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ON A CONJECTURE REGARDING NONSTANDARD
UNISERIAL MODULES

PAUL C. EKLOF AND SAHARON SHELAH

Abstract. We consider the question of which valuation domains (of cardinal-

ity K[) have nonstandard uniserial modules. We show that a criterion conjec-

tured by Osofsky is independent of ZFC + GCH .

Introduction

The story of the study of nonstandard uniserial modules is a long and interest-

ing one, which we outline only briefly here; the reader may consult [BS1], [FS],

or [02] for more information. The existence of nonstandard uniserial modules

over some valuation domains was first proved by the second author [Sh], by

forcing a model of ZFC with a nonstandard uniserial module, and then using a

completeness theorem for stationary logic to show that such examples exist in

all models of ZFC, i.e., the existence is a consequence of ZFC. Then Fuchs and

Salce [FS] constructed nonstandard uniserial modules using the diamond prin-

ciple, which is consistent with ZFC. Fuchs noticed that a nonstandard divisible

uniserial module could be used to construct an affirmative answer to Kaplan-

sky's question whether there is a valuation ring which is not the quotient of a

valuation domain. Fuchs and Shelah [FSh] used the compactness theorem for

the logic with quantification over branches to give another proof that divisible

nonstandard uniserials exist in all models of ZFC. The first author [E] elabo-

rated on this argument to give a general transfer principle that, for example,
showed that various different classes of nonstandard uniserials constructed by

Bazzoni and Salce [BS1, 2, 3] using <0> existed in all models of ZFC.
Now this use of theorems from mathematical logic did not bother the second

author; he was happy if algebraists had to learn logic! However, in this view he

was probably a singleton among those interested in the problem. Aside from

eliminating the methods of logic from the proof, the hope was that a more

explicit proof would give more information, e.g. an understanding of exactly
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338 P. C. EKXOF AND SAHARON SHELAH

which valuation domains had nonstandard uniserial modules. Osofsky [Ol, 2]

was the first to give a concrete construction (in ZFC) of valuation domains with

nonstandard uniserials. She ventured a conjecture [01] as to which valuation

domains had nonstandard uniserials; we will state it below in a modified form.

It is a principal result of this paper that, while this conjecture is correct assum-

ing V = L (the Axiom of Constructibility), it fails in some other models of

ZFC + GCH. Thus, it seems, logic cannot be expelled from the subject!

It is well known that if R is "complete" in some sense (e.g., almost maxi-

mal), then there are no nonstandard uniserial Ä-modules. Here we introduce a

couple of invariants ("Gamma invariants") of a ring whose values are station-

ary subsets of co i—or, more precisely, equivalence classes of stationary subsets

under the equivalence relation of equality on a closed unbounded subset. These

invariants can be viewed as measuring (the lack of) "completeness" of the ring.

Some results about implications between the values of these invariants and the
existence of nonstandard uniserials are proved in ZFC, but other implications

are shown to be independent of ZFC.

We would like to thank Luigi Salce and Silvana Bazzoni for helpful com-

ments.

Preliminaries

An i?-module U is called uniserial if its submodules are totally ordered by

inclusion. An integral domain R is a valuation domain if it is uniserial as an

i?-module. Throughout, R will denote a valuation domain and Q the quotient

field of R ; we assume Q ^ R. The uniserial modules we consider will always

be generated by (at most) Ni elements, and most of the time R will be of

cardinality Ki . R* denotes the set of units of R . The residue field of R is

defined to be R/P, where P is the maximal ideal of R.
If J and A are J?-submodules of Q with A ç J, then J/A is a uniserial

Ä-module, which is said to be standard. A uniserial Ä-module U is said to be

nonstandard if it is not isomorphic to a standard uniserial.

Given a uniserial module U, and a nonzero element, a, of U, let Ann(a) =

{r £ R: ra = 0} and let D(a) = \J{r~lR: r divides a in U} . We say U is of
type J/A if J/A = D(a)/ Ann(a). This is well defined in that if b is another
nonzero element of U, then D(a)/ Ann(a) = D(b)/ Arm(b). For example, U

has type Q/R if and only if U is divisible torsion and the annihilator ideal of

every nonzero element of U is principal. (But notice that there is no a e U

with Ann(iz) = R.) It is not hard to see that if U has type J/A, then U is

standard if and only if it is isomorphic to J/A .

Suppose U has type J/A and there exists a ^ 0 in U such that A = Ann(a)

and J = D(A). Then

(*) /= U rv{R
V<U>\

for some sequence of elements {r„ : v < co\) such that for all n <v , r^r^ . If

J is countably generated, then U is standard, so generally we will be assuming

that J is not countably generated; then it has a set of generators as in (*),

where, furthermore, rv does not divide rß if ß < v, i.e., r~xrß is not a

member of R . Note that if av e U such that rvav = a, then Ann(a„) = rvA ,
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NONSTANDARD UNISERIAL MODULES 339

so avR (C U) is isomorphic to R/rvA = R/(A: rvxR). If ô G lim(a>i) and

(**) Js = u r;lR
i/<S

then the submodule of U generated by {av: v < 5} is a module over

R/(A:Js) = R/C[v<srvA.

Definition 1. A subset C of co\ is called a cub—short for closed unbounded

set—if sup C — a>\ and for all Y ç C, sup Y e co\ implies sup Y e C.

Call two subsets, Si and S2 , of o)\ equivalent iff there is a cub C such that

Si n C = S2 n C. Let 5 denote the equivalence class of S. The inclusion

relation induces a partial order on the set, D(co\), of equivalence classes, i.e.,

5i < S2 if and only if there is a cub C such that S¡ n C ç S2 n C. In
fact, this induces a Boolean algebra structure on D(«i), with least element, 0,

the equivalence class of sets disjoint from a cub; and greatest element, 1, the

equivalence class of sets containing a cub. We say 5 is stationary if S ^ 0, i.e.,

for every cub C , C DS ^ 0 . We say S is costationary if «1 \S is stationary.

Given R and a type J/A , define Tr{J/A) to be S, where

5 = {a e lim(oii): i?/(.4 : /á) is not complete}

where the topology on R/(A : Js) is the metrizable linear topology with a basis

of neighborhoods of 0 given by the submodules rvA [y < Ô). TR(J/A) is
well defined in the sense that it does not depend on the choice of the sequence

{rv : v < œ 1}, because of the following, which is proved by a standard argument

(cf. [EM, pp. 85ff]).

Lemma 2. If J = |J„<tBl r~xR and also J = \JV<(JH s~lR, then {ô : f]a<s raA =

Ç\a<ssaA) is a cub.

Note that YR(J/A) = 0 if / is countably generated.
If J/A S J'/A', then TR{J/A) = TR{J'/A'), but in general TR(J/A) and

rR(J'/A') will be different for different types J/A and J'/A'. For example,
if R, A and J are as in Example 2 of [BS1, p. 302], then YR{J/A) = 1,
but Yr{Q/A) — 0 (since Q is countably generated). Note that if R is almost

maximal, then YR(J/A) = 0 for all types J/A .
In proving results about the existence or nonexistence of nonstandard unise-

rial modules it will be convenient to make use of the formulation of the problem

given in [BS1], especially Lemma 1.2 and Test Lemma 1.3. Thus any uniserial

module U of type J/A is described up to isomorphism by a family of units,

{eTa : a < x < co\] such that

(t) e*e¡ -eôae raA

for all a < x < ô < co\ .
Moreover, if U is given by (f), then U is standard if and only if there

exists a family {ca : a < co\} of units of R such that

(tt) c-c - e\ca e raA

for all a <x <tü\ .
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340 P. C. EKLOF AND SAHARON SHELAH

Salce has pointed out that by results of [BFS], the question of the existence of

a nonstandard uniserial Ä-module of type J/A can be reduced to the question

of the existence of a nonstandard uniserial of type K/R for an appropriate K .

The conjecture

We can paraphrase the conjecture of Osofsky in [Ol, p. 164], for valuation

domains R of cardinality Ni, as follows:

R has a nonstandard uniserial of type J/A if and only if YR(J/A) = 1.

Now, assuming CH (and the Axiom of Choice), it is possible to construct a val-

uation domain R of cardinality Ni suchthat YR(J/A) ^0, 1 (see Definition

10 and the proof of Theorem 11). Thus the condition "YR(J/A) = 1" cannot

be necessary, because of the following result which implies that it is consistent

with ZFC that there is a nonstandard uniserial /?-module of type J/A for such

an R. Note that Ow, (S), for any stationary S, is consistent with ZFC; in fact

it is implied by V = L (cf. [D, p. 139]).

Proposition 3. Assume^ R has cardinality Kj .

(i) If YR(J/A) = S, then Ow, (5) implies that there exists a nonstandard

uniserial R-module of type J/A.
(ii) If Y(J/A) = 1, then CH implies that there exists a nonstandard uniserial

R-module of type J/A.

Proposition 3(i) is essentially due to Fuchs and Salce [FS]; it can be proved,

for example, by a straightforward generalization of the proof of Theorem 1.4

of [BS1], but for later purposes we will sketch the proof of a somewhat stronger

result here. We begin with a lemma which, in one form or another, is a staple

of the subject; its statement and proof, in our chosen notation, we include here
for the sake of completeness.

Lemma 4. Suppose {el : a < x < ô} is a family of units satisfying (f) and

R/ Ç\v<a rvA is not complete. Then there are units esa {a < ô ; 7 = 0, 1 ) such

that

eôr,jel-eijGraA

for all a < x and ;'e{0, 1}, but there is no sequence {ca : a < 6} for which

there are c¿j € R* (j = 0, 1) such that (ft) holds for all a < x < ô and

moreover

cS,j ~ £<j,jCo S Tg A

for all a <8 and j e {0, 1} .

Proof. Let e&a 0 be any family of units such that eôa 0 - e^ 0el e r„A for all

a < ô. Let (va : a < 0} represent a Cauchy sequence in R/ f\v<s rvA which

does not have a limit in R/ (~}„<s rvA . Let eôa x - vaesa 0. Then it is easy to

check that e6a x - e\ xexa e raA for all a < S . Moreover, if the conclusion of

the lemma is contradicted by {ca : a < ô} and Q,o, Q,i, then cs,\Cjl0 is a

limit of (va : a < S), which is impossible.    D

Proof of Proposition 3 (sketch). In fact we will prove that, under the hypotheses

on R, Oa,, (S) implies that there exists a nonstandard uniserial .R-module of
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NONSTANDARD UNISERIAL MODULES 341

type J/A. (This generalizes the result in [FrG].) Here &W¡(S) is the weak

diamond principle which is implied by ^w, {S) (see, for example, [EM, VI. 1.6]).

In [DSh] it is proved that CH implies $W|(wi), so part (ii) follows.

Write R as the union, R = \JV<0) Rv , of a continuous chain of countable

subsets. For each â e S, define a function P¿ on pairs (e, c) where e = {el :

a < x < ô} ç Râ, c = {ca : a < 5} ç R& as follows. If e satisfies (f), let

{e&a j; : a < ô} (j = 0, 1) be as in Lemma 4; if e and c satisfy (ft) and there

is Co e .R* such that c$ - e&a 0ca e /■„/! for all ct < ô, let /^(e, c) = 1 ; in

all other cases let P¿(e, c) = 0. Let p: S —> 2 be a weak diamond function

(which predicts the values of the Pg). Now define the el by induction. The

crucial case is when S e S and e = {el : a < x < ô} is contained in Rg ; in

this case let e$ - eôa ,s,. After completing the inductive construction of the

el for all a < x < a>\, notice that for any sequence {ca : a < co\}, there is a

cub C such that for all S e C, el e Rg and ca e Rg for all a <x < ô . Then

the construction and the properties of the weak diamond function imply that

there is no sequence {ca : a < co\) satisfying (ff).   □

The condition YR(J/A) ^ 0 is certainly necessary for the existence of a

nonstandard uniserial .R-module of type J/A, as the following easy lemma
shows.

Lemma 5. If YR(J/A) = 0, then every uniserial R-module of type J/A is stan-
dard.

Proof. Without loss of generality, we can assume that for all limit S, R/{A : Jg)

is complete. Given {el : a < x < to\] as in (f), we define the units ca

satisfying (ff) by induction on a. If ca has been defined, let ca+\ = e"+lca .

For a limit ordinal ô , consider the Cauchy sequence in R/(A : Jg) represented

by the elements (e6aca : a < ô) ; this sequence has a limit which is represented

by a unit of R, which we call eg .   D

Thus we end up with the following reformulated version of the conjecture:

For any valuation domain R of cardinality Ni, R has a non-

($)       standard uniserial module of type J/A ifand only if YR( J/A) /
0.

Theorem 6. Assuming V = L, this conjecture is true.

Proof. In fact, this follows from Proposition 3 and Lemma 5 since Gödel's

Axiom of Constructibility, V = L, implies <0><y, (S) for all stationary S.   U

Thus the conjecture is consistent with ZFC, and in fact with ZFC + GCH,

since V = L implies GCH.

Another Gamma invariant

Let R be a valuation domain of cardinality Kf and /, A as before. For

any limit ordinal 6 < co\, let

■JjS/a = {(ug '-o <ô):^a <x < ô(ua G R*, and ur - ua e raA)} ;

that is, ^j&,A consists of sequences of units which are Cauchy in the metrizable

topology on R/(A : Jg). Let 2ff,A consist of those members of ¿rfIA which

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:422



342 P. C. EKLOF AND SAHARON SHELAH

have limits in R, i.e.,

&f/A = {(ua :o<ô)e f//A: 3us e R* s.t. Vct < 6{us - ua g raA)}.

Note that YR(J/A) = S where

S = {Selim(tol):^//A¿5ff/A}.

We will be making use of an co\-filtration of R by subrings, by which we

mean an increasing chain {Na : a G co\] of countable subrings of R such that

R = LU«, Na ; and for limit a,  Na = \Jß<a Nß .

Definition.  Y'R(J/A) — È' where

E' = {ôe lim(töi): 3{ua : a < S) G &?IA s.t. V(/„ : a < ô) G S?f¡A

3a < S S.t. Uafa <£ Ng}

= {ôe lim(ûJi ) : 3{ua : a < ô) e J}s/A s.t. VfeR*3a<ô

s.t. uaf $. Ng mod rCT^4}.

As before, by standard methods it can be shown that the definition does not

depend on the choice of {r„ : u < a>\} or of {Na : a < to\}. (Here it is

important that the yVQ are countable.) Notice that Y'R(J/A) < YR(J/A) since

if !TjS,A = S?j,A, then we can let (fa : a < a) be {u~x : a < ô) to show

ô £ E'. We will prove below that the condition YR(J/A) ^ 0 is not (provably

from ZFC) sufficient for the existence of a nonstandard uniserial of type J/A ;

however, we do have the following theorem of ZFC.

Theorem 7. If Y'R(J/A) ^ 0, then there is a nonstandard uniserial R-module.

Proof. Let E' be as above. It may be helpful to regard the following as a
<0>(£"')-like argument carried out in ZFC, where the Ng (S e E') serve to give the

predictions. We will construct the el {a < x < a) satisfying (f) by induction
on â so that for every ô e E',

, „,       there is no sequence of units {ca : a < 5} ç Ng such that there

exists eg G R* with eg - e6aca G raA for all a < ô .

Suppose we can do this. We claim that the uniserial module given by the

el is nonstandard. Indeed if not, there exists {ca : a < co\) as in (ft) ; then

there is a cub C such that for all 5 G C, ca G Ng if a < ô ; but then the

construction is contradicted since C nE' is nonempty.

The definition of the el is routine except for the case when ô G E' and we

are defining eàa assuming the el have been defined for o < x < ô . First choose

any elements ëàa so that {el : a < x < ô} U {ë&a : a < S} satisfies (f). If (#) is

true, then we can let esa = ë&a . Otherwise, we have (da '■ o < ô) C Ng such that

there exists dg G R* with

dg - ëàada G raA   for all a < 6.

Let (ua : a < ô) be as in the definition of E' (i.e., there is no / G R* such that

for all fj < ô,  uaf G Ng mod raA). Let ea = uaëôa . We claim (#) is satisfied.

Suppose not; let {ca : a < ô} ç Ng such that there exists eg G R* with

eg - eôaca G raA   for all a < ô.
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NONSTANDARD UNISERIAL MODULES 343

Let / = Cj ' dg . Fix a < S and let = denote congruence mod raA. Then

we have cs = esaca = uaësaca and dg = daësa , so f = u~xc~x da. Thus u„f =

c~x d„ G Ng , a contradiction of the choice of (ua : a < ô).   n

While the condition Y'R(J/A) ^ 0 is thus sufficient for there to be a nonstan-

dard uniserial .R-module of type J/A , we shall see later (Corollary 15) that it

is not necessary.

Let us say that a type J/A is essentially uncountable if for every v < co\

there exists p > v such that rvA/rßA is uncountable. This will be the case, for

example, if R has uncountable residue field, J is not countably generated and

A = R.

Theorem 8.  (Ni < 2N°) If R is a valuation domain of cardinality Ni and J/A

is essentially uncountable, then there is a nonstandard uniserial R-module of

type J/A.

Proof. It suffices to prove that Y'R(J/A) ̂  0 ; in fact we will show that Y'R(J/A)

= 1. Without loss of generality we can assume J = \Ju<a} r~xR where for all

v < co\, rvA/rv+\A has cardinality Ni . Let R = \Ja<(0 Na be an &>i-filtration

of R by subrings. Let ô be a limit ordinal. Choose a ladder on S, i.e.,

a strictly increasing sequence y„ (n e co) whose limit is ô. We will define

by induction on n G co a unit un for each n e "2—the set of all functions

from n = {0, 1, ... , n - 1} to 2 = {0, 1}—such that un - un^ G rlkA for

all k < n. If uv has been defined and t]¡ G <"+1)2 such that n¡ \ n = n
and rji{n) = i (i = 0, 1), then we choose un¡ congruent to un mod r7nA and

suchthat umu~x £ Ng mod rïn+i A. This is possible since Ng is countable

and rïnA/ryn+]A is uncountable. (Indeed, choose a e A such that r7na ^

y - 1 mod r7n+lA for any y G Ng; then let um = un and um = (1 + ryria)un.)

Thus for each of the 2N° elements of Ç of "2, we have a different family

{u^„ : n e co). We claim that for at least one Ç there is no / G R* such

that for all k, u^kf G Ng mod rnA—which will show ô $ E'. Indeed, if

there were no such Ç, then since R* has cardinality Ni < 2N°, there would be

Co t¿ Ci and / satisfying

uij]kf G Ng     modr,,^

for all k G co and /' E {0,1}. Let n be such that Co Í " = Ci \ n but
Co(«) # Ci(") • It is then easy to obtain a contradiction of our construction of

um (i = 0, 1) if we let ?7 = Co Í « and ^ = C/ Í (« + 1).   O

Corollary 9. Let R be a valuation domain of cardinality ^ . // J/A is es-
sentially uncountable and YR(J/A) — 1, then there is a nonstandard uniserial

R-module of type J/A.

Proof. If CH holds, this is by Proposition 3; if CH fails this is by Theorem

8.   D

We will deal with the essentially countable case in a later paper; in fact,

Corollary 9 can be proved without the hypothesis of essential uncountability,

but this requires a different construction in the essentially countable case. This
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344 P. C EKLOF AND SAHARON SHELAH

means that Osofsky's original conjecture is vindicated for "natural" valuation

domains, where YR(J/A) has to be either 0 or 1.

A CONSTRUCTION OF NONSTANDARD UNISERIALS

As an application of Theorem 7, we will show how to construct nonstandard

uniserials (of type Q/R) in ZFC over certain concretely given valuation domains

R. (This may be regarded as a generalization of [02] in that we define such

R with any given nonzero value for YR(Q/R).) We borrow an idea from [02]

(the definition of u„) in order to show that Y'R(Q/R) > 0. First we define the

ring.

Definition 10. Let G be the ordered abelian group which is the direct sum

®Q<UJ TLa ordered antilexicographically; that is, YLa naa > 0 if and only if

nß > 0, where ß is maximal such that nß ^ 0. (This is the group used in [FS]

and [02] and denoted r(eui) in [BS1, §3]). In particular, the basis elements

have their natural order and if a < ß, then ka < ß in G for any k G Z.)

Let G+ = {g £ G : g > 0} and for each y < co\, let (7+ be the submonoid

{g G G : O < g < y} of G+ .

Fix a field K of cardinality < Ni and let

R = I ^2 kgX8 '■ kg G K, A a well-ordered subset of G+ > ,

[y€A J
(= K[[G]] ; cf. [FS, pp. 24ff])

i?Q+, = J^XSg^AcG:

and for y a limit ordinal, Ry = \Ja<7 Ra ■

Given an element y = Y^geA^gXg °f -^ > let supp(y) = {g e A : kg ^ 0} ;

let p-supp(y) = {a e coi: 3g e supp(y) whose projection on Za is nonzero}.

If X ç G, then y \ X is defined to be E^nA kgX8 . Let y \ a = y \ {g G

G : g < a}, the truncation of y to a. Note that y G Ra+i if and only if

y=y\a.

For Y C i?, let (r)vai denote the valuation subring generated by Y, i.e.,

the intersection with R of the quotient field of the subring generated by Y.

For any stationary subset S of co\ , let i?s be the subring of R consisting

of all elements y of R such that supp(y) is countable and no member of S

is a limit point of p-supp(y) (in the order topology).

Then Rs is a valuation domain since p-supp(xy_1)Cp-supp(x)Up-supp(y).

The cardinality of Rs is < 2N°.

Theorem 11. (CH) For every field K of cardinality Ni and every stationary

subset S of co i, there is a valuation domain R of cardinality Ni with residue

field K and quotient field Q such that YR(Q/R) = S and there isa nonstandard

uniserial R-module of type Q/R.

Proof. Let R be Rs as defined above. Let ra = Xa , so that Q = \Ja<w¡ r~xR.

First notice that YR(Q/R) > S since for any ô £ S (1 lim(cyi), if yn (n £ co)
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NONSTANDARD UNISERIAL MODULES 345

is a ladder on 3 and y„ is defined to be YH=o Xy' then {yn : n < co} is a

Cauchy sequence in R/(R : Jg) which does not have a limit, since a putative

limit has 3 as a limit point of its p-support. Moreover, YR(Q/R) < S since

for 3 £ S, a Cauchy sequence in R/(R : Jg) will have a limit in R because

3 is allowed to be the limit point of the ^-support of an element of R.

To show that there is a nonstandard uniserial of type Q/R, it suffices by

Theorem 7 to show that Y'R(Q/R) > S. Let us fix an g>i-filtration of R by
subrings, {Na: a £ co\}. Let 3 £ S and let {y„ : n £ co) be a ladder on

3 . Let L be the subfield of K generated by the coefficients of the members

of Ng. Then L is a countable subfield of K so we can inductively choose

t„ £ K\L(t0,...,t„-i). Let ua = 1 +Y!¡Z¿UXy¡ for all a with y„_i <

o < yn- Then clearly (ua : a < 3) £ ^qiR ■ It suffices to show that there is

no f £ R* such that for all a < 3, uaf £ Ng mod XaR. Suppose there is

such an /; by definition of Rs and since 3 £ S, there exists n such that

sup(/?-supp(/ \ 3)) < y„-i ■ Say f \ 3 = J2g<7n_2 kgX8 ■ But then, because of

the properties of the value group—in particular because 2y„-2 < yn-\—we see

that the coefficient of Xy"-' in u7nf is t„-\ko ; similarly the coefficient of Xy"

in Uyn+¡f is t„ko. By assumption, these coefficients belong to L, and we easily

obtain a contradiction of the choice of the t,.   D

Remarks. ( 1 ) The hypothesis of CH was used only to insure that Rs has car-

dinality Ni. The ring defined by Osofsky in [02] has cardinality Ni without
invoking CH, and the proof above applies to it. (It satisfies Y'(Q/R) = 1.)

Bazzoni has pointed out that the proof of Theorem 7 can be adapted to prove

Theorem 11 for the rings Rs, even when Rs has cardinality 2**° > Ni and

so cannot have an co\ -filtration by countable subrings: choose an co\ -filtration

of K by countable subfields La and define Na to be the subrings of elements

whose coefficients come from La .

(2) The main result of [01] is very general in that it deals with arbitrary

types, not just Q/R. Similarly the method of proof of Theorem 11 can be used

to prove, in ZFC, that there exist nonstandard uniserials of many other types
than Q/R, e.g., ones like those given in Examples 1-6 of [BS1, pp. 301-305].

Axiom (S)

As we have observed, Lemma 5 says that the condition YR(J/A) / 0 is

necessary for the existence of a nonstandard uniserial of type J/A. We now

aim to prove that the condition YR(J/A) 9¿ 0 is not provably sufficient if we

assume only GCH (rather than V = L), i.e., the "if direction of the conjecture

fails in some model of ZFC + GCH . By Proposition 3 and Theorem 7, we will

need to consider R and J/A where Y'R(J/A) = 0 and YR(J/A) ^ 1 . Analogies
with the Whitehead Problem suggest the use of the following principle, known

as Ax(5), which has been shown by the second author to be consistent with

ZFC + GCH (and with ZFC+-CH):

there is a stationary and costationary subset S of co\ such that

for all proper posets P of cardinality Ni  which are (<yin-
complete, and for all families 3! of Nj  dense subsets of P,
there is a ü?-generic subset of P.

(See [EM, pp. 170-173] for the necessary definitions.)
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We will be able to prove that in a model of Ax(S) + CH, there exists a

valuation domain R of cardinality Ni with YR(Q/R) = S such that every

uniserial of type Q/R is standard.

Definition 12. For any countable subring N of a valuation domain R of car-

dinality Ni , let

■¥jó/A(N) = {(üa : a < 3) : Vct < x < 3{u„ £ N and ux - ua £ raA)}

where üö denotes the coset ua + raA. Thus ^jS/A{N) consists of sequences

(üa : a < 3) where (ua : a < 3) £ ^}&,A and all the ua belong to N. Usually

we shall abuse notation and write (ua : a < 3) for an element of 3~f,A{N) ; but

notice that «T determines ü~a for all a < x . Let

&f/A(N) = {(Ha :a<3)£ &?fA{N): (ua : a < 3) £ 5ff/A}.

¿7jS,A(N) is given the tree topology, i.e., if u = (üa : a < 3) G ̂ //A(N), a basis

of neighborhoods of u is the family {[«]„ : v < 3}, where [w]„ = {(va : a <

3) £ Fj&¡A(N) :va=Ha for all a < v).

From now on S always denotes the stationary and costationary subset of co\

which is asserted to exist by Ax(S).

Theorem 13." (Ax(S)) Suppose that R is a valuation domain of cardinality Ni

such that YR(J/A) ç S and Y'R(J/A) = 0. Suppose in addition that for some
coi-filtration of R by subrings, R = \Ja€w Na, the following holds for all 3 £ S:

for every open subset U of ^S/A(NÔ),  U n 5ff,A(Ng) is a non-

meager (i.e., second category) subset of ^}â/A(Ng).

Then every uniserial R-module of type J/A is standard.

Proof. Let U be a uniserial .R-module of type J/A given by a family {el : a <
x < coi} as in (f). Let the posét P consist of all sequences p = (pa : a < p)

where p. is a countable ordinal (denoted l(p) and called the length of p) such

that

Ver < T < p(pa £ R*,  and px - ex„pa £ raA).

The partial ordering is the natural one of extension of sequences. In an abuse of

notation we shall write the elements of P as if they were sequences of elements

of R rather than sequences of cosets. Note that P is a tree and has the following

properties:

(i) if p, q £ P, px — qx for some x and c is a sequence of length = l(q) > x,

such that ca = pa (mod raA) for all a < x, and ca = qa (mod raA) for all

t < o < l(q), then c£ P;
(ii) if p £ P and e G R*, then (epa : a < l{p)) £ P.
For each v < co\ , let Dv = {p £ P : p has length > v). Then Dv is dense

in P because given q = (qa : a < p) £ P (where we can assume p < v), define

pa = qa if o < p and pa = (eva)~xe^q^ if p < a < v . Then if a < x < v, one

may easily check that modulo raA ,

pT - elpa s («)-' - el(eva)-l)efo = 0 • efo
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ii p < a < x < v, and similarly if a < p < x < v. Thus {pa : a < v) is an

element of P extending q , so Dv is dense in P.

It suffices then to prove that there is a {Dv : v < w^-generic subset of P;

and for this, given the set-theoretic hypothesis, it suffices to prove that P is an

(<yi\5')-complete proper poset.
Let k be large enough for P ; let W be the cub of all countable elementary

submodels N of (H(k), g, co\ , {el : a < x < co\), R, ...) such that N =

U/ecuM, where M¡ -< Mi+l and M¡ n co\ < Mi+\ n co\. Fix N £ W and let
3 = N n co\ , 31■ = M,; n co\ . To show that P is {co\\S)-complete consider a
chain p° <px <■■■ of elements pn = (pna : a < l{pn)) of P n N such that for

each dense subset D of P which belongs to N there exists n with p" £ D.

For all n there exists m„ such that l(pm") > 3n (because Dgn £ Nn+\). For

each a < 3 ,let Pa = Pa for any m such that l{pm) > a . Then {e„Pa : a <3}

is a Cauchy sequence in R/(A : Jg), so if 3 £ S, it has a limit pg £ R, and

then (pa : a < 3) is a member of P which extends each pn .

So far, we have used just the hypothesis that YR(J/A) < S. To show that P

is proper, we need to use the additional hypotheses on R . Since the intersection

of two cubs in a cub, we can assume, without loss of generality, that N n R =

Ng (the 3th member of the coi -filtration of R given in the statement of the

theorem).

Let q £ F n N ; v/e must find p > q such that p is TV-generic. This is

no problem if 3 <£ S since P is (w\5')-complete, so assume 3 £ S. Choose

d = {da : a < 3) £ P of length 3 and let ua = e$(efi)~x da . Then (ua : a <

3) £ ¿7jô,A . Since Y'R(J/A) = 0 we can assume that there exists (fa : a < 3) £

¿¿?f,A with limit fg so that uafa G Ng for all a < 5. Then, replacing d by

(Cq da fa '■ o < 3), we can assume that da belongs to Ng for all a < 3 (since

?o dgfg - e¡)Uafa ; note that eß g Ng for all a < 3). Also, by (i) and (ii), we
can assume that da = qa for all a < l(q). (Note that l(q) < 3 since q £ N

and JVnwj = 3 .)
Let U be the open subset

{(Ua :a<3)£ r//A(Ng): ua = 1 for a < l(q)}.

Given an element u = (ua : a < 3) of ¿7jö,A(Ng), we will let du denote

(daua : a < 8) ; notice that for all a < x < 3 we have

dxux - el daua — dzux - dxua + dxua - exa daua £ raA,

so du belongs to P. For each dense subset D of P which belongs to N, let

D' = {u £ ^j6¡A(Ng) : du is not an extension of a member of D n N}.

Then D' is a nowhere dense subset of ¿7~//A(Ng) since for any basic open subset

[u]v, we can choose u' = (u'a : a < l(u')) > (daua : a < v) which belongs

to Df\ N, and then (dâxu'a : a < l(u')) determines a basic nonempty open

subset of [u]v which is disjoint from D'. (We are using here the fact that in

the elementary submodule N, D n N is a dense subset of P n N ; moreover

note that (daua : a < v) belongs to ff\N.) Hence by (&), there is an element

w = (wa :a <3) of Un¿2?f,A which does not belong to D' for any DePilJV.

Let uig be such that wg - wa £ raA for all a < 8. Then (dawa : a < 3) is

the desired TV-generic element extending q .   D
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Now the following result shows that the conjecture ($) fails in a model of

Ax(S) + CH.

Theorem 14. (Ax(5) + CH) For any field K of cardinality < N), there is a
valuation domain R of cardinality N( with residue field K and a stationary,

costationary subset S of cox such that YR(Q/R) = S, but every uniserial R-

module of type Q/R is standard.

Proof. Let R be as in Definition 10; it suffices to show there is a valuation

subring R of R of cardinality Nj which satisfies the hypotheses of Theorem

13 for the type Q/R. We let r„ = Xv which will be in R. (Thus Q will be

U„<eo, rvXR ■) For each y e ^i > tet W7 = {y £ R7 : supp(y) is finite and the

coefficients of y belong to the prime subfield oî K).
We will now define by induction on a < co\ a continuous chain {Ya : a <

co\} of valuation subrings of R such that for all a: Wa Ç Ya Ç Ra ; Ya C\R* =

Y*. Moreover, the Ya will be closed under truncation, that is, if y G Ya and

ß < a, then y \ ß £ Yß+i. We will then define R to be the union of the Ya .

First of all notice that each element of ^qiR(N) is uniquely represented by

a sequence u = (ua : a < 8) where for all a < 3, ua £ N, and ux \ a — ua

whenever x > a.   We shall consider these to be the elements of 3qiR(N) .

Moreover, given u = (ua : a < 3) £ ¡T¿jR(Yg), there is a unique element of

Rg+i , which we will denote ug , which represents the limit of (ua : a < 8) in

R/ C\u<g rvR. If ug $ Ys+i , then, by closure under truncation, the sequence

(ua : a < 3) will not have a limit in R. Given a subset Z of ¿7~Q,R(Yg), we

will denote by Zr¿] the set {ug : u g Z} ç Rô+l.

Let T0 = ({l})vai • Suppose that Yß has been defined for all ß < y . If y is
a limit ordinal, let Y7 = \Jb<7 Yß . \{ y = 8 + I and 3 is a successor ordinal,

let Y7 be the valuation subring of R generated by Yg\J\Vö+y . If 8 £ S, let
Yy be the valuation subring generated by Yg together with the ug for each

U£^/R(Yg).
If 8 is a limit ordinal in 5", we must satisfy the hypotheses of Theorem 13

and make sure R/r)v<g rvR is not complete. Let {(A^, <&ß ,Vß): ß < 2N° =

Ni} be an enumeration of all triples such that Nß is a countable subring of

Yg , Vß is a basic open set in ^¿¡¡¿Nß), and <$>ß is the complement of a count-

able union of closed nowhere dense subsets of ^QiR(Nß). (This enumeration

is possible since each ^QiR(Nß) has a countable base of open sets.) Also enu-

merate ^Q/R(Yg) as {ua = (u^ : a < 8) : a < 2N°}. We will inductively define

elements yQ of Rs+l (a < 2K°) and then let Yô+l = (Yô u {ya : a < 2N°})val.

Fix an element c = (ca : a < 3) of ^QiR(Yg) and let eg £ Rs+X be its limit,

as above. We also require that c is chosen so that eg £ Rg . The elements ya

will be chosen with the following properties for all a < 2N° :

(i) if a = Iß + 1, then ya = ug for some u £ <f>ß D Vß ;

(ii) if a = 2ß, then ya = fg for some / = (fa : a < 8) £ ^Q¡R(Yg) such

that uifa G Ws for all a < 8 ;
(iii) c5 i (Yg\J{y7:y <a})wí\.
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Then (i) (resp. (ii)) will imply that (&) holds (resp. Y'R(Q/R) = 0), and (iii)
will insure that R/ ("]„«$ ruR is not complete.

Suppose that yy has been defined for all y < a and that a = 2ß + 1.

Temporarily let R' = (Yg U {yy : y < a})va). We claim that

,. . n        there is a subset Z of ^n Vß of cardinality > 1  such that
^    ' '        Zy-g] is algebraically independent over R'.

If so, there exists u £ Z such that eg <£. (R' U {ug})val and then we can

let ya — ug . For otherwise, we have « / «' in Z and nonzero polyno-

mials f(T),f2(T), gl(T),g2(T) £ R'[T] such that cs = f(ug)/gl(ug) and
cs = f2(u'g)/g2(u'g). But then the polynomial f\(Tx)g2(T2) - f2(T2)gx(Tx) G
R'[T\, T2] is nonzero (because eg £ R') and shows that {ug, u's}—and hence

Zr¿]—is not algebraically independent over R'. To prove (14.1), we show

.     -.        there is a subset Z' of <&ß n Vß of cardinality 2N° such that

^    ' '        Zj'¿] is algebraically independent over Yg .

This suffices, by the additivity of transcendence degree, since \{y7 : y < a}\ <
2«o.

In order to prove (14.2), we write the complement of <J?ß as the union,

Unew C" ' °f countably many closed nowhere dense sets in ^¿,R(Nß). Choose

a ladder {xn : n £ co} on 3 and inductively define a tree of basic clopen

subsets Un ç Vß (r¡ £ "2) so that Un ç Uc if C = V \ 1(0 and Un ç the
complement of C/(//). Moreover, we choose the Un so that for each n, if

"2 = \r\\, ..., r¡2"}> then there are ordinals y, with t„ < yo < ■ ■ ■ < y2* such
that for every z, G Um (i = 1, ... , 2") and g £ G+, if y\ < g < y2«, then

g £ supp(z,) if and only if g = y,_i . Then one may prove by induction on

m that if f(Ti, ... , Tm) £ Yg[T\, ... , Tm] is a nonzero polynomial whose

coefficients are in RXn and if Zj £ Un¡, then f(zx, ... , zm) £ i?ym+1\{0}.

Hence if we choose for each ¿¡ £ w2, z^£ f)„e(0 Utin , then ZiS] = {z^ : t, £ w2}

is algebraically independent over Yg .
Finally consider the case when a = 2ß . It suffices to show that there is a

subset Z of $QiR(Yg) of cardinality 2N° so that Z[¿¡ is algebraically inde-

pendent over Yg and each f £ Z has the form (wa(u^)~x : a < 8) where

(wa : a < 8) £ ¿T£,R(Yg)  and for each a < 3, wa £ Wg .   Now by a tree

argument similar to that above, there is a subset Z' of ^Q¡R(Yg) of cardinality

2N° consisting of elements w = (wa '■ a < 8) such that for all a the coeffi-

cients of Wa belong to {0, 1} and such that Z,'^ is algebraically independent

over Y¿. Then by an argument on transcendence degree, there is a subset S

of {wg(uP)Jl : w £ Z'} of cardinality 2N° which is algebraically independent
over Yg . So let

Z = {(Wa(4)~x :a<8): ws(uf)Jl £ S},   u

The following corollary shows that the converse of Theorem 7 is not provable

in ZFC + GCH.

Corollary 15. (V = L) There is a valuation domain R of cardinality Ni such

that Y'R(Q/R) = 0 and there is a nonstandard uniserial R-module of type Q/R.
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Proof. Let R be the valuation domain constructed as in the proof of Theo-

rem 14 for some stationary S. (The construction requires only CH.) Then

r'Ä(ß/-R) = 0. Also YR(Q/R) = S t¿ 0, so by Proposition 3, there is a non-
standard uniserial .R-module, since V = L, and hence 0«, (S) holds.   D

Valuation domains of cardinality > N]

Finally we want to observe that the hypothesis that R has cardinality Ni is

essential for Proposition 3; that is, it is not enough to require that J is generated

by Ni elements (in which case the definition of YR(J/A) makes sense). In fact,

we have the following theorem of ZFC.

Theorem 16. There is a valuation domain R of cardinality 2Nl such that Q is

generated (as R-module) by Ni elements and YR(Q/R) - 1, but every uniserial

R-module of type Q/R is standard.

Proof. Let G be the free abelian group on co\ x 2H< . We order Wix2Nl lexico-

graphically and then order G antilexicograhically (cf. Definition 10). Thus in

G, (a, i) <(ß, j) if and only if a < ß (in coi) or a = ß and i < j (in 2N| )

and in that case n(a, i) < (ß, j) for all n £ Z. Let R = A^[[C7]] be defined
as in Definition 10, for this G and for a field K of cardinality < Ni. Define

p-supp and truncation analogously to Definition 10.

Let Y\ be the smallest valuation subring of R containing X(a •0) for all a £

coi and let rv = *("-°) for v < cox . Then Q = U„<0>1 r~lR and YYx(Q/Yx) =

1.
Define G¡ to be the subgroup of G generated by {(a, j) : a < co\, j < i}

and let i?, be the subring of R consisting of all y G R such that supp(y) ç G¡.

We shall now define a continuous chain {Y, : /' < 2H'} of valuation subrings

of R such that for each i, Y¡ ç R¡, and is closed under truncation—more

precisely, if y g Y¡ and 3 G lim(<yi), then y f (3, 0) G Y¡. Moreover, we

require that

(£) for all i<j,        Yj n R¡ = Y,.

We will let R be the union of the Y,. Then certainly YR(Q/R) = 1, since
we will have added no limits of elements of Yi . Moreover, we will do the

construction so that for each family {exa : a < x < co\} as in (f), there is

a family {ca : a < co\} as in (ff). There are only (2N')Nl = 2N| possible

families {el : a < x < co\} and the cofinality of 2N[ > N] , so we can arrange

our construction such that each such family is considered at some stage i < 2Nl

where {exa : a < x < co\} ç Y,■■.

Suppose now that Y, has been constructed and that at this stage we are

considering the family {el : a < x < cox} ç Y,■. Our plan is to let Yi+i be the

smallest valuation subring of R which is closed under truncation and contains

Y, U {AT(Q,i) : a < co\} and a family {ca : a < co\} as in (ft) ; we must choose

{ca : a < co\} so that (£) holds. We define the ca by induction. Let c$ = 1 ;

if ca has been defined, let

ca+x=ea'+xCa + X(°>i\

If 8 is a limit ordinal, let eg be the unique element of R with support in

®j<i®a<w, Z(Q.» which represents the limit of (esaca:a<8) in R/Ç}a<sraR.
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We sketch the argument that this construction works. First, by induction one

can show that for all x, (x, i) £ p- supp(cCT) if and only if x < a . Secondly, the

Ca are algebraically independent over the quotient field of R¡. More generally,

if 0\ < ■ ■■ < a„ < S < (t„+i , then {cat, ... , ca„, cCT„+1 Í 8} is algebraically

independent over R¡. (This is proved by an argument on supports.) Now an

arbitrary element of Yj+i has the form

g(Cg{, ... ,Ca„) \(y,0)

where / and g have coefficients in Y,. By an argument on supports, using the

above facts, one shows that if this element belongs to Yi+\ n R¡, then it belongs

to Y¡.   U
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