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BOOLEAN ALGEBRAS WITH FEW ENDOMORPHISMS

SAHARON SHELAH

Abstract. Using diamond for N, we construct a Boolean algebra in K,,

whose only endomorphisms are those definable using finitely many elements

and ultrafilters. We also generalize Rubin's construction to higher cardinals.

0. Introduction. The aim we state in the name of the paper can be

interpreted in two ways: every endomorphism is "simply defined", or the

number of endomorphisms is small. However for every ultrafilter F on a

Boolean algebra (or, equivalently maximal ideal I = B — F) we can define

an endomorphism T:

T _ _ Í 1,    bGF,
h * 10,   bei.

So "defined" should be interpreted as definable using maximal ideals. This

is done in Theorem 1.4 (2) (saying there are indecomposable complicated

Boolean algebras, see Definition 1.1, 2, 3) and Theorem 1.8(2) (saying any

such algebra has only simply definable endomorphisms (see Definitions 1.5,

1.6)). Those theorems answer a question of Monk; for further historical

background see [R].

As for the other interpretation (the number of endomorphisms should be

small), Rubin [R] using 0„ builds a Boolean algebra of power tt„ which we

call here 1-Rubin (or Rubin). Such algebras in particular, have only N, ideals

and subalgebras. (The exact definition speaks on any set of N, elements

having some properties.) We generalize this to sets of N, «-tuples and get a

Boolean algebra which is «-Rubin for each n (Theorem 2.5). In fact we do

this for A+ instead N,, assuming 0A and 0X+, using [Shi].

Variants of §1, in ZFC but for higher cardinals, will appear, as well as

generalizing Theorem 2.5 to higher cardinals.

Further remarks. (1) We can generalize §1 using [Shi], but it does not seem

so interesting.

(2) We can ask in 2.5 for which Boolean algebras C and set K0 of «-tuples

from C, K0 = {(bf, . . . , b"~x): i < /„ < X}: for every set K of X «-tuples

from B (K0, Kx with disjoint sequences of distinct elements) we can find

distinct (tf°, . . . , a"~x) G K (i < /0) such that the mapping a¡\-^b'¡ induces

an embedding of the subalgebra of C generated by {a/: /<«,/< /0} into B.

For « = 1, a = N, Rubin [R] answers this; for « = 1, X > n„ the conditions
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136 SAHARON SHELAH

are essentially the same. (No union of members of K0 is 1, no intersection of

members of K0 is empty, and they can be well ordered so that no one is a

Boolean combination of previous ones.) For n > 0, there seems to be no

essential problem but it seems hard to phrase it intelligibly.

(3) It is open whether there are /j-Rubin not (n + 1)-Rubin Boolean

algebras (in particular this is hopeful for n = 1, X = K,).

The results from [R] generalize easily from the case X = N to other cases of

§2 at least for X = ¡i+, B u-saturated, but the other questions were not

checked (can ¡j.+ < X, can X be singular, etc.).

Notation. Let m, n, k, I denote natural numbers, a, ß, y, i ordinals, X an

infinite cardinality. P (A) is the family of subsets of A.

Let B denote a Boolean algebra, 0, 1, n, U, -, < operations and relations

of Boolean algebras.

We let [a, x]lf(,) be a C x if t is true and a n x = 0 otherwise.

1. Complicated Boolean algebras and Boolean algebras with only definable

endomorphisms.

1.1 Definition. A Boolean algebra B is called complicated if for any

candidate {(an, bn): n < co} for B (which means: m =£ n implies anC\ am = 0,

bn n bm = 0 and for each n, bn g a„ and of course an, bn E B) there is a

witness set S Q co i.e. such that

(i) for some x E B for every n [an, x]if("6S),

(ii) for no x E B for every n [b„, x]if(neS).

1.2 Definition. An ideal 7 of a Boolean algebra B is called indecomposable

if there are no nonprincipal disjoint ideals 70, 7, such that 7 is generated by

them (so 70, 7, C I). Clearly such filter is not principal (otherwise 7 is called

decomposable). (7 is principal if for some a, I = [b E B: b < a}.)

1.3 Definition. A Boolean algebra B is called indecomposable if every

nonprincipal maximal ideal of B is indecomposable.

1.4. Theorem (1) (CH) There is an atomless complicated Boolean algebra of

cardinality Rx.

(2) (0K ) There is an atomless indecomposable complicated Boolean algebra of

cardinality N,.

(3) In (1) we can assume that any maximal infinite antichain and chain in B

is uncountable. In (2) we can assume this or that there are no uncountable chains

and antichains in B.

Remark. (1) Instead of CH it suffices to assume in (1) that the union of

< 2"° many nowhere dense subsets of P (co) is not F (co).

(2) We may want B to be atomic with k0 (N,) atoms. For this always

enlarge [a": n < co) to a maximal antichain \aß: ß < ßa} in the following

proof.

Proof. (1) We define by induction on a < N, an atomless Boolean algebra

Ba and typespß (ß < a) such that:
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BOOLEAN ALGEBRAS WITH FEW ENDOMORPHISMS 137

(a) Ba (a < wx) is increasing and continuous, each Ba is countable and for

convenience its set of elements is w(l + a).

(b) Pa = {[%, x]if<nes<a»: « < w} where ¿>„a G Ba, ¿>„a ̂ 0, « ^ m =» b? n

b^ = 0 and 5(a) Ç u and S (a), w - S (a) are infinite.

(c) No element of Ba realizes any pß (ß < a).

Our desired algebra will be B = U a<uBa-

As we use the continuum hypothesis, by standard methods we can assume

that for each a we are given a candidate {(a", b"): n < w] for Ba, so that

every candidate for B appears in the list.

Now it suffices to define Ba+X, S(a), assuming Ba,pß (ß < a) are given

such that S (a) is a witness for the candidate {(a", b"): n < w) in Ba+X, and

Ba +, does not realize pß ( ß < a). Notice S (a) defines pa (see (b)), and that

for a zero or limit, there is no problem to define Ba.

After the choice of 5(a) we will define Ba+X as follows: it is generated by

Ba and x„, freely except that xa realizes {[a", .*]'f<"es(a»: n < w).

Now all demands on Ba+X are translated to demands on S (a). Now we

should show that they are compatible; for this we shall show there are

countably many demands (remembering a < Kx) each of them being: S (a)

lies outside a subset of P (a) which is of the first category (or even is nowhere

dense). By the Baire category theorem this is sufficient.

So let 0 = (a,, a2) denote a pair of disjoint finite subsets of w, V¡ = {S G

w: ax Ç S, a2 n S =0). Let â G o' mean o, G a'„ a2 G a'2 hence V-, G V-.

So let us deal with the demand "Ba+X does not realize pß" where ß < a. So

for each partition bx, b2, b3, b4 of 1 in Ba, and 0 we have to find rJ', 0 G b~'

which ensure that y = bx u (b2 n x) u (b3 - x) does not realize pß. (As

there are countably many ß's and such partitions, this is sufficient.) (Note v is

a "general" element of Ba+X.)

By inessential changes we can assure a, u o2 = (0, . . . , n - 1} and a¡¡

U   •   •   •   U  <_,  Ç Ä,  U  ¿>4-

First assume ß < a. If for some m > n and k, bj3 n a£ =£ 0 then we can

assure^ does not realizep^, by assuring not [bkB,y]l^meS(B)) and this we do by

adding m to ax or o2 (and so getting a'). If there is no such k, but for some k,

bj3 - bx - b4 =£ 0, the freeness of xa assures our desire. In the remaining

case, if v realizes pß (for some choice of S (a) G V-) then bx will do as well,

contradiction.

So remains the case ß = a. If for some m > «, bx n b£ ¥= 0 we adjoin m to

o2 (to get a'), and if for some m > «, b4 n b£ ¥= 0 we adjoin m to a,, and this

is clearly sufficient. If for some m ¥= I > «, (bm — am) n a, =£ 0 we adjoin m

to o, and / to a2. In the remaining case the freeness of x2 ensures the result.

Now it is trivial to check B = U a<uBa is as required.

(2) We repeat the proof of the first part: but the enumeration of candidates

is only for successor ordinals and for such a's we act as before. (Also for limit

ß we have twop^'s and they are defined a little differently.) For limit a < wx,

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:89



138 SAHARON shelah

we are given 7q, I" C Ba, such that eventually for every 70, 7, C B, [a:

I" = 7, n Ba, Iq = 7q n Ba] is a stationary set of limit ordinals (hence

nonempty). So if 70, 7, were disjoint nonprincipal ideals in B, whose union

generates a maximal ideal in B, so are 7, n Ba, 70 n Ba in Ba for a closed

unbounded set of as. So some a satisfies both demands, so it suffices in

defining Ba+X,pa to assure no such 70, 7, will exist.

So suppose 7q, 7" are disjoint nonprincipal ideals in Ba whose union

generates a maximal ideal. We can find pairwise disjoint a" E/0° u I", such

that [a2„: n < co}, {a2n+x: n < co} generate 7q, 7" resp. We shall choose

S (a) C co, so that there are infinitely many odds and even, in 5(a) and in its

complement, and define Ba + X as in (1).

We now let for / = 0, 1, p'ß = {[an, x]ifl"eS(o)l: n = / mod 2}. We have to

define S (a) so that again all types up to and including this stage are omitted,

and this is done in the same way (using the properties of 7q , 7,a).

(3) is left to the reader, we may have to change the last phrase of (b). (To

make Ba atomless we may sometimes add freely an x.)

1.5 Definition (1) A scheme of an endomorphism of B consists of a

partition a0, ax, b2, . . . ,b„_x, c0, . . . , cm_, of 1, maximal nonprincipal ideal

I, below b, for I < n, nonprincipal disjoint ideals 7°, 7/ below c, which

generates a maximal ideal below c, for / < m, a number k < n, and a

partition b$, . . ., b*_x, c$, . . . , c*_, of a0 u b0 u • • • U bk_x. We assume

also that k + m>0=>a0 = 0, (n — A:) + m = 0 => a, = 0 and except in

those cases there are no zero elements in the partition.

(2) the scheme is simple if m = 0.

(3) The endomorphism of the scheme is the unique endomorphism (see 1.7)

T: B^>B such that:

(i) Tx = 0 when x < a0 or x £ I¡, I < k, or x E 7°, I < m.

(ii) Tx = x when x < ax or x £ I¡, k < / < n or x E 7/, / < m.

(iii) F(/3,) - 6,* when / < k.

(iv) T(b,) = b,u bf when k < I < n.

(v) F(c/) = c, u c* when I < m.

1.6 Definition. An endomorphism of the Boolean algebra B is (simply)

definable if there is a (simple) scheme which defines it.

1.7 Claim. Any scheme of an endomorphism of B defines uniquely an

endomorphism of B.

Remark.   The  representation  is  almost  unique.   We  can  interchange

elements among U/<*7, u U /<m7/° and among U ¡>kI¡ U U/<„//.

Proof. Easy.

1.8 Theorem. (1) Every endomorphism of a complicated Boolean algebra is

definable.
(2) If in addition the Boolean algebra is indecomposable, then every

endomorphism is simply definable.
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BOOLEAN ALGEBRAS WITH FEW ENDOMORPHISMS 139

Proof. Part (2) follows easily from (1) and Definition 1.3 (for if 7,°, 7/ are

as described in Definition 1.5, adjoin 1 - c, to //, and get a contradiction to

the indecomposability of B). So let us prove (1).

So let F: B —> B be an endomorphism.

Stage (i). Define

70 = {b E B: for every a < b,Ta = 0},

7, = [b E B: for every a < b, Ta = a).

Note that as a < b => Ta < Tb, clearly Ta = 0 => a £ 70, but clearly not

necessarily Fa = a => a E 7,.

Clearly 70, 7, are disjoint ideals of B, and 7 is the ideal they generate.

Stage (ii). In B there are no disjoint elements an (n < co) such that

Tan i a„.

Clearly mi= « => Fam n Tan = 0 (as it is T(am n a„) = F(0) = 0), so

{(a„, Tan): n < co} is a candidate (see Definition 1.1), so (as B is complicated)

there is 5 C co and c E B realizing {[an, x],!(neS): n < co}, but no c' E b

realizes {[Tan, x]if("eS): n < co}, but Tc realizes it, contradiction.

Stage (iii). If b E B, and c < b => Tc < c then ¿67

Clearly for every c < b, T(c - Tc) < c - Tc by the hypothesis of the

stage, and T(c - Tc) < Tc as c - Tc < c, hence F(c - Fc) = 0. We can

conclude that for c < b, c - Tc E 70, and Tc = T(Tc).

Let c0 = FZ>, so c0 < b, Tc0 = c0 and suppose c < c0, Fc ^ c. Then

Fc < c, and let </ = c - Fc ^ 0 (so d < c < c0, d E 70) now Fc0 = T((c0 —

d)\j d)= T(c0 - d) u F(c7) = F(c0 - d) u 0 = F(c0 - cf) < c0 - rf so

Fc0 < c0 (as <7 t^ 0) but Fc0 = c0 as c0 = Tb, contradiction. So c < c0 => Fc

= c, i.e. c0 E 7„ but b = (b - Tb) \J Tb = (b - Tb) U Cq, b - Tb E 70, c0

E 7„ so b E I, as desired.

Stage (iv). 5/7 is finite.

Otherwise there are pairwise disjoint nonzero an/I (n < co). By replacing an

by a„ — (J /<„#„ we can assure the an's are pairwise disjoint, and of course

an £ 7. If for every « there is a'n < û„, Ta'„ < a^, we get a contradiction by

(ii), but if c < an => Tc < c then by (iii) a„ E 7, again a contradiction. So

necessarily 5/7 is finite.

Stage (v). F is definable.

Let b,/I (I < n) be the atoms of 5/7, and w.l.o.g. b, (I < n) is a partition

of 1. Clearly the restriction of 7 to each b, is a maximal filter. The rest is easy

checking.

2. On Rubin Boolean algebras.

2.1 Definition. (1) Let B be a Boolean algebra. A formal n-interval is: a

partition b0, . . . , bm_, of 1 in B, bk i* 0 and r'k £ (0, bk, xk, b, - xki (I < n,

k < m) and elements ck, cl, where 0 < ck < cl < bk (for not necessarily

atomless B we may want to demand cl — ck is infinite). We name a formal
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140 SAHARON SHELAH

«-interval v, and then write «„, m„, bf, ik'', ck'' when the identity of v is not

clear,

(2) The formal «-interval is simple if ck = 0, cxk = bk. We say v is a formal

«-subinterval of v* if cf'° < c¿'° < cpkx < cf'1 and ¿>; = é,'*, t¡* = t;*-'.

(3) Let <p"_(x, y) be A,<n; *<„¿v n*( = r/ (A A*c° < ** < 4) a"d «TOD
= (3x)<p"(x,y).

(4) We say ä = (a0, . . . , an_,) realizes r if <p"(ö) is satisfied.

We now consider a generalization. Let X, p be fixed infinite cardinals in

this section.

2.2 Definition. (1) Let B be a Boolean algebra, y an ordinal < p. A formal

y-interval is: nonzero elements b¡ (i < /,), i0 < ix, and ordinals i" (a < y)

such that 2a<Y i" < p, i <j < i0 => b, n bj = 0, / < /0 < / < /, => [b¡ G bj

or b¡ n bj = 0], terms if (a < y, i < i0) such that for / < z0, if G {0, b¡, x¡, b¡

- x,} and for /„ < i < /„ formulas a¡ of the form: the intersection of b¡ with

finitely many va's, (1 - ^a)'s is empty (but no two have the same form) and

we let for / < /„, o," = [ya C\ b¡ = if] A 0 < x, < bi and the set of o's is

finitely satisfiable in B.

We name formal y-intervals by v, and then write y "instead of y, if, bf, etc.

When the identity of v is clear we omit it.

(2) If y = 1 we can assume /, = /„ + 2, t, = x, for i < i0, and all 6,'s are

pairwise disjoint and 0,o = [ v0 D ¿>,o = 0], of| = [(1 - y0) n ¿>,o+I = 0J.

(3) We say v is a formal y-subinterval of v* if y" = y"*, /q = /q*, t,"'" =

t,"*", è," < è,"* for i < /0, o," = o,"* when /¿; < i < if, if < if. If « = 1, by
assumption, we can demand /'Ó* = /q, if = if, and 6," < bf for / < /0,

k > <> K+i > K+iand b"' < (6." u ¿,: u ä,:+1) for / < ¿0.
(4) Let ipy(x,y) be the conjunction of the formulas if = ya (1 b¡ (i < /0),

of (i0 < / < /,) (a < y0).

Lct<p'(y)-<ßx)V(x,y).
(5) We say a = <aa: a < y> realizes v if <p"(a) holds.

Notation. A' will be a family of sequences of a fixed length from a

Boolean algebra.

2.3 Definition. Let B be a Boolean algebra, y < p and K a family of

y-tuples of elements of B. We call B-small (A-small) if for any formal

y-interval there is a formal y-subinterval such that no (such that < X) y-tuple

from K realizes it.

2.4 Definition. (1) An atomless Boolean algebra B of power > X is called

y-Rubin [y-*Rubin] (y < X), if any A-small (any small) family of disjoint

y-tuples from B has power < X. We demand also that below each nonzero

element there are À elements (otherwise there are < X exceptions, so this is a

technical demand).

(2) If « = 1 we omit it, and if it holds for every y < p we omit it and write

strongly.

So Rubin [R] proves (assuming 0„, when X = «,, p = N0) the existence of a
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BOOLEAN ALGEBRAS WITH FEW ENDOMORPHISMS 141

Rubin Boolean algebra of cardinality N,. The demand A-small instead of

small is equivalent.

2.5 Theorem. Let X = ju+, S = {a < X: cf a = u}, fi regular and assume

0 , hence u = p<11 and 0S holds. There is a strongly Rubin Boolean algebra

which is ^.-saturated.

Remark. The proof gives a little more then u-saturation.

Proof. We use the construction of [Shi] on omitting types in L(Q). Our

theory is the first-order theory of atomless Boolean algebras together with the

axiom (Vx) [x ¥= 0 -» (Qy)y < x], and it is easy to check it is complete and

has elimination of quantifiers.

Now we build by induction on a atomless Boolean algebras Ba (a < X) and

Y/rtypes/^ (ß < a) over Bß such that

(1) Ba (a < X) is increasing and continuous, each Ba+X is saturated of

cardinality u, and for convenience its set of elements is ju(l + a).

(2)pß is an y^-type over Bß (yß < w) which has no support (see [Shi]) over

each Ba, a > ß, hence each Ba does not realize it.

By [Shi] we just have to define for each given Ba a type/jg with parameters

over Ba which has no support over it. Now by 0S for each a E S we will be

given a ya < u and a family Ka of ya-tuples of elements from Ba, such that

for each y < ¡x and family A" of y-tuples from B = Ua<y7?a, (a: K n -ÖJ =

Ka] is stationary. Note that for each such small K, [a E S: K n 7?J is small

and for each formal y-interval v over Ba, v is realized in Ka iff it is realized in

K, and is realized by X members of K iff for every ß < a, (Ba — Bß+l)y n K

¥= 0} is a closed unbounded set of as, hence for each such K there is an

a E S for which K n 5J is small and K n 7?J = Ka, y = ya. Now we shall
try to let

Pa = { ~i <P"(y)'- no Ya_tuple from K realizes v,

a simple formal na -interval from B\

U f V x, ¥° a,: a,,,... £ Ba)

(notice pa consists of negations of conjunctions of first order formulas) by the

/i.-saturation we can get rid of the 3x. If pa is not realized in B, we see that no

«-tuple from K is disjoint from Ba, hence K has cardinality < u or is not

disjoint so we shall finish. We only have to prove pa has no support over Ba.

So suppose

Qxx3x\Qx23x'2 • ■ ■ 3y0,.. . ,.yr_,<p(x„ . . . ,y0, . . . ,yy_x, b0, . . .)

is a support (b0, . . . E Ba, |<p| < n). We can represent <p as a disjunction of

conjunctions each conjunction containing complete information as to which

Boolean combination of the x's, .y's and ¿'s is empty. We can then replace it
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142 SAHARON SHELAH

w.l.o.g. by one of the disjunctions. Then by using more parameters, we can

add information to <p, so it is still a support, but tp is of the form i//" for some

v, so we finish.

Added in proof. 1. Monk improved 1.4(1) by getting a complicated

Boolean algebra of power 2Xo without assuming CH.

2. It seems that the authors proved 1.4(2) assuming CH only.
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