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Abstract

A set ofgraphs is said to bsdependenif there is no horomorphism between distinct graphs
from the set. We consider the existence problems related to the independent sets of countable graphs.
While the maximal size of an independent set of countable graph€’ith2 On Line problem of
extending an independent set to a larger independent set is much harder. We prove here that singletons
can be extended (“partnership theoi®. While this is the best possible in general, we give structural
conditions which guarantee independent extensions of larger independent sets.

This is related to universal graphs, rigid gha (where we solve a problem posed in J. Combin.
Theory B 46 (1989) 133) and to the density problem for countable graphs.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction and statement of results

Given gaphsG = (V, E), G’ = (V’, E’) ahomomorphism is any mapping — V'’
which preserves all the edges®f

Xy} e E={f(x), f(y)} e E

This is briefly denoted byf : G — G’. We indicate the existence of a homomorphism
by G — G’ and in the context of partially ordered sets this will be also denotdsl byG'.
< is obviously a quasiorder.

< is a very rich quasirder which has been studied in several contexts, $8ef¢r
a survey of his area. For example it has been shown (and this also not difficult to see)
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that any poset may be representedbysee [L1, 18] for lesseasy results in this area.
A patticular case is aindependent seif graphs which can be defined as an independent
set (or antichain)ni thisquasiorder. Here we are interested in a seemingly easy question:

Independence problem (shortly IP)

Given a set{G,; ¢ € 1} of graphs does there exist a gra@hsuchthat {G,;: € 1}
together withG form an independent set of graphs?

This problem has been solved for finite sets of (finite or infinite) graphsdni[l]. The
general case is much harder and it is relativ@psistent to assume the negative solution
(this is related to the Vagrika Axiom, see?, 11]).

In this paper we discuss IP for countable graphs.

We prove the fdlowing:

Theorem 1.1. For every countable graph G the following two statements are equivalent:

(i) there exists a countable graph Guch hat G and G are independent.
(i) G isnot bipartite and it does not contain an infinite complete subgraph.

Both conditions given in (ii) are clearly necessary. The non-bipartite comes from the
general (cardinality unrestricted) independence problem as the only finite exception and
the absence of an infinite clique is due to the cardinality restriction.

This modest looking result (which we could c&artneship theorem non-bipartite
countable graphs witholk,, have independent partnerasha number of consequences
and leads to several interesting problems. First, we want to mention that the above result
(and the IP) is related to universal graphs.

Let K be a class of graphs. We say that a gripk C is hom-universa(with respect
to K)if G < U foreveryG € K, [15.

Note that a graply may be hom-universakith respect to a clas& without being
universal (in the usual sense: any graph frkhis a suibgraph ofU; see b, 6, 8, 9, 19|
for an extensive literature about univargraphs). For example the triangke; is hom-
universal for the clask’ of all 3-colorable graphs and obviously this class does not have a
finite universalgraph. On the other hand clearly any universal graph is also hom-universal.

Let GRA, denote the class of all countable nbipartite graphs without an infinite
complete subgraph (which is denotedKy). It is well knownthat the clas$&s R A, does
not have a universal graph. The same proof actually gives3fa#, has no hom-universal
graph. (Here is a simple proof which we sketch for the completeness: suppo&e ithat
hom-universal folG R A,. Denote byU & x the graph which wobtain fromU by addition
of a new vertex joined to all the vertices dfl. Then here eists f : U @ x — U. Define
the vertices«g, X1, ... by induction:xg = X, Xj+1 = f(X;). It is easy to see that all these
vertices form a complete graph th.)

Theorem 1.1is a strengthening of the non-hom-universality GfRA,. In fact
Theorem 1.1s bestpossible in the following sense:

Corollary 1.1. For a postive integer t the following two statements are equivalent:
(i) For every finite sef{Gy, ..., Gt} of graphs from GR A there exist a graph G €

GRA, such hat G and G are independentforalli= 1, ..., t.
(i) t=1.



Sh:745

J. Nesetll, S. Shelah / European Journal of Combinatorics 24 (2003) 649-663 651

Proof. There are many examples proving € (ii). For example consider the complete
graphK; and letU, be any universal (and thus also hom-universal) countihldree
graph Un exids by [4]). Then the sefK,, Up} cannot be extended to a larger independent
set as every grapB either containK,, or is homomorphic tdJ;,.

An exanple fort > 2 consists of an independent set of finite graghs ..., Gi—1
and a countable graph, U # Gj,i = 0,...,t — 1 which isuniversal for all graph&
satisfyingG # Gj,i = 0,...,t — 1. Such a graph exists by,[12]. (Note also that an
analogous result does not hold for infinite sets. To see thiSjlet Cyi 3 be the set of all
cycles of odd length. Then there is @which is independent of all grapl;.) O

Theorem 1.1s in the finite (or cardinality unrestricted) case also known as the (Sparse)
Incomparability Lemmal3, 15. We can formulate this as follows:

Theorem 1.2. For any choice of graphs GH, G non-bipartite, satisfying G< H, H £ G
there exiss a gaph G such hat G < H, H £ G’ and such that G and Gare
independent.

If G has a finite chromatic number ther! @ay k& chosen finite.

(The last part ofTheorem 1.2nay be seen as follows (sketch):;fG) = k then take
G” with x(G”) > k and without cycles<| suchthat G contains an odd cycle of length
<l. ThenG andG” are independent. lf (G’) is large then also graplG andG” x H are
independent, seé()].)

We do not know whetherTheorem 1.2holds if all the graphs are supposed to be
countable. Partial results are includedSection 5

Theorem 1.1s also related to the notioof a rigid gaph: A graphG is said to beigid
if its only homomorphisnG — G is the identical mpping. We shall prove the following:

Theorem 1.3. For any countable graph G not containing,Khere exists a countable rigid
graph G containing G as an induced subgraph.

The history of this result goes t@][(the finite case), toJ] (the unrestricted cardinality
case), and tol5] (the ogimal chromatic number for the finite cas@heorem 1.3olves
an open problem proposed ibj].

Finally, let us mention thatheorem 1.1s related to the concept of density.

Given a clas«C of graphs and two graphB1, Gz € K, G1 < G2, we saythat the pair
(G1, Gp) is agapin K if there is noG € K satisfyingG1 < G < G». Thedensity problem
for classkC is the problem to characterize all gapsin(If there are a “few” gaps then we
have a tendency to say that cla@Sss densesee [L0, 11, 16].)

Our theorem has the following corollary:

Corollary 1.2. Any pair(G, K,) fails to be a gap in the class of all countable graphs.

Proof. Let G < K,, G € GRA,, be given. Acording toTheorem 1.1there exists
G’ € GRA, suchthatG’ -+ G. Thenwe hav&s < G+ G’ < K,. O

Note that we used the easier partTdfeorem 1.1 This is beingdiscussed bedw and
some particular positive examples of the density of the d&aBsA, are stated. However
the characterization of all gaps for the cl&® A, remains an open problem. In the class
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GRA, there are infinitely many gaps. This is in a sharp contrast with finite graphs where
the trivial gap(K1, K2) is the only gap, seelp)].

The paper is organized as follows: Bection 2we give sane no-homomorphism
conditions which will aid us irSection 3in the poof of Theorem 1.1In Section 4we
define high and low graphs and show their tielaship to the independence problem. In
Section 5we prove Theorem 1.3In Section 6we give structural anditions whch allow
us to prove that certain graphs are high and thus genefitieerems 1.and1.3to other
graphsH thanK,,. We also nodify the proof ofTheorem 1.%o this setting. This yields a
more direct proof and allows us (at least in principle) to hunt for partners. We find classes of
graphs where the independent extension property h8kigion 7contains some remarks
and problems.

2. Necessary conditionsfor the existence of a homomor phism

Given twographsGi, Gy it is usually not easy to prove th&; -~ Gj. We sh#l use
the following two basic facts:
SupposeG; — Gp. Then

(i) If G1 contains an odd cycle of lengthl then alsoG, contains an odd cycle of
length <lI.

(i) x(G1) < x(G2) (wherey denotes the chromatic number).

To this well known list (which cannot be expanded much more even in the finite case)
we add the rank function which we are going to introduce as follows:

Let G = (V, E) be a graph inGRA,. By K,, we deote the complete graph on
n={0,1,...,n — 1}. Considerthe seth(K;, G) of all homomorphism&, — G and
denote byT € the union of all the seth(K,, G),n = 1,2,.... We thnk of TC as a
(relational) tree ordered by the relation < g.

Itis clear and well known that

(i) TCisarelational tree;
(i) TC has no infinite branches;
(iii) We can define ordinal rkT ©) < w1 theordinal rank functiorof TC.

(For completeness recall the definition of the ordinal rank function: for altne&hout
infinite branches rkT) is defined as sypk(T,) 4+ 1} over all banches ofl at the root.) Put
rk(G) = rk(T ). We have théollowing (perhapdolkloristic):

Lemma2.l. If G1 < Gothenrk(G1) < rk(Gy).

Proof. Let f : G1 — G2 be a homomorphism. Then for evenywe have a atural
mappingh(f) : h(Kn, G1) — h(Kp, G2) defined byh(f)(g) = f o g. h(f) is a level
preserving mapping ©: — T2 and thus rkG1) < rk(Gp). O

For everyordinala < w1 and graphG on w consider the following undirected graph
K,
the vertices oK(ff‘): all decreasing sequences of ordinal numbess
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the alges oleff‘): all pars {v, u} satisfyingv < u, by this ymbol we mean the
containment of sequencesandyu (as initial segments).

One can say tha((ff‘) is a tree of cliques with the total height

The following holds for any < ws:

(i) K e GRA,;
(i) k(K = a;
(i) KIKO+D G,

(This gives yet another proof that there is no countable hom-univiggséitee graph.)
PutG® = K™ and let us look at the statementTieorem 1.1We haveG® ¢ G
(by (iii)) and thus if alsoG £ GO then we are done. So we can assume the following
situation:G < G® andG® £ G. Now if G! is any graph satisfyings! £ GO then
necessarilyG?! £ G (as otherwiseG! < G < GO and tus by the same token we can
assumeG < G. This strategy bthe proof will be followed in the next section.

3. Proof of Theorem 1.1

We proceed by contradiction: 1& € GRA, be a graph which is comparable to every
other graph inGRA,. By Theorem 1.2he chomatic number ofs is infinite.

We shall onstruct graph&®, G1, G2 suchthatG® £ G (and thusG < G?), G* £ G°
(thusG < G1) andG? £ G! (and thusG < G?). Using a construon similar to the one
of G2, we definea fanily {G,} of graphs which satisf, ¢ G and thusG < G,,. Then
the existence of somg such hatG, < G will give rise toa contradiction.

The graphG® = ng(G)H) was onstructed in the previous section.

Definition of G1. The vertices ofG!: w x 2. The edges of3: all pars of the form
{(n,i), (m, i)} where|\/n] = |/m],i = 0,1 andof the form{(n, 0), (m, 1)} where
n<m.

ThusG! is a “half grgoh” where the vertices are “blown up” by complete graphs of
increasing sizes.

Claim 1. G -» GO.

Proof (of Claim 1). Assume to the contrary: Lt : G — G° be a homomorphism. As
f is restricted to each of the complete graphsin each of these8}, w x {1} is monotone
we can find an infinite seX C w such that the mappind restricted to the seX x {0} is
injective. The seY = {f(x): x € X x {0}} is an infinite set inv (G°) = V(K K&+,
The grath,f,rk(G)H) is defired by the treel, rk(T) = rk(G) + 1 and hus by either
the Konig lemma (or Ramsey theorem) the ¥eeither contains an infinite chain (i.e. a
complete graph it°) which isimpossble, orY contains an infinite independent seflin
and thus also itG°.

SoY are the vertices of a star ih with centery. y is a functiony : K, — G. Choose
N, € w such that the setX N (n, x {0}) has at leash + 1 elements.
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Now the function f restricted to the sgn?, n? + 1, ..., n? +n, + 1} x {1} is injective

and if (i, 1) is any vertex of this set thef(i, 1) is connected to all vertices(m, 0) for
m € X N[0, n,]. This imdies thatf (m, 0) C y for everym € X N[0, n,]. But this is a
contradiction. O

Construction of G2. The vertices oV (G2) = AgU Ay U Ay whereAg = {r}, and Ay
and A, are infinite sets (all three mutually disjoint). The gatis disjoint union of finite
complete graphs denoted Kyl (isomorphic toK;), i € w. The setA; is disjoint union of
finite complete gaphs denoted b&f_j (isomorphictoKj), j € w. The @lges ofG2 are the
edges of all indicated complete graphs together with all edges of the{fosh x € A
and all pairs of the fornfix, y}, x € A1,y € UjewV(Kf_j).

So the graplG2 is a tree of depth 2 with infinite branching with all its vertices “blown
up” by complete graphs of increasing sizes.

Claim 2. G2 » GL.

Proof. The proof is easy using the main property of the half graph: all the vertices of one
of its “pants” (i.e. of the setv x {1}) have firite degree.

Assume to the contrary thdt: G> — G is ahomomorphism (foG! we preserve all
the above notation). We shall considwo cases according to the valuefaf).

Casel. f(r) = (n, 1) for somen € w.

But then the subgraph @ induced by the neighborhoddi(n, 1) of the \ertex(n, 1)
has a finite chromatic number (&3 1) has finite degree i) whereas the neighborhood
of r in the graphG? has the infinite chromatic number (as this neighborhood is the disjoint
union of complete graph§l, i € w).

Case2. f(r) = (n,0) for somen € w.

By a similar argument as i€@ase lwe see that not all verticeb(x), x € A; can be
mapped to the vertices of the setx {0} (as by the connectivity of the subgraph®f
formed by Ag U Az this graph would be mapped to a finite complete graph). Thus let
f(x1) = (m, 1) for anx; € Az. But then the neighborhodd(m, 1) of (m, 1) in the graph
G? has a finite chromatic number whereashas infinite chromatic number (i@1). O

Thus we see thaB? - G! and consequentle — GZ2. The last examle which we
shall onstruct will be a family of graph§G,}. This hasto be treated in a more general
framework and we do it in a separate subsection.

3.1. Tree like graphs

We mnsider the following generalization of the above constructioB%f
Let G be an infinite set of finite graphs of the foi@y i, i, j €  which satisfies:
() x(Gji) =1i;

(i) Gj,i does not contain odd cycles of lengttj;

(iif) All'the graphs are vertex disjoint.
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LetT = (V, E) be a graph tree (i.e. we consider jtis¢ successor relation) defined as
follows: V = AgU A1 U Ap whereAg = {r}, A1 = w andA2 = o x w. The alges ofT
are all edges of the forifir, i)}, € w and all pairs of the forni, (i, j)},i, | € w.

Letn : V — o x w be any function.

Define thegraphG, as follows: the set of vertices @, is the unon of all graphs
Gy x), X € V. The alges ofG,, are edges of all graphs,x), X € » together with all
edges of the fornfa, b} wherea € G, x), b € G,y and{x, y} € E.

Then we have analogously as@aim 2

Clam3. Letn : V — w be any function and let1,72 : V — o be defined by
n(xX) = (m1(X), n2(x)). If n2 is unbounded on Aand on the subsets of2Af the form
{i} xw,i € w, then G, fGl.

Now, consider the graps again. Asy (G) is infinite denote byK the minimal number
of vertices of a subgrap8’ of G with chromatic number by compactness it i& that
is finite). Letn : V — w be any function which is unbounded anand each of the sets
{i} x w,i € wand moreover which satisfieg(i) > K for everyi € w.

Itis G, £ G! by Claim 3 ThusG < G,,. In this stuation we prove the following (and
this will conclude the proof offheorem 1.1

Claim4. G £ G,.

Proof. Assume to the contrary: lét : G — G,,. Then the vertices of the subgra@hare
mapped into a setic| G, i) wherel is a finitesubset ofV. Denote byG” the imaye of G’
in G,. Due tothe tree structure dB,, we have thay (G”) < 2maxe x(G” N Gyy).

Asn(i) > K and thus all graph&” N G, are bipartite. This implieg (G” N G, )
< 2 and findly we getx (G) < x(G”) < 4, a contradiction. [

4. Independent families

In a certén sensélheorem 1.Taptures the difficulty of independent extension property.
The pairKs, Uz (see proof followingrheorem 1.1n the Section } cannot be extended to
a large ndependent sétecause Y is a rich graph. This can be m™a precise. Towards this
end we first modify the ordinal rank function for graphs below a given gidpW/e return
to these results iBection 6

Let G, H be infinite graphs. Assne that the vertices dfl are ordered in a sequence
of typew. We can thus assume thét is a grgph onw. Denote byH,, the subgraph ofH
induced onthesdg0,1,...,n—1}.

Consider the sdt(Hp, G) of allhomomorphismsi, — G and denote bSFHG theunion
of all the set(Hp, G),n =1, 2, .... We think of T,? as a (relational) tree ordered by the
relaion f C g. THG is called theH -valued tree of G(with respecto a givenw-ordering
of H).

Itis clear that

(i) TS is a (relational) tree;

(i) TS has no infinite branches.
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Thus we can define ordinal (K$) < w1 theordinal rank functiorof TS.
Putrky (G) = rk(THG) (the ordnal H-rankof G). We have theithe following:

Lemma4.1. Let G, G, be graphs with HZ Gy and H £ G1. Then G < G implies
rkn (G1) < rkn (G2).

Proof. Let f : G1 — G2 be a homomorphism. Then for evenywe have a atural
mappingh(f) : h(Hn, G1) — h(Hy, G2) defined byh(f)(g) = f og. The mapingh(f)
is level preserving mappin‘gj,:31 — T,fz and thus ri (G1) < rky(Gp). O

For acountable grapls onw and every ordinat < w1 define the following graps(®':

The vertices ofz are all decreasing sequences of ordinal numkersthe elges of
G' are all pairgv, u} satisfyingv € u and{£(v), £(n)} € E(G). (Recall that!(v) is the
length of the sequenae)

One can say thas‘®) is a tree of cpies ofG,, (G, is the graphinduced byG on the set
{0,1, ..., n—1} with the toal heightw. (Thisnotation also explains the rather cumbersome
notationk ')

We have thedllowing:

Lemma4.2. (i) G <G;
(i) If o < Bthenalso G < G,
(i) G < H if and only if G* < H for everya < ws.

Proof. This is an easy statement. The existing homomorphisms are canonical level-
preserving homomorphisms. Let us mention just (iii):

If f:G — HthenG® — H by composition off with the map gueanteed by (i).
Thus assum& % H andG® < H for anye < wi. In this case the ordinaG-rank
of H is defined and ig(H) = o < w1. As rkg(G*tY) = o +1 > rkg(H) we get a
contradiction. [

We say thaiG is a-low if G < G“). A low graphis a graph which is low for some
a < w1, a graph isighif it is not low.
We have thedllowing

Theorem 4.1. Let Gy, ..., Gt be an independent set of countable connected graphs
including at least one high graph. Then there exists a countable graph G such that
G, Gy, ..., Gt is an independent set.

Corollary 4.1. Any finite set of high graphs can be extended to a larger independent set.

Proof. Choose the notation such that the grafgbs ..., Gs_1 are low while graphs
Gs, ..., Gt are high (the case = 0 corresponds to the set of all high graphs).

Choosex < w1 such tlatforanyme {s,...,t}andn e {1,...,s— 1} the graprGﬁ,”
has no homomorphism t6,. This is possible as by the high—low assumption for every
m, n as above there is no homomorphiSy, — G, and thus for some(m, n) < w1
we haveG{# ™" _, G.. (This ako coverghe cases = 0.) Pute’ = max«(m, n) and
o = Mmax rl%;xy(m,n))Gm.
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We define
t—s
c=Y ol
i=0
and prove thaG is the desired graph. Fix € {0,...,s — 1} and choosen € {s, ..., t}

arbitrarily. ThenG,(.ﬁ> - Gp and thusG -+ G, as claimed.

In the opposite direction for evem, n € {s, ..., t} we haveGy - Gﬁﬁ” by Gm, high
andGp, - Gﬁ,‘” by the choice ot (i.e. asx is large enough). AsG, is a connected graph
Gm maps toG if and only if it maps to one of the components. Ti&s -~ G and we are
done. O

Remark. Corollay 4.1 shows that we have arxtension property providing we “play”
with high graphs. This is in agreement with the “random building blocks” used in the
proofs o universality, see [L1].

5. Rigid graphs

We proveTheorem 1.3

Let G be a countable graph not containig, we can assume th& is infinite. In fact
we can assume without loss of generality that every ed@ellongs to a triangle and that
G is connected (we siply consider a graph which contaifsas an induced subgraph).

LetG; € GRA, form an independent pair wit® (G, exids byTheorem 1.1 We can
assume without loss of generality that also every edde;dfelongs to a triangle. For that
it is enough to attach to every edge®f a pendant triangle; (as every edge®@fbelongs to
a triangle) these triangles do not influence the non-existence of homomorphisms between
G andG3. G; can also be assumed to be connected.

Let Gp be a countable rigid graph without triangles. The existendggfollows from
the existence of a countable infinite rigid relation (take a one way infinite pattwon
together with arc0, 3)) by rephcing every edge by a finite triangle free rigid graph; see
e.g. [13 15, 18].

Letu : V(G) — V(Gp) andv : V(Gg) — V(G1) be bijections. Define the grajisl as
the disjointunion of graph$s, Go, G1 together with the matchindg$x, u(x)}; x € V(G)}
and{{x, v(x)}; x € V(Gp)}.

We prove thatG’ is rigid (G’ obviously contain& as an induced subgraph).

Let f : G — G’ be a homomorphism. As the matching edges and the edges of
Gop do not lie in a triangle we have eithdr(V (G)) € V(G) or f(V(G)) C V(Gy).
However the last possibility fails & andG; are independent. Similarly, we have either
f(V(G1)) C V(Gy) or f(V(G)) C V(G) and the last possibility again fails.

Thus we havef (V(G)) € V(G) and f(V(G1)) € V(G;). As the vetices of Gg
are the only vertices joined both ¥(G) andV (G’) we also havef (V (Gp)) € V(Gp).
HoweverGy is rigid and thusf (x) = x for everyx € V(Gp). Findly as G andGg, Gg
andG; are joined by a matching we have thfaix) = x for all x € V(G).

Remark. This “sandwich construction” may be the easiest proof of a statement of this type
(cf. [2, 3, 15, 18]). This proves also the analogous statement for every infin{so for



Sh:745

658 J. Nesetll, S. Shelah / European Journal of Combinatorics 24 (2003) 649-663

the finite case) providing that we use the factttbn every set there exists a rigid relation.
This has been proved i2]], and e.g. 14] for a recent easy proof.

6. Gapsbelow H

We say thaa gapG < H is agap below H In the introduction we derived from
Theorem 1.1that there areno gaps belowK,,. It is well known that finite undirected
graphs have no non-trivial gap (exceldi < Kpy), see L6, 20]. Also infinite graphs
(with unrestricted cardinalities) have no non-trivial gap6][ However note that classes
of graphs with bounded cardinality (such@® A,) may have many non-trivial gaps. For
example ifH = K, then letU,, be the hom-universd,-free universal graph. Consider the
graphGp = U, x K, (the product here is the categorical product defined by projection-
homomorphisms). TheG, < K, and it is easy to see th&, is also aK,-free hom-
universal graph (universal for graphs belti). Now if G < K, then alsoG < Gy
and thugGy, Kp) is a gap (belowKp). In fact this holds for other finite graphs, s€e].

It seems to be difficult to find gaps formed by infinite graphs only. Here we give some
explanation of this difficlty. We use the ordinaH -rank function for graphs below
which was introduced iection 4

Itis not necessdly true thatH ‘) € GR Ay. We definel aboveH to be anx-low graph
if H@ e GR Ay. Here are sfficient conditions for low and high:

For a graph- we say that amifinite subseX of V (F) is separated by a subset & for
any two distinct verticeg, y of X there is no patlkx = g, X1, ..., Xt = y in F suchthat
none of the verticex, ..., x—1 belong toC (thus possibly, y € C).

Recall, that graphsG andG’ are said to bénom-equivalenif G < G’ < G. This is
denoted byG ~ G'.

We say thagraphF is H-connectedf no infinite subsetX of V(F) is separated by a
subsetC suchthatC =~ H’ for a finite subgraptd’ of H. H is said to havdinite coreif H
is equivalent to its finite subgraph. Any graph with infinite chromatic number has no finite
core (and this is far from being a necessary condition). The following then holds:

(iv) If H is H-connected without a finite core théh'® € GRA.

Proof. H is infinite. Letf : H — H® be a homomorphism. ABl is not equivalent to
any of its finite subgraph there exists an infinite Xet V (H) suchthat f restricted to the
setX is injective. Then the set(X) is an infinite subset ofl (“) and applying the Kiig’s
lemma to the tree structure &f*) we get that either there is an infinite chain (which is
impossble asH (¢’ is H-free) or there is an infinite star. Its vertices form an independent
sd which is separated by the finite graph corresponding to the stem of the Gtar.

We have thedllowing:

Theorem 6.1. Let H be an H-connected graph without a finite core. Then the following
holds:

(i) Thereis nayap below H;
(i) GRAy has no hom-universal graph;
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(iii) For every G < H there eists G < H such hat G and G are independent
(“partners under H").

Proof. (i) is easier. LetG < H. Then rkq(G) = o < wy. Itis H@®tY < H and thus
H*D . G. PutG® = H'+Y and thus we havé < G+ G° < H as needed. The same
proof gives (ii).

However byLemma 4.2wve alsoknow that there exist§ > « suchthatG ¢ H #). This
proves (ii). O

We give another proof ofTheorem 6.X4iii) which is an extension of the proof given in
Sectbns 3and4. This pioof is more direct and gives us more tools for hunting partners.

Proof (of Theorem 6.%iii)). Let G < H be fixed. We proceed in a complete analogy
to the alove poof of Theorem 1.1and we outline the main steps and stress only the
differences. Thus leB be a counterexample. Considaf = H @+, We haveG® £ G
andG° < H and thus we havé < G°. As GO has the tree structure we can figd in

a sinilar way such thaG! £ G% andG! < H. GivenG? we then déne gaphsG? and

G, with G < G2andG < G,.. However we hee to corinue (as possibly (H) < 4) and
also define graplB* with G < G*. This will finally lead to a contradiction.

The details of this process are involvadd we need several technical definitions.

An H-partite graph(G, c) is a graphagether with a fixed homomorphistn G — H.
The sets~1(x) are color classes @f3, ¢). Given twoH -partite graphgG, ¢) and(G/, ¢)
the H-join (G, ¢) >« (G, ¢/) is the disjoint union of(G, c¢) and (G/, ¢’) together with
all edges{x, x'} wherex € V(G), X' € V(G') and{c(x),c(x")} € E(H). Thegraph
(G, ¢) > (G, ¢/) is againH -partite (with the coloring denoted again by

Recall, thatH, is the graphH restricted to the se0, ..., n — 1}. Let H? andH} be
copies ofHp so thatall the graphsH? andH2, n € w are mutually disjoint. Without loss
of generdity the vertices ofV (H!) belong tow x {i},i = 0, 1. The graphsH,, H?, H}
are considered ad -partite graphs with the inclusioH -coloring.

Definition of G. The vertices ofs* form the set» x 2. The edges o6? are all pairs of
the form{(x, i), (y, 1)} where{x, y} € H/ for somen € w together with dlthe edges of
the gaphsH2 0 H} wherem < n.

G! is an H -partite graph withc : G — H defined as the limit of all the inclusions
Hn c H. We can still think ofG* as a suitable blowing of a half graph. What is important
is that the key propertyfdhalf graphs holds foiG™: all the vertices in the class x {1}
have finite degree.

Claim 1. G » GO,

(Recall thatG? = H @+ ) Assume to the contrary, Idt : GT — GP°.

As H does not have a finite retract we get (by compactness) that for evehere
exigs n suchthat Hn £ Hhy. It follows that there exists an infinite sit C » suchthat
the maping f restricted to the seX x {0} is injective. The setf = {f(x); x € X} is
then an infinite subset of the tré&!*), « = rky (G) which define thegraphG° and thus
by ether the Konig lemma (or Ramsey theorem) the ¥etither includes an infinite chain
(i.e. a complée graph inG®) which isimpossble, orY includes an infinite independent
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set in H® and thus also irG°. SoY are the vertices of an infinite star i, 4 with
centery. y is in fact an injedve homomorphisimy : H, — H. Definethe setC by
C = f71({0,...,n—1}). ThenC separateX while C < Hy. But this is a contrdiction.

Construction of G2. The vertices ol (G2) = AgU A1 U A> whereAg = {r}, andA; and
A are infinite sets (all three mutually disjoint). The #atis a disjointunion of graphd;
denoted b)Hil (isomorphic toH;), i € w. The setAy is a disjoint uniorof graphs denoted
by H)ij (isomorphictoHj), x € Ay, | € . The @ges ofG? are the edges of all indicated
grapthil and sz’j together with dledges of the formr, x}, x € A1 and all pairs of the
form{x,y},x € A1,y € UjewV(H)}’j), {c(X), c(y)} € E(H)).

So the graplG? is a tree of depth 2 with infinite branching with all its vertices “blown
up” by graphsH,, of increasing sizes, the graph induced by verti¢gsi ) U V(sz’j) is
isomorphic toH! s« HZ .

Claim 2. G2 » GL.

Proof. Assume to the contrary thdt: G — G is ahomomorphism (fo6* we preserve
all the above notation). We shall considwo cases according to the valuefaf).

Casel. f(r) =(n, 1) for somen € w.

(We proceed similarly as iG@ase lof the proof ofTheorem 1.1) But then the subgraph
of G induced by the neighborhod\i(n, 1) of the vertex(n, 1) can be mapped to a finite
subgraph ofH (as(n, 1) has finite degree iG') whereas the neighborhood ofin the
graphG? cannot be mapped to the finite subsetbfas this neighborhood is the disjoint
union of graphHl,i € w).

Case?2. f(r) = (n,0) for somen € w.
This is a similar adaptation @ase 2of the proof ofTheorem 1.1 [

Next we shall @fine graphss,,. We mnsider the following geeralizdion of the above
construction ofG2:
Let G be an infinite set of finite graphs of the foi@y ; which satisfies:
(i) Gj.i - Hi;
(if) Gj,i do not contain odd cycles of length; ;
(i) Gj,i = H (this homomorphism will be denoted again ¢jy
(iv) All the graphs ae vertex dsjoint.

By now it iseasy to get such examples, see €1§, 15].

LetT = (V, E) be a graph tree (i.e. we consider jtis¢ successor relation) defined as
follows: V = AgU A1 U A whereAg = {r}, A1 = w and A2 = w x w. The a@lges ofT
are all edges of the forif(r, i)}, € w and all pairs of the forni, (i, j)},i, ] € w.

Letn : V — o x w be any function.

Define thegraphG, as follows: the set of vertices @, is the unon of all graphs
Gyx), X € V. The @lges ofG,, are edges of all grapls, ), X € w together with all edges
of the form{a, b} wherea € G, (x), b € G, (y), {X, ¥} € E and{c(A), c(b)} € E(H).

We have analogously as @laim 2
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Claim 3. Letn : V — w be any function which is unbounded @rand each of the sets
{i} xw,i €w.Then G, £ G

Now, consider the grapls again. We have to distinguish two cases:
Casel. x(H) = 5.

In this case we proceed complgtanalogously as in the proof dtheorem 1.Wwith the
only change that we denote B the minimal number of vertices of a subgra@i of G
suchthatG’ -+ H; andx (H;) < 4 (by canpactnssitisK € w). In this case we derive a
contradiction as above. Leaving this at that we have to consider:

Case2. x(H) < 5.

In this case we have to continue and we introduce one more construction of the graph
G*.

Let T bean infinite binary tree. Explicitlyy/ (T) denotes the set of all binary sequences
ordered by theinitial segment containment. For a sequence- (o (0), 0 (1), ...,0(p))
we puti(o) = Zipzo 2°0(i (o) is a level-preserving enumeration of verticesTgfand
(o) =maxi;o(i) £ 0} (¢(o) is the level ofo in T).

Assume that the graphd, satisfyHn < Hny and|V (Hm)| < [V (Hp)| forallm < n.
This can be assumed without loss of generality as we can consider a subssitbfthis
property.

LetF,, o € V(T) be a set of disjoint graphs with the following properties:

() Fo < Hig).

(i) Fs > Hi)—1, moreover for everyhomomorphismf : F, — H satisfying
[T(V(F:) < [V(Fy)| there exét homomorphismg : F, — Hj,) andh :
Hi) — H suchthat f = hog (in other words eacli with a small image factorizes
throughH;)).

(i) F, does not contain odd cycles of lengttk; wherek; denotes the shortest length
of an odd cycle irG.

(iv) In eachF, are given two distinct vertices, andy =y, suchthat{c(Xy), c(Ys)} €
E(H).

(See [13, 15]; it suffices to putF, = Hi) x K whereK is a graph without short odd
cycles with sufficiently large chromatic number.)

Denote byG* the disjointunion of graphd=, with addel edges of the fornix, y} where
X = Xs andy =y, and{o, ¢’} form an edge of .

This concludes the definition d&%. For G* we defineG® = G, for the following
functionn : AgU A1 U A2 — w (see the above definition of the gra@h, for general):

10 =1 00 = (i, Y (VF)L @) <D).
1 D = (i, (VR €0) < ).

This only means we consider graphs with rapidly progressing odd girth.
We know thatG3 —» G2 (for anyn unbounded on the stars of the corresponding tree).
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Thus assume thdt : G* — G3. Due tothe tree structure of the grag@? we seehat for
eacho € V (T) theimagef (F,) intersects a finite set of graps, x € | € AgUAIUA
and due to the tree structure of the graphwe see easily that ére is a homomorphism
f’: Fs — Hiq)wherei(l) is the maximal index appearing amongiadl | and(j,i) € |
and we arrive at a contradiction.

ThusG* £ G and consequently al€® < G*.

As G* contains odd cycles only in copies of grapHs and as all these cycles have
lengths>ko we cnclude thaG £ G*. O

7. Concluding remarks

1. The problem to characterize gaps belblis not as isolated as it perhaps seems at
the first glance. PUB R A4 = {G; G < H}. We have thédollowing easy theorem:

Theorem 7.1. For countable graphs H the following statements are equivalent:

(i) Thereis nayap below H;
(i) Forevery Ge GRAy thereis G € GRAy suchhatG £ G;
(iii) Forevery H € GRAy the class GRA has no hom-universal graph.

Motivated byTheorem 1.3ne is tempted to also include here the following condition:
(iv) For everyG € GR Ay there exist$s’ € GR Ay suchthatG < G" andG’ is rigid.

However (iv) is false as shown by the following example:

Let H = K3 and letG be the disjoint union of all odd cycles of leng#8. Then any
rigid graphG’, G’ < H which mntainsG as a subgraph is necessarily a disconnected
graph. Let{G{; i € w} be all the components @'. Theny (Gj) = 3 for everyi € w and
thus letG; contain an odd cycl€, of lengthé(i). LetG; be the component which maps
to Cy(iy (as a component db). Clearlyi # j and thusG; — G;j, a ontradiction.

Note also that the aboviEheorem 7.1s true for any fixed infinite cardinality.

2. We say thaa setG of countable graphs imaximal(or unextendablgif there is no
graphG ¢ G suchthatG is independent of allG’ € G.

{Ky} is maximal but there are other maximal families. For exam{fg} U
{G; G finite and x (G) > k} is a maximal set and more generally for every finite graph
H the following is a maximal set:

{H}U {G; G finite andG > H}

Corollay 1.1implies existence of finite maximal sets.

The characterization of maximal setesns to be a difficult problem relateddadity
theoremssee [L7]. However no maximal set is knowmhich consists of infinite graphs
only.
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