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ABSTRACT

A subgroup G ̂  V exhibits the Specker phenomenon if every homomorphism G->Z maps almost all
unit vectors to 0. We give several combinatorial characterizations of the cardinal sc, the size of the smallest
G < lf° exhibiting the Specker phenomenon. We also prove the consistency of b < c, where b is the
unbounding number and c the evasion number. Our results answer several questions addressed by Blass.

Introduction

Specker [8] proved that given a homomorphism h from Z" to the infinite cyclic
group Z, where lLm denotes the direct product of countably many copies of Z, we have
h(en) = 0 for all but finitely many unit vectors en e If (in other words, the wth
component of en is 1, and its other components are 0). Blass [3] studied the
Specker-Eda number se, the size of the smallest subgroup G ̂  J.m containing all unit
vectors which still has the property that every homomorphism h: G -• Z annihilates
almost all unit vectors. We shall give various (mostly less algebraic) characterizations
of se (some of which already play a prominent role in Blass' work); we shall also study
some related cardinal invariants of the continuum.

To be more explicit, let ^ * denote the eventual domination order on the Baire
space of; that i s , / ^ *g if and only ifj[n) ^ gin) for all but finitely many n. We shall
usually abbreviate the statement in italics by V°°«; similarly, we shall write 3°°« for
there are infinitely many n. The unbounding number b is the smallest size of a
^"•-unbounded family !F of functions in of (that is, given any geof, there isfe^
with 3°°« (/(«) > g(n))). Given a cr-ideal J on of, the additivity add (#) is the least
cardinality of a family $F of members of«/ whose union is not in J. We shall use this
cardinal only in the cases J= Ji, the ideal of meagre sets, and J = JS?, the ideal of
Lebesgue null sets. While the preceding invariants have been studied by a number of
people in the last two decades, the following concept was introduced only recently
by Blass [3]. Given an at most countable set S, an S-valued predictor is a pair n =
{Dn, (jin; n€Dn}), where Dn £ co is infinite, and for each neDn, nn is a function from
Sn to S. n predicts fe S10 if and only if for all but finitely many n e Dn, we have/(«) =
itn{J\n); otherwise, f evades n. The evasion number e is the smallest size of a family J5"
of functions in of such that no co-valued predictor predicts all/eJ5". A Z-valued
predictor is linear if and only if all nn: Z" -> <Q are Q-linear maps. The corresponding
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20 JORG BRENDLE AND SAHARON SHELAH

linear evasion number will be denoted by z( (that is, t{ = minflJ5"!; 3F £ Z" and no
linear Z-valued predictor predicts all feS?}). (Blass' definition of linear evading [3,
Section 4] is slightly different; however, it gives rise to the same cardinal. We use the
present definition because we shall work with functions in Zw in Lemma 2.2.)

These notions enable us to state our main results.

THEOREM A. It is consistent with ZFC to assume b < e.

THEOREM B. se = te = min{e, b}.

These results will be proved in Sections 1 and 2. Section 2 also contains a further
purely combinatorial characterization of the cardinal se (see Definition 2.4 and
Lemma 2.5). To put our results into a somewhat larger context, we point out the
following consequences which involve some earlier results, due mostly to Blass [3].

COROLLARY, (a) add (<£?) ^ se ^ add (Jt) ^ b.

(b) Any of the inequalities in (a) can be consistently strict.
(c) It is consistent with ZFC to assume zf < e.

Theorems A and B together with the Corollary give a complete solution to
Questions (1) to (3) in [3, Section 5]. Note, in particular, that the cardinals (2) to (5)
in Corollary 8 in [3, Section 3] are indeed equal.

Proof of Corollary, (a) This follows from Theorem B and Blass' results [3,
Theorems 12, 13]. The well-known inequality add(^#) ^ b is due to Miller [7].

(b) The consistency of add {M) < b is well known (it holds, for example, in the
Mathias or Laver real models). For the consistency of add (if) < se, see [3] (in
particular, [3, Theorem 9]). The consistency of se < add(^) follows from Theorem
B and [4, Theorem A].

(c) This is immediate from Theorems A and B.

A set of reals predicted by a single predictor is small in various senses; it belongs,
in particular, to both Ji and <£. This motivates us to introduce the cr-ideal # on of
generated by such sets of reals (see [4, Section 4] for more on this). Clearly, the
uniformity of # (that is, the size of the smallest set of reals not in, /) is closely related
to the evasion number. In fact, e ^ e(co), where e(«) denotes the former cardinal. We
shall show in Section 3 that these two cardinals are equal under some additional
assumption, thus giving a partial answer to [4, Section 6, Question (4)].

The results of this work are due to the second author. It was the first author's task
to work them out and to write the paper.

NOTATIONAL REMARKS. A p.o. P is o-centred if and only if there are Pn £ P
(neco) so that P = (JnP

)
ra, and given new, F £ Pra finite, there is peP extending

all q e F. P-names are denoted by symbols like h,ii,D,..., | stands for divides, and X
means does not divide.

Acknowledgement. The first author thanks the Wroclaw logic group for
several discussions about the material presented here.
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EVASION AND PREDICTION II 21

1. Proof of Theorem A

1.1. We shall use a finite support iteration of ccc p.o.s of length K (where K ^
co2 is a regular cardinal) over a model V for CH to prove the consistency of e > b. In
fact, in the resulting model, b = co1 and e = K. We start with defining the p.o. P that
we want to iterate. Notice that it is quite similar to the one used in [4, 4.3] for
predicting below a given function.

(d,n,F)eP <=> de2<co is a finite partial function,
n = (nn; ned^dl})} and nn: con -+co
is a finite partial function,

F ̂ caP is finite and (J^geF^ max{«;/T« = gr«}< M).

The order is given by

<</',rc',/"> ^ <</,7i,i7) o </' 2 d, 7r' 2 7r, F ' 2 f and

(in particular, 7r^(/f«) is defined).

Notice that we use the convention that stronger conditions are smaller in the p.o. The
first two coordinates of a condition are intended as a finite approximation to a generic
predictor; the third coordinate then guarantees that functions are predicted from
some point on. Thus is is straightforward that P adjoins a predictor which predicts
all ground-model functions. Hence iterating P increases e.

Furthermore, P is cr-centred (and thus in particular ccc). To see this, simply notice
that conditions with the same initial segment in the first two coordinates are
compatible.

So it remains to show that b = co1 after iterating P. For this it suffices to show the
following:

whenever G e W is an unbounded family of functions from co to co,
and P e W is the p.o. defined above, then (*)

Ihp ' G is unbounded'.

Using (*) we can show that of n V is still unbounded in the final model: (*)
guarantees that it stays unbounded in successor steps of the iteration, and one of the
usual preservation results for finite support iterations (see, for example, [6, Theorem
2.2]) shows that it does so in limit steps of the iteration as well. Now V\= CH; hence
of D V is an unbounded family of size co1 in the final model.

To start with the proof of (*), let h be a P-name for a function in of. For each
Je2<£0, n = (nn; ned~\{\}y) an initial segment of a predictor (as in the definition of
P), kea> and/* = (f*ecow; t < fc>, we define h = hdnf-*e((o+\)m by

h{n) := min{w ^ co; for no/?eP with/? = <</,n,F>, F = {/,; / < k)J(\\d\ = /* ,
do we have p lhp' h\ri) > m'}.

1.2. MAIN CLAIM, he of.

1.3. Proof of {*) from the Main Claim. Let h*£of such that for all d, n,f* as
above, we have hdnfi, ^ * h*. As G is unbounded, we can find/e G such that there are
infinitely many n with f{n) > h*(n). We claim that lhp' 3°X/(H) > /*(«))''. This will
show (*).
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22 JORG BRENDLE AND SAHARON SHELAH

Assume that meco and pe P are such that

Find d,n,f* such that p = <d,n,F\ where F={f,;f<k} and ft\\d\ =/?. Find
n^-m such that j\ri) > h*(ri) and h*(n) ̂  hdnf-t(n). Then

contradicting the definition of hd n /-*.

1.4. iVoo/ o/ f/ze Maw Cto/m (1.2). Let d, n, k, / * = </*; ̂  < k} be as above
and let neco be fixed. Now assume that we have pt = (d,n, {J); *f < k}} with
fi,[\d\=f* znd

pi\\-p
tfi(n)>i\

We shall reach a contradiction. As we can replace </?4; ieco} by a subsequence, if
necessary, we may assume that for all / < k:

either (a), for some g€ e of3 for all / (/) T i: = g,, \ i);

or (b)^ for some ^ e co and g( e co*' (/) \ i{ = g< Affa) > i).

Notice that /̂  ̂  |<i| in the latter case. Let ^* :=^U 0[W max(^.(b)^holds)+1]; that is, the
function d* takes value 0 between \d\ and the maximum of the i(. Put F* := {gy, (a),
holds}. Then clearly p* = (d*,n,F*}eP. Now choose /* and q ̂ p* such that

We shall find / > S* so that q and /?( are compatible; this is a contradiction, because
q and ̂  force contradictory statements.

Assume q = (d9,n9,F9}. Choose / ̂  / * large enough such that:
(A) i>\d%
(B) i ̂  max {max {o(j); a e dom (n9j Ajem};me (d9y\{l})}.

Notice that (A) implies that f) {\d9\ = g( \ \d
q\ whenever (a)^ holds, while / # , ) >

max{max{cr(y); o-edom(Tr^) Ajem}; m€(d9)~\{l})} by (B) in case (b), holds. For
such /, let ql = (d^n^F1}, where

• d* = d9 U 0adC| o), where a is large enough such that all functions in Fl disagree
before a;

• n* 2 n9 such that for all m€OT"1({l})\^"1({l)) and all/* so that (b), holds, we
have

(this can be done because, by (B), i^m was not yet defined for sequences of the

Now we clearly have ^ e P and qi ̂  q. So we are left with checking qx ̂ p v The
inclusion relations are all satisfied. Hence it suffices to see that for all / < k and m €
(dri({l})\d-\{\)), we have

In case (b), holds, this is true by (*). In case (a), holds, we have /)f(m + l) =
g€ \ (m + 1) for all such AW. AS # ̂  p*, we have ^ ( g , |" m) = fl£(g, t /w) = g((m) for such
m, and ( + ) holds again. This completes the proof of the Main Claim.
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EVASION AND PREDICTION II 2 3

2. Proof of Theorem B

2.1. THEOREM, se ^ e.

Proof Let & ^ co™, \&\ < se. By Blass' result se ̂  b [3, Theorem 2], there is
gecom such that for all/eJ5', V°°« (f[n) < g(n)). Without loss, g is strictly increasing.
We let (pn ;neco} be a sequence of distinct primes such that pn > g(n) and pn >
n^<n^- For/eJ*7, let afeoof° be denned by

Let G ̂  ~Lm be the pure closure of the subgroup generated by the unit vectors en,
new, and the apfe3F. Clearly, |G| < se. Hence there is h: G -*• Z, a homomorphism
such that W:={n; h(en) # 0} is infinite.

Let us define

W*:={new; 3i > n (Pi\h(em) whenever me {n + 1,..., /—I} but ptJfh(en))}.

We claim that W* is an infinite subset of W. To see this, first note that trivially
W* £ W, by the clause PiJfh(en). Next, given noeW, find / > «0 so that pt\h{en^.
Then clearly there is n ̂  «0 so that« e PF and pi X h(en) and for all m e {n+ 1,...,/— 1},
Pi\h(em). Thus «e W*. This shows that PF* is infinite.

We introduce a predictor n = {W*, (nn; neW*}) as follows. Given ne W* and
secon so that maxrng(s) < g{n— 1), if there is / e J^ with 5 ̂ / and /(w) < ̂ (w) a n d
\h(af)\ <pn-i, then let nn(s) =f[ri) for some /with the above property. Otherwise,
nn(s) is arbitrary.

We claim that n predicts a l l / e# \ This clearly finishes the proof. Assume that this
is false, that is, there is fe 3F which evades n. Let n e W* be large enough such that
maxrng(f{n) < g(n-\),f{n)<g{ri), \h(af)\ <pn-1 and nJJ\n) #./(«)• Then, by the
definition of it, there must be/'eJ5" with/' \n =f\n,f'{n) < g(ri), \h(ar)\ <pn-1 and
nn{f'\n) =f\n) *M- Now for ke{ff'}, we let

where / witnesses that ne W*. So we have ak = a°k + al + a2
k + al. Thus

h{ar - af) = h(a°f, - a°f) + h{a), - a}) + h(a). - aj) + h(a3
f, - a% (•)

Clearly, h(a^ — a°f) = h(0) = 0. 'Next,piY\^nPt divides h(a3
r — a}) by definition of the

ak; it also divides h(aj, — aj) by definition of the ak and because pt \ h(em) for m e {n + 1,
...,/— 1} as i witnesses n e W*. Thus (*) yields the equation

h(ar-af) = h(a},-a}) inZ/Qy ]!/>/)*• (*•)

The right-hand side in (**) must be non-zero, becausePiJfKen) (as /witnesses ne W*)
andpt)({ar{n)-a/«)) = fL<»^'(/'(«)"-/(«)) (as/'(«),/(«) < g(«) <̂ />« ̂  A)- How-
ever, it certainly is divisible by Y[^ nPn-> whereas the left-hand side in (**) is not unless
it is zero (as 1 (̂̂ )1, \h{af)\ < pn_x < pn). This shows that the equation (**) cannot
hold, the final contradiction.
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2 4 JORG BRENDLE AND SAHARON SHELAH

Note that this result improves [4, Theorem 3.2].

2.2. LEMMA, e, ̂  min{e,b}.

Proof. Let 3F £ Z", | ^ | < min {e, b}. Find g e co" strictly increasing so that for all
/ e#" , we have | / | < *g, where | / | («) = |/(n)|. We partition co into intervals /„, neco,
so that max(/n)-(-1 = min(/ra+1), as follows. IQ = {0}. Assume In is defined; choose
In+1 so that | / n + 1 |>[2-g(max(/n))p-^. Fo r / e iF , define / by M :=ft /„, and
let & = {f\fe&). Use | ^ | < e to obtain a single predictor n = (D,(nn;
neD}) predicting all the / e # . For neD, let r n :=rng(nn\(-g(max(In_J),
g(max (/n_1)))

u<<»/0 n Z7». So |FJ < |/J; hence for some in e In, the vector xin = </(/„);
/eFn> depends on the vectors {jc4 = <f(/); ?eFra>; min(/J ^ / < / „ } . Say Jct =
Hmin(/B)<i<<n̂ r̂ <> where q?eQ. In particular, for fixed /eFn, we have t(ij =
£min(/n)«i<in#r?(0- This allows us to define a linear predictor n = {D,(nn; neD})
with D = {in; neco} and nin(s) = £mln(/ )<<<i q"s(j). Note that if «e<y is such that
maxrw^(|/|TUi<nA) <^(max(/„_!)) and fin(f\n) =Rn), then nin(f\in) =ftin).
Hence, as n predicts al l /e J5", TT predicts all/e J5".

2.3. Clearly, Theorem B follows from Theorem 2.1, Lemma 2.2 and Blass'
results e, ̂  se ^ b [3, Theorem 2, Corollary 8, Theorem 10].

2.4. DEFINITION. Given D £ co infinite and a = <ane[a>]<n; neD}, the slalom
So is the set of all functions/in co" withy(/z)eara for almost all neD.

Using this notion we can give a combinatorial characterization of the cardinal
e, = se.

2.5. LEMMA. min{e, b} = min{|#"|; 2F ̂ af and for all D ̂ co and a = (ane
[co]<n;neD) there isfe3?\S%).

NOTE. It is immediate that the cardinal on the right-hand side is larger than or
equal to the additivity of Lebesgue measure add(j£f), by Bartoszyriski's charac-
terization of that cardinal [1, 2]. We also note that the original proof of add (if) ^
add (M) [1] shows, in fact, that this cardinal is ^ add {JC) as well. This gives an
alternative proof of Blass' min{e, b} ̂  add(y#) [3, Theorem 13].

Proof. ' ^ '. By Theorem B, it suffices to show that i( is larger than or equal to
the cardinal on the right-hand side. However, this is exactly like Blass' original proof
of add(«5f) ^ e, [3, Theorem 12], and we therefore leave details to the reader.

' ^ '. This argument is very similar to the one in Lemma 2.2. So we just stress the
differences.

Take 3F <^cow, \!F\ < min{c, b}. Find g strictly increasing and eventually
dominating all functions from 3F. As before, partition co into intervals /„, neco; this
time we require that in+1:=g(max(/J)^«»|7ile/n+1. f, 3F and n, D are defined as
before.

We put D:={in,neD) and ain = {ftn(s)(Q; 56g(max(/n_1))U««/«}e[«]^S and
leave it to the reader to check that J5" £ S%.
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EVASION AND PREDICTION II 25

2.6. The notion of linear predicting can be generalized as follows (see [4, Section
4] for details). Let K be an at most countable field. A IK-valued predictor n =
(Dn, (nn; n e Dn}) is linear if and only if all nn: K

n -> K are linear. cK is the correspond-
ing linear evasion number. We easily see eQ = ie. Rewriting the proof of Lemma 2.2 in
this more general context gives eK ̂  min{e, b} for arbitrary IK and eK ̂  e in case IK
is finite. As ê  ̂  b for infinite IK [4, 5.4], we obtain eK = min{e, b} for such fields—in
particular, all tK for IK a countable field are equal. We do not know whether this is
true for finite IK. Note that eK > e, b is consistent for such fields [4, Section 4].

3. Some results on evasion ideals

3.1. DEFINITION. We say that a predictor n = (D,(nn;neD}) predicts a
function feof3 everywhere if nn{f\ri) =f[n) holds for all neD. We put e(o>) :=
minflJ^I; J5" £ of A for all countable families of predictors II there is/eJ5" evading
all nell}, the uniformity of the evasion ideal / . As usual, cov(y#) denotes the
covering number of the ideal Jt, that is, the smallest size of a family $F <=, Jt so
that (J & = oT.

3.2. OBSERVATION. Assume that (Dn\ neco} is a decreasing sequence of infinite
subsets of OJ, and <jin = (Dn,(jil; keDn}); new} is a sequence of predictors. Then
there are a set D ̂  <y, almost included in all Dn, and a predictor n = (D, (jtk; keD})
predicting all functions which are predicted by one of the nn.

Proof. We can assume that each function which is predicted by some nn is
predicted everywhere by some nm—otherwise, go over to sequences <isn; «6co> and
<7T = (En, <nl; keEn}); neco} such that (i) for all neco there is meco so that Em s
Dn and n% = nn

k for keEm, and (ii) for all n,meco there is /eco so that Ee £ En\m
and 7?k = n% for keEe.

Choose dneDn minimal with dn > dn~x, and put D = {dn; neco}. Fix neco and
secodH. To define ndn(s), choose, if possible, / < n minimal so that for all keDi D dn,
we have nk(s{k) = s(k), and let ndn(s) = n^s). If this is impossible, let ndn(s) be
arbitrary.

To see that this works, take feof3 and ieco minimal so that n1 predicts /
everywhere. As the set of functions predicted everywhere by a single predictor is
closed, there are n~^i and seco&n so that s ̂ / a n d s is not predicted everywhere by
any of the nj where j < i. Then ndm(f\ dm) = ndm(J\ dm) for all m ̂  n, as required.

3.3. THEOREM, C ̂  min{e(co),cov(^#)}; thus either c<cov(^#) or t(co) ̂
imply e = e(co).

REMARK. The statement is very similar to a recent result of Kamburelis, who
proved s ̂  min {S(G;), COV (J£)}, where s is the splitting number and s(w) the Ko-
splitting number.

Proof. The second statement easily follows from the first. To prove the latter, let
& £ cow, \&\ < min{e(a)),cov(^)}. We shall show \&\ < e. For o-eco<lo\{( >}, we
construct recursively sets D" ̂ co and predictors if = (Da, (jfn; neD"}) such that:

(i) IT** ̂  £P for ie\a\;

(ii) for all/eJ5" and all ae co<co, there is ieco so that / i s predicted by 7f"<iy.
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26 JORG BRENDLE AND SAHARON SHELAH

First construct 7r<f> = (/><*>, <7r<°; «e/)<*>» satisfying (ii) by applying \&\ < e(a>).
To do the recursion, assume that na = (Da, (jfn\ neD"}) is constructed for some

fixed (J€co<co. Givenfeof, define f by

where {k[\ ieco} is the increasing enumeration of the set D". Let IF" = {fa;fe^}.
Again we obtain co many predictors TF^ = (Da<i>, <7r£<0; neDo<i>}), ieco, so that
every f°e&a is predicted by some ;?<*>. Let DaXi> = {Jq;jeD"'<i>}. Fix jeDa<i> and
s e <afc?. Let s~e &y be defined by si/) = s(k%). Put rfj^is) := ̂  <O(S). Now it is easy to see
that 7ra<i> predicts/whenever i?^ predicts/*7. Thus (i) and (ii) hold. This completes
the recursive construction.

Given fecom, let Tf = {aeco<t0; for all i^\a\ {ifn does not predict /)}.
By the above construction, the sets [7̂ ] are nowhere dense for / e#" . As |#"| <
cov(^#), there must be geft/°\|J/6ir[7^]. Now use Observation 3.2 to construct a
new predictor from the (n9[n; neco) which will predict all/eJ*\

3.4. It is unclear whether e = t(co) can be proved in ZFC. In view of Theorem
3.3, it seems reasonable to ask first the following.

QUESTION. Is c > cov(^) consistent?

Of course, we may also consider the cardinal e/ft>), the smallest size of a family
SF of functions from co to co such that no countable family of linear predictors predicts
all /e#". However, it is now easy to see that ^(co) = tr This is so because t^{co) ^
min {t(co), b} ̂  min {e, b} ̂  t(. To see the first inequality, note that the argument for
e, ^ b gives e,(o>) ^ b as well (see [4, Section 5.4] for a stronger result); for the second
inequality, min{e(&>),b} ̂  cov(^#) by rewriting Blass' min {e, b} ̂  cov (J{) [3,
Theorem 13] and thus min{c(o)),b} = min {e(ca), cov {M), b} ̂  min{e,b} by Theorem
3.3; the third inequality is Lemma 2.2.

3.5. DUALITY. Most of the cardinal invariants of the continuum come in pairs,
and results about them usually can be dualized (see [4, Section 4.5] for details). In our
situation, the dual cardinals are: the dominating number b (dual to b), the smallest size
of a family IF ^co™ such that given any geco01 there is /e#" with g ^ */; the (linear)
covering number cov (#) (cov ($)) of the ideal / ($) (the first being dual to both e
and e(ft>), the second being dual to e,), the least cardinality of a family of (linear)
predictors II such that every function fecow (Zw) is predicted by some 7rell. Then we
obtain the following.

THEOREM, (a) It is consistent with ZFC to assume b > cov
(b) cov(^) = max {cov (f), b} = min fl^l; £f consists of slaloms S% where a =

<ane[co]<n; neD> and D ^ co is infinite and \ffecom 3Ss
De^ V°°«eZ) (J{n)ean)}.

Proof. These dualizations are standard, and we therefore refrain from giving
detailed proofs. The model for (a) is obtained by iterating the p.o. IP from Section 1
cox times with finite support over a model for MA + -> CH. (b) is the dual version of
Theorem B and Lemma 2.5.

We close our work with a diagram showing the relations between the cardinal
invariants considered in this work (in particular, the Specker-Eda number se and the
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EVASION AND PREDICTION II 27

evasion number e) and some other cardinal invariants of the continuum (in particular,
those of Cichori's diagram). We refer the reader to [3], [4] or [5] for the cardinals not
defined here. A similar diagram was drawn in [4, Section 4].

cov (if)

add (if)

\unif (M) cof (Jt) cof (if)

unif (if)

In the diagram, cardinals increase as one moves up and to the right. To enhance
readability, we omitted the relations c < unif (if), and its dual cov (if) ^ cov(/).
The dotted lines give the relations add (Jf) = min {b, cov (-#)}, se = min {c, b}, and
their dual versions.
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