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Abstract. Both, Bj-groups and B,-groups are natural generalizations of finite rank Butler
groups to the infinite rank case and it is known that every B,-group is a Bj-group. Moreover,
assuming ¥ = L it was proven that the two classes coincide. Here we demonstrate that it is
undecidable in ZFC whether or not all Bj-groups are B,-groups. Using Cohen forcing we
prove that there is a model of ZFC in which there exists a Bj-group that is not a B,-group.
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1 Introduction

The study of Butler groups, both in the finite and in the infinite rank case, is a most
active area of Abelian Group Theory. There are several challenging problems which
require deep insight into the theory of Butler groups and the available methods as
well as the development of new machinery. The finite rank case is closely related to
the study of representations of finite posets while the infinite rank case has its own
special flavor. During the last years more and more the connection between infinite
rank Butler groups and infinite combinatorics was discovered and led to numerous
interesting results. In this paper we discuss one of the long-standing problems,
namely whether or not all Bj-groups are B-groups, and show that its solution is in-
dependent of ZFC. It is known that any B,-group is a Bj-group and moreover, as-
suming Goedel’s universe of constructibility the two classes coincide. In contrast to
this result we will show, using Cohen forcing, that there is a model of ZFC in which
there exists a Bj-group that is not a B,-group.

In the following all groups are abelian. Our terminology is standard and maps are
written on the left. If A is a subgroup of a torsion-free group G then the purification
of H in G is denoted by H.. For notations and basic facts we refer to [11] for abelian
groups, [18] and [21] for forcing and [9] or [17] for set-theory. Moreover, the inter-
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ested reader may look at [2] for a survey on finite rank Butler groups and at [3], [12]
for surveys on infinite rank Butler-groups.

Since our problem comes from abelian group theory the authors tried to make the
paper accessible for non set-theorists. Hence the involved set-theory (forcing) is ex-
plained in detail although the methods are very standard.

2 Infinite rank Butler groups

In this section we recall the definitions of Bj-groups and B,-groups as they were given
by Bican-Salce in [6]. Both classes contain the class of finite rank Butler-groups (pure
subgroups of completely decomposable groups of finite rank) first studied by Butler
in [4]. Let us begin with the notion of a balanced subgroup.

A pure subgroup A of the torsion-free group G is said to be a balanced subgroup
if every coset g + A (g € G) contains an element g + a (a € A) such that y(g + a) >
(g + x) for all x € A, where y(g) denotes the characteristic of an element g € G. Such
an element is called proper with respect to A and y(g) denotes the characteristic of an
element ¢ in the given group G.

An exact sequence 0 — 4 — G — C — 01s balanced exact if the image of 4 in G is
a balanced subgroup of G. Hunter [16] discovered that the equivalence classes of
balanced extensions of a group H by a group G give rise to a subfunctor Bext! (H, G)
of Ext!(H, G) and hence homological algebra is applicable. Thus for a balanced exact
sequence

(%) 0-4—-G—-C—0
and a group H we obtain the two long exact sequences
0 — Hom(C, H) — Hom(G, H) — Hom(4, H)
— Bext!(C, H) — Bext' (G, H) — Bext!(4, H) — Bext*(C,H) — - - -
and
0 — Hom(H, A) — Hom(H, G) — Hom(H, C)
— Bext!(H, A) — Bext!(H, G) — Bext'(H, C) — Bext>(H, A) — - --
It is routine to check that balanced-exactness of the sequence (x) is equivalent to the
following property: for every rank one torsion-free group R, every homomorphism
R — C can be lifted to a map R — G, i.e. every rank one torsion-free group is pro-

jective with respect to (x). Thus the following lemma is easily established.

Lemma 2.1. Let

0-4-GLCc-0
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be a balanced exact sequence. Then this sequence is locally invertible, i.e. for any ele-
ment c € C there exists a homomorphism . : {c), — G such that g\, = id ., .

We now come to the definitions of Bj-groups and B,-groups.

Definition 2.2. A torsion-free abelian group B is called
(1) a Bj-group if Bext' (B, T) = 0 for all torsion groups 7
(2) a By-group if there exists a continuous well-ordered ascending chain of pure sub-

groups,

0:BOCBICCBO(CCB}':B: UBOC

<A

such that B,,; = B, + G, for every o < A for some finite rank Butler group G,;
i.e. B, is decent in B, in the sense of Albrecht-Hill [1];
(3) finitely Butler if every finite rank pure subgroup of B is a Butler-group.

Due to Bican-Salce [6] the three definitions are equivalent for countable torsion-free
groups.

Theorem 2.3 ([6]). For a countable torsion-free abelian group B the following are equiv-
alent:

(1) B is finitely Butler,

(2) Bis a By-group;

(3) Bis a By-group.

Without any restriction to the cardinality we have in general:
Theorem 2.4 ([6]). By-groups of any rank are Bi-groups.

It turned out that the converse implication in the above theorem couldn’t be proved
without any additional set-theoretic assumptions. There are some partial results in
ZFC characterizing the B,-groups among the Bj-groups but none of them is really
satisfactory. The following was shown by Fuchs and Rangaswamy independently.

Lemma 2.5 ([13], [20]). Suppose that 0 — H — C — G — 0 is a balanced-exact
sequence where C is a By-group and H and G are Bj-groups. If one of H and G is a
By-group, then so is the other.

An attempt to characterize the B,-groups in a homological way is the following the-
orem due to Fuchs.
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Theorem 2.6 ([13)). If B is a By-group, then Bext'(B, T) = 0 for all i > 1 and for all
torsion groups T.

Assuming the continuum hypothesis Rangaswamy was able to show that also the
converse holds and in some cases Fuchs could even remove CH.

Theorem 2.7 ([13], [20]). The following are true:

(1) Assuming CH a torsion-free group B is a By-group if and only if Bext!(B, T) =
Bext?(B, T) = 0 for all torsion groups T.

(2) A torsion-free group B of cardinality ¥, (for some integer n > 1) is a By-group if
and only if Bext'(B,T) = 0 for all i < n+ 1 and all torsion groups T.

It was natural to ask whether Bextz(B7 T) is always zero for a torsion-free group B
and a torsion group 7 but Magidor-Shelah [19] proved that this is not the case even
assuming the generalized continuum hypothesis GCH. That CH was relevant in many
papers was explained by Fuchs who showed the following theorem.

Theorem 2.8 ([13)). In any model of ZFC, the following are equivalent:
(1) Bext*(G, T) = 0 for all torsion-free groups G and torsion groups T:

(2) CH holds and balanced subgroups of completely decomposable groups are B;-
groups.

One of the most interesting and main results in the theory of infinite rank Butler
groups is the following final theorem of this section proved by Magidor and Fuchs.

Theorem 2.9 ([14]). Assuming V = L every By-group is a By-group.

We will show in this paper that the conclusion of the last theorem does not hold in
ZFC but is independent of ZFC.

3 The forcing

In this section we will explain the forcing notion we are going to use to construct our
By group H which fails to be B,. The reader who is familiar with forcing, especially
with adding Cohen reals may skip this section. Most results are well-known and basic.
For unexplained notations and further results on forcing we refer to Kunen’s book
[18] or to the more advanced first author’s book [21].

Let M be any countable transitive model of ZFC and assume of course that the set
theory ZFC is consistent. The aim of forcing is to extend M to a new model which
still satisfies ZFC but which has additional properties which we are interested in.

A forcing notion P € M is just a non empty, preordered set (IP, <,0p), where Op is
the minimal element of IP, hence Op < p for all p € IP. Note that we don’t require that
p < qand g < pimply g = p. If two elements p, g € IP have no common upper bound,
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i.e. there is no ¢ € IP such that p < 7 and ¢ < ¢, then we say that p and ¢ are incompat-
ible and write p L ¢q. If a common upper bound exists we call the elements compatible.
We now want to add to M a subset S of IP to construct a transitive set M[S] which is a
model of ZFC with the same ordinals as M such that M = M[S] and S € M[S]. Those
sets S are called generic.

Definition 3.1. Let D = P, S < IP and p € IP. Then

(1) D is called dense in IP if for any g € IP there is an element 7 € D such that g < ;

(2) D is dense above p if for any g € IP such that p < ¢ there exists an element ¢ € D
such that ¢ < ¢;

(3) S'is called IP-generic over M if the following hold:
(a) for all ¢, r € S there exists ¢ € S such that ¢ < rand r < ¢, i.e. all elements of S
are compatible in S;
(b) if g € S and ¢ < ¢ for some ¢ € IP then also ¢ € S;
(c) S D # § for every dense subset D of IP which is in M.

A first observation is that a generic set S intersects non-trivially also sets which are
“dense above p” in many cases.

Lemma 3.2. Let D < P and S be P-generic over M. Then
(1) Either S D # () or there exists q € S such that for all r € D we have r | g;
(2) If p € S and D is dense above p, then S D # 0.

Proof. See [18, Lemma 2.20]. O

If S is IP-generic over M (or, for short, generic), then the existence of the model M[S]
with the desired properties follows from the Forcing Theorem (see [21]). M[S] is the
smallest transitive model of ZFC that contains M and S. We don’t want to recall the
construction of M[S] but we would like to mention the following facts. Since we
want to prove theorems in M[S] we would like to know the members of M[S] but we
can not have full knowledge of them inside M since this would cause these sets to be
in M already. If S'is in M then M[S] gives nothing new, so we have to assume that S
is not in M and this is the case in general as the following lemma shows.

Lemma 3.3. Let S be IP-generic over M. If P satisfies the following condition

(3.1) VpeP3IqrePsuchthat p<gqg,p<randqlr

then S ¢ M.

Proof. See [18, Lemma 2.4]. ]

Nevertheless, every element p of IP can be a member of a generic set.
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Lemma 3.4. Let p € IP. Then there is a subset S which is P-generic over M such that
peS.

Proof. See [18, Lemma 2.3]. ]

Although we don’t know the generic set S we assume that we have some prescription
for building the members of M[S] out of M and S. These prescriptions are called IP-
names, usually denoted by z, and their interpretation in M[S] is t[S]. For the exact
definition of PP-names and their interpretation we refer again to Kunen’s book [18]
but let us mention that the Strengthened Forcing Theorem (see [21]) shows that

M(S] = {z[S]: 7€ M and 7 is a P-name}.

If we are talking about the IP-name of a special object H from M|[S] without speci-
fying S then we will write H instead of H to avoid confusion but if H is already in M,
then we omit the tilde. Any sentence of our forcing language uses the IP-names to
assert something about M[S] but the truth or falsity of a sentence ¥ in M[S] depends
on S in general. If p € P, then we write p |  and say p forces y to mean that for all S
which are IP-generic over M, if p € S, then  is true in M[S]. If Op |F  then we just
write |Fp Y which means that for any generic S the sentence y is true in M[S] since Op
is always contained in S. Hence the elements of IP provide partial information about
objects in M[S] but not all information and if p < ¢ then ¢ contains more information
than p. It may be decided in M whether or not p | y and whenever a sentence V is true
in M[S] then there is p € S such that p | .

We now turn to the forcing of adding Cohen reals. Therefore let x be an uncountable
cardinal. We put

IP = {p| pis a function from a finite subset of x x w to 2}

={p|p:dom(p) — 2, dom(p) a finite subset of x x w}

The partial ordering of IP is given by set theoretic inclusion, i.e. two functions p and ¢
satisfy p < ¢ if and only if ¢ extends p as a function. This forcing is called “adding x
Cohen reals” and the elements of IP can obviously be regarded as functions from « to
<@2 which we will do in the sequel.

The next lemma shows why the forcing is called adding x Cohen reals.

Lemma 3.5. |p “There are at least x reals”.
Proof. See [21, Chapter I, Lemma 3.3]. I

We will give the ¥ Cohen reals IP-names, say 7, for o < x and state some basic prop-
erties of the Cohen reals. Note that a real is a function from w to 2 = {0, 1}.

Lemma 3.6. The following hold for o, < k:
(1) e “There are infinitely many n € N such that 1,(n) = fjg(n) = 1";
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(2) ke “There are infinitely many n € N such that 1,(n) = f15(n) = 0";
(3) ke “There are infinitely many n € N such that 1,(n) # fj5(n)"".

Proof. The proof of this fact is standard using a densitiy argument. O
Moreover, we have three more important facts.

Lemma 3.7. The following hold for IP.

(1) P satisfies the c.c.c. condition, i.e. IP has no uncountable subset of pairwise incom-
patible members;

(2) P preserves cardinals and cofinalities, i.e. if A is a cardinal in M, then A is also a
cardinal in M[S] with the same cofinality;

(3) Ikp “2% >« In particular, if K™ = x in M, then |p “2% = K.

Proof. See [21, Chapter I, Lemma 3.8], [21, Chapter I, Theorem 4.1] and [18, Theorem
5.10]. O

Finally we would like to remark that our notation is the “Jerusalem style” of forcing
notation like in [21] but differs from the notation for example in [18]. In our partial
order p < g means that ¢ contains more information than p does and not vice versa.

4 Our By-group H

Let M be a countable transitive model of ZFC in which the generalized continuum
hypothesis holds, i.e. 2% = x* for all infinite cardinals x. Moreover, let k > N4 be reg-
ular and let IP be the forcing of adding ¥ Cohen reals. As we have seen in the last sec-
tion, IP preserves cardinals and cofinalities and 2% = x in M[S] for every generic S.
Let 7, denote the Cohen reals for o < x and let M* be a model extending M, obtained
by Cohen forcing, e.g. M* = M|S] for some fixed S.

Inside M* we choose independent elements

{xn :n<w} and {y,:a<x}
and fix a countable set of natural prime numbers
{pnell:n< w}
such that p, < p,, for n < m.
Definition 4.1. Let W = @P,,_, QOx, @ P, ., Qy, be the rational vector space and let
F=8,.,Zx, ® D,_, Zy, be the free abelian group generated by the x,’s and y,’s.

In M* we define H as the subgroup of W generated by F U (P (3o — x0) 100 < i,
n < w,n,(n) =1} and let H be its P-name.
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We can now state our Main Theorem.

Main Theorem 4.2. In the model M* the group H is a Bi-group but not a By-group.
Hence it is consistent with ZFC that B-groups need not be By-groups.

The proof of the Main Theorem 4.2 will be divided into two parts. The first part is to
show that H is a Bj-group which will be done in this section. Section 5 will then con-
sist of proving that H is not B;.

Theorem 4.3. In the model M* the group H is a Bi-group.

The proof of Theorem 4.3 takes the rest of this section and consists of several steps.

Proof. (of Theorem 4.3) To prove that H is a Bj-group we have to show that
Bext(H, T) = 0 for any torsion group 7. Hence let

42) 0—T G2 H 0

be forced to be a balanced exact sequence in M* with 7 = T[S] torsion. Thus there
exists r* € IP such that

P00 — T 24 G 2 H— 0 is balanced exact.”

We now work in M* and choose preimages ¢, € G of y, under ¢ for all « < x.
Similarly let X, € G be a preimage for x, under ¢ for n < w. Moreover, let

A, ={n<w:n,n) =1}

for o < .

It is our aim to show that the balanced exact sequence (4.2) is forced to split, hence
it is enough to prove that the homomorphism ¢ is right-invertible, i.e. we have to find
Y : H — G such that ¢y = idy. Therefore it is necessary to find preimages of the
generators of H in G such that equations satisfied in H also hold in G. We need the
following definition.

Definition 4.4. Let « < x and ¢ € T arbitrary. Then the set R, , is defined as
R, ={neA,:g,—t— X, is not divisible by p, }.

We will now use a purely group theoretic argument to show that if for every o < k
there is a ¢, € T such that R, ,, is finite then ¢ is invertible.

Lemma 4.5. Let o < i and let t € T such that R, is finite. Then there exists t, € T
such that R, ,, = 0.
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Proof. Since R, ; is finite we may assume without loss of generality that R, ;, has mini-
mal cardinality. Assume that R, , is not empty and fix n € R, ;. By the primary decom-
position theorem we decompose 7" as

T=T,®T

where T, denotes the p,-primary component of 7. Since n € 4, it follows that p,
divides y, — x,, hence there exists z € G such that

0(2) = (92— x).
Thus
(Go—t—%0) —puzeT =T, @T'
and therefore there exist 7 € T}, and ¢; € T" such that
(9o — t = Xn) — Pz = to + 11.
Since T is divisible by p, we can write #, = p,t, for some t, € T'. Hence
(9x — 1= Xu) = pu(z — 1) = lo.
We let ¢/ =t + tp and will show that R, , has smaller cardinality than R, ,—a con-
tradiction. By the choice of #' we have
(ga =t = Xn) = gu — t — 10 — X = pu(z — 1)

and hence n ¢ R, . But on the other side, if m ¢ R, ,, then p,, divides (g, — t — %)
and thus p,, divides (g, — (¢’ — 1)) — Xn). Since p, # py, it follows that p,, divides 7
and therefore p,, divides (g, — ¢’ — X,,). Hence m ¢ R, , showing that R, , is strictly
smaller than R, ,. This finishes the proof. [l

Lemma 4.6. Assume that for every o < i there exists t, € T such that R, ., is finite.
Then ¢ is invertible and hence the sequence (4.2) is forced to split.

Proof. By Lemma 4.5 we may assume without loss of generality that for every o < k
the set R, ;, is empty. Thus for each n € 4, we can find z, , € G such that

PnZan = Jo — Xp — 1y
We now define a homomorphism ¢ : H — G as follows:
(1) lp(xn) =Xy (I’l < w);
(2) ¥(ye) = 9o — 1z (x < K);
3) lﬂ(pﬁl(ya — X)) = Za,n (x < K,me Ay,).
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We leave to the reader to check that (1), (2) and (3) induce a well-defined homomor-
phism  : H — G satistying gy = idy. O

( Continuation of the proof of Theorem 4.3) Up to now we haven’t used any forcing
but we have worked in the model M*. By Lemma 4.6 it remains to find for every
o < k an element 7, € T such that the set R, ,, is finite. Here we use the forcing.

We define for o # f < « the pure subgroup H, g = {yp — y,), of H. Since the se-
quence (4.2) is forced to be balanced exact Lemma 2.1 shows that there exist homo-
morphisms

Y, 5 Hyp— G such that gy, 5 = idy, ,.

Let hy 5 = l//x‘ﬁ(yﬂ — »4) € G, hence
tup=hup—(9p—ga) €T.

Since T is a torsion group we can find m, g < w such that
ord(t, p) = my p.

Let m, s and g,, gy be P-names for m, g and g,, gp, respectively. We can now easily
show

Fact 4.7. r* |+ “If n > m, g, then p, divides (gz — g,) for n € A, 0 Ag”

Proof. If n > m, g, then p, > m, g follows since the primes p,, are increasing. There-
fore ged(py,myp) =1 and thus p, divides (K, 5 — (95 — g)). Moreover, h, g =
¥, p(yp — 2) is divisible by p, since n € 4, N Ag. Hence p, divides (gp — gx)- ]

Now let r* < r, g € IP be such that r, g4 forces the value m, s to m1, g, i.e.
Foplb " p = o g

Without loss of generality we assume that f € dom(r, ) for all «, . Since all elements
of IP are functions from x to 2 with finite domain, we may write for some 7, 3 < w

dom(r%[;) = {y(a,ﬂ,o)v ceey y(ac‘ﬂ,lu/;)} C K,

where y(, gy < V(apy if i <J < nyp We would like to apply the A-Lemma to the
functions r, 4 to obtain a A-system but unfortunately the functions r,, ; depend on two
variables. This forces us to do the A-Lemma ‘by hand’. For this we use the Erdds-
Rado Theorem (see [10]).

First we define a coloring on 4-tuples in N4. Let og, 0, 0,03 < N; such that
op < o < op < oz and let

C(“Oa 01, %2, OC3)
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consist of the following entries in an arbitrary but fixed order:

(1) 7ag,os

(i1) 75,03

(1) 7oy, 00 (7 g, 00.j) * S = Pt )

(iv) (tv(y(““l?anz_’m) < y(“l711~“1172-,m3)) sy, my,my < A4ny < Ry, g, 5m3 < ”%nl‘%uz)-

Recall that fv denotes the truth-value of the inequality. The above coloring is a col-
oring with w colors and thus we may apply the Erd6s-Rado Theorem. Note that we
are working in our model M in which GCH holds by assumption. Hence we have

Ny — (Ry)y,

which is exactly what we need to apply the Erd6s-Rado Theorem. We obtain an in-
creasing chain of c-homogeneous elements

I'={a:¢<w}

which means that whenever oy, , o, d,, %, € I such that o, < a,, < &, < 2, then

*

C(0tgy 5 Oy Oy, 0y) = €

for a fixed color ¢*. Let this particular color consist of the following entries:
(I) n*

(I1) m*;

(IIT) (ky,- .., kp) (ki €{0,1});

(IV) (11,...,1162("*)2) (I € {Yes, No}).

Let us first explain what the homogenity implies. Let o, , o, € I' such that & < &,
then (I) ensures that the domain of r,, ,, has size n*. Moreover, (II) says that r,, o,
forces the value m* to m,, ,, and (III) implies that the image of r,, 5, is uniquely
determined. Finally (IV) ensures that if we take another pair o, «, € I" such that
€3 < &, then the relationship between the elements of the domains of ry, ., and
Fay,a, 18 fixed.

In the sequel we need to be above all the “trouble”, hence we may increase m* without
loss of generality such that m* is greater than or equal to length(ry, 4 ( )) for all
&< p < wp and e < n*. We can now approach the A-Lemma.

Vus‘o:p,e

Definition 4.8. For o, € I' we define
(1) u,, =dom(ry, 4, ) ndom(ry, 4 ,);

(2) l/l* = ﬂa<w1 uaz;

(3) Se = r“ﬁ‘“E‘Fl I\Mx,l = r“ﬁﬁ“E‘Fz I\Mx,: .
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We have to explain why (3) in Definition 4.8 is well-defined. This follows from ho-
mogenity since (IV) implies that for y € u,, we have r,, ., () = 7y, 4,., (7). We are now
ready to show the following lemma, our version of the A-system. Note that if we talk
about a A-system of functions then we mean that the corresponding domains of the
functions form a A-system.

Lemma 4.9. For a,,0, € I' such that ¢ < p we have

Uy, OV Uy, = U
Hence the functions s, (o, € I') form a A-system with root u*. Moreover, for fixed
& < wy the functions ry, ,, (¢ < p < w1) form a A-system with root u,,.

Proof. Let o, 2, € I be such that ¢ < p. Clearly we have u* < u,, nu,, by Definition
4.8. It remains to show the converse inclusion. Therefore let y € u,, N u,, and choose
7 < w; arbitrary. We have to prove that y lies in u,,_.

If T = ¢ or T = p, then we are done.

If > &+ 1, then ¢(ot;, 041, %, %-41) = ¢* by homogenity. Since y € dom(ry, ,,,,) wWe
can find i < n* such that y =y, ,  ; and similarly y = Py apsr.) for some j < n*. It
follows now that

lv(y(“e«,fxﬁl-,i) < y(“}v‘zﬁfh/‘)) = No and ZU(V("XWO‘;HIL/.) < y(‘“s:(xsﬂai)) = No.

Hence there exists by homogenity k& < n* such that

tv(y(ozg,otwl,i) < y(a,,oc,ﬂ,k)) = No and tv(y(a.,,otrﬂ,k) < y(otmatwl,i)) = No.

Thus y =y
Y E Uy, .

If 1 < e+ 1, then we use similar arguments to those above to prove that y € u,_.

Thus we have shown that y € u,_ for any v < w; and therefore y € u*.

The same kind of arguments show that also the functions r,,_,, (¢ < p < w;) form a
A-system with root u,, for fixed ¢ < . O

k) € dom(ry, 4, ). Similarly it follows that y € dom(ry, »,,,) and hence

Ogy Olrt1,s

It is now easy to see by a pigeon-hole argument that we may assume without loss of
generality (and we will assume this in the sequel) that all the functions from
the A-systems in Lemma 4.9 coincide on their root.

( Continuation of the proof of Theorem 4.3 ) The following definition now makes sense.

Definition 4.10. For ¢ < p < w; and a generic S < IP we define

(1) st =5 ru* =S I\(ukﬁuup);

(ii) ¥ = {o, : 5, € S}.

We can now show that s* is strong enough to force that ¥ has cardinality X;.
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Fact 4.11. s* | “| Y| = 8,”

Proof. Let Y' = {5, : ; € T\ Y} and assume that s* does not force Y to be of size X;.
Then |Y’| = X;. We will show that this set is dense above s*. Therefore let f > s*,
then dom(f) is a finite subset of x and u* < dom(f). We choose s, € Y’ such that
dom(s,)\u* is disjoint to dom(f)\u*. This is possible since by Lemma 4.9 the s.’s
form a A-system, hence

dom(s;)\u* ndom(sg)\u* =0

for f # 7. Now, f and s, are compatible and thus Y’ is dense above s*. Therefore
Y' NS # 0 by Lemma 3.2—a contradiction. O

We are almost done and prove the following statement.

Fact 4.12. s* | “If o, 0y € Y and n € A,, "\ A, \[0,m*] then p, divides §, — g, "

op
Proof. Let s* < s be such that
slk*ne Ay, 0 A, \[0,m"]”.

Without loss of generality we may assume that s also forces truth values to o, € Y
and o, € Y. If one of them is No, then we are done and hence let us assume that both
are Yes. We will show that there exists y < w; such that

O r>sg
(1) y>p;

(II) dom(ry,, s, ) \ts, W dom(ry, 5, ) \thy, U {0} Uty \u* is disjoint to dom(s).

Obviously we can choose y > ¢, p such that dom(s) is disjoint to {a,}, so all we have
to ensure is that also dom(ry, )\, U dom(ry, ;)\t U, \u* is disjoint to dom(s).
For this we prove that the three sets

(1) {y < w1 : dom(ry, 4 )\u,, is not disjoint to dom(s)};

t

(2) {y < w1 : dom(ry, ) \u,, is not disjoint to dom(s)};

(3) {y < 1 :u, \u* is not disjoint to dom(s)}.

are bounded in w;. Let us start with (1). By Lemma 4.9 we know that for each
¢ < w the domains {dom(r,, ,,) : ¢ <y < wi} form a A-system with root u,,, hence
{dom(ry, 5, )\us, 1 &6 <y < w1} is a set of pairwise disjoint sets. Since dom(s) is a finite
set {y < w1 : dom(ry, 4, )\u,, is not disjoint to dom(s)} must be bounded in ;. Sim-
ilarly {y < 1 : dom(r,, 4, )\us, is not disjoint to dom(s)} is bounded in w;. Finally,
again by Lemma 4.9 the sets {u,, : y < 1} form a A-system with root #* and so also
{y < @1 : u,, \u* is not disjoint to dom(s)} is bounded in ;.

For this y we are able to prove that there is s such that



Sh:754

520 S. Shelah, L. Striingmann

Since n was chosen large enough which means that 7, has length less than or equal to
m* and hence less than or equal to n, there is, once we know that we can satisfy (i),
(iii) and (iv), also some s > s satisfying all conditions (i), (ii), (iii) and (iv). Thus we
only have to satisfy conditions (i), (iii) and (iv) and for this it is obviously enough to
show that the three functions s, r,, ,, and r,, ,, are compatible. Assume that r,, ,, and
Iy, q, are incompatible, then by induction we obtain that r, ,, andr,, ,, areincom-
patible. Hence for 7 < ¢ < w; we have thatr,, _,, andr,, ,, are incompatible which
contradicts the c.c.c. condition of our forcing. Therefore r,, ,, and r,, ,, are compat-
ible. Finally s and r,, ,, (and similarly s and r,, ,,) are compatible since by the choice
of y we have dom(s) N dom(ry, 5 ) = u,,.

Now s* | “p, divides g, — g, ” and s* | “p, divides g, — g, ” and therefore s |
“pn divides g, — g, " as claimed. [

Finally we have to prove another fact.

Fact4.13. 5% | “For every f < x there exists my < o such thatVmg < ne Agand o, € Y
such that n € A,, we have p, divides gg — g,,""

Let us first show how Fact 4.13 implies Theorem 4.2, i.e. using Fact 4.13 we prove
that the set Rg o is contained in [0,mg) N Z for all f < x and hence finite after mod-
ifying the choice of the preimages X, of x, (n < w) slightly (which doesn’t have any
effect on what we have done so far). Choose X, € G such that

(1) o(Xn) = Xu;
(ii) if n > m™* and « € Y such that n,(n) = 1, then p, divides g, — X,.

For example if n > m* we choose o € Y such that #,(n) = 1; Let k, € G such that

o(kyn) = 1/ps(y« — x4) and put X, = puk, + g.. Then clearly (i) and (ii) are satisfied.
Now Fact 4.13 ensures that Ry o is contained in [0, myg) for if mg < n € Ag choose

%; € Y such that 7, (n) = 1 (the one which was used when choosing the ¥,’s), then we

have by the choice of X, that p, divides g,, — X,, and by Fact 4.13 we have p, divides

9gp — 9, and hence p, divides g — X,. Thus n ¢ R,y and R4 ) < [0,my) follows.
Therefore the proof of Fact 4.13 finishes the proof of Theorem 4.3.

Proof. (of Fact 4.13) Fix < x and let s < s be such that s forces n € Ag. For every
¢ < w; we choose (if possible) 7; in the generic set such that

(i) s<ig
(i) 751 o€ Y

(iii) 2 I iy, p = m] ;7 for some m} , e N.
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Note that it is sufficient to find one ¢ such that

(*) P divides gz — g5,

for then we can use Fact 4.12 to get the conclusion for any o, such that n € 4, . If we
have one j satisfying (ii) and (iii), then it forces (x) for n > m;f - So we first ensure
(ii) and (iii) and then we use that there is an uncountable subset Sg of w; such that
{j - € € Sp} is a A-system to ensure (i) where we put nmy = mj:ﬁ which can be chosen
fixed for the A-system. [

5 Why H fails to be B,
To complete the proof of our Main Theorem 4.2 we show in this section that the
group H from Definition 4.1 can not be a B,-group in M*.

Theorem 5.1. In the model M* the group H can not be a By-group.

Proof. Towards contradiction assume that H is a B,-group, hence has a B,-filtration

H=J H,.

<K

Recall that a B,-filtration is a smooth ascending chain of pure subgroups H, such
that for every o < k H,.1 = H, + B, for some finite rank Butler group B,. Recall
that a cub in x is a subset C of x such that

(i) Cis closed in i, i.e. for all C' = C, if sup C’ < «, then sup C’ € C;

(ii) Cis unbounded in x, i.e. sup C' = k.

The proof of the following lemma is standard (see [9, I11.4.12]) but for the convenience
of the reader we include it briefly.

Lemma 5.2. The set C = {0 < k| Hy = {Xu,yp :n < 0, <), } is a cub in k.

Proof. First we show that C is closed in k. Therefore let C' = {0;|i € I} be a subset of
C such that sup C’ < . If we put y = sup C’, then clearly

H,=JHs ={nyp:n<o,f <y,

iel

and hence y € C.

It remains to show that C is unbounded. Therefore assume that C is bounded by
0" <k, ie 0<0" forall 6 € C. We will show that there exists 0* < y < x such that
H, = {xy,yp :n <, <7),, hence y € C—a contradiction.

Let p;, = 0" and put

E, = oy ypin < o, <pi).
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Now choose p; <« < x such that E, = H, . If o ¢ C then choose o) < p, < x such
that

Hle s Epz = <xm)//3 n< w>ﬂ < p2>*~
Continuing this way we obtain a sequence of groups E, and H,, such that

E, < H, < E

Pi — Pit1

for all i < w. Let y = sup{p, : i < @} = sup{o; : i < w}. Then

Hﬂ: UH%i: UE,-:E”/:<xn7y/i:n<wng<y>*

i<w i<w
and hence y € C. This finishes the proof. O

( Continuation of the proof of Theorem 5.1) Now let 6 € C be such that § > X; and
w.l.o.g. let 0 be a limit ordinal. This is possible since C is a cub by Lemma 5.2. Note
that ys ¢ Hs but we have the following lemma.

Lemma 5.3. There exists n* < w and a sequence of ordinals 6 < oy <o+ < oy < K
such that

<H(>+ZJ’(>>* S Z Botm +H(5-

m<n*

Proof. We induct on o > 0 to show the even stronger statement that for any L <, H,,
L of finite rank, there exist n* < w and d <o < o+ -+ < o« < Kk such that

<H(5 -+ L>* < Z Bam + Hj.

m<n*

If o = 0, then we are done choosing n* =1 and o) = «a.

If o > ¢ is a limit ordinal, then L =, H, implies L <, Hp for some § < f < . Hence
we are done by induction hypothesis.

Ifo=p+1,let H,= Hg+ Bg and let L = </i,...,[x),. We can find representations
li=hp i+ bp;

forall 1 <i <k where hg; € Hg and by ; € Bg. We put
Ly = (g (BgnHp) : 1 < i< k), S Hp

which is a pure subgroup of finite rank of Hg. An easy calculation shows that L =
Lg + Bg.
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The induction hypothesis implies that there exist n < w and 0 <o <op--- <o
such that

(Hs+Lgy, = > B, +H;.

m<n
Another calculation shows that this implies

<H§ + L>* < Z Bac,,, + B/; + Hj.

m<n

This finishes the proof. O

( Continuation of the proof of Theorem 5.1) By Lemma 5.3 we can choose n* < w and
0<ua <op < -+ <oy such that

(Hs+Zysy, = . B, + H;.

m<n*
For every m < n* we choose a finite set ¥, < x and an integer n,, < ® such that

B“/ng< E Zy}'—i_ Z Z'xl>'

yE Wn i<n,

Collecting all these generators and letting W = | W, and k = max{n,, : m < n*}

we obtain

m<n*

(5.3) {Hs+Zys», =< B+ Hy

where B= <30y Zyy + 30k LX),
Now choose f < 0\ W and let n > k be such that

nedgnA; U 4,
yeEW, p#0

Note that this choice is possible by the following densitiy argument similar to the
proof of Lemma 3.6. Let p € IP and write p = (pu,, Py » - - - s Pay,_, )» Where each p,, €<©2
(o < 1c). Without loss of generality we may assume that W < {o; : i < m}. Put f =
max (W) + 1 and let n = max{max(dom(p,,)) : i < m} + 1. Now we extend each p,,
to g,, by putting ¢,,(n) = 0. Moreover, we let gz(n) = 1. Then ¢ = (¢4, - - -, 44, 1, 49p)
is stronger than p and therefore forces what we need. It is now straightforward to see
that p, ! (ys — yp) is an element of (Hs + Zys), but it is not an element of B+ Hs
contradicting equation (5.3). This finishes the proof of Theorem 5.1 and therefore the
proof of our Main Theorem 4.2. O
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