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THE JOURNAL OF SYMBOLIC LoGIc 

Volume 53, Number 4, Dec. 1988 

SOUSLIN FORCING 

JAIME I. IHODA AND SAHARON SHELAH 

Abstract. We define the notion of Souslin forcing, and we prove that some properties are 

preserved under iteration. We define a weaker form of Martin's axiom, namely MA(F'.), and 

using the results on Souslin forcing we show that MA(F'.) is consistent with the existence of a 
Souslin tree and with the splitting number s = N,. We prove that MA(F'.) proves the 

additivity of measure. Also we introduce the notion of proper Souslin forcing, and we prove 
that this property is preserved under countable support iterated forcing. We use these results 
to show that ZFC + there is an inaccessible cardinal is equiconsistent with ZFC + the Borel 

conjecture + Z-measurability. 

Annotated table of contents. 
?0. Introduction. [We define the Souslin forcing notion, and the simple name of a 

forcing notion.] 
?1. F' with countable chain condition. [We define when S c f3 is closed for 

Q = <Pa; Qa: a < #>; an iterated Souslin forcing. We prove that Q S <Q. If the 
definition of Q is in Fr0 then if N is countable and Q e N then lim QN < liM Q.] 

?2. Proper Souslin forcing. [We define when P is a proper Souslin forcing. We 
prove that the property given in the definition of proper Souslin forcing is preserved 
under countable support iterated forcing.] 

?3. A weaker form of MA. [We define MA(FTo), and we prove that MA(FT0) 
implies that the union of less than continuum many measure zero sets is a measure 
zero set. We prove the consistency of MA(FT0) with the existence of a Souslin tree 
and with the splitting number equal to N,, etc.] 

?4. Inaccessible cardinals and the Borel conjecture. [We prove that the follow- 
ing theories are equiconsistent: (i) ZFC + "there exists an inaccessible cardinal"; 
(ii) ZFC + "the Borel conjecture" + "every f'-set of reals has the property of 
Baire"; and (iii) ZFC + "the dual Borel conjecture" + "every 32-set of reals is 
Lebesgue measurable.] 

?0. Introduction. In this work we will present a systematic treatment of the 
forcing notion which has a Souslin definition. We define explicitly when a forcing 
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SOUSLIN FORCING 1189 

notion has a Souslin definition, and we will center our attention on iteration of such 
forcing notions. It is well known that the Cohen real forcing has a very simple 
definition, but this is not the unique partial order which satisfies these requirements; 
for example in Shelah [Shl,?6] one uses the simplicity of the definitions of the 
random real forcing and of the amoeba forcing in order to give a model for "every 
J'-subset of reals is Lebesgue measurable" from a model of ZFC. Also in Ihoda 
[Ihl] these facts are used in order to show that Cons(ZFC) implies Cons(ZFC + 
"every a 3-subset of reals is Lebesgue measurable, has the property of Baire and is 
Ramsey"). Also in Shelah [Sh3] there appears the notion of Borel forcing, in order 
to build a model for the splitting number s = N, and the dominating number d 
= 2'0 > Xi. Also in Miller [Mi] this type of argument was considered. In ?1 we 
generalize these ideas, and we introduce the definition of Souslin forcing, proving a 
series of lemmas for finite support iterated forcing of Souslin forcing satisfying the 
countable chain condition. We prove that a very nice property, which is satisfied for 
c.c.c. Souslin forcing, is preserved under the finite support iteration. This property is 
used in ?3 to show that an apparently weaker form of Martin's Axiom does not 
decide the Souslin problem and the minimal cardinal for which there exists a 
splitting family of this cardinality. Using this, and the fact that this part of Martin's 
Axiom implies the additivity of measure, Ihoda [Ih2] proved that "every ZX-subset 
of reals is Ramsey" is not a consequence of "every ZX-subset of reals is Lebesgue 
measurable". 

In the Ph.D. research of the first author there appears the problem of building a 
model for the Borel conjecture in which it is possible to find a rapid filter on co. 
Models for the Borel conjecture were well known from the works of Laver [La] and 
Baumgartner [Ba], and using the ideas of Shelah [Shl], Raisonier [Ra] built a rapid 
filter from the following hypothesis: 

(i) wt = w, and 
(ii) every ZV-set of reals is Lebesgue measurable. 
Clearly (i) holds in the Laver model, but in Ihoda [1h3] it was proved that (i) + (ii) 

+ "Borel's conjecture" is inconsistent. 
Therefore the following question arises: is Borel's conjecture + "every ZX-set of 

reals is Lebesgue measurable" consistent? 
In ?4 we prove that this last question is equivalent to asking: is "ZFC + 

there exists an inaccessible cardinal" consistent? In this proof we used the result 
given in ?2 on proper Souslin forcing, and countable support of proper Souslin 
forcing. 

0.1. DEFINITION. A tree is a partially ordered set (T. <T) such that for every t G T 
the set {s E T: s <T tJ is well-ordered. 

A branch of a tree T is a maximal chain of T, where a subset A c T is a chain if 
and only if for every t, s e A we have t <T s or s <T t. If s e T, then 

Ts = {t e T: s <T t V t <T S}. 

Clearly if T is a tree then T, is a tree. 
If T is a tree, then 

[T] = {A: A is a branch of T}. 
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1190 JAIME I. IHODA AND SAHARON SHELAH 

0.2. DEFINITION. We say that T c i'@ x<* x A" x w< (A an ordinal) is a tree 
if and only if <KT, > is a tree. If X E A' x .x A x o' x and T c i'@ x * x i'@ 
x w<` (the number of coordinates of X is less than the number of coordinates of 

some member of T), then 
T(X) = {s: <s, XI IsI> E T}. 

Clearly, if T is a tree, then T(X) is a tree. If T c A`' x * x A` x w<` is a tree then 
we say that T is a A-tree. 

0.3. DEFINITION. If T is a A-tree, then the A-Souslin set defined by T is 

D(T) = U{[T(X)]: X E w }. 

0.4. THEOREM (Well known). Let V1 c V2 be a model of some part of ZFC, and 
suppose that T e V1 and <Ki: i < wo> belong to A` n V1. Then V1 k "<Ki: i < wo> E 

D(T)" if and only if V2 F "<Ki: i < Cl> E D(T)". 
For the proof, see Jech [Je]. El 
0.5. DEFINITION. Let P be a notion of forcing. 
(i) We say that P belongs to FA if and only if there exists trees T1 and T2 such that 

T, C i'@ x (t<@, T2 C i' x i' x t), and P = D(T1) and <p = D(T2). 
(ii) We say that P belongs to Fr if and only if P belongs to F. and there exists a tree 

T3 C(- A` X A` x <o such that 

{<p, q>: p E P and q E P and p, q are incompatible in <?} = D(T3). 

In this case we say that <T1, T2, T3> witnesses P E F' 
0.6. DEFINITION. We say that P is a Souslin forcing notion if and only if there 

exists an ordinal A such that P E F'. 
0.7. DEFINITION. If P and Q are forcing notions, then we say that P < Q if and 

only if P c Q and every maximal antichain of P is a maximal antichain of Q. 
0.8. DEFINITION. Let V1 c V2 be models of ZFC* and let T1, T2, T3 be A-trees, 

KT1, T2, T3 > witnessing P E F'. Then, for i = 1, 2, 
pVi -{p I"p eD(T1)"}, ?a - i={ <p,q>: Vik="< pq>eD(T2)"}. 

<p, q> incompatible in Vi if and only if Vi k "<p, q> e D(T3)". (From this, in ?1 we 
will ask when pal <pV2 i.e., does every maximal antichain of pYi which lies in V1 
have to be a maximal antichain of Pv2?) 

0.9 REMARK. Suppose that P < Q and T is a P-name. Then, without loss of 

generality, T is a Q-name and if G c Q is a generic filter then T[G] = T[G n P], 
where G n P is a generic filter for P. This fact will be continually used without special 
remark. 

0.10. DEFINITION. (i) Let P be a forcing notion and let T be a P-name for an a- 

sequence of ordinals. We say X is a simple P-name if and only if for every i < a there 
exists a maximal antichain Ai C P and <Ka: p E Ai> such that 

<q, fi> E T if and only if (]i < czp e Ai)(<q, f, i> = <p, ip, i 

(ii) Let Q = <P.; Q: a < f> be a fl-system of finite support iterated forcing 

satisfying, for every a < fi, 
Pa [ "Qp is a Souslin forcing notion". 
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SOUSLIN FORCING 1191 

We will define by induction on /3 when p e Pa = lim(Q) is a simple member of Pfl, and 
we show that 

Pfl = {p: p is a simple member of Pa} 

is a dense subset of Pa 
If /, = 0, this is clear. 
If / U/B# 0 then p e Pfl is a simple member of P. if and only if for every a </3, 

p I a is a simple member of P,. It is clear that Pa is dense in P,. 
If /3 = a + 1 then p E P, is a simple member of Pa if and only if p I a is a simple 

member of P, and p(a) is a simple Pa-name of a member of Qa. It is not difficult to 
show that Pl is dense in P,. El 

In our argument we will need to work with countable transitive models of some 
rich part of set theory, a fragment of ZFC sufficiently rich in order to develop the 
method of forcing without problems. We call this part ZFC*. In all partial orders we 
assume that 0 is the minimal element. We presume that the reader has a good 
knowledge of iterated forcing as it is presented in [Ba] or [Sh2]. 

?1. F' with countable chain condition. 
1.1. Let Q = <Pi; Q: i < x> be an x-system of finite support iterated forcing 

satisfying the following conditions: 
(i) For each i < a, there are Pi-simple names T', Ti, T' of trees such that 

Pi "KT 
5,T 

,T > witnesses Q1 belongs to Tx". 

(ii) I"Qi satisfies countable chain condition". 
(iii) The elements of Pi are finite functions of simple names. 
In this case we say that Q is a Fr-c.c.c-x-iteration. 

1.2. Let Q = <Pi;Qj:i < a> be a F -c.c.c-ct-iteration, and let S c a be closed. By 
induction on a we will define and prove, simultaneously, the following 

1.3. DEFINITION. S is closed for Q. and Q I S. 
1.4. LEMMA. If S is closed for Q. then: 
(i)QI S c Q; 
(ii) for p, q E QI S 

(a) p < q in lim Q S if and only if p < q in lim Q, and 
(b) p and q are compatible in lim Q S if and only if they are compatible in lim Q; 

(iii) Q I S satisfies the countable chain condition. 
1.5. LEMMA. If Ga C Pa is generic over V for Pi, = lim Q. then Ga n lim Q S is 

generic over V for lim Q I S. 
PROOF AND DEFINITION. 
Case 1. ae = 0, clear. 
Case 2. a = /3 + 1: S n / is closed for QI/3. Let Go ( P, be generic over V. 

Let V1 = V[Gf] and V2 = V[Gf n lim Q IS n /3]; by the induction hypothesis 
Gfl n lim Q S n /3 = G' is generic over V for lim Q I S n /3. 

1.3. S will be closed for Q if and only if S n /3 is closed for Q / and if /3 e S then 

p "<TPfl, TP T> belongs to V2" 

(equivalent TV is a Pi I S n fl-name). 
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1192 JAIME I. IHODA AND SAHARON SHELAH 

Now ifS S n 
= S n a thenQIS = QIS n /, and if /E S then p E Q-S if and only 

if peQ and pIfleQISrfl and ~lIimQIsnp "p(/3)eQ#" (in other words V11= 

"p(/3) E V2") 
1.4. (i) Let p E Q I S; by definition 

IklimQISnfi "P(/) e Q# 
9 

therefore V2 1= (]x)(p(fl)[G ] E [T# [Gj (x)]), and this expression is absolute for 
models of dependent choice, so we have 

(i) VI F "(]x)(p(fl)[Gp] e [T' [Gp](x)]) ' 

(ii) p(f)[G'] = p(/3)[G], and 
(iii) TP1 [GI] TP [Gp]; 

thus 

V1 t "(]x)(p(/3)[Gp] e [T1[Gp](x)]) S 

and this implies that V1 t "p(,B) e Qp". Because Gp was arbitrary, this proves that p 
e lim Q. Similar arguments show that 1.4(ii) holds. 

1.4. (iii) It is sufficient to prove that V2 1= "Qp[Gp]" satisfies the countable chain 
condition. This is a consequence of 1.4(i), (ii) and the fact that V1 1= "Qf[Gf] 
satisfies c.c.c". 

1.5. Let Gp = Ga I /3. Clearly Gp is generic over V for Pp and Gp is generic over V for 
lim Q S rn /B. Let G(/3) be the generic object for Qp[Gp] over V1 defined by Ga. We 
need prove that G(/3)' = G(/3) n V2 is a generic object for Qp[Gp] over V2. By 
Lemma 1.4, without loss of generality, G(/3)' is directed; therefore it is sufficient to 
show that G(/3)' intersects every maximal antichain of Qp [Gp] that belongs to V2 . All 
the parameters in the definition of Qp [Gp] are in V2, and it is standard work to build 
in V2 a tree T c x A" x o< such that if F: w x w -+ w is one-to-one and onto, 
fixed in V2, and for every f: w -+ A we define f1: w -+ A by setting fJ(n) = f(F(i, n)), 
then, in V2, for every g: wo -+ and h: o -+ o we have that <f, g, h> e [T] if and only 
if for every i e wo there exist x, <f1> e [T#(x)], and there exists x, <g> e [T#(x)], and 
there exists x, <fi, g> e [T (x)]. Thus <pi: i < wo> is a maximal antichain of Qp[Gp] 
in V2 if and only if, if f: o -+ Ais such that <fi> = pi, then T(<f >) is not well founded. 
This relation also holds in VI, and as every antichain of Qp [Gp] in V2 is countable, 
we have proved that every antichain of Qp[Gp] in V2 is a maximal antichain of 
Qp[Gp] in V1. And this shows that G(/3)' is generic over V2. 

This concludes Case 2. 
Case 3. a = Uc #- 0. 
1.3. S will be closed for Q if and only if S n ,B is closed for Q / for every ,B < a and 

p e lim Q I S if and only if there exists ,B < a such that p e lim Q I S n ,B. 
1.4(i), (ii), (iii) are clear from the definition of directed limit. 
1.5. Let <pi: i < wo> c lim Q I S be a maximal antichain in V; clearly <pi: i < w > 

c Pa. In order to reach a contradiction, let q e Pa be such that q is incompatible with 
every pi, i < w. By definition there is y < a such that q e P,. We know that <pi I 1: 
i < W> is a maximal antichain of lim(Q I S n y), and by the induction hypothesis 
this set is a maximal antichain in Py. Therefore there exists r e P and i e a) such that 
r ? pi I y and r 2 q. Let r' be a member of Pa defined by r' = r u pi I [y, ac). Clearly 
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SOUSLIN FORCING 1193 

r' ? pi and r' 2 q, and this is a contradiction. This concludes Definition 1.3 and the 
proofs of 1.4 and 1.5. D-1 

REMARK. A particular case of Lemma 1.5 is used, and proved, in Ihoda [Ihl] in 
order to give a model of "Every AJ-set of reals is Lebesgue measurable, has the 
property of Baire and is Ramsey" from a model of ZFC. In this case a F' -c.c.c.-w,0- 
iteration was constructed. 

1.6. LEMMA. Let Q = <Pi; Qi: i < a> be a Fr-c.c.c.-a-iteration. Q E V1 c V2, where 
V1 and V2 are models of ZFC. Then for every Ga PV2 = limQV2 generic over V2, 

Ga rn V1 c pvl = lim QVl is generic over V1. 
PROOF. The proof is by induction on a. The unique difference from 1.5 is that we 

need prove that if a-=/ + 1 then 

2TT3T>[G] = K 2TT>[G, rq V] J' , T p, T J > [GJ = Tp pT3>[ 1nVt] 

are the same object in V2, and this holds because <T',T ,2T3> is a Pa-name in 
V1. D:1 

REMARK. 1.6 is a generalization of ?6.3 in Shelah [Shl]. Also ?6.4 of Shelah [Shl] 
is a corollary of our 1.6 and a density argument. Here P., is F',-c.c.c-,),-iteration. 

1.7. We will restrict our attention to the F+ -c.c.c forcing notion. In other words, 
membership, the order and incompatibility are ZE. It is well known that, in this case, 
the notion of maximal antichaifi is Zl and these relations are absolute for countable 
transitive models of a part of the set theory. We will make further use of these 
remarks. 

1.8. LEMMA. Let V be a model of ZFC, and let N F ZFC* be a submodel of V (we 
do not require N < H(X)). Let Q = <Pi, Qi: i < c> be an F+ -c.c.c-a-iteration. Suppose 
that a E N, a nrm N is closed for Q, and that for every i cE a n N, KT,,T ,T3> E 
NQIsn'. Then the following assertions hold: 

(i) P' is a subordering of Pa, and incompatibility is preserved. 
(ii) 1P p"N n Ga is generic for pN over N". 
(iii) N l= PN l= "Qa satisfies c.c.c. 
PROOF. By induction on a we prove (i) and (ii); (iii) is a consequence of Theo- 

rem 3.14. 
a = 0 is clear. 
a- = + 1. Let G8 ' P, be generic. Clearly /3 E N and Q 1 E N, and we know that 

N' = N[G# n N] is a model of ZFC*. Let V' = V[Gp]. Clearly N' c VW. We need 
to prove that QN'1 is a submodel of Qp 1. 

Because <T#,T#,T #> E NQIS` we know that T#[Gp] = T#[G# rm N] belongs to 
Ni for i = 1, 2, 3. Therefore by absoluteness arguments we obtain that QN1 is a 
submodel of Qp l and that incompatibility is preserved. By absoluteness of the HI- 
relation, we have that every maximal antichain of Q,'l in N' is a maximal antichain 
of Qp in V'; and this implies that for every G(/3) C Qp l generic over V1, G(fl) n N' 
is generic for Qp over N'. 

This concludes the case a = + 1. If a = Uc* #0, then acx eN so N l= a = Ucx # 

0. Let q E P,. Let a' cc a n N be such that E e sup(q) n N ==> / < a'. Let <pi: i < i*> 
be a maximal antichain of paN belonging to N. Clearly <Pi c a': i < i* > is a maximal 
antichain of Paf, and lies in N. By the induction hypothesis there exist r E Pat and 
i < i* such that r >B? pi I C' and r > q c x'. 
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1194 JAIME I. IHODA AND SAHARON SHELAH 

Now let r' E Pa be defined as follows: 

r'(/3) = r(/3) if /3 E dom(r); 

r'(/3) = pi(#) if /E a n N - dom(r); 
r'(/3) = q(/3) if f- a-a-a n N. 

Then r' is well defined, and r' >Papi and r' ?paq. Therefore <Pi: i < i*> is a maximal 
antichain of Pa, in V. This concludes the proof of the lemma. El 

?2. Proper Souslin forcing. We want to obtain the results of ?1 but for iteration of 
forcing notions in Fr not necessarily satisfying countable chain condition. For 
example if N is a countable model of ZFC*, and N E V, then we can ask when a 
Mathias real over V is a Mathias real over N. In general this is false, but for every 
Mathias real condition p E N, there exists a Mathias real condition q E V such that 
p < q and every Mathias real over V obtained by a generic object containing q is a 
Mathias real over N (for further discussion of this, see ?4). Following this, we will 
generalize the above property and will prove that it is preserved under countable 
support iterated forcing. 

2.1. Let Q = <Pi; Qi: i < a> be an a-system of countable support iterated forcing 
satisfying the following conditions: 

(i) For each i < a there are Pi-simple names TV, Ti, T' of trees such that 11Pi 
"<Tl, T, T > witnesses Qi belong to i'i. 

(ii) The elements of Pi are countable functions of simple names. 
In this case we say that Q is a F1-countable-a-iteration. 
2.2. DEFINITION. Let V, be a model of set theory and let V, c V2, a model of 

ZFC*. Let P be a forcing notion, P e V,. Let p e P n V,; we say that q e P n V2is a 
(p, V1)-good-generic condition if P t "p < q" and for every G c P n V2 generic over 
V2 (including q), G n V1 is generic over V, (including p). 

2.3. EXAMPLES. (i) If P is the directed limit of a Fr -c.c.c.-a-iteration (see 1.1) with 
definition in V,, then, for every p e PVi, p is a (p, V,)-good-generic condition. 

(ii) If P is Mathias forcing then P e F'O, and if (2C)vl is countable in V2 then for 
every p e pvl there exists a (p, V1 )-good-generic condition q e pV2 (for a proof of this 
see ?4). 

2.4. Let V1 c V2 be as in 2.2. Let P in Fr be such that the parameters of the 
definition of P belong to V,. Let pvl = {p e V,: V, t "p e P"} and pV2 = 

lp 

e V2: V2 t "p e P"}. By absoluteness considerations it is possible to prove the 
following: 

(i) PVi c7pV2 

(ii) (p < q)Vl if and only if (p < q)V2 for p, q in V,. 
(iii) (p, q are compatible)fv if and only if (p, q are compatible)V2 for p, q in V1. 
2.5a. DEFINITION. Let P be in Fr; we say that P is a proper Souslin forcing if and 

only if for every N e V, N #= ZFC*, containing the definition of P and containing 
countable many antichains of P, we have that for every p e N n P there exists a 
(p, N)-good-generic condition q e P. 

2.5b. DEFINITION. We say that P is proper F'o forcing if there exists a F' - 
countable-a-iteration Q = <Pi;Qi: i < a> such that P = lim Q and for every /B < a 
we have that [Jkp, "(*)", where 
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SOUSLIN FORCING 1195 

(*) For every countable N #= ZFC*, if Q# e N, then for every p E Qp there exists 
a(p, N)-good-generic condition q E Q#. 

Let Q = KPiQj: i < a> be such that Pa = lim Q is a proper Fr0 forcing, and let S 
ci a be closed. Let N E V be a model of ZFC*, N countable in V. By induction on a 
we will define and prove the following: 

2.6. DEFINITION. (i) S is closed for (Q, N). 
(ii) 2ISN and lim Q IS = Pa I SN. 
(iii) Pa I S and for p E Pa I S we define pN E P I SN. 
(iv) If Ga ' Pa is generic over V, then we define Ga n P SN = Ga | SN. 
2.7. LEMMA. If S is closed for (Q, N), then 

(i) P,, IS -Pa,and 
(ii) for p, q e Pa I S we have that 

(pN < qN)N if and only if (Pa k=p < q) v, 

(pN, qN are compatible)N if and only if (p, q are compatible)". 

2.8. LEMMA. If S is closed for (Q, N) then for every pN 
S E P N there exists q E Pa 

such that 
(i) Pa t p < q (note that this p corresponds to pN), and 
(ii) for every Ga 7 Pa generic over V containing q, we have that Ga I SN is generic over 

N for Ia I SN (containing pN). 

PROOF AND DEFINITION. In all cases S is countable in N, and S e N and S c N. 

Case 1. a = 0 is clear. 
Case 2. a = /3 + 1. 2.6.(i) S is closed for (Q, N) if S n /B is closed for (Q 1/,BN) and 

if ,B e S then there exists <T1, T2, T3> e N, such that 

1 <TP, TP, TP3 > = < 1, T2, T3 > 

(here we could be more general, but the notation is more complicated). 

(ii) Q 
I SN is the definition in N of 

QI(S n /)N {<PpI(Sn /)N,QpN>} 

where QpN is in N a Pp I S n fl-name of a forcing notion such that 

IHPpj(s np)N QpN is obtained from <Ti, T2, T3>" 

holds in N. 
Now P # SN is Pp S niN * QN defined in N. 
(iii) p e P IS if and only if pl 3e P IS n /3 and p e PI, and if y 0 S then p(y) = 0 

and there exists r e ,I| SN (unique) such that r I Sn = p N and there exists 

<qj: i < i*> u <tj: j < j*>, a maximal antichain of Pp such that <qj: i < i*> is a 

maximal antichain such that for every i < i*, qj satisfies 2.8(i), (ii) for p /,, and for 

every i < i* 

qj Jk "p(/3) = r(,B)[Gp I S n qNy 

and for every j < j* 

tj V "p(,B) = 0". 

This definition also says that for every r e PS |N there exists a unique p e P, I S such 
that pN = r and for every p e P" 5 SN e I| SN is well defined. This uniqueness is 
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1196 JAIME I. IHODA AND SAHARON SHELAH 

modulo equivalency of names, i.e. z1- 2 if and only if 0 Ik"z1 = z2". (Note that 
Pa I S depends on N.) 

(iv) Let Ga ' Pa be generic over V. Then 

G.IS = {p E P.ISN:p e G, n PIS} 
2.7(i) and (ii) are easy using the absoluteness of Zl-relations and the induction 

hypothesis. 
2.8. We shall show by induction on /3 < a that every P, I S n fiN has the somewhat 

stronger property: 
(*) For ally E /3 n S, and for all p e P# I S n /3 and q e P,, if q satisfies 2.8(i) and (ii) 

for p Iy then there is an r E Pa such that r satisfies 2.8(i) and (ii) for p and r Iy = q. 
Therefore, in the case a = /3 + 1, since (*) holds for /3 we may assume, without loss of 
generality, that y = fl. 

Let p e Pa I S, and let q e P, satisfy 2.8(i), (ii); for p | let G, ' P, be generic over V 
containing q. By hypothesis G, I S n /3 is generic over N containing p I fiN, and 
N[Gp I S n /3] is a countable model of some part of ZFC* in V[Gp]; also the 
parameters of the definition of Qp[G#] are in N ' N[G# IS n /3]. Therefore, for 
p(#)[G# I S n A3] E Q#[G#] n N[G# I S n A3] there exists q(/) e Q#[G#] such that 
q(/3) is a (p(#)[G, I S rm /3], N[G# I S rm /3]) good-generic condition. Because G# is 
arbitrary containing q, there exists a P#-name of a condition q(/3) for Q# such that 

q I F"q(/3) is a (p(#)[Gp I S n /3], N[G# I S n /3])-good-generic condition". 

Now let r = q tu <fl, q(/3)>. Clearly r satisfies (*) for this q and p. Clearly (*) implies 
2.8(i) and (ii). 

Case 3. a = U9 A 0. 
2.6.(i) S is closed for (Q, N) if S n /3 is closed for (Q /3, N) for every /3 <ci, and there 

exists E N such that dom f = S and for every / E S, f (/) = < T, TV, TV > (i.e. in N 
we can define the directed limit of U(Q I S rm #N)). 

(ii) QISN is UpeQ | /3N taken in N and ,I SN is the countable support 
iteration of Q I SN taken in N. 

(iii) Pa I S and pN are defined analogously. 
(iv) The same for Ga I SN. 
2.7 (i), (ii). Easy (using the inductive hypothesis). 
2.8. Let <Kci: i < w> be cofinal in ci, <Kci: i < w> = S, and let <Di: i < W> be an 

enumeration of the dense subsets of Pa I SN which belong to N. 
Let p E P, S and qO e P,. be given satisfying the requirement of (*). We will 

construct two sequences <Pi: i < w> and <qi: i < w> such that 
(i) po = p; 
(ii) q. E P, and q. satisfies 2.8(i), (ii) for Pn Ian; 

(iii) qn + 1 I an = qn 
(iv) Pn C Pa n S; 
(v)Pn+1 I an = Pn I an and qn+ I U Pn+l 1 Pn (where qn+ I & Pn+ I = 

qn+ I U Pn+ I I i 

- cni+1); and 

(vi) Dn I Pn + 1 is predense above Pn + I 
Suppose then we have Po,. . ., Pn and qO,.. . , qn satisfying (i)-(vi). 
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SOUSLIN FORCING 1197 

Let G c PaI I S r a' be generic over N, pn I a' E G. Let D' c N[G] be the 
corresponding dense subset of Pa I S n (a - an )N[G], generated by Dn in N[G]. As 
Pn I (a -an) c)G belongs to Pa I S n (a -an )N[G] we have that in N[G] there exists r 
E P I S cm (a - a )Nf[G] such thatPn I (a -an )N[G] < r e D'. As G is arbitrary containing 

Pn a, there exists r E N, a Pan I S n aN -name, such that 

(Pn | - an) < r D) Dn 

Thus there is teP nSN such that tIan=pnIan and (pnIxan I tI(a-an)>r)N 

satisfying, for every G C Pa I S n a N containing Pn | aN there exists p E Dn such that 

N [G] F= Pn I lan, a) [G] < r [G] = p | [n, a] [G] c- Dn 

Let Pn +1 IPa I S be such that 

Pn N 
I I an = Pn | laP +11[n , a] = t I lan , a] 

Now qn satisfies 2.8(i), (ii) for Pn | an; hence by the induction hypothesis there exists 

qn+1 e Pn+ i such that qn+ 1 I an = qn and qn+ 1 satisfies 2.8(i) and (ii) for Pn+ I I an+ 1 
There is no problem in seeing that Pn + 1 qn + 1 satisfies the inductive hypothesis. Now 
we define q e Pa by q I an = qn. By the construction we have that for every n 

Pa #= Pn < 4 

and q satisfies (*) for p and q. 

?3. A weaker form of Martin's axiom. Many problems related to sets of reals are 
decidable from the assumption of Martin's axiom, introduced by Martin and 
Solovay [MS]. For example, MA implies that the union of less than continuum 
many measure zero sets is a measure zero set, and that there is no Souslin tree. In this 
section we will present a weaker form of Martin's axiom which decides some specific 
problems concerning the real line. 

3.1. DEFINITION. For a family F of partial ordered sets we say that MA(F) holds if 
and only if for every partial order P e F satisfying c.c.c. and for every family <D: i 
< K> of dense open subsets of P, of cardinality less than 2`0, there exists G c P 
directed such that for every i < K, G n Di is not empty. 

3.2. THEOREM. MA(F+O) implies the following: 
(i) The union of less than continuum many measure zero sets is a measure zero set. 
(ii) The union of less than continuum many meager sets is a meager set. 
(iii) The union of less than continuum many strong measure zero sets is a strong 

measure zero set. 
(iv) 2`0 is a regular cardinal. 
(v) Every family of maximal almost disjoint subsets of w has cardinality 2`0. 
(vi) For every family F c w0' of cardinality less than 2`0 there exists f e 0' such 

that for every g e F there exists n e w such that for every m ? n, g(m) < f(n). 
(vii) There is no real valued measurable cardinal < 2`0. 
PROOF. (i) It will be sufficient to show that amoeba* forcing <{Tc 2C': Ta closed 

tree, LbMs (lim T) > _, z }I> is in rF,. That amoeba* forcing satisfies the countable 

chain condition is well known, and that amoeba* belong to Fr0 is clear from the 
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definition of amoeba* forcing (more information about amoeba* can be found in 
[Shl]). 

(ii) This is a consequence of (i). The Bartoszyn'ski-Raisonnier-Stern theorem says 
exactly "(i) (ii)"; see Raisonnier and Stern [RS]. 

(iii) This is a consequence of (i); see Fremlin [Frl]. 
(iv) This is a consequence of (i). 
(v) This is a consequence of (vi); see Shelah [Sh3]. 
(vi) This is a consequence of (i) (or of (ii)). 
(vii) follows from (ii). 
3.3. THEOREM. MA(F'.) does not imply any of the following: 
(i) Every tower has cardinality 2`0. 
(ii) Every splitting family has cardinality 2N0. 
(iii) There is no Souslin tree. 
(iv) For every K < 2`o, 2K = 2-?. 

(v) There exists a Q-set. 
PROOF. We begin by building a model for MA(F'o), and after we will see that in 

this model the negation of (i), (ii), and (iii) holds. 
Let V = L be the constructible universe. In V we define the following partial order 

P. The members of P are F' -c.c.c.-a-iterations satisfying 
(i) < 02 (or K), and 
(ii) if Q E P and a < length(Q), then 

Pa 1I "QQ satisfies the countable chain condition". 

The order on P is inclusion. 
Clearly P is 82-closed forcing and if G < P is generic over V, then R = U{Q E G} 

is a F -c-c-c.-cW2-iteration. 
Let P., be the directed limit of R. Let G., c- P.,2 be generic over V[G] = V1. Then 

by the genericity of G we have 

V1[2] 1= "MA(F+O) + 2NO = 

Now we will use the result given in ?1 in order to show that in this model (i), (ii) and 
(iii) fail. Set V2 = VI[G,02] 

3.4. DEFINITION. A family S of infinite subsets of cl is a splitting family if for every 
infinite x c cl there exists y E S satisfying 

Iy r) XI = 1 y r xI = bow 

The splitting number s is the minimal cardinality of a splitting family. We will show 
that in V2 the splitting number s is equal to N1. 

3.5. Claim. Let r be a P-02-name of an infinite subset of A, and let <aj: i < w1 > be a 
family of almost adjoint subsets of cl. Suppose that 0 I[-p "(]i < 01)(r c* aj)." Then 
there exists i < o satisfying 0 I[p - "r n di is finite". 

Proof. Suppose this does not hold. Then for every i < wc, there exists Pi e P02 

satisfying P' SP2 "r r) ai is infinite". By the countable chain condition there exists 
i #A j < w)1 such that pi and pj are compatiable. Let q extend both, and let q, 
extending q and k < w)1 be such that 

(1) ql1IPt02 rcak 
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Therefore 

(2) q1 V-"Ir q ail = Ir n 4j4 = No 

But (1) and (2) are contradictory to the assumption on <aj: i < w1 >. D 
Note that Claim 3.6 is provable if we replace PCO2 by P satisfying the countable 

chain condition. 
3.6. Claim. There is no r E V2 rm [o] ' satisfying, for every y E [o] nr V1, 

rc*y or rc*-y. 

Proof. Suppose this does not hold, and let r be a P< 2-name of an infinite subset 
of w satisfying, for every y E V1 n [w] ?', 

0 (j(" *orr 

Without loss of generality the transitive closure of r, which we denote by tc(r), is 
countable, and there is a countable S w)2 such that r is a P- 2I S-name of a subset of 
co. Set PCO2 I S = Ps. All parameters used in order to define Ps are countable; therefore 
there exists N < H(X, e), A large, such that tc(r) E N and S is closed for (N, R). Clearly 
N l= "r is a Ps-name". 

We proved in ?1 that Ps <2 P, 2 and therefore we would remain working only with 
Ps. In V1 there are <cj: i < w1 > such that ci ' wo for every i < w)1 and if i # j < w1 
then ci n c; is finite, and, for every i < w1, ci is a Cohen real over N. 

LEMMA. Let N be a countable model of some rich part of ZFC. Then there exists 
<ci: i < woi> such that 

(i) for each i < wi, char(ci) is a Cohen real over N, and 
(ii) for each i <Ij, Ici r cjI <No. 
PROOF. Let <In: n < o> be an enumeration of the maximal antichain of 2<0) which 

belongs to N. We will build <ts: s e 2<0)> satisfying the following requirements: 
(i) For every s e 2<", ts ' ts-<i> (i = 0, 1). 
(ii) For every s e 2'<0, ts e 2'<0. 
(iii) For every s e w<'0, if Isl = m then there exists t e- I. such that t c ts. 

(iv) For every S1, S2 e 2m, if n is the first natural number such that s1 (n) # s2(n), and 
k ? Itslrnl, then 

tsl(k) = 1 -* tS2(h) = 0 and tS2(h) = 1 tsl(h) = 0. 

Proof. We proceed by induction on m = length(s). 
m = 0. Let t< > be such that there exists t e IO satisfying t c t< >. 

m > m + 1. Let <si: i < 2m> be an enumeration of 2m. Without loss of generality, 
for every i,j < 2' we assume that It, I = ItsI. 

For i = O. let tso<0> be such that there exists t c Im+ 1 with t c tso0<O>. Let t'o be 
such that t c t'o and for every k ? I tsol if tso_<o>(k) = 1 then t'o(k) = 0. 

Let t o-^<1> extend t'o and be such that there exists t e Im+ 1 with t ctso< > . 
For i ? 0 the proof is similar. 
Now for every f e ' 2, if tf is such that, for every m w a), tf r m = tf, then tf is a Cohen 

real over N and if fJ1 7 f2 then I tf, I tf2I < No. This completes the proof of the 
lemma. 
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By Claim 3.5, there exists a Cohen real over N and c satisfying 

0 VPS "r rn c is finite". 

Set N1 = N[c]. Also N1 is a model for ZFC* and S is closed for (N1, Ps). By ?1.8, if 
G C Ps is generic over V1 then G n N1 is generic for pN, over N1. 

Set N2 = N1[G r) N1]. 
Because the computation of r using G rn N1 and using G are the same, we obtain 

that 

N2 P "r[G rn N1] rn c is finite". 

Also no restrictions on the members of G are imposed, so 

N1 t 0 IMPS "r r) e is finite". 

Therefore there exists s E [w] <', s c c such that 

N KIs lCohen "0 IlpS r rn c is finite". 

But c is in V1; therefore c' E V1, where c' is such that s c c' and c' r) c = s and c' u 
c = w. Clearly c' is a Cohen real over N extending s. So N[c'] = "O Kp5 r rn c is 
finite." (Note that in all this argument we worked with a standard name for r in the 
Cohen forcing language.) 

Again S is closed for (N[c'], Ps), and using ?1.8 we obtain 

N[c'][G n N[c']] I= "r[G n N[c']] rn c' is finite." 

And this is absolute; therefore 

V2 W1 "r[G n N[c']] rn c' is infinite". 

But in V2, r[G n N[c']] = r[G'], where G' = G., I S r V1, and this implies that 

V2 1= "r n c' is finite and r rn c is finite", 

and this is a contradiction because c' u c = w. D1 
3.7. COROLLARY. [co] C) L is a splitting family in V2. 0 
A tower is a family <aj: i < K> of infinite subsets of co satisfying (i) a' c* aj for i > j 

and aj !* aj, and (ii) for every infinite x c co, there exists i < K such that x !* aj. 
3.8. COROLLARY. In V2 there is a tower of cardinality N1. 
PROOF. Let <aj: i < w1 > be a tower on L such that in L 

U = {x E [o]': (3i < wol)(ai c* x)} 

is a ultrafilter over O. By Claim 3.7, for every x E [coa) there exists y E U such that 
(x r) y) = (x r) -y) = No. Let i < co1 be such that ai _* y; then clearly x 5* a D. F1 

3.9. LEMMA. Let P be a forcing notion, let T be a Souslin tree, and suppose that 

< T, > j[ "P satisfies c.c.c.". 

Then 

IlP T is a Souslin tree. 
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PROOF. If this does not hold, there exist I (a P-name) and p E P such that 

p VP "I is an uncountable maximal antichain of T". 

Set J = {t E T: (]q ? p)(q IHp E- I)}. 
3.10. Claim. If Pt, P2 E P and t1, t2 E T and 

(i) Pt IVP "i1 e I", P2 HP "i2 EI, 

(ii) P < Pt, P2 and Tk tj < t2. 

Then Pt and P2 are incompatible in P. Li 
3.11. Claim. J is uncountable. 
PROOF. P IK "I is uncountable". Li 
3.12. Claim. There exists t* E T such that 

(Vs)(t* <- s E- T => (3t E- T)(s < t E- J)). 

PROOF. Suppose this does not hold, and set 

K = {s e T: Ts n J = 0 and if t < s, then T1 r J # 0}. 

Let s, and S2 be members of K. Then, if s, <T S2, we have that Ts, r J # 0 by the 
minimality of S2; and this implies that s, 0 K. Thus every pair of members of K is 
incompatible. Let t e T; by assumption there exists S ?Tt satisfying Ts n J = 0, 
and thus there exists s e K with t < s. This implies that K is a maximal antichain. 
Therefore K is countable, and 

J c {t e T: (3s e K)(t <TS)}. 

This implies that J is countable. Li 
Let t* e T satisfy the condition in Claim 3.12. Let G c T7* be generic over V for 

<k*, < >. Then NV[G] = N'. By hypothesis, P satisfies the countable chain condition 
in V[G]. Now G is a branch of Ttf and, by a density argument using 3.12, G rn J has 
cardinality Nt. Therefore there exists <<ti,pi>: i < Wot> such that G rn J = {ti: i 
< -), } and p < pi Hk "ti e I". 

By the countable chain condition of P in V [G] there exists i # j < w)1 such that pi 
and pj are compatible; and by 3.1 1, this implies that tj and t2 are incomparable in T. 
This contradicts the fact that G is a branch of T. Li 

3.13. LEMMA. Suppose that Q = <Pi;Qi: i < a> is a F' -c.c.c.-a-iteration, let T be a 
Souslin tree, and suppose that, for every ,B < a, 

P* * T 1 "Q# satisfies c.c.c.". 

Then lk(T <)"Pa satisfies c.c.c.". 
PROOF. We argue by induction over a (note that VP "< T, < > is a Souslin tree"). 

The case a = 0 is clear. 
For a = ,B + 1, without loss of generality we can take Pv = pV <T, ->. Forcing with 

T * P. is the same as forcing with T x P,, which is the same as forcing with P, x T, 
and this in turn is the same as P. * T, and as P. * T Hk "Q# satisfies c.c.c." we have 
that 

(T, <) V "P,# * Q, satisfies c.c.c.". 
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Case 3. For a = Ua 0 0, it is well known that the directed limit of c.c.c. forcing is 
c.c.c. D1 

3.14. THEOREM. Let V1 C V2 be models of ZFC*, and suppose that P is in F'0 with 
parameters in V1. Then V1 t "P satisfies c.c.c." if and only if V2 t "P satisfies c.c.c." 

PROOF. Let 9(x) and *(x, y) be Zl-formulas with parameters in V1 rn R, and such 
that (i) x E P if and only if p(x), while (ii) <x, y> are incompatible if and only if 
*(x, y). Without loss of generality we suppose that the parameters of p and * are the 
real number b. 

The following argument will use techniques of model theory. 
We will construct a formula 0 E L.,1(Q) as follows. 
The relation symbols of L.,1(Q) will be {N, R, E, <, =, +, x, 1, a} and the 

logical symbols for first order logic. 
Let 0 be the conjunction of the following formulas of L.,1,(Q). 

(1) (Vx)(N(x) v R(x)), 

(2) (Vx)(-i (N(x) AR(x))), 

(3) (VxVy)(x e y -? N(x) AR(y)), 

(4) (VxVy)(R(x) A R(y) A (Vz)(N(z) -? (z e x +-+ z e y)) -? x = y 

(5) The conjunction of formulas saying that 
<N, 0, 1, +, x > is a standard model of Peano arithmetic 

(here we use L.1,, in order to write (Vx e N)(x = 0 v x = I v x= 1 + I v )), 

(6) R(a), 

(7) m e a for every m e b, 

(8) m-aforeverym b 

(i.e., a represents b in a model for 0), 

(9) < is a well order over {x: x < x} c R. 

(10) (x < x -+P(x)) 

(where p(x) is the same as p(x) but b is replaced by a), 

(11) (X < y A Xy -+ * (X,y)) 

(where * (x, y) is the same as * (x, y) but b is replaced by a), and 

(12) (Qx)(x < x). 

3.15. Fact. Let V be a model of ZFC* and suppose that a belongs to V. Then the 
following are equivalent: 

(a) 0 has a model. 
(b) There exists <ri: i < w > c 9? such that, for every i < 01, p(ri), and, for every 

i << wj , ) fr(ri,rj). 
Proof. (a) (b). Let M be a model for 0. Then, without loss of generality, 
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(i) NM = N, the natural numbers; 
(ii) RM 91, the set of subsets of natural numbers; 
(iii) EMc= I INM x RM; 

(iv)+M = +"and"xM= xVand 
(v) <dom <M, < >, a well ordering of type co1 of the real numbers. 
(vi) Therefore there exists <aj: i < cot> such that a' < a' for every i < o1, and a, 

< aj for every i < j < o),. 
(vii) For every i < (o0 

M p [ai] and Sp[ai] = ]xpj(x, a, at), 

where cP1 is an arithmetic formula. 
Therefore there exists c E RM such that M t p1(c, a, at). Now, inductively and 

using the formulas in q?j, we can prove that V - 9o(c, b, at); and this implies V 
p p[a]. 

(viii) Analogously we can prove that V l /i[ai, aj]. And this is the proof of (b) 
from (a). 

(b) (a). Let <aj: i <ao1> be as in (b). We define 

M = <N u 91, +, =, x, ?,e,O, 1,a> 

with the obvious interpretation of the symbols, and < = {Ka, aj>: i < j}. Clearly 
Mk 0. EZ 

Continuing the proof of 3.14, if, in V2 1 "P does not satisfy c.c.c.", then, in V2, 
W "0 has a model"; therefore, by Keisler [Ke], V2 W "0 is consistent". Therefore 
V1 W "6 is consistent", and, by Keisler [Ke], V1 W 0 has a model. So we have 
proved V1 1 "6 has a model" if and only if V2 1 "0 has a model"; and this 
implies that 

V1 l "P satisfies c.c.c." if and only if V2 1= "P satisfies c.c.c." D 

3.15. COROLLARY. In V2 there is a Souslin tree. 
PROOF. Let T be a Souslin tree of L. As P is 82-closed, T is a Souslin tree in V1. By 

3.14, for every 3 < 0)2 

P< T1 < > U- "Q# satisfies c.c.c." 

Then, by 3.10 and 3.13, T is a Souslin tree in V2. D 
Now we will show 3.4(iv) and (v). 
3.16. LEMMA. Let V be a model for ZFC + CH + 2H1 = N3. Let P be as in the 

proof of 3.4. Let G c P be generic over V. Set V1 = V[G]. Then 

V1 W CH + 2`1 = N3- 

Let P.,2 be defined from G as in the proof of 3.4. Let G.2,' P., be generic over V1, 
and set V2 = V1[Gj2] Then, as every real number appears in some intermediate 
stage of the iteration, we have that 

V, a MA(viO) + 2c n = n2 + 23 ) =3 

This proves 3.4(iv), and 3.5(v) is a consequence of 3.4(iv). FO 
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More results on MA(F'0) will appear in a subsequent paper. For example, we 
have proved that the following theories are equiconsistent. 

(i) ZFC + there exists an inaccessible cardinal. 
(ii) ZFC + MA(F+0) + (Vr E 91)(w)[r] < c1). 

(iii) ZFC + MA(F+0) + "every projective set of reals is Lebesgue measurable, 
etc." 
But the following is an open question: Are MA(F'0) and "additivity of measure" 
equivalent? 

?4. Inaccessible cardinals and the Borel conjecture. Here we will use the tech- 
niques introduced in ??1 and 2 in order to show the following. 

4.1. THEOREM. The following theories are equiconsistent: 
(i) ZFC + there exists an inaccessible cardinal. 
(ii) ZFC + the Borel conjecture + every Zl-set of reals is Baire. 
(iii) ZFC + the dual Borel conjecture + every Zl-set of reals is Lebesgue 

measurable. 
4.2. By Galvin, Prikry and Solovay [GPS] a set of reals X has strong measure 

zero if and only if for every meager set M there exists a real x such that x + X rn M 
= 0. From this, we define a set of reals X to be strongly meager if and only if for 
every measure zero set M thereexists a real x such that x + X rn M = 0. The Borel 
conjecture is the assertion that every strong measure zero set is countable, and the 
dual Borel conjecture is the assertion that every strongly meager set is countable. R. 
Laver [La] has proved that the Borel conjecture is consistent, and T. Carlson [Ca] 
has proved that the dual Borel conjecture is consistent. We do not know if there is a 
model of ZFC + Borel conjecture + dual Borel conjecture. 

PROOF OF THEOREM 4.1. 
4.3. (ii) implies (i). Let V be a model for (ii) and suppose that N, is not an 

inaccessible cardinal in L. Therefore there exists a real number a such that C) L[a] 

- o1. In other words, X = L[a] ) 9i is an uncountable set of reals in V. We will 
show that X has strong measure zero. In fact, it is sufficient to prove that for every 
Borel-meager set M there exists x such that x + X rn M = 0. Let m be a Borel-code 
for M. By the Solovay characterization of "every ZE-set of reals is Baire", there exists 
a Cohen real x over L[a] [m]. As X c L[a] [m] we have that for every y E X, x + y is 
a Cohen real over L[a] [m], and this implies that x + X rn M = 0. Thus, N1 is an 
inaccessible cardinal in L. 

The proof that (iii) => (i) is similar, using random reals. 
4.4. (i) => (iii). Let V be a model of ZFC + there exists an inaccessible cardinal K in 

V. Let coll(w, < K) be the Levy collapse of all cardinals less than K to w. Let GK 

c coll(w, < K) be a generic filter over V; let V1 = V[GK]. It is well known that in V1 
for every real number a, w L[aI is a countable ordinal in V1. Now let P be the product 
of N2-Cohen reals and let G C P be generic over V1; then by Carlson [Ca], V1 [G] 
satisfies the dual Borel conjecture. We will finish if we show that for every real 
number a e V1 [G], N1 is an inaccessible cardinal in L[a]. 

Suppose that this does not hold; then there exists a, a Cohen-name of a real 
number, and a Cohen real c in V[G1] such that V, [c] I=- "N, is accessible in 
L[a[c]]". So by the countable chain condition of 2<w and by the K-chain condition 
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of coll(w), < K) there exists a < K such that a E V[GJ, where Ga is the restriction of GK 
to coll(wo, < o). Therefore 

V[Ga.] Ed W "K is an accessible cardinal in L[a[c]]" 

because the computation of a in V1[c] and in V[Ga] [C] is the same. By 1.6, c is a 
Cohen real over V[Ga], and thus there exists s e 2`a' such that 

VEGa] WS If2 <w "K is an accessible cardinal in L[a]". 

It is well known that C'E[G'] is countable in V1; hence there exists cl E V1 rn 2', 
s c c1, such that c1 is a Cohen real over V[GJ], and this implies that 

V[Ga][c1] I= "K is an accessible cardinal in L[a[cl]]". 

But this implies that 

V1 1 (3a E 9i)(X1 is accessible in L[a]), 

contradicting the above remark. 

4.5. (i) - (ii). Let V1 be as in 4.4, only we require that V1 I CH. R. Laver 
(see [Ba]) proved that if P- 2 is an W2-iteration of Mathias reals and G2(2 c P- 2 is 
generic over V1, then V1 [G 2] # "Borel conjecture". So we need prove that for 
every real number a E V1 [G 2], K is an inaccessible cardinal in L[a]. For this we 
remember the 

Mathias real forcing M. (s, A) e M if and only if s e [W)]<W0 and A e [)]W and 
sup s < inf A; the order is given by setting (s1, A1) < (s2, A2) if and only if s, c S2 
and A2 ( A1 and S2 -s c A1. Clearly M FNO. 

Claim. M is a proper F'o-forcing. 
Proof. Let N be a countable model for some part of set theory and let (s, A) e MN; 

let a be a Mathias real over N extending (s, A). So s u A - a and, if B = a - sup s, 
we have that (s, B) e M, (s, A) ? (s, B) and (s, B) is an ((s, A), N)-good generic condi- 
tion for (s, A). Therefore P is proper F'o-forcing. 

Returning to the proof of 4.5, let a be a PO 2-name of a real such that 

V1[GWV2] I= K is accessible in L[a[G 2]]. 

As P- 2 is proper, there exists S c 0w2, S closed, ISI = No, and p e Ps (where Ps is the 
iteration of M only using indexes in S) and a a Ps-name of a real such that 

p |pP2 K is accessible in L[a] 

(in this case, over p, a is a PO,2-name of a real). As before, let a < K be such that S is 
countable in V[Ga] and p e pV[G ] and a is a PV[Gc-1name of a real. Clearly if ,B 
- order type (S), then pS[G.] is isomorphic to pV[G.] in V[G], and as K is an 
inaccessible cardinal in V[Ga], we have that the number of maximal antichains of 
PE[G-] is less than K in V[Ga]. Therefore if A = 22 , working in V[Ga] we can find 
N < H(A, e) satisfying 

(i) INI < K, 
(ii) pSV[G] N, 
(iii) for every maximal antichain D CZ pV[GX] D E N, and 
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(iv) Kice N, a e N, 2W'r V[Ga] c N, etc. 
Then if G a Ps[Go] is generic over N, we have that G is generic over V[G]. But N 

is countable in V1, and clearly S is closed for (N, P,2) and P,2 | SN is exactly Ps [Ga. 

Using 2.8 we can find q E P-2,p < q, such that if q E G ,2 then G ,2 | SN is generic over 
N. Clearly a[G 2] = a[G ,2 | SN], and thus 

V[Ga] [G-2 I SN] I K is accessible in L[a[G 2 | SN]]. 

By the above remark, G2 ISN is generic over V[Gj], and therefore there exists 

Pt PsEp[Gal such that 

V[G.] W Pt 'SpH "K is accessible in L[a]". 

In V1 there exists G C pV[G-] containing Pt and generic over V[Ga] (remember that 
N is countable in V1). Therefore 

V[Ga] [G] I= "K is accessible in L[a[G]]". 

As V[GJ][G] c V1, we have that V1 # "K is accessible in L[a[G]]", and this is a 
contradiction. D 

4.6. From the Bartoszyn'ski-Raisonnier-Stern theorem, which says that if every 
Z-set of reals is Lebesgue measurable, then every Z 1 -set of reals is Baire, it is easy to 
show that 

(iv) ZFC + Borel conjecture + every Zl-set of reals is Lebesgue measurable is 
equiconsistent with 4.1(i). In a subsequent paper, we will prove the following result: 

THEOREM. The following theories are equiconsistent: 
(i) ZFC. 
(ii) ZFC + MA (u-centered) + dual Borel conjecture. 
Therefore, in 4.1(iii) it is not possible to replace Zl-measurability by ZV- 

categoricity. But, about this, the following questions are open. 
(1) Add(measure) implies Add(strongly meager) 
(2) Add(category) implies Add(strong measure zero) 
4.6. S. Todorcevic has remarked that if we add a Cohen real over a model to MA, 

then MA (u-linked) fails in the generic extension. Using the Carlson theorem [Ca] 
we can prove this by establishing the following fact: Suppose that on adding a Cohen 
real over a model to MA then MA (Y-linked) holds in the generic extension. Then, 
adding 0w2-Cohen reals over a model to MA, we have that every w)1-sequence of reals 
which lies in the ground model is a strongly meager set. 
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