
ANNALS OF 
PURE AND 

ELSEVIER Annals of Pure and Applied Logic 69 (1994) 27. 51 

APPLIED LOGIC 

Universal theories categorical in power and K-generated 
models 

Steven GivanP*, Saharon Shelahb-“VI 

Communicated by A. Lachlan: received 7 March 1993; revised 24 September 1993 

Abstract 

We investigate a notion called uniqueness in power ti that is akin to categoricity in power K, 
but is based on the cardinality of the generating sets of models instead of on the cardinality of 
their universes, The notion is quite useful for formulating categoricity-like questions regarding 
powers below the cardinality of a theory. We prove, for (uncountable) universal theories T, that 
if Tis K-unique for one uncountable K, then it is x-unique for every uncountable K; in particular, 
it is categorical in powers greater than the cardinality of T. 

It is well known that the notion of categoricity in power exhibits certain irregulari- 

ties in “small” cardinals, even when applied to such simple theories as universal Horn 

theories. For example, a countable universal Horn theory categorical in one uncount- 

able power is necessarily categorical in all uncountable powers, by Morley’s theorem, 

but it need not be countably categorical. 

Tarski suggested that, for universal Horn theories T, this irregularity might be 

overcome by replacing the notion of categoricity in power by that of freeness in power. 

T is free in power K, or k--free, if it has a model of power K and if all such models are free, 

in the general algebraic sense of the word, over the class of all models of T. T is afree 

theory if each of its models is free over the class of all models of T. It is trivial to check 

that, for K > 1 TI, categoricity and freeness in power K are the same thing. For K < / TI 

they are not the same thing. For example, the (equationally axiomatizable) theory of 

vector spaces over the rationals is an example of a free theory, categorical in every 

uncountable power, that is w-free, but not w-categorical. Tarski formulated the 
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following problem: is a universal Horn theory that is free in one infinite power 

necessarily free in all infinite powers‘? Is it a free theory? 

Baldwin, Lachlan, and McKenzie in [2] and Palyutin in [1] proved that a count- 

able w-categorical universal Horn theory is o,-categorical, and hence categorical in 

all infinite powers. Thus, it is free in all infinite powers. Givant [4] showed that 

a countable w-free but not w-categorical universal Horn theory is also oi-categorical, 

and in fact it is a free theory. Further, he proved that a universal Horn theory of any 

cardinality K that is k--free but not K-categorical is necessarily a free theory. 

Independently, BaldwinLachlan, Givant, and Palyutin all found examples of 

countable oi-categorical universal Horn theories that are not o-free, and of count- 

able wr- and o-categorical universal Horn theories that are not free theories. 

Thus, Tarski’s implicit problem remains: find a notion akin to categoricity in power 

that is regular for universal Horn theories, i.e., if it holds in one infinite power, then it 

holds in every infinite power. 

One of the difficulties with the notions of categoricity in power and freeness in 

power is that they are defined in terms of the cardinality of the universes of models 

instead of the cardinality of the generating sets. This causes difficulties when trying to 

work with powers < 1 TI. 

Let’s call a mode1 ‘11 strictly k--generated if K is the minimum of the cardinalities of 

generating sets of ‘?I. We define a theory T to be K-unique if it has, up to isomorphisms, 

exactly one strictly k--generated model. For cardinals K > 1 TI, the notions of K- 

categoricity, K-freeness, and K-uniqueness coincide (in the case when T is universal 

Horn). When K = ) TI, we have 

u-categoricity * K-freeness * K-uniqueness, 

but none of the reverse implications hold. 

Givant [4, p. 241, asked, for universal Horn theories T, whether K-uniqueness is the 

regular notion that Tarski was looking for, i.e., (1) does K-uniqueness for one infinite 

K imply it for all infinite K? For countable T, he answered this question affirmatively 

by showing that w-uniqueness is equivalent to categoricity in uncountable powers. 

For uncountable T, he provided a partial affirmative answer by showing that categori- 

city in power > 1 TI implies K-uniqueness for all infinite K, and is, in turn, implied by 

K-uniqueness when K = I TI and K is regular. However, the problem whether 

K-uniqueness implies categoricity in powers >ITI when CO<K<ITI, or when 

cu < K = I TI and K is singular, was left open. 

In this paper we shall prove the following result. 

Theorem. A universal theory T that is K-unique for some K > OJ is ti-unique for every 

K > o. In particdar, it is categoricd in powers >I TI. 

It follows from the previous remarks that a universal Horn theory T which is 

K-unique for some K > OJ is K-unique for every K Z co. Thus, the only part of (1) that 
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still remains open is the case when T is uncountable and to-unique. A more general 

formulation of this open problem is as follows. 

Problem. Is an w-unique urliuersal theor? T necessaril~~ categorical in powers 

> / TI? In particular, is a countable co-unique (or to-categorical) uniaersal them? 

to, -categorical? 

An example due to Palyutin, in [l], shows that a countable universal theory 

categorical in uncountable powers need not be (u-unique. In fact, in Palyutin’s 

example the finitely generated models are all finite, and there are countably many 

non-isomorphic, strictly to-generated models. Thus, for universal theories, k--unique- 

ness for some K > (11 does not imply co-uniqueness. 

To prove our theorem we shall show that, under the given hypotheses, the theory of 

the infinite models of T is complete, superstable, and unidimensional, and that all 

sufficiently large models are a-saturated. Thus, we shall make use of some of the 

notions and results of stability theory that are developed in [I I] (see also [S]). We will 

assume that the reader is acquainted with the elements of model theory and with such 

basic notions from stability theory as superstability. a-saturatedness, strong type, 

regular type, and Morley sequence. We begin by reviewing some notation and 

terminology and then proving a few elementary lemmas. 

The letters nz and II shall denote finite cardinals, and K and 2 infinite cardinals. The 

cardinality of a set U is denoted by 1 U (. The set-theoretic difference of A and B is 

denoted by A - B. If 8 is a function and ti = (ao, . . , II, _ , ) is a sequence of elements 

in the domain of 8, then 8(U) denotes the sequence ($(a,), . . . , 9(a,_ ,)). We denote 

the restriction of 9 to a subset X of its domain by 81X, and a similar notation is 

employed for the restriction of a relation. A sequence (Xc : 5 < A) of sets is increasing 

if Xc c: X, for c < r? < i, and continuous if X;, = Ur<aXz for limit ordinals 6 < i. 

We use German letters QI, 23, c, . . . to denote models, and the corresponding Roman 

letters A, B, C, . . . to denote their respective universes. If T(.Y~, . .Y,~_ 1) is a term in 

a (fixed) language .L for YI, and if U is an n-termed sequence of elements in A, 

symbolically tic”A, then the value of T at ~7 in 3 is denoted by r')'[ti], or simply by 

r[ti]. A similar notation is used for formulas. Suppose Ze”A and X G A. The type of 

5 over X (in al), i.e., the set of formulas in the language of (‘!I, .Y),~,~ that are satisfied 

by ti in the latter model, is denoted by tp”(ti,X), or simply by tp(&X) when no 

confusion can arise. The strong type of a over X (in VI), i.e.. the set of formulas in the 

language of (91, h),,, that are almost over X and that are satisfied by 3, is denoted by 

stp”‘(& X), or simply by stp(& X). If p(.‘) x is a strong type and E G A is a base for p in 

BI, then p /*E denotes the set of formulas in p that are almost over E. 

We write Bt G $23 to express that PI is a submodel of $23. The submodel of 9I gener- 

ated by a set X G A is denoted by 5gV’(X), or simply by &-J(X), and its universe by 

SQ(X). A model is p-generated if it is generated by a set of cardinality ,LL, and strict/l 

p-generuted if it is p-generated but not \t-generated for any v < 11. Every model 91 has 
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a generating set of minimal cardinality and hence is strictly p-generated for some 

(finite or infinite) P. If X is a generating set of 91 of minimal cardinality and Y is any 

other generating set of 91, then there must be a subset Z of Y of power at most IX 1 + w 

such that Z generates X and hence also 91. A set X E A is irredundant (in 91) if, for 

every YsX, we have Gg( Y) # Gg(X). 

A model 21 is an n-submodel of 23, and 23 an n-extension of 91, in symbols 91 $n !B, if 

for every C,-formula cp(xO, . . . , xk ~I ) in the language of 91 and every E E k.4, we have 

‘LI b cp[ti] iff 23 + ~[a]. A 0-submodel of 23 is just a submodel in the usual sense of the 

word, and an elementary submodel-in symbols ‘11 < ‘$-is just an n-submodel for 

each n. We write 9[ < 23 to express the fact that 2l is a proper elementary submodel of 

23, i.e., 91 4 23 and 91 # 23. A theory is model complete if, for any two models 91 and B, 

we have I?L < 23 iff 91 G B. For any theory T, we denote by T, the theory of the 

infinite models of T. 

We shall always use the phrase dense ordering to mean a non-empty dense linear 

ordering without endpoints. It is well known that the theory of such orderings admits 

elimination of quantifiers. Hence, in any such ordering 11 = (U, < ), if 5 and hare two 

sequences in “U that are atomically equivalent, i.e., that satisfy the same atomic 

formulas, then they are elementarily equivalent, i.e., they satisfy the same elementary 

formulas. 

Fix a linear ordering 21 = ( V, < ), and set W = w ’ V = uu S wp V. Let c be the 

(proper) initial segment relation on W, and, for each p d LU, let P, be the set of 

elements in W with domain /I, i.e., P, = p V. There is a natural lexicographic ordering 

< on W induced by the ordering of V: ,f’< g iff either ,f=z g or else there is a natural 

number n in the domain of both f and g such that ,fl n = g In and f’(n) < g(n) in ‘13. 

Take h to be the binary function on W such that, for any 1; g in W, h(f, g) is the 

greatest common initial segment of ,f and g. We shall call the structure 

‘%3 = (W, <, Q, P,, h)l,<,, the ,full tree structure over ‘B with o + 1 levels, or, for 

short, thefull tree over !I%. Any substructure of the full tree over ‘11 that is downward 

closed, i.e., closed under initial segments, is called a tree over ‘23. A tree is any structure 

isomorphic to a tree structure over some ordering. A tree 21 over a dense order ?B is 

itself called dense if: (i) for every f in U with finite domain, say n, the set of immediate 

successors off in U, i.e., the set of extensions of ,f in U with domain n + 1, is densely 

ordered by < in II, or, put a different way, {g(n):f < g} is dense under the ordering 

inherited from %; (ii) every element in U with a finite domain is an initial segment of an 

element in U with domain w. Just as with dense orderings, the theory of the class of 

dense trees admits elimination of quantifiers. 

A model BI is x-homogeneous if, for every cardinal p < K and every pair G, b E ‘A of 

elementarily equivalent sequences, there is an automorphism 9 of PI taking a to 6. It is 

well known that, for regular cardinals K, any model has K-homogeneous elementary 

extensions (usually of large cardinality). It follows from our remarks above that, if U is 

a K-homogeneous dense ordering or tree and if a, 6 EMU are atomically equivalent 

(where p < K), then there is an automorphism of U taking ~7 to 6. A model U is weakly 

w-homogeneous provided that, for every n, every pair of sequences 2, c?E”A that are 
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elementarily equivalent, and every hg A, there is a h’~ A such that a-(h) and a’^(/+) 

are elementarily equivalent. It is well known that a countable, weakly o-homogene- 

ous model is to-homogeneous. Dense orderings and dense trees are always weakly 

to-homogeneous. 

We turn now to some notions from stability theory. A model 91 is a-saturated if, for 

any strong type p (consistent with the theory of (41, a),EA), if E G A is a finite base for 

p, then p /*E is realized in 9I. We say that ?I is a-saturuted in B, in symbols VI 6” 23, 

provided that 41 < 23 and that, for any strong type p of $23 based on a finite subset E of 

A, if p r*E is realized in $23. then it is realized in ‘!I. A model 81 is a-prime ocer a set X if: 

(i) X G A and YI is a-saturated; (ii) whenever ‘23 is an u-saturated model such that 

X c B, then there is an elementary embedding of YI into $23 that leaves the elements of 

X fixed. (Here we assume that YI and $23 are elementary substructures of some monster 

model). As is shown in [l 1, Chapter IV, Theorem 4.181, for complete, superstable 

theories, the u-prime model over X exists and is unique, up to isomorphic copies 

over X. We shall denote it by ‘&,(X). Let BI be a model and B, C subsets of A with 

C cl B. A type p(S) over B .sp/it.s over C if there are h,? from B such that 

tp(h,C) = tp(?,C), and there is a formula cp(S,T) over C such that cp(.?,h) and 

1 ~(x, c) are both in p. 

We now fix a universal theory Tin a language L of arbitrary cardinality. In what 

follows let f.’ be an expansion of L with built-in Skolem functions and T’ any Skolem 

theory in L’ that extends T. Without loss of generality we may assume that, for every 

term 7(x0 , . . . , s, ~, ) of L’, there is a function symbol ,f of f.’ of rank n such that the 

equation ,f’(xo, . . . , x,,_ , ) = T holds in T’. 

For every infinite ordering 11 = (U, < ) and (complete) EhrenfeuchttMostowski 

set @ of formulas of L’ compatible with T’, there is a model Yl1’ = EM(U,@) of 

T’-called a (standard) Ehrenfeu~ht~Mosto~1ski model of T’-such that iY_1331’ is gener- 

ated by U (in particular, U G M’), and U is a set of @-indiscernibles in !N’ with respect 

to the ordering of II, i.e., if v(.Y,,, , .Y,_ I)~ @ and if ti~“U satisfies a, < uj for 

i <.j < n, then ‘311’1 cp[&J. 

Shelah [ll, Chapter VII, Theorem 3.61 establishes the existence of certain generaliz- 

ations of Ehrenfeucht-Mostowski models. Suppose that Tis, e.g., non-superstable and 

that the sequence ( v~(s, y): n < co) of formulas witnesses this nonsuperstability (see, 

e.g., Shelah [ll, Chapter II, Theorems 3.9 and 3.141). Then there is a generalized 

EhrenfeuchttMostowski set @ from which we can construct, for every tree U, a qener- 

alized EhrenJiucht~MostoL~ski model W’ = EM(U, @) of T’. In other words, given 

a tree II, there is a model 91331’ of T’ generated by a sequence (5”: 14 E U) of Q-indiscern- 

ibles with respect to the atomic formulas of 11; in particular, if W and C in “Cl are 

atomically equivalent in 11, then (U,,, , &.+ , ) and (a,.,, . . . , ii,.,, ~, ) are elementarily 

equivalent in %I{‘. Moreover, for \t’ in Pz”’ and I: in Pfi”, we have that YJJ’ k (~,[a,,,, a,.] iff 

U’QZI. In general, the sequences (I, may be of length greater than 1. However, to 

simplify notation we shall act as if they all have length 1, and in fact we shall identify ti, 

with U. Thus, we shall assume that ,JJI’ is generated by U and that two sequences from 

U which are atomically equivalent in II are elementarily equivalent in %II’. 
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Here are some well-known facts about Ehrenfeucht-Mostowski models. Let U, ‘u 

be infinite orderings or trees, and ‘92’ = EM(U, @), ‘!R’ = EM(B, @). (In the case of 

trees, we must assume that $331’ and %’ exist.) 

Fact 1. If 9 is any embeddiny of $23 into 11, then the canonical extension of 9 to N’ is an 

elementary embedding of’%’ into SYJI’. 

In particular, 

Fact 2. Any automorphism qf LI extends to an automorphism of%li’. 

Fact 3. If% E 21, then Gg9”( V) < CJJI and Bgyi’( V) is isomorphic to %’ via a canonical 

isomorphism that is the identity on V. 

Fact 4. If 11 is a linear order, then U is irredundant in $332’. If U is a tree, then for any 

elementf and subset X of U, tff is not an initial segment of any element of X, thenfis not 

generated by X in ‘YJI’. 

We shall always denote the reduct of 59Jl’ to L by 9J1, in symbols YJI = 93 r L. Facts 1, 

2, and 4 transfer automatically from 9Jl’ to ‘93. However, YJ is usually not generated by 

U. We shall therefore formulate versions of the above facts that apply to @-J”“(U) and, 

more generally, to a collection of models that lie between Gg’r(U) and 

S$Jl’( U) = !m’. 

Definition. Suppose ‘9.R’ = EM(U, @) and K G L’ - L. 

(i) For each f E K, let R, be the relation corresponding tof “I’, i.e., RS[aO, . . . , a,] iff 

f”“‘[a,, . . . , a,_ 1] = a,,. Set ‘331K = (%I, R,),,,. 

(ii) For each V G U set 

K*V= Vu{f““‘[ti]:f~K,Zfrom V}. 

Thus, the elements of K * V are just the elements of V together with the elements of 

$331 that can be obtained from sequences from V by single applications off in K. 

Lemma 1. Let U, 23 be the dense orderings or dense trees, and let ‘531’ = EM(U, @), 

91’ = EM(%, @), and K G L’ - L. (Thus, in the case of dense trees, we postulate that 

generalized Ehrenfeucht-Mostowski models ,for @ exist.) 

(i) U is a set of indiscernibles in GgqJ’(K * U) for the atomic formulas qf @ (with 

respect to the atomic ,formulas of U); in particular, if a and 6 are two atomically 

equivalent sequences in U, then they satisfy the same atomic formulas in Gg”(K * U). 

(ii) U is a set of indiscernibles in Gg”“(K * U) ,for some complete Ehren- 

feucht-Mostowski set compatible with T, i.e., if a and 6 are two atomically equivalent 

sequences in U, then they are elementarily equivalent in Gg*)l(K * U). 
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(iii) If Semheds ‘I) into II, then the cunonical extension of29 to Sg‘)‘(K * V) elementar- 

ily embeds Gg:“(K * V) into Gg9’i(K * U). 

In purticular, 

(iv) Every automorphism of‘ II extends canonically to un automorphism of 
Gg9J1( K * U). 

(v) Zf3 c ll, then Gg”‘(K * V) 6 Sg9”(K * U). 

The lemma continues to hold [f we replace ‘WI” and ‘YI” everywhere by ‘?UI~” and “!R,” 

respectively. 

Proof. Since satisfaction of atomic formulas is preserved under submodels, part (i) is 

trivial. Part (i) directly implies (iv), and part (v) implies (iii). Thus, we only have to 

prove (ii) and (v). We begin with (v). 

First, assume that II is tu-homogeneous. We easily check that the Tarski-Vaught 

criterion holds. Here are the details. Suppose ti is an n-termed sequence from 

@(K * V) satisfying 3xcp(x, J) in Zg(K * U); say b is an element of Gg(K * U) such 

that (b)^ti satisfies cp(x, ~7). Let C and d be sequences of elements from $8 and 11 that 

generate ti and b respectively. Thus, there are SO, . . . ,.fk_ 1 and go,. . . , gr_ 1 in K, and 
- - 

a term o(Z, W) and terms ~,,(u,c), . . . , T,_ 1 (u, L') in L such that (adding dummy 

variables to simplify notation) 

Ui = Ti[fo[c], . . . ,,fk_l[C], C] for i < n, and b = o[go[a] ,..., gl_,[d],d]. 

Hence, the sequence 

satisfies cp in Gg(K * U). Since %J is dense, there is a sequence e from $1) such that C ̂ d is 

atomically equivalent to C * if in U. By w-homogeneity there is an automorphism of 

U taking L: * dto C * 2. In view of (iv), this automorphism extends to an automorphism 

of Gg(K * U). Thus, 

satisfies cp in Gg(K * U). Since o[gO[e], . . . , g,_ 1 [e], ?] is in Gg(K * V), this shows 

that the Tarski-Vaught criterion is satisfied. Hence, Gg(K * V) < Sg(K * U). 

Now let LI be an arbitrary dense ordering or dense tree. Take Cn to be an 

w-homogeneous extension of 11, and set ‘$.I’ = EM(‘IU, @). Thus, ‘Y-R’ =$ ‘$I’, and hence 

%JI =$ ‘$, by Fact 3. By the case just treated we have 

Gg”‘(K * U) = Gg”(K * U) 4 Gg‘l’(K * W) 
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and 

Hence, Gg!U1(K * V) < 3$“(K * U), as was to be shown. This proves (v). 

For (ii), suppose U, hg”U are atomically equivalent in 11. Let ‘1u be an co-homogene- 

ous elementary extension of II and set ‘B’ = EM(YB, @). By Fact 3 we may assume that 

‘331’ 6 ‘j?’ and hence that $331 < ‘j,?. Since ‘YL? is o-homogeneous, there is an automor- 

phism of YJ.? taking 5 to 6. By Fact 2, this extends to an automorphism 9 of (13’. Now 

9 maps W one-one onto itself and preserves all the operations of $9’. In particular, an 

appropriate restriction is an automorphism of Gg’$‘(K * W). Thus, 5 and 6 are 

elementarily equivalent in Sg‘*(K * W). By part (v) they remain elementarily equiva- 

lent in Gq“l(K * U) = G$“(K * U). 

The above proof obviously remains valid if we replace (implicit and explicit 

occurrences of) “%I{” and “9L” everywhere by ‘?DIK” and ‘YK” respectively. 0 

Lemma 2. Suppose 11 has power K, s9-R’ = EM(U, @), and K c L’ has power at most K. 

Then S$‘r(K * U) is strictly K-generated. 

Proof. Since ) U 1 = K 3 1 K 1, we have (K * U 1 = ti. Thus Gg(K * U) is K-generated. 

Suppose now, for contradiction, that Gg(K * U) is p-generated for some (finite or 

infinite) /t < ti. A standard argument then gives us a set V G U, of power ,u when 

LC) < p and finite when 1-1 < w, such that K * V generates GcJ(K * U). In particular, 

K * V/generates U in $%I. But then V generates U in 5%X’, which is impossible by Fact 4. 

Indeed, either U is irredundant in (YJI’ or else a cardinality argument gives us an j’ in 

U that is not an initial segment of any element of V. 0 

Main Hypothesis. Throughout the remainder of’ the paper we jix an uncountable 

cardinal K and assume that T is a K-unique universal theory in a language L ofarbitrary 

cardinality. 

As before, L’ will be an arbitrary expansion of L with built-in Skolem functions, T’ 

a Skolem theory in L’ extending T, and @ a standard or generalized Ehren- 

feuchttMostowski set compatible with T’. Again, recall that if ‘332’ = EM(U, @), then 

we set 91 = $331’ 1 L. Our first goal is to show that TX-the theory of the infinite models 

of T-is complete. 

Lemma 3. Let U be a dense ordering of power IC and YJ’ = EM(11, @). Then for every 

n and every countable set H c L’ - L, there is countable set K with H c K s L’ - L 

such that 

&f”IJI( K * U) <,, (531. 

The sume is true if U is u dense tree, provided that $9X’ exists. 
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Proof. The proof is by induction on n, for all H at once. The case II = 0 is trivial: take 

K = H. Assume now that the lemma holds for a given n > 0 and for all countable sets 

H G L' - L. Suppose, for contradiction, that H, is a countable subset of L' - L such 

that 

(1) For every countable K with Ho c K s L' - L we have 

6g”‘(K * U) &+, YJL. 

We construct an increasing sequence ( Hr: 5 < W, ) of countable subsets of L' - L 

such that, setting 

21, = G$"(H<* I/), 

we have 

(2) 9I, <n Yl1 and YIs R,+, 91;+i for all < < toi. 

The set Ho is given. Suppose H, has been constructed. Since 91, $,,+ 1 W, by (1) there 

is a fl,-formula (P~O(~, . . . , xp_ 1, yo, . . . , y, ~, ) in L, appropriate terms ro, , TV _, in 

L and function symbols .fb, . . . ,_f_ 1 in Hz, and a sequence ti = (uo, . . . , a,_ 1 ) from 

U such that (adding dummy variables to -simplify notation) 

(3) (,fo[ti], . . . ,.fi_ 1 [ii], a,, . . . , a,-, ) satisfies 3x0 . 3.x,_ ,qr(xo, . . , x,_ Ir 

TV, . . , TV_ 1) in $91, but not in ?I,. 

(Here we are using the fact that He * U generates 9ts.) Thus, there are Skolem 

functions go, . . , gP_ i in L' such that 

(4) (go [a], . . , gP-, [Z],fo[ti], . ,.f*_ i [ti], aO, . . . , a,_ i ) satisfies the fl,,-formula 

cp&x,, . . . , xp_ 1, TV, . . . , TV_ 1) in YJL 

By the induction hypothesis there is a countable H;, 1 with 

H<u (go,...,gp_lJ c H:,, c L'- L 

and such that, setting VI:+, = GJ(H,+ i * U), we have Bit+, 6, ‘JJ1. However, we put 

witnesses in 9I;+ 1 to insure that 91c $,+ 1 %,+ I. At limit stages S take H,) = Utxa Hg. 

This completes the construction. 

Set 

G = LLO, H: and 93 = 5$“(G * U). 

Clearly, 23 = u5<wl 91,. Therefore, from (2) and our construction we obtain 

(5) Bit <, !l3 <n %R and 91c =&“+ 1 23 for every 5 < (ul. 

Next, we prove 

(6) For every 5 < wi and every countable, dense X L U we have 

%(H;*X) &+I B. 
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Indeed, fix r < cur and select a sequence ti so that (3) and (4) hold. Given X c U, 

choose a sequence hfrom X that is atomically equivalent to a in LL. This is possible 

because X is dense. By indiscernibility in CJJI and by (4) 

satisfies cpJ.xO, . . , xp_ 1, TV, . . , TV- ,) in ‘V.J1, and hence also in ‘%3, by (5). Suppose, for 

contradiction, that Sg(H, * X) <,,+, ‘23. Then 

(7) (.fbCO . . . ,L 1 cu ho, ... > h,- I> satisfies 3x0 . . . 3x,_ ,cp&x,, . . . , xp_ 1, 

~~,...,r,_,)in Zg(H:*X). 

Now we have Gg(H< * X) < VI;, by Lemma l(v). Therefore, (7) holds with 

“Sg( Hr * X)” replaced by “415”. Since ti and h are elementarily equivalent in the 

expansion $$““‘( HS * U) of (rr;, by Lemma l(ii), we conclude that 

(.fb[a], . ..., f;_r[C], a, ,..., a,_,) satisfies 

in 41:. But this contradicts (3); so the proof of (6) is completed. 

We now work towards a contradiction of (6) by producing a C < or and a count- 

able dense set X s U such that 

(8) Gg(H; * X) < 23. 

Since 23 = $‘))r(G * U) and Gg”l( U) are both strictly K-generated, by Lemma 2, they 

are isomorphic, by K-uniqueness. Thus, there is a set Vc B and a dense ordering 

C on V such that % = ( V, c ) and U are isomorphic, Vgenerates 23, and P’is a set of 

indiscernibles in %3 with respect to atomic formulas (under the ordering 1). 

We define increasing sequences (X,: n E o) and ( Y,,: n E co) of countable, dense 

subsets of II and %, respectively, and an increasing sequence (p,,: n E co) of countable 

ordinals, such that 

(9) 3g*(HPn*X,)z Gg*(Y,J& GgW(Hp,+l*X,+I). 

Indeed, set p0 = 0 and take X0 to be an arbitrary countable, dense subset of U. Since 

Ho is countable, so is H,, *X0. Therefore, there is a countable Y, E V that generates 

H,, * X0 in ‘%5. By throwing in extra elements, we may assume that Y0 is dense. 

Now suppose that p,,, X, and Y, have been defined. Since Y, is countable and 

!I3 = UC<<,,, 41,, th ere is a pn+ 1 < (0, such that Y, c Apntl. Without loss of generality 

we may take pn + 1 > pn. Since HPn + 1 * U generates CUP,, + , , there is a countable subset 

X ,,+r G U such that Hpn+,*Xn+l g enerates Y,, in $3. Of course we may choose 

X n + , so that it is dense and includes X,. As before, we now choose a countable, dense 

Y n + 1 G V that generates X, + 1 in %3 and includes Y,. This completes the construction. 

Set 

p = sup(p,: nEo), x = UntoJ~~ y = (,L,,, yrz. 
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Then p < wr and H, = Un,,, H,,, by definition of the sequence (H;: < < ~0~). Also, 

(X, d ) and ( Y, C ) are countable, dense submodels of 21 and ‘11, respectively. By (5) 

(9) and Lemma l(v) we have 

GgqJ1(H,*X) = Gg’(H,*X) = un<,, S$(H,,/X,) 

= U<,, Ggy Y,) = 6g‘l1( Y) 

and 

Thus, we have constructed a countable 5 < or and a countable, dense X G U such 

that (8) holds. This contradicts (6). 0 

Lemma 4. For every countable H G L’ - L, there is a countable K with 

H G K G L’ - L such that, whenever ‘li is a dense ordering and ‘J1’ = EM(S, @), b$se 

have 

The same is true when 23 is a dense tree, provided that EM (U, @) exists,for dense trees Il. 

Proof. Let U be a dense ordering or tree of power ti, and set 9.R = EM(U, @). We use 

Lemma 3 to define an increasing sequence (H,: n < w) of countable subsets of L’ - L 

such that 

(1) Gg”(H,,* U) $,, %I{. 

Indeed, we set H, = H, and given H, satisfying (l), we apply Lemma 3 to obtain H, + , 

Setting K = IJn,, H,, we easily check that 

(2) SS’JJ’(K * U) < m. 

Now suppose that % is any dense ordering or tree and that ‘S’ = EM(%), @). We 

first treat the case when 9 is a submodel of U. By Fact 3 we may assume, without loss 

of generality, that 92’ < $331’. Hence, 

In view of (3) and Lemma l(v), we get 

(4) 3g9L(K * V) = s$JJyK * V) < Gg‘JJl(K * U). 

Combining (2)-(4) gives 
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For the case when ‘2) is not a submodel of U, take a countable, dense submodel ‘53 of 

‘%. Set +@’ = EM(!TB, @). Again, we may assume that ‘$’ 5 a’, so 

(7) Gg’U(K * W) = 5g”(K * W) =$ Gg”(K * V). 

Furthermore, there is an embedding of 2B into U, and this embedding extends to an 

elementary embedding 9 of Q’ into 9X’. Hence, as usual, 

(8) 8 induces an elementary embedding of 5$3 into 9X, 

(9) 8 induces an elementary embedding of Gg”‘(K * W) into Gg”‘(K * V). 

Using (2) and (6)-(g), we readily verify that (5) holds. Here are the details. Let q(X) 

be a formula of L, and a a sequence of appropriate length from Gg’t(K * V). Then 

there is a finite sequence V from V that generates ti (with the help of K). Choose a 15’ in 

W that is atomically equivalent to I?, and let 5’ be the sequence obtained from I?’ in the 

same way that ti is obtained from 6. Then 5 and ti’ are elementarily equivalent in 

fn’-and therefore also in SlGand in 6g”(K * V) by Fact 3 and Lemma l(ii). Hence, 

iff !J.J~~JI[C~‘] by (6) 

iff !IJl!= q[$(ti’)] by (8) 

iff GggJ’(K * U) k q[ $(a’)] by (2), 

iff Gg”(K * W) k cp[C’] by (9X 

iff GgSL(K * V) b cp[a’] by (7) 

iff Gg’“(K* V)I= cp[Z]. 0 

Theorem 5. T, is complete. 

Proof. Let 23r and 2Jj2 be two infinite models of T. For i = 1,2, let Ti be the theory of 

pi, let L’ be an expansion of the language of q with built-in Skolem functions, 

Ti a Skolem theory in L’ extending T, and Qi a standard Ehrenfeucht-Mostowski set 

in L’ compatible with T:. Let II be a dense ordering of power K, and set 

YJIi = EM(U, pi) and ‘%Ri = ‘9X: IL. By Lemma 4 there is a countable Ki G L’ - L such 

that 

Now GgW’I(KI * U) and GgYJtz(K2 * U) are strictly K-generated models of T, by 

Lemma 2. Therefore, they are isomorphic, by the K-uniqueness of T. From this and (1) 
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we conclude that 9331, and !N2 are elementarily equivalent. But ‘9Jli, and hence also s%&, 

is a model of the theory of ‘Bi. In consequence, $93, and !I32 are elementarily equivalent, 

as was to be shown. 0 

Our next goal is to prove the following. 

Theorem 6. TX is superstable. 

Proof. Set U = (K + 1) x Q and 11 = (CT, < ), where < is the lexicographic ordering 

on U. We define a substructure ‘1 of the full tree over U by specifying its universe. It is 

the smallest set V satisfying the following conditions: all finite levels of the full tree are 

included in V, i.e., u,_” U s V; all eventually constant functions from “U are in V; 

for each limit ordinal 6 < (ui we choose a strictly increasing function .f;r in ‘L’(ol such 

that sup ifa( II E Q j = li and we put into V a copy of ,f6 from “V called gs and 

determined by: gs(n) = (;is(n), 0) for each n. 

(1) For every countable set W E U, the set V n I0 2 W is also countable. 

Indeed, the finite levels ” Wand the set of eventually constant functions of w W are all 

countable. Moreover, the domain of W, i.e., (6: (8, q) E W for some q E Q ), is count- 

able, so the set of g6 in “W with 6 < o1 is also countable. This proves (1). 

Let @ be a standard EhrenfeuchttMostowski set compatible with T’ (our Skolem 

extension of T), and set cJJ1’ = EM(U, 0). Assume for contradiction that T is not 

superstable, and let (q7,(?c,y): n < O-I) be a sequence of formulas witnessing this 

non-superstability. Then, as mentioned in the preliminaries, there is an Ehren- 

feucht-Mostowski set Y compatible with T’ such that the generalized Ehren- 

feucht-Mostowski model 91’ = EM(Y3, ul) exists, and, for u from P,“’ and v from P,‘, 

we have ‘J1’\ q,,[u, G] iff u 4 c. Set ‘331 = ‘9J1’ IZ. and 91 = ‘3’ r L. 

By Lemma 4, there are countable sets J, K s L’ - L such that 

(2) Gg(J * U) 4 %II and Sg(K * I’) 6 91. 

By Lemma 2, Gg(J * U) and Gg(K * V) are both strictly K-generated. Hence, K- 

uniqueness implies that they are isomorphic. Let 9 be such an isomorphism. 

We now define two strictly increasing, continuous sequences, (X,: r < o, ) and 

( Y,: x < co1 ), of countable, dense subsets of U and V respectively, each Y, being 

downward closed, i.e., closed under initial segments. (i) Let X0 = (K) x Q and take Y, 

to be any countable, dense, downward closed subset of V. Suppose now that X, and 

Y, have been defined. Since both of these sets are countable, by assumption, so are 

J * X, and K * Y,. For any a in J * U there is obviously a finite subset C, c I’ such 

that K * C, generates 9(a) (in Gg(K * V)). (ii) For each a in J * X,, put the elements of 

C, into Y,,,. Since J * X, is countable, this adds only countably many elements to 

Y,+ *. (iii) Similarly, for every b in K * Y,, choose a finite set Db c U such that J * Db 

generates 9-‘(h) (in Gg(J * U)), and put each element of Db into X,, , . (iv) For each 
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(<,q)inX,,putallof{~fxQintoX,+,.(v) Putallof”2(crxQ)nVinto Y,,,. 

The latter set remains countable, by (1). (vi) If necessary, add countably many more 

elements to X,, 1 and Y,+ 1 to insure that these sets are dense, that X, c X,, 1 and 

YE c Ya+i, and that Y,, , is downward closed. (vii) For limit ordinals 6, set 

X6 = U a<dXol and YJ = Uac6 Y,. 
Setting 

(3) 91, = Gg(J * X,) and !Bz = fg(K * Y,) for every ‘x < wi, 

we see from conditions (ii) and (iii) that, for each CI < cur, we have 

$(A,) g &+ 1 and S-‘(B,) G A,+r. 

From this it easily follows that 

(4) For each limit ordinal 6 < wl, the (appropriate restriction of the) mapping 9 is 

an isomorphism of ‘& onto ‘23&. 

Set 

and 

E’={6EE:6=sup(bnE)=sup{ccEE:a<6}}. 

(5) E and E’ are closed, unbounded sets. 

To see that E is unbounded, observe first of all that, by conditions (v) and (vii), we 

have 

(6) “2(cixQ)n Yaz[UB</- (b x Q)] n V for every limit ordinal 6 < oi. 

Therefore, we need only establish the reverse inclusion for unboundedly many limit 

ordinals. Since a v in w b (oi x Q) n Vmust have a countable range, there is an ordinal 

yU < w1 such that u is in o 2 (y, x Q). Let a0 be an arbitrary countable ordinal. Since 

Y,,, is countable, the supremum of the yV over all u in Y,,, is countable. Hence, we can 

find a countable c1r > a0 such that 

Continuing in this fashion, we obtain a strictly increasing sequence (a,: n < w) of 

countable ordinals such that 

w3(w1 xQ)n Y,, G a2(~,+1 xQ). 

Set 6 = sup { c(,: n < w}. Then 

““(~~x~)nY,~[u~<~“~(BxQ)lnV. 
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In view of (6) we see that equality actually holds in the preceding line. This shows that 

E is unbounded. The rest of the proof of (5) is easy, so we leave it to the reader. 

(7) For every 6 in E’ and every s( in E n 6, the type tp(g,, B,) splits over B,. 

To prove (7) recall that ga is not in ‘“(B x Q) for any b < 6. We thus see from the 

definition of E that ga is not in Y,. Hence, by Fact 4, ga is not in Bg. 

The function ga is defined in terms of a strictly increasing, ordinal-valued function ,fs 

whose supremum is 6. Since c( < 6, there must be an n < w such that .&(n) > c(. Let h, 

and h2 be the extensions of ga rn to n + 1 determined by 

II,(~) = go = <./An), 0) and h,(n) = <h(n), 1). 

Notice that 11~ = ga r(n + 1). Clearly, hr and h, are in Ya, by conditions (v) and (vii). 

Because CA is in E and &(n) > (Y, we can apply the definition of E to conclude that hr 

and h, are not in Y, and hence are not initial segments of any elements in Y,. 

Therefore, they are not in B,, by Fact 4. They realize the same type over B,, by tree 

indiscernibility. Moreover, 9I b (P,, + r [k, , gd] and 91 b 1 (Pi + 1 [ h2, gd], since 

(P,,+ 1 codes the initial segment relation between elements in Pz+ 1 and Ps. Thus, both 

(P,,+ ,(h,,.f) and 1 (P,,+ l(hz, .?) are in tp(g,, Bd). This completes the proof of (7). 

We now work towards a contradiction to (7). 

(8) For every 6 in E’ and every a in Sg(J * U) - A,, there is an cy in E n 6 such that 

tp(a, Ad) does not split over A,. 

To see that (8) contradicts (7) take any 6 in E’, and set a = 9- ’ (y6). Since gs is in 

Sg(K * V) - Bg, we get that a is in Sg(J * U) - As, by (4). Hence, there is an x in E n 6 

such that tp(a, A,) does not split over A,, by (8). But then, applying 9 to a, tp(a,&), 

and A,, we get that tp(gs, Bd) does not split over B,, by (4). This contradicts (7). 

To prove (8) fix a 6 in E’ and an a in Sg(J * U) - &. Then there is a sequence 

u = (110, . . . , u, , ) from U, function symbols ,fd, ,fn _, in J, and a term g from 

L such that (adding dummy variables) 

Each Ui has the form Lli = (yi, q;) for a unique ;‘i 6 ti and qi in Q. The set 

is non-empty, since it contains K, by condition (i). We shall denote the smallest element 

of this set by yj. Notice that ui E X6 iff yi = yi, by condition (iv). Now, by definition, 

[ri f x Q G X6 for each i < r. Since 6 is in E’, there is, for each i < r, a /I in E n 6 such 

that (y:) x Q G X,. Take SI to be the maximum of these 8. Then SI is in E n S and 

{ yl} x Q c X, for each i < r. 

To verify that tp(a, Ad) does not split over A,, let Ii/(x, j) be a formula of L, and let 

& and C be sequences of equal length from Ad such that $(x, 6) and 1 $(x, C) are in 
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tp(a, 44, i.e., 

(10) ‘Jn1$[a,h] Al!)[a,c]. 

We must prove that 

(11) tp(h, A,) # tp(c, A,). 

Since 6 and C come from Ad, there is a finite sequence I? from X6 that generates 6 and 

C with the help of some elements of J. Using the ordinals yi, we shall construct 

a sequence U’ = (ub, . . . , u:- 1 ) in X, such that, for each i, we have ui = Lli iff ui is in X8, 

and 

(12) U: < U; iff Ui < ilk and U: = U; iff Ui = uk, 

llj < Vj iff Ui < l’j and U; = “j iff ui = ~1~. 

for all appropriate j, k. 

The construction of U’ is not difficult: we shall set ui = (~1, qi), where qj is chosen 

from Q. Since { 7:) x Cl! E X,, this assures that ui will be in X,. If yi is in Ti, then 

$ = yi. In this case take qj = qi, so that ul = Ui. Suppose now that uj = ( /Ij, rj). If 

Ui < Uj, then we have either yi < flj, or else yi = bj and 4; < rj. In the first case, observe 

that PjE Ti, since Vj is in X, (here we are using again condition (iv)). Therefore, 7; < /Ij. 

If yi < /?j, then we may choose qi however we wish. If ri = Bj, then we must choose 

qj < Tj. This is possible since { IJ~J x Q E X,. In the second case, when ;‘i = flj, we have 

;‘i in X,, SO ui = Ui. In both cases we obtain ui < Cj. The other cases in (12) are treated 

similarly. Notice, however, that we must choose qj so that (12) holds for all appropri- 

ate j and k at once. To do this we use the density of Q. 

From (12) we conclude that ti’ * ; c and U * tl are atomically equivalent in 11. Because 

U is a set of order indiscernibles in %I?, it follows that U’ * V and U * 6 are elementarily 

equivalent in %I{‘. Recalling (9) set a’ = a[fo [U’], . . . , fn_ 1 [U’], ii’], and notice that a’ 

is in A,, since U’ is from X,. 

Since U’ generates a’ in the same way that U generates a, and since 6 generates 6 and 

C, we conclude that a’ ^ 6 * (_ and a ^ h*P are elementarily equivalent in %I’. In 

particular, from (10) we get, 

911 b *[u’, 61 A 1 II/ [a', C]. 

Thus, $(a’, j) is in tp(h, A,) while 1 $(a’, J?) is in tp(?, A,). This proves (1 l), and hence 

(8). q 

As is well known, the fact that T, is superstable (and hence stable) implies that 

order indiscernibles are totally indiscernible. Thus, if ‘!DI’ = EM(U, @), then any two 

one-one sequences in “U satisfy the same formulas in $93 (but not necessarily in ‘JJ’). It 

follows that Lemma 1 (with K = 8) goes through without any references to order. 

Thus, if Y-II’ and ‘3’ are as in Lemma 1, then any injection 9 of I’ into U extends 

Sh:404



canonically to an elementary embedding of mGg9L( V) into 5g”“l( U), and this extension 

is an isomorphism iff 9 is onto. In particular, the isomorphism type of a subalgebra 

(of some very large model) generated by an infinite set of indiscernibles with respect 

to @ is uniquely determined by the cardinality of the set of indiscernibles. To 

give a precise definition of such algebras, we fix a very large dense ordering ,j (as 

large as we will need for any argument in this paper), set (5 = EM(J, @), and let 

(Z,: i, an infinite cardinal < lZl> be an increasing sequence of subsets of Z such 

that lZiI = i.. 

Definition 7. Let 3i = SgL(Zn). The set Z, is referred to as a Q-basis of zA. 

The algebras %A, for 3. > CL), have many properties in common with free algebras. 

For example, if U and V are Q-bases of gi and 3, respectively, and if 9 maps 

V one-one into U, then the canonical extension of 9 maps 5, elementarily into 3i. 

This is just a reformulation of what was said above. For another example, notice that 

%1 is strictly j--generated, by Lemma 2. It follows that any infinite Q-basis of %i must 

have cardinality /1; otherwise we would have 3, g gi, for some p # i., forcing the 

strictly p-generated model %,I to be k-generated and vice-versa. 

For the case when TX is superstable, we readily extend Lemma l(v) to cover =$a. 

Lemma 8. Let II, 23 he dense orderings, (331’ = EM(U, a), and K c L’ - L. !f ~3 c II, 
then 

The lemma continues to hold {f we replace “Vi” by ‘Y.JIK”. 

Proof. We begin with the case when II is w,-homogeneous. Let p be a strong type of 

YJI based on a finite subset E of Sg(K * V), and suppose that p 1 *E is realized in 

~FI(K*U)by~.Let~=(c,,..., 21, 1 ) be a finite sequence in % that generates E in 

%T1 (with the help of finitely many .f’E K) and let u = (u,,,, . . , u, _ 1 ) be a finite sequence 

from II that generates 6. Because of the density of %, we can certainly find a sequence 

U’ = (ub, . , ui 1 ) in ‘r such that i;^z? and 6%’ are atomically equivalent in II. Using 

again the density of ‘3, it is not difficult to construct an w-sequence W in I’ such that 

r^G^ti and fi^W*U are atomically equivalent and the range, X, of I;*% is dense. Assume, 

for the moment, that this done. Since II is w-homogeneous, there is an automorphism 

of 11 taking tl^rF*^u to U^u’^U’. Extend it to an automorphism 9 of s9.N’. Then 9 also 

induces an automorphism of Gg(K * U), and it is the identity mapping on Sg(K * X). 

Because X is dense, 5g(K * X) is an elementary submodel of Gg(K * V), and therefore 

p is stationary over this submodel. Since 8 fixes an elementary submodel over which 

p is stationary, we see that 9 must map p 1 *E to itself. Thus, g(6) realizes p r *E in 

Gg(K * U). But Sg(K * V) is an elementary substructure of Gg(K * U), by Lemma 

l(v), and all the formulas of p 1 *E are over Gg( K * V). Thus, 9(h) must realize p I* E in 

Gg(K * V). 
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Now suppose that II is arbitrary. Let ‘9.3 be an o,-homogeneous extension of LI, and 

set 91’ = EM(%B, @). Then by the previous case, 

Gg9J2(K * V) = Sg”(K * V) <, Gg’)I(K * W) 

and 

Gg!yK * U) = Gg”(K * U) 4, 5gS’(K * W). 

Therefore, Gg’>(K * V) <a Gi”‘(K * U). 

Returning to W, a simple example should suffice to indicate how it is to be 

constructed. Suppose, for example, that 

Ui < UIJ < ll1 < U2 < Uj < t’j, 

and that no other elements of the sequences zj and ii are in the interval between tii and 

Uj. Of course, 

c’i < lib < U; < U; < U; < c’j. 

If ub ,< uo, or else if u; 3 uj, then include in the range of W a dense set between ui and 

ub, or else between u> and Uj, respectively. Now consider the case when 

u. < ub < u; < u3. If u’, < ui, or else if u; > u2, then include in the range of W a dense 

set between ub nd u’,, or else between u; and u;, respectively. There remains the case 

when u1 < u’, < u; < u2. In this case, include in the range of W a dense set between 

u; and&. 0 

The next lemma is the analogue of Lemma 3 for the notion <,. 

Lemma 9. Let U be a dense ordering of power IC, and %R’ = EM(U, @). Then for every 

countable H G L’ - L there is a countable K with H E K G L’ - L such that 

6g”‘( K * U) <‘, 9JI. 

Proof. The proof is quite similar to the proof of Lemma 3. Suppose, for contradiction, 

that H is a counterexample to the assertion of the lemma. Analogously to the proof of 

Lemma 3, we construct an increasing, continuous sequence (H,: 5 < ml) of count- 

able subsets of L’ - L such that 

(1) %(HS * U) 4 %(H<+ I* U) 4 91, but Gg(H< * U) X, WHc+ 1* U). 

Indeed, by Lemma 4 we can take Ho to be a countable extension of H such that 

Gg(Ho * U) < ‘9X. Suppose now that HS has been defined and that Gg(HS * U) =$ YJl. 

By the assumption on H, Gg( H, * U) is not a-saturated in CJJJ. Thus, there is a strong 

type pc based on a finite subset EC of Sg(H, * U), such that ps 1 *E, is realized in 

‘VJ-say by EC-but ps 1 *E, is not realized in 6g( H, * U). Since as is generated by U in 

YJ?, there is a finite set F E L’ - L such that F * U generates 6; in \331. Take H,+ 1 to be 
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a countable extension of Hr u F in L’ - L such that Gg(H;+ 1 * U) < ‘Y-R Then 

%(H; * U) < %(H:+ I * U)..By construction, ti, realizes pr I* E, in $( Hr + , * U), so 

Sg(H,* U) $a Sg(H;+ 1 * Or). This completes the verification of (1). 

Set 

G = UC’<“,, H, and 93 = u;<w, Gg(Ht* U) = Gg(G* U). 

(2) For every c < o1 and every countably infinite X g U we have 

Sg(H:*X) &‘B. 

Indeed, let W be a countable, dense subset of U containing X and containing finite 

subsets U0 and U I of U such that Hr * U,, generates E, and G * U1 generates iir in 911. 

Then, by Lemma l(v), 

(3) Gg(G* W) =$ Gg(G* U) = 23. 

Therefore, to prove (2) it suffices to show that Sg(H, * X) $a 6g(G * W). 

Since pr t* E, is realized by tic in eg(G * U), by construction, we see from (3) and the 

definition of W that it must also be realized by Jr in fg(G * W). Also, 

(4) ‘%(H: * W) < %(H< * U), 

by Lemma l(v). Since pc I* Er is not realized in Sg( H, * U), by construction, we see 

from (4) that it is not realized in ‘Sg(HE* W). 

We now transfer this situation to a strong type over Gg(H< * X). Because ‘1u is 

countable and dense, and X is infinite, there is an automorphism of YB taking U0 into 

X (this is the point of introducing Wto replace U). Extend it to an automorphism 9of 

91’ = &J’~‘( W). Then appropriate restrictions of 9 are automorphisms of $(G * W) 

and Sg( Ht * W). Therefore, 

(5) 9(p;) r*9(ES) is realized in 6g(G+ W) (by 8(Us)), but not in eg(H<* W). 

Suppose, now, for contradiction, that Gg(H: * X) 6, Gg(G * W). Then 

(6) 9( pc) I* 9( Et) is realized in Eg( H, * X). 

On the other hand, this supposition also gives 

(7) $(H< * X) d %(G * W). 

Since Sg(H, * U) =$ 6g(G * U), by construction, we get from (3) and (4) that 

(8) 6g(H,* W) < 6g(G* W). 

Combining (7) and (S), we arrive at %g(H< * X) < 6g(Ht * W). In view of (6), this 

forces 9(p:) 1 *9(Er) to be realized in 6g( Hz * W), which contradicts (5). This proves 

(2). 
We now construct a < < wI and a countable X g U that contradict (2). Since 23 is 

strictly k--generated, by Lemma 2, it is isomorphic to 3,. Thus, there is a set V of 
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generators of 23, of size K, that is totally indiscernible in ‘13. Exactly as in the proof of 

Lemma 3, we construct increasing sequences (X,: n E o) and ( Y,: n E w) of count- 

able subsets of U and V respectively, and an increasing sequence ( pn: n < w) of 

countable ordinals, such that 

&l(H,” * Xn) E $I( YJ c WH,“. I *XII+ 1) 

for every n < 0. Set 

i” = sup{p,: n < co}, x= u x,, Y= u Y,. 
IIEW n<ClJ 

Then 

WH, * w = un<, Q(ff&h * Xv) = (,L<, $I( YJ = w Y). 

Since Gg( Y) <, !I3 by Lemma 8 (with K = 8) and the total indiscernibility of Y and 

V, we conclude that Gg’m(H, *X) 4.23. This is just the desired contradiction to 

(2). 0 

Lemma 10. For every countable H c L’ - L, there is a countable K with 

H G K c L’ - L such that, whenever 23 is a dense ordering and W = EM(B), @), we 

have 

Proof. The proof is almost identical to the proof of the second part of Lemma 4, with 

“g” replaced everywhere by “4,“. One uses Lemma 9 in place of the first part of 

proof of Lemma 4, and Lemma 8 in place of Lemma l(v) and Facts 1 and 3. Notice, for 

example, that, taking K = L’ - L in Lemma 8, we get essentially Fact 3 with “<” 

replaced by “=$a”. We leave the details to the reader. 0 

Lemma 11. sn is a-saturated for every 2 3 CO. 

Proof. By the proof of Theorem 2.1 on pp. 2855287 of [9], T has an Ehren- 

feucht-Mostowski model %’ = EM@& A) of power >max{(21T))t, K} such that 

% = fn’ IL is a-saturated. By Lemma 10 there is a countable K G L’ - L such that 

Gg”(K * W) <u %. Let U be a dense submodel of %B of power K. Then 

Gg”(K * U) <11 Gg”(K * IV), by Lemma 8. Thus, we immediately see that 

Gg%(K * U), too, is a-saturated. Since it is strictly K-generated, by Lemma 2, it is 

isomorphic to SK, by K-uniqueness. Thus, SK is a-saturated. 

Next, we turn to so. Recall that SK has a @-basis Z, that extends a @-basis Z, of 

&,,. Hence, 5, < SK and even so 4, SK, by Lemmas l(v) and 8 (with K = 0) and the 

total indiscernibility of Z, and Z,. Since SK is a-saturated, by the previous lemma, so 

is SW. 
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Now consider any i > (1). To show that gi is u-saturated, consider an arbitrary 

strong type p based on a finite subset E of F,. Let V a denumerably infinite subset of 

the Q-basis Z, of 3;. that contains a set of generators for E. Since 69( V) is isomorphic 

to 3(,), and the latter is u-saturated, p r*E is realized in Sg( V). But $J( V) $ 3;; so 

p r * E is also realized in gj,. U 

Lemma 12. There is a curdinal i such thut eoery model of Tofpmver > 1 is u-saturated. 

Proof. Let i. be the Hanf number for omitting types in languages of cardinality at 

most 1 TI. Suppose, for contradiction, that there is a model YI of T of power 

> maxi& ti) that is not u-saturated. Then there is a strong type p = p r*E (over VI) 

based on a finite subset E of A such that p is omitted by 41. Since there are at most I TI 

many inequivalent formulas in p, by [1 1, Chapter III, Lemma 2.2(2)], we may assume 

that p is a (possibly incomplete) type-as opposed to a strong type-over some subset 

B of A of cardinality at most ) TJ. 

Let f,’ be a language with built-in Skolem functions that extends L and that 

includes constants for the elements of B. Let T’ be a Skolem theory in L’ that extends 

the theory of (91,h)heB. By Morley’s Omitting Types Theorem and the choice of 3., 

there is an EhrenfeuchtPMostowski model 92’ of T’ over a dense ordering 1I of 

indiscernibles of cardinality 3 X such that 91’ omits the type p (see 16, Theorem 3.11 or 

[3, Exercise 7.2.41). Let g be a dense submodel of II of power K, and set 

91’ = +J”“( V). Then ‘W’ is the corresponding EhrenfeuchtGMostowski model over %. 

and !W $ !N’, by Fact 3. Obviously, Y-R’, and hence also 912, omits p. 

Let H G L’ - L be a finite set containing all the individual constant symbols for 

elements of E. By Lemma 4, there is a countable K with H G K c L’ - L such that 

Gg( K * V) < 9Jl. Thus, E is a subset of the universe of &J( K * V). Since p, as a strong 

type. is based on a subset of the model $J( K * V), every formula cp ofp is equivalent to 

a formula 4”’ with parameters from Scg(K * V), by [ 11. Lemma 2.15(l)]. Let p’ be the 

set of these formulas cp’. Then p’ is a strong type based on E that is equivalent to p. 

Because Y.N omits p, it also omits p’. Therefore, the elementary substructure Gg( K * V) 

must omit p’. This shows that 5g(K * V) is not a-saturated. But that is impossible: 

since Sg(K * V) is strictly k--generated (by Lemma 2), it is isomorphic to 2,, and we 

have seen that 3:, is u-saturated. n 

Lemma 13. 3;. is a-prime ocer any @-basis, f&r i 3 cu. Consequmtly, g,., is als0 u-prime 

mer 8. 

Proof. Let U be a G-basis of %i. Then U generates any given sequence ti from 3A, so 

tp(ti, U) is clearly atomic. In particular, gj, is u-atomic over U. Moreover, 3;. is also 

a-saturated, by Lemma 11, and there are obviously no Morley sequences in 33, over U. 

By Shelah’s second characterization theorem for a-prime models, gA is a-prime over 

U (see [l 1, Chapter IV, Definition 4.3 and Theorem 4.181). 
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Now an u-prime model over a countable set is also a-prime over 0 (see ibid.). Hence, 

3, is also a-prime over 8. 0 

We now work inside of some monster model. Let pO, . . , pn _ I be pairwise ortho- 

gonal regular types, all based, say, on a finite set E. By realizing the strong type of 

E over 0 in Q,(0)Pthe u-prime model over (&and then passing to automorphic 

copiesofp,,..., pn_ 1, we may assume that E is a subset of the universe of ‘@r,(O). For 

each i < n, let Ii be an infinite Morley sequence built from pi r*E. 

Lemma 14. \Ur,(E u Uicn Ii) is strictly A-generated, where E. = 1 Uicnlil. 

Proof. The proof is by induction on i. If A = CO, then, as mentioned in the preceding 

lemma, ~K,(E u Uicn Ii) is u-prime over 0. But we just saw that 3, is a-prime over 0. 

Hence, these two models are isomorphic, by the uniqueness of u-prime models. Since 

3, is strictly w-generated, by Lemma 2, so is s@,(E u Uixn ri). 
Now suppose that the lemma is true for all infinite p < A. Represent UiCn li as 

a strictly increasing sequence (a.: r < A) with the property that, for infinite /I < E,, the 

sequence (a,: CI < 8) contains infinitely many members of Ii for each i < II. For each 

infinite /3 < A, set !BO = sBr,(E u { 5,: r < B}). We may arrange this so that $17, =$ 23V 

whenever /3 < q, and, at limit stages 6, that sjd = U 8<a23jB. By the induction hypothe- 

sis, each B3, is I/? I-generated, since (0 d Ijl < i.. Therefore, 

%(E u Uicnli) = Ufl<,3 2So is generated by a set of cardinality at most 2.1. = A. 

To see that no set of smaller cardinality can generate it, we proceed by contradic- 

tion. Let X be an infinite set of power v < A that generates +Qr,(E u UiCn Ii). Since 

vr,(E u Vi_ Ii) is u-atomic over E u Uicn Ii, for each finite sequence 6 from X there 

is a finite subset 1, G Ui<,, Zi such that 

Stp(h, E U la) k Stp(b, E U lJixn Ii). 

Set J = U {I,-: 6 is a finite sequence from X). Then J has power at most v and 

(1) Stp(~,EUJ)~Stp(b,Eu U;<nZi) f or every (finite) sequence 6 from X. 

Since \?<A, there is a sequence a= (~,,...,a~_,) that is in Ui__li but not in J. 

Thus, ti is independent over E u J. This is readily seen to contradict (1). For example, 

because X generates $Bra(E u Ui._ Ii), there is a sequence h from X and terms pi of 

L, for i < k, such that oi[b] = ui. Now 

Stp(h, E U J) ä A pi = Ui, 

i<k 

by (l), so there is a formula q(X) in L*(E u J) (the set of formulas almost over E u J) 
such that 

ä Cp(X) ~ A ai = U-i. 

i<k 
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Thus, ti is definable over L*(E u J), since, e.g., 

FJJ = aicr3x(cp(x) A ~~(2) = y) for each i < k. 

But then 5 is in the algebraic closure of E u J, so it cannot be independent over this 

set. We have reached our contradiction. 0 

Theorem 15. T is categorical in every cardinality > 1 TI. 

Proof. We begin by proving that T must be unidimensional. Indeed, suppose for 

contradiction that there are two orthogonal regular types, p, and pZ, over a finite 

subset E of Q,(@). Working inside a monster model, for i = 1, 2, let Ii be a Morley 

sequence of cardinality K built from pi 1 *E. Then *Qr,( E u I, ) and $Jr,(E u I 1 u I,) are 

both strictly k--generated models, by the previous lemma, and hence isomorphic, by 

K-uniqueness. But this is impossible: the first model has a single dimension of 

cardinality K, the p,-dimension, and all the other dimensions are w; the second model 

has exactly two dimensions of cardinality K, the pi- and the p,-dimensions. Thus, 

T can only have one regular type, up to equivalence. Let us denote this type by p. 

Now let i (3 1 Tl) be so large that all the models of T of power > i. are a-saturated 

(see Lemma 12). Then T is /.+ -categorical. Indeed, if %R and 91 are models of power i,+, 

then they both are a-saturated, by choice of i., and have p-dimension I.+, by unidimen- 

sionality. Hence, they must be isomorphic, by [l 1, Chapter V, Theorem 2.101. This 

shows that T is categorical in some power > I TI. By the results of Shelah in [7], it is 

categorical in every power > / TI. 0 

Theorem 16. T is A-unique for every uncountable i.. 

Proof. If T is definitionally equivalent to a countable theory and is categorical in 

every infinite power, i.e., if T is a totally categorical theory, then the theorem is 

obvious. Suppose, now, that it is not totally categorical. We shall use Theorems 1-3, 

including the proof of Theorem 2, from [S]. According to these, T,, must have 

a minimal prime model $331,. Moreover, there is a type p based on M0 with the 

following properties. 

(1) If % is any elementary extension of %I&,, then any two maximal Morley 

sequences in (% built from p tA4, must have the same cardinality. This is called 

the p-dimension of 91. 

(2) If % and %’ are elementary extensions of ‘9X0 with the same p-dimension, then 

there is an isomorphism of (J1 onto 91’ that fixes M,. 

(3) If %X0 < 91 < !Q’, then p tN is realized in ‘9’. 

To simplify notation, we shall assume that p is a l-type. 

Since T, is a universal-existential theory categorical in power, it is model complete, 

by Lindstrom’s theorem (see, e.g., [3, Theorem 3.1.121). 
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Fix i. > o, and let %II be a strictly A-generated model of T, say X is a generating set 

of power 3.. Our goal is to prove that ‘531 has p-dimension i. Let W be a countably 

infinite subset of X. Then Zg( W)< $331, by model completeness. Without loss of 

generality, we may suppose that %110 is an elementary submodel of mGg( W). We now 

define a strictly increasing, continuous sequence ( Y,: r < ;.) of subsets of X of size 

< ,I such that 

(4) 9.& $ Zg( Y,) < Zg( Y,, r) 6 ‘311 for 5 < i,. 

Indeed, take Y, = I+‘. If YC has been defined, then Bg( Y,) # !U, since 9J1 is strictly 

j.-generated and Y, has power < I. Hence, there is an element u; in X that is not 

generated by Y:. We set Y,, r = Y< u { uC ). Property (4) follows by our choice of Y0 

and u,=, for each [, and by model completeness. 

For each 5 < i,, the type p r Sy( Y,) is realized in Gg( Y,+ r ), by (3) and (4). Therefore 

using our strictly increasing chain (Gg( Y,): < < i_) of elementary substructures of ‘JJ& 

we can build from p rh10 a Morley sequence in (9.N of length at least 3.. Thus, ‘JJ1 has 

p-dimension at least 1.. 

Suppose now that I is a maximal Morley sequence in %N built from p IM,. Then 

Sg(MO u I) = !N. For otherwise we would have Gg(A4, u I) 4 ‘%JI, by model com- 

pleteness. Hence, we could realize p rSg(Me u I) in W, by (3), and thus extend I to 

a larger Morley sequence in $331 built from p IM,, contradicting its maximality. Since 

X also generates !N and has cardinality 3. > w, there is a subset J of I of cardinality 

d i. such that M0 u J generates X and hence also ‘9J1. In particular, Me u J generates 

I. But then J = I, since any element in I - .I would be independent over M, u J, and 

hence could not be generated by this set. We conclude that 111 < i.. In other words, 

‘JJl has p-dimension at most A and hence exactly ;1. 

We have shown: 

(5) Any strictly x-generated model of T extending ‘VI, has p-dimension i.. 

Now let 91 and ‘91 be any two strictly ).-generated models of T. By passing to 

isomorphic copies, we may assume that 91&, is an elementary substructure of each. 

Hence, by (2) and (6) (9.N and 5% are isomorphic over MO. This shows that T is 

j,-unique. 0 

By the preceding theorem, the non-countably generated models of T are, up to 

isomorphisms, precisely the structures gi, for I. > CU. 
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