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Abstract. Both, B1-groups and B2-groups are natural generalizations of finite rank Butler
groups to the infinite rank case and it is known that every B2-group is a B1-group. Moreover,
assuming V ¼ L it was proven that the two classes coincide. Here we demonstrate that it is
undecidable in ZFC whether or not all B1-groups are B2-groups. Using Cohen forcing we
prove that there is a model of ZFC in which there exists a B1-group that is not a B2-group.
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1 Introduction

The study of Butler groups, both in the finite and in the infinite rank case, is a most
active area of Abelian Group Theory. There are several challenging problems which
require deep insight into the theory of Butler groups and the available methods as
well as the development of new machinery. The finite rank case is closely related to
the study of representations of finite posets while the infinite rank case has its own
special flavor. During the last years more and more the connection between infinite
rank Butler groups and infinite combinatorics was discovered and led to numerous
interesting results. In this paper we discuss one of the long-standing problems,
namely whether or not all B1-groups are B2-groups, and show that its solution is in-
dependent of ZFC. It is known that any B2-group is a B1-group and moreover, as-
suming Goedel’s universe of constructibility the two classes coincide. In contrast to
this result we will show, using Cohen forcing, that there is a model of ZFC in which
there exists a B1-group that is not a B2-group.
In the following all groups are abelian. Our terminology is standard and maps are

written on the left. If H is a subgroup of a torsion-free group G then the purification
of H in G is denoted by H�. For notations and basic facts we refer to [11] for abelian
groups, [18] and [21] for forcing and [9] or [17] for set-theory. Moreover, the inter-
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ested reader may look at [2] for a survey on finite rank Butler groups and at [3], [12]
for surveys on infinite rank Butler-groups.

Since our problem comes from abelian group theory the authors tried to make the
paper accessible for non set-theorists. Hence the involved set-theory (forcing) is ex-
plained in detail although the methods are very standard.

2 Infinite rank Butler groups

In this section we recall the definitions of B1-groups and B2-groups as they were given
by Bican-Salce in [6]. Both classes contain the class of finite rank Butler-groups (pure
subgroups of completely decomposable groups of finite rank) first studied by Butler
in [4]. Let us begin with the notion of a balanced subgroup.
A pure subgroup A of the torsion-free group G is said to be a balanced subgroup

if every coset gþ A ðg A GÞ contains an element gþ a ða A AÞ such that wðgþ aÞb

wðgþ xÞ for all x A A, where wðgÞ denotes the characteristic of an element g A G. Such
an element is called proper with respect to A and wðgÞ denotes the characteristic of an
element g in the given group G.
An exact sequence 0! A ! G ! C ! 0 is balanced exact if the image of A in G is

a balanced subgroup of G. Hunter [16] discovered that the equivalence classes of
balanced extensions of a group H by a group G give rise to a subfunctor Bext1ðH;GÞ
of Ext1ðH;GÞ and hence homological algebra is applicable. Thus for a balanced exact
sequence

0! A ! G ! C ! 0ð�Þ

and a group H we obtain the two long exact sequences

0! HomðC;HÞ ! HomðG;HÞ ! HomðA;HÞ

! Bext1ðC;HÞ ! Bext1ðG;HÞ ! Bext1ðA;HÞ ! Bext2ðC;HÞ ! � � �

and

0! HomðH;AÞ ! HomðH;GÞ ! HomðH;CÞ

! Bext1ðH;AÞ ! Bext1ðH;GÞ ! Bext1ðH;CÞ ! Bext2ðH;AÞ ! � � �

It is routine to check that balanced-exactness of the sequence ð�Þ is equivalent to the
following property: for every rank one torsion-free group R, every homomorphism
R ! C can be lifted to a map R ! G, i.e. every rank one torsion-free group is pro-
jective with respect to ð�Þ. Thus the following lemma is easily established.

Lemma 2.1. Let

0! A ! G !j C ! 0
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be a balanced exact sequence. Then this sequence is locally invertible, i.e. for any ele-

ment c A C there exists a homomorphism cc : hci� ! G such that jcc ¼ idhci� .

We now come to the definitions of B1-groups and B2-groups.

Definition 2.2. A torsion-free abelian group B is called

(1) a B1-group if Bext
1ðB;TÞ ¼ 0 for all torsion groups T;

(2) a B2-group if there exists a continuous well-ordered ascending chain of pure sub-
groups,

0 ¼ B0HB1H � � � HBa H � � � HBl ¼ B ¼
S
a<l

Ba

such that Baþ1 ¼ Ba þ Ga for every a < l for some finite rank Butler group Ga;
i.e. Ba is decent in Baþ1 in the sense of Albrecht-Hill [1];

(3) finitely Butler if every finite rank pure subgroup of B is a Butler-group.

Due to Bican-Salce [6] the three definitions are equivalent for countable torsion-free
groups.

Theorem 2.3 ([6]). For a countable torsion-free abelian group B the following are equiv-

alent:

(1) B is finitely Butler;

(2) B is a B2-group;

(3) B is a B1-group.

Without any restriction to the cardinality we have in general:

Theorem 2.4 ([6]). B2-groups of any rank are B1-groups.

It turned out that the converse implication in the above theorem couldn’t be proved
without any additional set-theoretic assumptions. There are some partial results in
ZFC characterizing the B2-groups among the B1-groups but none of them is really
satisfactory. The following was shown by Fuchs and Rangaswamy independently.

Lemma 2.5 ([13], [20]). Suppose that 0! H ! C ! G ! 0 is a balanced-exact

sequence where C is a B2-group and H and G are B1-groups. If one of H and G is a

B2-group, then so is the other.

An attempt to characterize the B2-groups in a homological way is the following the-
orem due to Fuchs.
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Theorem 2.6 ([13]). If B is a B2-group, then Bext
iðB;TÞ ¼ 0 for all ib 1 and for all

torsion groups T.

Assuming the continuum hypothesis Rangaswamy was able to show that also the
converse holds and in some cases Fuchs could even remove CH.

Theorem 2.7 ([13], [20]). The following are true:

(1) Assuming CH a torsion-free group B is a B2-group if and only if Bext1ðB;TÞ ¼
Bext2ðB;TÞ ¼ 0 for all torsion groups T.

(2) A torsion-free group B of cardinality @n (for some integer nb 1) is a B2-group if

and only if Bext iðB;TÞ ¼ 0 for all ia nþ 1 and all torsion groups T.

It was natural to ask whether Bext2ðB;TÞ is always zero for a torsion-free group B

and a torsion group T but Magidor-Shelah [19] proved that this is not the case even
assuming the generalized continuum hypothesis GCH. That CH was relevant in many
papers was explained by Fuchs who showed the following theorem.

Theorem 2.8 ([13]). In any model of ZFC, the following are equivalent:

(1) Bext2ðG;TÞ ¼ 0 for all torsion-free groups G and torsion groups T;

(2) CH holds and balanced subgroups of completely decomposable groups are B2-
groups.

One of the most interesting and main results in the theory of infinite rank Butler
groups is the following final theorem of this section proved by Magidor and Fuchs.

Theorem 2.9 ([14]). Assuming V ¼ L every B1-group is a B2-group.

We will show in this paper that the conclusion of the last theorem does not hold in
ZFC but is independent of ZFC.

3 The forcing

In this section we will explain the forcing notion we are going to use to construct our
B1 group H which fails to be B2. The reader who is familiar with forcing, especially
with adding Cohen reals may skip this section. Most results are well-known and basic.
For unexplained notations and further results on forcing we refer to Kunen’s book
[18] or to the more advanced first author’s book [21].
LetM be any countable transitive model of ZFC and assume of course that the set

theory ZFC is consistent. The aim of forcing is to extend M to a new model which
still satisfies ZFC but which has additional properties which we are interested in.
A forcing notion P A M is just a non empty, preordered set ðP;a; 0PÞ, where 0P is

the minimal element of P, hence 0P a p for all p A P. Note that we don’t require that
pa q and qa p imply q ¼ p. If two elements p; q A P have no common upper bound,
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i.e. there is no t A P such that pa t and qa t, then we say that p and q are incompat-

ible and write p ? q. If a common upper bound exists we call the elements compatible.
We now want to add toM a subset S of P to construct a transitive setM½S � which is a
model of ZFC with the same ordinals asM such thatMJM½S � and S A M½S �. Those
sets S are called generic.

Definition 3.1. Let DJP, SJP and p A P. Then

(1) D is called dense in P if for any q A P there is an element t A D such that qa t;

(2) D is dense above p if for any q A P such that pa q there exists an element t A D

such that qa t;

(3) S is called P-generic over M if the following hold:
(a) for all q; r A S there exists t A S such that qa t and ra t, i.e. all elements of S

are compatible in S;
(b) if q A S and ta q for some t A P then also t A S;
(c) SXD0j for every dense subset D of P which is in M.

A first observation is that a generic set S intersects non-trivially also sets which are
‘‘dense above p’’ in many cases.

Lemma 3.2. Let DJP and S be P-generic over M. Then

(1) Either SXD0j or there exists q A S such that for all r A D we have r ? q;

(2) If p A S and D is dense above p, then SXD0j.

Proof. See [18, Lemma 2.20]. r

If S is P-generic overM (or, for short, generic), then the existence of the modelM½S �
with the desired properties follows from the Forcing Theorem (see [21]). M½S � is the
smallest transitive model of ZFC that containsM and S. We don’t want to recall the
construction of M½S � but we would like to mention the following facts. Since we
want to prove theorems inM½S � we would like to know the members ofM½S � but we
can not have full knowledge of them inside M since this would cause these sets to be
inM already. If S is inM thenM½S � gives nothing new, so we have to assume that S
is not in M and this is the case in general as the following lemma shows.

Lemma 3.3. Let S be P-generic over M. If P satisfies the following condition

Ep A P b q; r A P such that pa q; pa r and q? rð3:1Þ

then S B M.

Proof. See [18, Lemma 2.4]. r

Nevertheless, every element p of P can be a member of a generic set.

It is consistent with ZFC that B1-groups are not B2 511

Brought to you by | University of Texas at Austin
Authenticated

Download Date | 6/4/15 9:37 PM

Sh:754



Lemma 3.4. Let p A P. Then there is a subset S which is P-generic over M such that

p A S.

Proof. See [18, Lemma 2.3]. r

Although we don’t know the generic set S we assume that we have some prescription
for building the members of M½S � out of M and S. These prescriptions are called P-
names, usually denoted by t, and their interpretation in M½S � is t½S �. For the exact
definition of P-names and their interpretation we refer again to Kunen’s book [18]
but let us mention that the Strengthened Forcing Theorem (see [21]) shows that

M½S � ¼ ft½S � : t A M and t is a P-nameg:

If we are talking about the P-name of a special object H from M½S � without speci-
fying S then we will write ~HH instead of H to avoid confusion but if H is already inM,
then we omit the tilde. Any sentence of our forcing language uses the P-names to
assert something aboutM½S � but the truth or falsity of a sentence c inM½S � depends
on S in general. If p A P, then we write pwc and say p forces c to mean that for all S
which are P-generic over M, if p A S, then c is true in M½S �. If 0P wc then we just
write wP c which means that for any generic S the sentence c is true inM½S � since 0P
is always contained in S. Hence the elements of P provide partial information about
objects inM½S � but not all information and if pa q then q contains more information
than p. It may be decided inM whether or not pwc and whenever a sentence c is true
in M½S � then there is p A S such that pwc.

We now turn to the forcing of adding Cohen reals. Therefore let k be an uncountable
cardinal. We put

P ¼ fp j p is a function from a finite subset of k� o to 2g

¼ fp j p : domðpÞ ! 2; domðpÞ a finite subset of k� og

The partial ordering of P is given by set theoretic inclusion, i.e. two functions p and q
satisfy pa q if and only if q extends p as a function. This forcing is called ‘‘adding k
Cohen reals’’ and the elements of P can obviously be regarded as functions from k to
<o2 which we will do in the sequel.
The next lemma shows why the forcing is called adding k Cohen reals.

Lemma 3.5. wP ‘‘There are at least k reals’’.

Proof. See [21, Chapter I, Lemma 3.3]. r

We will give the k Cohen reals P-names, say ~hha for a < k and state some basic prop-
erties of the Cohen reals. Note that a real is a function from o to 2 ¼ f0; 1g.

Lemma 3.6. The following hold for a; b < k:

(1) wP ‘‘There are infinitely many n A N such that ~hhaðnÞ ¼ ~hhbðnÞ ¼ 1’’;
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(2) wP ‘‘There are infinitely many n A N such that ~hhaðnÞ ¼ ~hhbðnÞ ¼ 0’’;

(3) wP ‘‘There are infinitely many n A N such that ~hhaðnÞ0 ~hhbðnÞ’’.

Proof. The proof of this fact is standard using a densitiy argument. r

Moreover, we have three more important facts.

Lemma 3.7. The following hold for P.

(1) P satisfies the c.c.c. condition, i.e. P has no uncountable subset of pairwise incom-

patible members;

(2) P preserves cardinals and cofinalities, i.e. if l is a cardinal in M, then l is also a

cardinal in M½S � with the same cofinality;

(3) wP ‘‘2@0 b k’’. In particular, if k@0 ¼ k in M, then wP ‘‘2@0 ¼ k’’.

Proof. See [21, Chapter I, Lemma 3.8], [21, Chapter I, Theorem 4.1] and [18, Theorem
5.10]. r

Finally we would like to remark that our notation is the ‘‘Jerusalem style’’ of forcing
notation like in [21] but di¤ers from the notation for example in [18]. In our partial
order pa q means that q contains more information than p does and not vice versa.

4 Our B1-group H

Let M be a countable transitive model of ZFC in which the generalized continuum
hypothesis holds, i.e. 2k ¼ kþ for all infinite cardinals k. Moreover, let kb@4 be reg-
ular and let P be the forcing of adding k Cohen reals. As we have seen in the last sec-
tion, P preserves cardinals and cofinalities and 2@0 ¼ k in M½S � for every generic S.
Let ~hha denote the Cohen reals for a < k and letM � be a model extendingM, obtained
by Cohen forcing, e.g. M � ¼ M½S � for some fixed S.
Inside M � we choose independent elements

fxn : n < og and fya : a < kg

and fix a countable set of natural prime numbers

fpn A P : n < og

such that pn < pm for n < m.

Definition 4.1. Let W ¼
L

n<o Qxn l
L

a<k Qya be the rational vector space and let
F ¼

L
n<o Zxn l

L
a<k Zya be the free abelian group generated by the xn’s and ya’s.

In M � we define H as the subgroup of W generated by F W fp�1n ðya � xnÞ : a < k;
n < o; haðnÞ ¼ 1g and let ~HH be its P-name.
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We can now state our Main Theorem.

Main Theorem 4.2. In the model M � the group H is a B1-group but not a B2-group.
Hence it is consistent with ZFC that B1-groups need not be B2-groups.

The proof of the Main Theorem 4.2 will be divided into two parts. The first part is to
show that H is a B1-group which will be done in this section. Section 5 will then con-
sist of proving that H is not B2.

Theorem 4.3. In the model M � the group H is a B1-group.

The proof of Theorem 4.3 takes the rest of this section and consists of several steps.

Proof. (of Theorem 4.3) To prove that H is a B1-group we have to show that
BextðH;TÞ ¼ 0 for any torsion group T. Hence let

ð4:2Þ 0�! ~TT �!id ~GG �!~jj ~HH �! 0

be forced to be a balanced exact sequence in M � with T ¼ ~TT ½S � torsion. Thus there
exists r� A P such that

r� w ‘‘0�! ~TT �!id ~GG �!~jj ~HH �! 0 is balanced exact:’’

We now work in M � and choose preimages ga A G of ya under j for all a < k.
Similarly let xn A G be a preimage for xn under j for n < o. Moreover, let

Aa ¼ fn < o : haðnÞ ¼ 1g

for a < k.
It is our aim to show that the balanced exact sequence (4.2) is forced to split, hence

it is enough to prove that the homomorphism j is right-invertible, i.e. we have to find
c : H ! G such that jc ¼ idH . Therefore it is necessary to find preimages of the
generators of H in G such that equations satisfied in H also hold in G. We need the
following definition.

Definition 4.4. Let a < k and t A T arbitrary. Then the set Ra; t is defined as

Ra; t ¼ fn A Aa : ga � t� xn is not divisible by png:

We will now use a purely group theoretic argument to show that if for every a < k

there is a ta A T such that Ra; ta is finite then j is invertible.

Lemma 4.5. Let a < k and let t A T such that Ra; t is finite. Then there exists ta A T

such that Ra; ta ¼ j.
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Brought to you by | University of Texas at Austin
Authenticated

Download Date | 6/4/15 9:37 PM

Sh:754



Proof. Since Ra; t is finite we may assume without loss of generality that Ra; t has mini-
mal cardinality. Assume that Ra; t is not empty and fix n A Ra; t. By the primary decom-
position theorem we decompose T as

T ¼ Tpn lT 0

where Tpn denotes the pn-primary component of T. Since n A Aa it follows that pn
divides ya � xn, hence there exists z A G such that

jðzÞ ¼ p�1n ðya � xnÞ:

Thus

ðga � t� xnÞ � pnz A T ¼ Tpn lT 0

and therefore there exist t0 A Tpn and t1 A T 0 such that

ðga � t� xnÞ � pnz ¼ t0 þ t1:

Since T 0 is divisible by pn we can write t1 ¼ pnt2 for some t2 A T 0. Hence

ðga � t� xnÞ � pnðz� t2Þ ¼ t0:

We let t 0 ¼ tþ t0 and will show that Ra; t 0 has smaller cardinality than Ra; t—a con-
tradiction. By the choice of t 0 we have

ðga � t 0 � xnÞ ¼ ga � t� t0 � xn ¼ pnðz� t2Þ

and hence n B Ra; t 0 . But on the other side, if m B Ra; t, then pm divides ðga � t� xmÞ
and thus pm divides ðga � ðt 0 � t0Þ � xmÞ. Since pn 0 pm it follows that pm divides t0
and therefore pm divides ðga � t 0 � xmÞ. Hence m B Ra; t 0 showing that Ra; t 0 is strictly
smaller than Ra; t. This finishes the proof. r

Lemma 4.6. Assume that for every a < k there exists ta A T such that Ra; ta is finite.

Then j is invertible and hence the sequence (4.2) is forced to split.

Proof. By Lemma 4.5 we may assume without loss of generality that for every a < k

the set Ra; ta is empty. Thus for each n A Aa we can find za;n A G such that

pnza;n ¼ ga � xn � ta:

We now define a homomorphism c : H ! G as follows:

(1) cðxnÞ ¼ xn ðn < oÞ;

(2) cðyaÞ ¼ ga � ta ða < kÞ;

(3) cðp�1n ðya � xnÞÞ ¼ za;n ða < k; n A AaÞ.

It is consistent with ZFC that B1-groups are not B2 515

Brought to you by | University of Texas at Austin
Authenticated

Download Date | 6/4/15 9:37 PM

Sh:754



We leave to the reader to check that (1), (2) and (3) induce a well-defined homomor-
phism c : H ! G satisfying jc ¼ idH . r

(Continuation of the proof of Theorem 4.3) Up to now we haven’t used any forcing
but we have worked in the model M �. By Lemma 4.6 it remains to find for every
a < k an element ta A T such that the set Ra; ta is finite. Here we use the forcing.
We define for a0 b < k the pure subgroup Ha;b ¼ hyb � yai� of H. Since the se-

quence (4.2) is forced to be balanced exact Lemma 2.1 shows that there exist homo-
morphisms

ca;b : Ha;b ! G such that jca;b ¼ idHa; b
:

Let ha;b ¼ ca;bðyb � yaÞ A G, hence

ta;b ¼ ha;b � ðgb � gaÞ A T :

Since T is a torsion group we can find ma;b < o such that

ordðta;bÞ ¼ ma;b:

Let ~mma;b and ~gga; ~ggb be P-names for ma;b and ga; gb, respectively. We can now easily
show

Fact 4.7. r� w ‘‘If n > ~mma;b, then pn divides ð~ggb � ~ggaÞ for n A Aa XAb’’

Proof. If n > ma;b, then pn > ma;b follows since the primes pm are increasing. There-
fore gcdðpn;ma;bÞ ¼ 1 and thus pn divides ðha;b � ðgb � gaÞÞ. Moreover, ha;b ¼
ca;bðyb � yaÞ is divisible by pn since n A Aa XAb. Hence pn divides ðgb � gaÞ. r

Now let r� a ra;b A P be such that ra;b forces the value ma;b to ~mma;b, i.e.

ra;b w ‘‘ ~mma;b ¼ ma;b’’:

Without loss of generality we assume that b A domðra;bÞ for all a; b. Since all elements
of P are functions from k to 2 with finite domain, we may write for some na;b < o

domðra;bÞ ¼ fgða;b;0Þ; . . . ; gða;b;na; bÞgH k;

where gða;b; iÞ < gða;b; jÞ if i < ja na;b. We would like to apply the D-Lemma to the
functions ra;b to obtain a D-system but unfortunately the functions ra;b depend on two
variables. This forces us to do the D-Lemma ‘by hand’. For this we use the Erdös-
Rado Theorem (see [10]).
First we define a coloring on 4-tuples in @4. Let a0; a1; a2; a3 < @1 such that

a0 < a1 < a2 < a3 and let

cða0; a1; a2; a3Þ
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consist of the following entries in an arbitrary but fixed order:

(i) na0;a1 ;

(ii) ma0;a1 ;

(iii) ra0;a1ðgða0;a1; jÞ : ja na0;a1Þ;

(iv) ðtvðgðan1 ;an2 ;n3Þ < gðam1 ;am2 ;m3ÞÞ : n1; n2;m1;m2 < 4; n3 < nan1 ;an2 ;m3 < nam1 ;am2 Þ.

Recall that tv denotes the truth-value of the inequality. The above coloring is a col-
oring with o colors and thus we may apply the Erdös-Rado Theorem. Note that we
are working in our model M in which GCH holds by assumption. Hence we have

@4 ! ð@1Þ4@0

which is exactly what we need to apply the Erdös-Rado Theorem. We obtain an in-
creasing chain of c-homogeneous elements

G ¼ fae : e < o1g

which means that whenever ae1 ; ae2 ; ae3 ; ae4 A G such that ae1 < ae2 < ae3 < ae4 , then

cðae1 ; ae2 ; ae3 ; ae4Þ ¼ c�

for a fixed color c�. Let this particular color consist of the following entries:

(I) n�;

(II) m�;

(III) ðk1; . . . ; kn� Þ ðki A f0; 1gÞ;

(IV) ðl1; . . . ; l162ðn�Þ2Þ ðli A fYes; NogÞ.

Let us first explain what the homogenity implies. Let ae1 ; ae2 A G such that e1 < e2,
then (I) ensures that the domain of rae1 ;ae2 has size n

�. Moreover, (II) says that rae1 ;ae2
forces the value m� to mae1 ;ae2

and (III) implies that the image of rae1 ;ae2 is uniquely
determined. Finally (IV) ensures that if we take another pair ae3 ; ae4 A G such that
e3 < e4, then the relationship between the elements of the domains of rae1 ;ae2 and
rae3 ;ae4 is fixed.

In the sequel we need to be above all the ‘‘trouble’’, hence we may increase m� without
loss of generality such that m� is greater than or equal to lengthðrae;arðgae;ar; eÞÞ for all
e < r < o1 and ea n�. We can now approach the D-Lemma.

Definition 4.8. For ae A G we define

(1) uae ¼ domðrae;aeþ1ÞX domðrae;aeþ2Þ;

(2) u� ¼
T

e<o1
uae ;

(3) se ¼ rae;aeþ1Zuae ¼ rae;aeþ2Zuae .
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We have to explain why ð3Þ in Definition 4.8 is well-defined. This follows from ho-
mogenity since (IV) implies that for g A uae we have rae;aeþ1ðgÞ ¼ rae;aeþ2ðgÞ. We are now
ready to show the following lemma, our version of the D-system. Note that if we talk
about a D-system of functions then we mean that the corresponding domains of the
functions form a D-system.

Lemma 4.9. For ae; ar A G such that e < r we have

uae X uar ¼ u�:

Hence the functions se ðae A GÞ form a D-system with root u�. Moreover, for fixed

e < o1 the functions rae;ar ðe < r < o1Þ form a D-system with root uae .

Proof. Let ae; ar A G be such that e < r. Clearly we have u� J uae X uar by Definition
4.8. It remains to show the converse inclusion. Therefore let g A uae X uar and choose
t < o1 arbitrary. We have to prove that g lies in uat .
If t ¼ e or t ¼ r, then we are done.
If tb eþ 1, then cðae; aeþ1; at; atþ1Þ ¼ c� by homogenity. Since g A domðrae;aeþ1Þ we

can find ia n� such that g ¼ gðae;aeþ1; iÞ and similarly g ¼ gðar;arþ1; jÞ for some ja n�. It
follows now that

tvðgðae;aeþ1; iÞ < gðar;arþ1; jÞÞ ¼ No and tvðgðar;arþ1; jÞ < gðae;aeþ1; iÞÞ ¼ No:

Hence there exists by homogenity ka n� such that

tvðgðae;aeþ1; iÞ < gðat;atþ1;kÞÞ ¼ No and tvðgðat;atþ1;kÞ < gðae;aeþ1; iÞÞ ¼ No:

Thus g¼ gðat;atþ1;kÞ A domðrat;atþ1Þ. Similarly it follows that g A domðrat;atþ2Þ and hence
g A uat .
If t < eþ 1, then we use similar arguments to those above to prove that g A uat .
Thus we have shown that g A uat for any t < o1 and therefore g A u�.
The same kind of arguments show that also the functions rae;ar ðe < r < o1Þ form a

D-system with root uae for fixed e < o1. r

It is now easy to see by a pigeon-hole argument that we may assume without loss of
generality (and we will assume this in the sequel) that all the functions from
the D-systems in Lemma 4.9 coincide on their root.

(Continuation of the proof of Theorem 4.3) The following definition now makes sense.

Definition 4.10. For e < r < o1 and a generic SJP we define

(i) s� ¼ seZu � ¼ seZðuaeXuar Þ;

(ii) ~YY ¼ fat : st A Sg.

We can now show that s� is strong enough to force that ~YY has cardinality @1.
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Fact 4.11. s� w ‘‘j ~YY j ¼ @1’’

Proof. Let ~YY 0 ¼ fse : ae A Gn ~YYg and assume that s� does not force ~YY to be of size @1.
Then j ~YY 0j ¼ @1. We will show that this set is dense above s�. Therefore let f b s�,
then domð f Þ is a finite subset of k and u� J domð f Þ. We choose se A ~YY 0 such that
domðseÞnu� is disjoint to domð f Þnu�. This is possible since by Lemma 4.9 the se’s
form a D-system, hence

domðstÞnu� X domðsbÞnu� ¼ j

for b0 t. Now, f and se are compatible and thus ~YY 0 is dense above s�. Therefore
~YY 0 XS0j by Lemma 3.2—a contradiction. r

We are almost done and prove the following statement.

Fact 4.12. s� w ‘‘If ae; ar A ~YY and n A Aae XAarn½0;m�� then pn divides ~ggae � ~ggar ’’.

Proof. Let s� a s be such that

sw ‘‘n A Aae XAarn½0;m��’’:

Without loss of generality we may assume that s also forces truth values to ae A ~YY
and ar A ~YY . If one of them is No, then we are done and hence let us assume that both
are Yes. We will show that there exists g < o1 such that

(I) g > e;

(II) g > r;

(III) domðrae;agÞnuae W domðrar;agÞnuar W faggW uagnu� is disjoint to domðsÞ.

Obviously we can choose g > e, r such that domðsÞ is disjoint to fagg, so all we have
to ensure is that also domðrae;agÞnuae W domðrar;agÞnuar W uagnu� is disjoint to domðsÞ.
For this we prove that the three sets

(1) fg < o1 : domðrae;agÞnuae is not disjoint to domðsÞg;

(2) fg < o1 : domðrar;agÞnuar is not disjoint to domðsÞg;

(3) fg < o1 : uagnu� is not disjoint to domðsÞg.

are bounded in o1. Let us start with (1). By Lemma 4.9 we know that for each
e < o1 the domains fdomðrae;agÞ : e < g < o1g form a D-system with root uae , hence
fdomðrae;agÞnuae : e < g < o1g is a set of pairwise disjoint sets. Since domðsÞ is a finite
set fg < o1 : domðrae;agÞnuae is not disjoint to domðsÞg must be bounded in o1. Sim-
ilarly fg < o1 : domðrar;agÞnuar is not disjoint to domðsÞg is bounded in o1. Finally,
again by Lemma 4.9 the sets fuag : g < o1g form a D-system with root u� and so also
fg < o1 : uagnu� is not disjoint to domðsÞg is bounded in o1.
For this g we are able to prove that there is sþ such that
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(i) sþ b s;

(ii) sþ w ‘‘~hhagðnÞ ¼ 1’’;

(iii) sþ b rae; g ;

(iv) sþ b rar; g .

Since n was chosen large enough which means that hag has length less than or equal to
m� and hence less than or equal to n, there is, once we know that we can satisfy (i),
(iii) and (iv), also some sþ b s satisfying all conditions (i), (ii), (iii) and (iv). Thus we
only have to satisfy conditions (i), (iii) and (iv) and for this it is obviously enough to
show that the three functions s, rae;ag and rar;ag are compatible. Assume that rae;ag and
rar;ag are incompatible, then by induction we obtain that rae;ao1 and rar;ao1 are incom-
patible. Hence for t < s < o1 we have that rat;ao1 and ras;ao1 are incompatible which
contradicts the c.c.c. condition of our forcing. Therefore rae;ag and rar;ag are compat-
ible. Finally s and rae;ag (and similarly s and rar;ag ) are compatible since by the choice
of g we have domðsÞX domðrae;agÞ ¼ uae .
Now sþ w ‘‘pn divides ~ggae � ~ggag ’’ and sþ w ‘‘pn divides ~ggag � ~ggar ’’ and therefore s

þ w

‘‘pn divides ~ggae � ~ggar ’’ as claimed. r

Finally we have to prove another fact.

Fact 4.13. s� w ‘‘For every b < k there exists mb < o such that Emb < n A Ab and ae A ~YY
such that n A Aae we have pn divides ~ggb � ~ggae ’’.

Let us first show how Fact 4.13 implies Theorem 4.2, i.e. using Fact 4.13 we prove
that the set Rb;0 is contained in ½0;mbÞXZ for all b < k and hence finite after mod-
ifying the choice of the preimages xn of xn ðn < oÞ slightly (which doesn’t have any
e¤ect on what we have done so far). Choose xn A G such that

(i) jðxnÞ ¼ xn;

(ii) if n > m� and a A Y such that haðnÞ ¼ 1, then pn divides ga � xn.

For example if n > m� we choose a A Y such that haðnÞ ¼ 1; Let kn A G such that
jðknÞ ¼ 1=pnðya � xnÞ and put xn ¼ pnkn þ ga. Then clearly (i) and (ii) are satisfied.
Now Fact 4.13 ensures that Rb;0 is contained in ½0;mbÞ for if mb < n A Ab choose

ae A Y such that haeðnÞ ¼ 1 (the one which was used when choosing the xn’s), then we
have by the choice of xn that pn divides gae � xn and by Fact 4.13 we have pn divides
gb � gae and hence pn divides gb � xn. Thus n B R½b;oÞ and R½b;0Þ J ½0;mbÞ follows.
Therefore the proof of Fact 4.13 finishes the proof of Theorem 4.3.

Proof. (of Fact 4.13) Fix b < k and let sþ < s be such that s forces n A Ab. For every
e < o1 we choose (if possible) t

e
b in the generic set such that

(i) sa teb;

(ii) teb w ‘‘ae A ~YY ’’;

(iii) teb w ‘‘ ~mmae;b ¼ ma
ae;b
’’ for some ma

ae;b
A N.

S. Shelah, L. Strüngmann520
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Note that it is su‰cient to find one e such that

pn divides gb � gae ;ð�Þ

for then we can use Fact 4.12 to get the conclusion for any ar such that n A Aar . If we
have one teb satisfying (ii) and (iii), then it forces ð�Þ for n > ma

ae;b
. So we first ensure

(ii) and (iii) and then we use that there is an uncountable subset Sb of o1 such that
fteb : e A Sbg is a D-system to ensure (i) where we put mb ¼ ma

ae; b
which can be chosen

fixed for the D-system. r

5 Why H fails to be B2

To complete the proof of our Main Theorem 4.2 we show in this section that the
group H from Definition 4.1 can not be a B2-group in M �.

Theorem 5.1. In the model M � the group H can not be a B2-group.

Proof. Towards contradiction assume that H is a B2-group, hence has a B2-filtration

H ¼
S
a<k

Ha:

Recall that a B2-filtration is a smooth ascending chain of pure subgroups Ha such
that for every a < kHaþ1 ¼ Ha þ Ba for some finite rank Butler group Ba. Recall
that a cub in k is a subset C of k such that

(i) C is closed in k, i.e. for all C 0 JC, if supC 0 < k, then supC 0 A C;

(ii) C is unbounded in k, i.e. supC 0 ¼ k.

The proof of the following lemma is standard (see [9, II.4.12]) but for the convenience
of the reader we include it briefly.

Lemma 5.2. The set C ¼ fd < k jHd ¼ hxn; yb : n < o; b < di�g is a cub in k.

Proof. First we show that C is closed in k. Therefore let C 0 ¼ fdi j i A Ig be a subset of
C such that supC 0 < k. If we put g ¼ supC 0, then clearly

Hg ¼
S
i A I

Hdi ¼ hxn; yb : n < o; b < gi�

and hence g A C.
It remains to show that C is unbounded. Therefore assume that C is bounded by

d� < k, i.e. da d� for all d A C. We will show that there exists d� < g < k such that
Hg ¼ hxn; yb : n < o; b < gi�, hence g A C—a contradiction.
Let r1 ¼ d� and put

Er1 ¼ hxn; yb : n < o; b < r1i�:
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Now choose r1 a a1 < k such that Er1 JHa1 . If a1 B C then choose a1 a r2 < k such
that

Ha1 JEr2 ¼ hxn; yb : n < o; b < r2i�:

Continuing this way we obtain a sequence of groups Eri and Hai such that

Eri JHai JEriþ1

for all i < o. Let g ¼ supfri : i < og ¼ supfai : i < og. Then

Hr ¼
S
i<o

Hai ¼
S
i<o

Eri ¼ Eg ¼ hxn; yb : n < o; b < gi�

and hence g A C. This finishes the proof. r

(Continuation of the proof of Theorem 5.1) Now let d A C be such that d > @1 and
w.l.o.g. let d be a limit ordinal. This is possible since C is a cub by Lemma 5.2. Note
that yd B Hd but we have the following lemma.

Lemma 5.3. There exists n� < o and a sequence of ordinals da a1 a a2 � � � a an� < k

such that

hHd þ Zydi� J
P

man�
Bam þHd:

Proof.We induct on ab d to show the even stronger statement that for any LJ� Ha,
L of finite rank, there exist n� < o and da a1 a a2 � � � a an� < k such that

hHd þ Li� J
P

man�
Bam þHd:

If a ¼ d, then we are done choosing n� ¼ 1 and a1 ¼ a.

If a > d is a limit ordinal, then LJ� Ha implies LJ� Hb for some da b < a. Hence
we are done by induction hypothesis.

If a ¼ b þ 1, let Ha ¼ Hb þ Bb and let L ¼ hl1; . . . ; lki�. We can find representations

li ¼ hb; i þ bb; i

for all 1a ia k where hb; i A Hb and bb; i A Bb. We put

Lb ¼ hhb; i; ðBb XHbÞ : 1a ia ki� JHb

which is a pure subgroup of finite rank of Hb. An easy calculation shows that LJ
Lb þ Bb.
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The induction hypothesis implies that there exist n < o and da a1 a a2 � � � a an
such that

hHd þ Lbi� J
P
man

Bam þHd:

Another calculation shows that this implies

hHd þ Li� J
P
man

Bam þ Bb þHd:

This finishes the proof. r

(Continuation of the proof of Theorem 5.1) By Lemma 5.3 we can choose n� < o and
da a1 a a2 a � � � a an� such that

hHd þ Zydi� J
P

man�
Bam þHd:

For every ma n� we choose a finite set Wm H k and an integer nm < o such that

Bam J
P

g AWm

Zyg þ
P
ianm

Zxi

* +
�

:

Collecting all these generators and lettingW ¼
S

man� Wm and k¼maxfnm : ma n�g
we obtain

hHd þ Zydi� JBþHdð5:3Þ

where B ¼ h
P

g AW Zyg þ
P

iak Zxii�.
Now choose b < dnW and let nb k be such that

n A Ab XAd
/ S

g AW ; g0d

Ag:

Note that this choice is possible by the following densitiy argument similar to the
proof of Lemma 3.6. Let p A P and write p¼ ðpa0 ; pa1 ; . . . ; pam�1Þ, where each pai A

<o2
ðai < kÞ. Without loss of generality we may assume that W J fai : i < mg. Put b ¼
maxðWÞ þ 1 and let n ¼ maxfmaxðdomðpaiÞÞ : i < mg þ 1. Now we extend each pai
to qai by putting qaiðnÞ ¼ 0. Moreover, we let qbðnÞ ¼ 1. Then q ¼ ðqa0 ; . . . ; qam�1 ; qbÞ
is stronger than p and therefore forces what we need. It is now straightforward to see
that p�1n ðyd � ybÞ is an element of hHd þ Zydi� but it is not an element of BþHd

contradicting equation (5.3). This finishes the proof of Theorem 5.1 and therefore the
proof of our Main Theorem 4.2. r
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