weak template t = (tn : n < w} for a while. Let 

wt -- Un<~o wt" and ~ = otp(wt),  and let w ~ = (ar : ~ < ~} (the increasing 

enumeration). For ~ < ~'~ let xr be r if a ;  �9 Z, and �9 if a ;  ~ Z. 

By induction on ~ _ ~ we define a space Z~ and mappings 

7r~: z~ ) ~ree(I(X',~x() and ~/,~: Z~ ---4 (2'~) ~. 

First we let Z~ = {~}} and let ~r~(O) �9 ~ e e ( K x " ,  ~2 x~ be the unique condition 

end-extending all ct"~o (for n < w, ao �9 w t' ') (and r = 0). 

Suppose now that r + 1 _~ r and we have defined Z~, rr~ and 0~. We let 

i<w 

and let 2* = {z0,. . . ,  z~) = 2~(zr �9 Z~+ 1 (we ignore the first term "O" of the 
~/,t (V*~ ~ree sequence 2). To define ~"i+1 ~- /, we let q �9 (K x~, E ~r be the cover of the 

condition 7r~(2), and let h: [T q] ~ 2 ~ be the covering mapping for 7r~(2.) (see 
C t  :~,~ : r 4.8). Put  r  J 

If ~ + 1 < ~ ,  then we also define 7r~+1(2" ) as the unique condition in 
Q~ee (KXc+~, E~+~ ) such that 

�9 if n < w, w t'' = {ar  (the increasing enumeration), and ~e = 

~" + 1, g < m, t h e n  7r~+1(2" ) end-extends 

ct" (z(o [ kt~(ar ..- zi,-i [ k t" (a i ,  1)) 

Suppose now that r _< ~ is a limit ordinal, and that we have defined Z~, 7r~ 

and r for e < ~. We put 

z~ = {(z:: p < ; ) :  (re < r : p < e) �9 z~)} 

(again, above, like before and later, we ignore the first term "0" whenever 

considering elements of Z~). Tile mapping ~/,~: Z~ ) (2~~ ~ is such that 

r r e :  r re) (for 2 e z~). 

Also if, additionally, ( < ~ ,  then for 5 = (zp: p < r e Z~ we let 7r~(5) be the 
unique element of Q~ree (KXr EX~ ) such that 

�9 if n < w, w t" = {a~,, , . . . ,  ar } (the increasing enumeration), and (e = ~, 

C <_ m, thenrc~(2) end-extends c~<~t" (zr ~" kt" (&(o), . . . ,  z(t_ 1 [ kt" (~q(e_l)). 
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Definition 4.11: Let t be a weak template, and w ~ = [.J~<~ w t" = (ar : ~ < ~ )  

be the increasing enumeration. Also, for ~ < ~ let xr be r if ar �9 Z, and * if 

a r 1 6 2  Z. We say that t is a t e m p l a t e  if for every ~ < ~ and 2 �9 Z~ we have 

�9 r z , ) .  

LEMMA 4.12: 

(1) Assume that p �9 17~2 m2d "~ is a ]?w2-name for a real in 2 ~. Then there are 

a condition q �9 l?~ 2 mid a template with a name (t, ~) such that q > p, 

(q, :r) obeys (t, ~), w < ~ < Wl, and for some enmneration ( ~  : n < w) of 

~ we have: 

([]3) for every n < w and ~ �9 Z ~ 

> (1 -- 

where F is suitably F r or F*. 

[If a template t satisfies (El) for an enumeration ~ = (~n : n < w) of ~ ,  

then we will say that t b e h a v e s  well  for  ~.] 

(2) For every template t ,  there is a condition p �9 ]?~2 which obeys t. 

Proof'. (1) The argument given in the proof of 4.7 can be easily modified to 

suit the current lemma (remember 1.8). 

(2) Should be clear. | 

For a countable ordinal ~, the space (2w) r is equipped with the product 
m e a s u r e  ~n Leb of  countably many copies of 2% We will use the same nota- 

tion ?Tb Leb for this measure in various products (and related spaces), hoping 

that no real confusion is caused. 

LEMMA 4.13: Let ~ < 021. Suppose that C C_ (2~)r is a closed set of positive 

Lebesgue measure. Then there is a closed set C* C C of positive Lebesgue 

measure sudl that for eadl ~ < ~: 

(| for every ~ e (2u) ~, the set 

(C*)~ def {9' �9 (2w) [~'<) : Y~-'Y' �9 C*} 

is either empty or has positive Lebesgue measure (in (2~)[~'r 

Proof." For a set X C (2~)~, ~ < ~, and ~ C (2w) ~ we let 

{9' (2 )E : e x } .  
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We may assume that  ~ _> w (otherwise the lemma is easier and actually included 

in this case)�9 Fix an enumeration C = {~n : n < w} such that  @ = 0, and let 

�9 2-6(n+2)~ e0 = 2 -4  m L e b ( c ) ,  en+l : " (en) n+2. 

We are going to define inductively a decreasing sequence (Cn : n < w) of closed 

(non-empty) subsets of C such that  Co = C1 = C and 

(| for each m < n and ~ E (2~) r we have 

n 

either (C~)z3 = 0 or  mLeb((Cn)9) >_ em" (1 -- E 4-e)"  

g=m+2 

(Note that  (| implies mLeb(Cn) > eo" (1 -- E e l 2  4-e); just consider m = 0.) 

Suppose that  Cn has been already defined, n > 1. Let {~e : g _< g*} enumerate 

the set 

{ ~ m : m < n & r  <~n} 

in the increasing order. By downward induction on 0 < g < g* we choose open 

sets Ue C_ (2~)r ' .  So, the set Ue* C_ (2~)~, �9 is such that  (remember ~e* = ~ ) :  

�9 (Vff e (2w) r \ Ue*)(mLeb((Cn)fj) >_ en), 
�9 mLeb(Cn N (Ue* • (2w)[~"'~))) < en. 

Now suppose that  Ue*,..., Ue+l have been already chosen so that  

(23n+3) g*-k 
mLeb(Cn f"l (Uk X (2w)[~ ' r  < - -  "en 

en-1 

for each k C {C+ 1, . . . ,g*}.  Let 

U = Ue+l x (2~) [('+~'r U . . .  U Ue, x (2w) [(e''O. 

Note that  (by our assumptions) 

(23n+3)e *-e-1 " 
m L e b ( U N C n )  < (e* --e)" \ e ~ - i  / en" 

Let ~e = r and A = {9 ~ (2~) r : mLeb((cn n U)~) > em/22n+2}. Note that  

m Leb(A )  �9 22n+-""'-- ~ <2 mLeb(c n f") U) < (e* - ~ ) "  _ "en, 

and hence 

(23n+3~g*--g--1 22n+ 2 (23n+3)g*--g 
�9 - - .  ( e *  - e).e  < e = .  rnLeb(A) < " J en -1  
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Pick an open set Ue C_ (2~)r ,,,. such that A CUe and mLeb(ue) < (~,!--@_+,a) e ' -e  "en. 
e" Finally, we let Cn+~ = Cn \ I.Je=~ (Ue • It is easy to check that  

Cn+l is as required. 

After the sets C~ are all constructed we put C* = ~ < ~  Cn. It follows from 

(@) that the demand (| is satisfied for each ~ < ~. | 

THEOREM 4.14: In V~'~, the condition (b) of 4.1 holds. 

Proof: For a < w2 let 5:~ be a Pa-name for the generic real added at stage c~ 

(so it is a member of 2 ~ if ct E Z, and a member of I-Ik<~ H* (k) if a E w2 \ Z). 
Suppose that ]* is a P~2-name for a function from 2 W to 2 ~~ and p E P~2- 

For each 5 E Z pick a template with a name (t~,r an enumeration ~ = 

( ~  : n < w) of ~v = otp(w ), and a condition p~ e P~o2 such that 

�9 ~ >_ w, t~ behaves well for ~ (see 4.12(1)), 

�9 p~ _> p and (p~, ] * ( ~ ) )  obeys (t,~, r 

�9 5 E w ~ and w ~2 \ (5 + 1) r 0. 

Using the Fodor Lemma (and 4.6(2)) we find a template with a name (t, f ) ,  

ordinals ~* < ~ = otp(w ~) and ( < w2, an enumeration ~ = (~n : n < w} of ~ ,  

and a stationary set Z* C_ Z such that for each 5, (Y E Z* we have 

(i) (t~,f~) is isomorphic to (t,,r by an isomorphism mapping ~ to ~, and 

= ( t n : n < w ) , f = ( r n : U < w ) , a n d  
(ii) otp(w ~ MS) = r w ~ M5 C_ ~, and p E P~ and 

(iii) t5 [ ~ = tb' [ ~. 

Let A be the P ~ - n a m e  for the set {k~ : 5 ~ Z* & p5 ~ F~, } and let ~ :  

(2~) [C+~'r ~ 2 ~~ be the canonical homeomorphism (induced by a bijective 

mapping from w x [~* + 1,(~) onto w). Now, in V P ~ ,  we define a mapping 

]~: A ~ 2 ~ by: 

~ 

( r  is as defined before 4.11). Let p* = p5 r 5 for some (equivalently: all) 

5 ~ Z * .  

CLAIM 4.14.1 :  

p* It-p~2 "the set {(x, ]I (x)) : x E A) has positive outer measure". 

Proof of the claim: Assume not. Then there are an ordinal ~*, a condition q, 

and a P~o2-name/9 such that 

�9 ~<_~*<w2 ,  q E F ~ * , a n d q _ > p * ,  
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�9 /) is a P~.-name for a (Lebesgue) null subset of (2~) [r162 and 

�9 q I~ .~  (v5 E Z*)(p ~ �9 r ~  ~ r162 (x .  : a �9 w t~) r [r162 E D)". 
(Note that  above we use the fact that  tile forcing used at 6 �9 Z is the random 

real forcing, and the covering mapping at this coordinate is - -  essentially - -  

the identity. This allows us to replace (ks,~b~(ka : a E w ~)  [ [r + 1,r 
~ . 

by r162 : a E w ~") r [r162 Fix any 5" E Z* larger than r and let 

(ar : r < r be the increasing enumeration of w ~* N 5" and let ~r = k ~ ,  and 

= (kr : r < r Note that  the conditions p6* and q are compatible. Also, as 

~6. is (a name for) a random real over V P~*, we have 

q It-p~.+~ "the set 

%f {9 �9 (2~) [<*+~'<~) : ( r 1 6 2  �9 D}  

is null". 

Using Lemma 4.13, we may pick (a FS*+l-name for) a closed set 

C* C (2w) [r162 

such that  the condition q forces (in Fa*+i): 
g'), 1, ~ ) :  2 ~ ( ~ . )  < ~ E  

�9 (~*MB=!3,  and 

�9 the condition (| of 4.13 holds true for every ~ E [~* + 1, ~) .  

(For the first demand remember that  t~* is well behaving, so the set on the 

right-hand side has positive Lebesgue measure.) But now, using 4.10, we may 

inductively build a condition q' E ]Pw~ stronger than both q and p6* (and with 

the support included in (~* + 1) U w i~* ) and such that  

q t  . .~  ~ *  ~ �9 le~: % tx. :~ �9 ~ ' )  I[r + 1,r r B", 

getting an immediate contradiction. I 

Pick any 5* E Z* and let ~ = (kr : ~ < ~*) be as defined in the proof of 4.14.1 

above. Le t /~  be a P~.-name for the set 

{(r0,r~) �9 2 w x 2w: ~ ( r 0 )  �9 Z~.+a and r  �9 rng(r  

So/~ is (a name for) a closed subset of 2 w x 2% Let jr be a name for a Borel 

function from 2 ~ x 2 ~ to 2 ~ such that  

if ( r0 , r l )  e E, and r  = r162 : ~ < ~t)), 

then for each n < w 

]2(r0,rl)  I n  = 7~(zr [ kt"(~) : i �9 wt") 
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(remember (i)). It should be clear that  ]2 is (a name for) a continuous function 

and 

P* [~-P~2 "(Vx E A)(/*(x) ~-/2(X,/l(X)))", 

finishing the proof. | 

COROLLARY 4.15: It is consistent that 

�9 every sup-measurable function is Lebesgue measurable, and 

�9 for every function f: ~ ---+ ]~ there is a continuous function g: 

such that the set {x 6 If( : f ( x )  = g(x)} has positive outer measure. 

~ R  
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