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Abstract

It is consistent that for every function f:[R x R— R there is an uncountable set 4 C R and
two continuous functions fy, fi :D(4) — R such that f(o, )€ {fo(o, ), fi(a, )} for every
(o, f) € A*, a# B. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Suppose that X is a topological space and f: X — R is a real-valued function on X.
Is there a “large” subset of X such that the restriction f [ X is continuous? Obviously,
if ACX is a discrete subspace, then f [ A4 is continuous. Hence in the case when
dom(f)=R, we can always find an infinite subset on which f is continuous. The
problem whether there is such “large” set has been investigated by Abraham et al. [1].
They proved that it is consistent that every function from R to R is continuous on
some uncountable set. Later Shelah [4] showed that every function may be continuous
on a non-meager set.

In this paper we consider functions on the plane, R x R. The reasonable question
to ask in this case is: is there a “large” set A C R such that on 4 x 4 the function f
can be covered by two continuous functions? Note that we could not hope for f to be
just continuous on 4 X 4, e.g., if g is a Sierpinski partition, then for every uncountable
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set A, g is not continuous on A X A. The main result of this paper is the following
theorem. For technical reasons we consider squares without the diagonal, i.e. for a
set A we consider D(4)={(x, y): x, y€A, x# y}.

Theorem. Assume 28N =W, for 1<4, and O)(R4, Ry, Ry), see below. Then there
is a forcing notion P which preserves cardinals and cofinalities and such that in
VP, 2% =Xy and for every function f:RxR—R there is an uncountable set ACR
and two continuous functions fy, fi:D(A)— R such that f(a, B)e{fo(x ), fi(e, B)}
for every (a, )€ D(A).

The proof is separated into two parts. In Section 2, we prove the consistency of a
guessing principle, diamond for systems. Then, in Section 3, we give the proof of the
theorem.

Remark. (1) We can replace Ry by any u= p~*.

(2) Our main goal was to prove the consistency of the statement in the theorem
with 2% <R, We get 2R =N, naturally from the proof, but the values N3 or N, may
be possible.

1.1 Notation. We use standard set-theoretic notation. Below we list some frequently

used symbols.

e For A,B subsets of ordinals of the same order type, OP3 4 is the order preserving
isomorphism from 4 to B.

e If C is a set of ordinals, then (C) denotes the set of accumulation points.

e Let A,y be cardinals, y regular. S; ={ae i cf (x)=y}.

e For a statement ¢ we define TV (¢p)=0 if ¢ is true, otherwise TV(¢p)=1.

e R=22,

e If M is a model, X C M, then Sk(X) is the Skolem hull of X in M.

o Z[k,0) is a “universal” vocabulary of cardinality x<?, arity <0.

2. Diamond for systems

In this section we prove the consistency of a guessing principle, diamond for sys-
tems <.

Definition 2.1. A sequence M = (M,: u€[B]<?) is a system of models (of some fixed

language) if:

(1) M, COrd, BCOrd,

(2) BNM, =u for every uc[B]<?,

(3) for every u, v €[B]<2, |u| = |v|, the models M, and M, are isomorphic and OPy;, y,
is the isomorphism from M, onto M,, OPy, y,(v) =1u,

(4) for every u, v€[B]S?, M,NM,C M,n,,

(5) if |u|=|v], v’ Cu, v'={acv: 3pecu’)(|BNu|=|aNv])}, then OPy, rr, € OPy, u,»
and OPy, yr, = idyy,, and if |w| = |u|, then OPy;, 1, © OPy, 1, = OPus, a1, -
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Remark. See [3] on the existence of “nice” systems of models for 4 a sufficiently
large cardinal, e.g., measurable. Here we do not use large cardinals, and try to get a
model in which the continuum is small, i.e., less than X,,. For this we need a suitable
guessing principle.

Definition 2.2 (Diamond for systems Oi(2, o, k, 0)). Let {C,: a € 1} be a square se-
quence on A. (M*: a€ W) is a Oy(4, 0, K, 0) sequence (or Oy(4, 0, K, 0)-diamond for
systems) if:

(A) W C A and for every o€ W, M* = (M?*: u€ [B,]<?) is a system of models, M* is
a model of cardinality «, universe C «, vocabulary of cardinality < «, arity <0, a
subset of #[x,0).

(B) B, Ca= sup(By), otp(B,) =0, so d =cf(x).

(C) if M is a model with universe A, vocabulary of cardinality < k, arity <6, a subset
of Z[k,0), then for stationarily many o€ W for all u € [B,]S?, M* <M,

(D) if o, W and otp(C,) <otp(Cy), then
(i) for some { € By, U{Mf: ue [B/;]<2}_U{Mf: u € [BgN{]<?} is disjoint from

UMy ue[B,]<%},

(E) if o B in W, otp(C,) = otp(Cp), then there is a one-to-one map /4 from Uue[B,(]Sz
M7 onto Uue[Bﬂ]Q P, order preserving, mapping B, onto Bg, M onto Mhﬁ(u)
which is the identity on the intersection of these sets and the intersection is an
initial segment of (J,c(3,1<: M,/ and UuE[B,;]éle'

(F) if 6 =x we may omit o.

Lemma 2.3. Assume: k<u<2X are uncountable cardinals, 1=y", 2=y, [J,, st
K=k~ 1" =u, o, y, k regular cardinals.
Then there exists a diamond for systems on 1, Os(4, a, K, 0).

Proof. Let C=(C,: y€4) be a square sequence on .. We assume that each C, is
closed unbounded in y, if y is a limit. Let Cy:{ocg: {<otp(C,)}. First choose a
sequence (b¥: i<y) for every a <A such that b? C o, |b¥| <y, b? increasing, continuous
in i, o= J{b?: i<y}. Next, choose a, for o<1 such that

(1) ay Ca,

(2) if cf(a) <y, then |a,| <y,

(3) if pe(C,), then ag Ca,,

(4) if B C, and i =otp(C,), then b’ Ca,,

(5) if otp(C,) is a limit of limit ordinals, then a, = U/ie(CZ)' ag.

Note that if € S/, then there is a club C}, C C, such that (x4: f€ C}) is an increas-
ing, continuous sequence of subsets of o of cardinality < y with union o. Let Hy, H;
be functions which witness that A=y, i.e., Hy, H; are two place functions, for every
o €[y, A1), Ho(x,—) is a one-to-one function from o onto y and H;(o, Ho(o,i))=1i for
every o €[y, A) and i <a.

Now by induction on ¢ <A we define the truth value of “a € W, and if we declare
it to be true, then we also define M*. Suppose we have defined W No and MF for
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p € WnNa. Now consider the following properties of an ordinal o € A:
(a) a,Ny=otp(Cy),
(b) a, is closed under Hy and Hj,
(c) for every y € a, we have

(1) if cf(y) <y, then a, N /_b;;tp(C ) and C, Ca, and otp(C,) < otp(Cy),

(i) if cf(y) =y, then sup(a,Ny)= aotp(c) and C, 5o Cay,,
(d) cf(a)=g0.
If o does not satisfy one of the conditions (a)—(d), then we declare that o & W. So
suppose that o satisfies (a)—(d). Let (M;: { € x) be the diamond sequence for S7, i.e.,
each M; is a model on {, vocabulary as above, and for every model M on y, there
are stationarily many ( € S7, such that M N{=M;. We say that M; is suitable if it
is of the form ({, <7, M;"), where <! is a well-ordering of (. For each ( such that
M, is suitable, let & —otp(C <?). Let he : {— & be the isomorphism between ((, <C)
and (&, <). Let M, ® be the model w1th universe ¢, such that A; is the isomorphism
between M;" and M? For o€ 4 let {(x)=otp(C,). Consider the following properties
of we i
(e) there is a system N = (NS s [Byy,)]<2), Ne® <M2

L(a)? HNSLJ(Q)” =K, EC(U‘)
cofinal in ), otp(Bya)) =0,
(f) otp(az) = Sy
If o does not satisfy (e), and (f), then declare o ¢ W. So assume that o satisfies (e)
and (f). Let g,: &y ) — a, be the order preserving isomorphism. Let M*=(M?*: uc
[B,]<2) be the system of models on a,, which is isomorphic to N**) and the isomor-
phism is g,. If this system satisfies:
(g) for every f€(C,) there is v € B, such that ag N | J{M* u€[B,]<?} C U{M;
[B,NVv]S2},
then we declare o € . This finishes the definition of the diamond for systems sequence,
(M*: aeW).
We have to prove that it is as required. Clauses (A) and (B) are clear.

Proof of clause (C). We need the following fact, it is proved essentially in [5], but
for completeness we give the proof at the end of the section.

Lemma 2.4. Assume:

(1) A=02%F, u=u*, k=cf(x)>R, k<'=x,

(2) M is a model with universe A, at most x functions each with < 0 places and <
K relations including the well-ordering of .

Then for some club E of /. for every § € E of cofinality = u* we can find I C 6= sup(I)

and (N;: te[I1S?%, s€l) such that

() (N;: t €[I152) is a system of elementary submodels of M, ||N,|| = x.

Suppose the o7 is a model on A, C a club on 4. We have to find « € CNW such
that M2 < .o/ for every u € [B,]<?. Let E C J be the club given by Lemma 2.4. W.Lo.g.
we can assume that £ C C’, where C’ is the set of limit points of C, (so if d € E, then
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CNo is a club in §). Fix 5€S;'QE. Let f5:0— x be a bijection and let
Dy ={{<y: {is a limit, f5 maps a,s onto {}.

D is a o-club, i.e., unbounded, closed under o-sequences. Let «1°! be (y, f{'(< ),

5'(</ ] 0)). Note that by Lemma 2.4 we have a system of submodels on .« | 6, we
transfer this system on .2Z!°! by the bijection f; and, choosing a subsystem if necessary,
we can assume that we have an end-extension system on .«7[%1 which is cofinal in y,
ie., we have N* = (N*: ucl), ICy, sup(I)=y, N} <./ and if £<{ in I, then
min(N {g}\N(D )> sup(N { c}) and if u is an initial segment of v, then N, is an initial
segment of ;. Hence the set

D= < ({<y: U Ny C¢

uelLNI=2

is a club of y and such that for every { €D, there is a system of models on ¢,
((N¥: ue[{NI]?)). Note that the set

Dy={{<y: ocfg € C and ocg satisfies conditions (a)—(d)}

is a o-club of . Note that .«7[°! is a model on y. Hence by Ogz, for stationary many
{ € S* we have guessed it, i.e., the set

S={teSt: M;= 1}

is a stationary. Now if { €SN (D) ND,ND; then oc € C, and oc satisfies conditions
(a)—(d). Note that C(oc") =otp(C, o) {. Moreover, as CeDl NS we have &r=otp(a, o)
i.e., condition (f) holds. By the construction it follows that condition (e) holds, (the
system of submodels on ¢ is isomorphic to the system on @, given by Lemma 2.4).

Finally (g) holds, as { € (Dl)’ and the system of models of y/ ) js end-extending.
Hence oc ewnNC, and M % s a system of models as required.

Proof of clause (E). Suppose «, e W, &=otp(C,)=otp(Cp). By the construction,
both a, and ag are isomorphic to M f@ and the isomorphisms are order preserving
functions. Hence a, is order isomorphic to ag. Note that a,Ny=apNy=¢. Since
both a, and ay are closed under Hy and H it follows that a, Nag is an initial segment
of both a, and ap.

Proof of clause (D). Suppose that o, f € W and otp(C,) <otp(Cg). As above, since a,
and ag are closed under Hy and H, it follows that a,Nag is an initial segment of
a,. Let y= sup(a,Nag). We have four cases, we will show that the first three never
occur.

Case 1: y€a,Nag. We can assume that each a, is closed under successor, so this
case can never happen.

Case 2: y€a, — ag. Note that C, Ca,. Let y; = min(ag — 7). By (c)(i) for ay it

follows that we must have cf(y;)=y. Now by (c)(ii), y= sup(aﬁﬂyl):oc;’;;t(cﬁ). So
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y€C, and otp(C,)=otp(Cp). Note that cf(y)<y. Hence by (c)(i) for a, we have
otp(C,) < otp(C,), a contradiction.

Case 3: y & (ay,Uag). Let yo = min(a, —y) and, y; = min(ag —7y). As above we have
otp(C,) = otp(Cy) and otp(C,)=otp(Cy), a contradiction.

Case 4: y € ag—a,. Let yo = min(a,—a). We have cf(yo) =y and otp(C,) = otp(Cy),
so C,Ca,. Note that a,Ny= Uzgc.,(aocmC)- But for {€a, with cf({)<y we have
a,N{= bgtp(c,y Hence a, Ny= U;e(c,)' bgtp(c,) Cag,, for some f; €(Cp)’ large enough.
Hence by (g) in the definition of the diamond for systems sequence, the conclusion
follows. [

Proof of Lemma 2.4. We prove slightly more. In addition to the sequence (N;: t€[I]5?)
there is a sequence (N {a}: o€1) such that:

1)) N{%},Nfa} realize the same Ly g-type over M, for a €1/,

(y) we have Nfa} < Ny, for w € and for o< in I we have Ny, gy = Sk(Nyyy UNfﬂ}).

Remark. (1) Note that for < f, N¢p is not necessarily a subset of Ny, z,. (2) The idea
of the proof is to define N ;0}’ N E‘l’ } and N fo,l} (and more, see definition of a witness
below). Then we use it as a blueprint and “copy” it many times using elementarity, to
obtain a suitable system.

We can assume that M has Skolem functions, even for Lyg. Let x* be large enough.
Let for i</, #; < (H(x*), €, <}-) such that | %,|| =2" </, and M € #;, %, increasing
continuous with i, and if ¢f(i)>pu" or i non-limit, then %, <L (HT), €, <5).
Let E={0<4: J is a limit and #;NA=0}, it is a club of 4. Fix éeEﬂSéw. Note
that #5 <. . (H(1"), €, <}).

We say that (Ng,NfO},Nf{},Nfo)l},oco,ocl) is a witness if:

(1) Nf<M, |[N}|=x, Ny ﬂNE‘l’} =Ny, Ny, Njoy <M [ %5, N, 1y :Sk(N{*l’}
(2) Njyy N Bs=Ng, a0 €N}y, — Ni, am €Ny = NG,
(3) if eNE‘O’l}\NE‘{}, p= min(Nfl'}\ot), then cf(f)=u",
(4) for every A C %5, |A|<u there are Nﬁ} < Ngiy and Ny ;3 such that
(a) N{l}’ N{O,l} <MNHABs,
(b) N {1} is order isomorphic to Nfl’ .
(¢) Nypy is order isomorphic to NE‘O},
(d) OPyy,,,, Ny is an isomorphism from N{*O,l} onto Ny 13 which is the identity
on N{*l’}, maps N{*o} onto Ny,
(e) for ocEN{*O’I}\N{*l’}, it p= min(N{]}foc), then OPN{OJ},N{*OJ}(O()G
sup(4 N B, B).

Claim 2.5. There is a witness.

UNfo} ),

We can find € <, 1,(H(x*), €, <}-) such that |€]|=pn, “¢C%, u+1C% and
(M, %5,0)€b. As Bs <L HT), €, <) it follows that there is a function
f,dom( f)=%, rang( f)C ABs, f | €% is the identity, f preserves satisfaction
of L+ ,+ formulas, i.e. f is an isomorphism.
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Let A" <(H(x"), €,<}+) be such that {%5,6,f,0yeN, ||N|=k. Let A=
N NE, No=NNBs. Let N = f(A1), note that Ay C Ag. Let oo = f(d1). W.lo.g.
we can assume that A" = Sk(Ap, A7). Let /p=BsNE NA". We claim that (A, A,
N, N, 00,01) is a witness. Note that

(%) if e A N0+ 1), then min(¥ — o) € A].

Let us check condition (3). Suppose that a € 4" — 4] and let f = min(.4] — o). Note
that by (%) we have f= min(% — «). But as u+ 1C% and ¢ <(H(1"), €, <}.) we
must have cf(f)=ut.

Now to verify (4), suppose that there is a set 4 such that the conclusion of (4) fails.
Then 4 is definable from: .47, the isomorphism type of .4~ over .4#] and the isomor-
phism type of Aj over Ay. As A, Ay are in € and € =<, (H(x), €, <;*) and
K < u it follows that such set 4 is in 4. But now the witness itself is a counterexample.
Note that clause (e) follows from ().

Claim 2.6. If there is a witness, then there is a system as required, ( for our 6 € EN
S ; )

By induction on a <y we define d, <6 and a system (N{x}, Niays Niopy), for f<o

Suppose that we have defined the system for all f<o. Let A=J{N,: ue[{dp:
B<a}]<%}. Let Ny,y and Ng,y, Ny, be as in the definition of a witness, for the
above 4. For f<u let Ngp oy :Sk(N{p},N@}). It follows that N, is isomorphic to .4{
and Nyg ) is isomorphic to .4, Let 6, = OPN{M},N{*OJ}(OC()). Note that / ={d,: a<p™}
is such that sup(/)=46 and N, NI =u for every u € [[]<?. This finishes the proof.

3. Proof of the theorem

Start with a model satisfying the assumptions of the theorem, i.e. we have 2N =N,
for /<4, {C,: «€ w4} is a square sequence and (M': i € W) is a diamond for systems,
Os(Ngy Ry, Ry, V). Let M' = (M: u e [B;]1<?) and let B; = {a: e<w;} be the increasing
enumeration.

Definition 3.1. (1) A set bC o is O | a~closed, i.e. a€b = a, Cb.
(2) A =, is the family of FS-iterations 0= (Py, Qu»ay,: 00<o*) such that:
(a) ayCa,
(b) lax|<u,
(c) pea, = agCa,,
(d) for bCa, P;={peP,: dom(p)Cband (Vfedom(p))p(p)is a P}, name},
(e) Oy is a E}-name (see 3.2 below),
(f) BX has the property K (= Knaster).

Remark. The above definition proceeds by induction on o*, so part (d) is not circular.
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Lemma 3.2. Suppose Q =Py, Qu, ay,: a<o™yeA. If bCa* is Q-closed, then
B* <EBx.

Proof. Straightforward, see [2, 3].

Let f:“>2 — Xy be one to one, such that if #<v, then f(17)< f(v). For p€®2 let
w,={f(p i) i<X} €[N, Note that if p; # p, in 12, then |w, Nwy|<N;. Let
R be the countable support forcing adding X4 many Cohen subsets of w;, p; (i <wy).
Note that in VX, {w,: i€ w4} is a family of almost disjoint, uncountable subsets
of w;. Let B;={ol: e€w,}. Note that {M: ue[B;]<*} is still a system of models
on i, hence without loss of generality we can assume that w, = ;. For { € @; define
Bi({)={ol: e<{}. In VX we shall define an iteration (P;, Q;,a;: i<y) € #,. Working
in VX, we define O | i, by induction on i <4, and we prove that it is as in 3.1 (in V'¥).

We call i good if it satisfies: i € W, each M/ has a predetermined predicate describing
O | M} (as an R-name, with the limit P’u and an R [ M} * Pi-name f for a function
from 2 x 2 into “2 and each M/ is Q-closed. (Recall that we do not distinguish
between the model M/ and its universe.) In this case we put a; =|J{M!: ue[B;]<*}
and define Q; below.

If i is not good we put a;=( and define Q; to be the Cohen forcing, ie., O;=
(®>2,<). We can assume that if o€ B;, then Q, is Cohen, (or just replace B; by
{a+ 1: € B;}). For a €B;, let r, be the Cohen real forced by Q,.

Remark. The reason we add N4 almost disjoint subsets of w; is that, in VR, if i#£;j
are good and otp(C;)=otp(C;), then the systems associated with i and j are almost
disjoint, i.e., there is { € w; such that

(Ut wetry) o (Ui wesa)
C (U {M}: uE[Bi(C)]Q}) N (U {M: ”G[B-/'(O]Q})

Note that if otp(C;)#otp(C;) then we have almost disjointness by Defini-
tion 2.2(D)(1).

Notation. For & (€ let Z, *Mf{a w}UMi 3

Now we fix a good i. Our goal is to define Q,

UMy, ZE=Mj,,.

Definition 3.3. For p,qg€R (or in P}, ), dom(p),dom(q) QZé,l we say that p and ¢
are dual if OPy z(p ' Z))=q | Z! and OPz 7(q ' Zh=plZ.

Using Gg, Ly, We choose, by induction on k <w, conditions ’”m ,’;’ €R for nek2,
/<2, such that:
(a) ry €(RTZ)/Griu
(b) van=r <.
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(c) if I=m+1,if ne™2,1<2, then r,’;l e(R [Zé,l)/GRrMé and r,;<r,f,’l [Zé<r,’h,> and
OPy 7i(r))<ry' 1 Z{<OPy 7i(r}-,_,), and r;° and r;' are dual.

(d) r,’;’ forces that AZ’I = {P,Vc’i ne€w} is a predense subset of P}, , such that each
M 0,1

pZ; forces the value fZ,i of f(ry.ry) k.
(e) 47" and A]'' are dual, i.e. for every mew, P}, and p}, are dual. Moreover if
ki <k, then AZ;I refines AZ;Z.
Suppose we have ;. We define 7%, 7! and AP, 410 as follows.
L. Let ri=r, N OPz 7(ry).
2. Let r1,0=r1, r1,0 €R [ Zp,1, forces a maximal antichain 4; o of Py . such that each
element of 4 forces a value of f(r%, ryi) Mk
3. Let 2= 0Py 7(r10 TZS)UOPZS,Z;(’”I,O PZ0). Let ro.1 =712, 121 €R | Zo,1 forces Aa
to be a predense subset of PZH such that each element of 4, forces a value of
f(rﬁﬂ’ r“’i) [ k. Moreover, 41 =\J{4,: p€4i,0}, which for every g €4, we have
q=OPz 71(p 1 Zy) UOPy 7(p | Z}). ‘
4. Let r3 = OPZ{,Z(’;(FZI fZ(I))U OPZ(';,Z{(VZ,I Z7).
5. Let ro0=r3Uro (note: 73,0 is dual to 72,1 ). Let A3,0 = {p U
OPz 71(q | Zy)UOP, 71(q | Z}): g €4p}.
6. Let }"é’ozrlo, }",;’1 =1, AZ’0:A3’0 and AZ’] =A451.
Let for ne€ 2, rj=U;_, rfnk. In 7 choose (i}: ¢<w;), distinct members of “2.
Recall that p; (j<N4) are the Cohen subsets of w; forced by R. InV[(p;: j € {i}Ua;)]
we can find w € [w]*" such that

() if e€w' then OPZj’Zé(r,,:)E Grizis
(p) if gy <e; are in w', [=TV(n;,<un; ), then

(0! .
OPZ;;),E],Z(’]’] (rn;‘oﬁn;‘l ) € Gz

20 €] :

We choose the members of w' inductively using the fact that R has (<X;)-support.
Notation. For &€ w' denote ri=r,:.

Let H be R-generic and G be P; -generic. In V[H][G] we define Q;. A condition in
0O, is (u, v, v, m, Fy, F1), where:
(1) u is a finite subset of w'.
(2) v is a finite set of elements of the form (7, p), where
(a) m,p €72, In(n)=1h(p), p#n,
(b) nary,p< rg for some o, fcu and if v=rn ﬂn; then for every ycu we
have: if n <r), then uy [ (lh(v) + 1)=n; [(Ih(v) + 1), and if p <7, then
w3 1 (h(v) + D)= 1 (1h(v) + 1),
(3) v is a function from v into “>2 such that for (n,p)€v we have: ¥(y, p) is such
that there is o, f € u such that n<ri, pqr; and ¥(n, p)=n; Nnj, (v is well defined

by (2)).
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(4) m is a function from v to w. For (y,p)€ v, m(y,p) is such that for every o, fcu
such that #<r;, p<ry, we have OPZ;JPZ(IH(py/”liﬂ),fﬁ(n,p)) € G, where [ =TV (n; <inp)
and v=n; N n’[;.

(5) For I=0, 1, F; is a function from v into “~2, defined by: for (1, p) €v, Fi(n,p)
is the value of f(ro,r1) | Ih(n) forced by pyihthi .

(6) For (n,p), (nm,p1) €v, if n<ny and p < py, then Fi(n, p) <Fi(n1, p1), for I=0,1.
Order: (u, v, ¥, i, Fo, F)< (', 0", 7', m", F},F}) if

(7) uCu',

(8) vCo',

9) Fi=F} lv,v=7"lv,m=m" v, 1=0,1.

Lemma 3.4. Suppose (qs, ps), (for a € wy), are in P, x Q;, q, forces p, to be a real
6-tuple in Q;, not just a P,-name of such a tuple, dom(q,)(x€ wy) form a delta
system with the root A, € wy. Let b=J{M!: ue[Bi({)]<*}. Suppose A —{i}Ch
and dom(q,)Nb=A4 for o€ w.

Then there is an uncountable set E C wy such that for every o, €E, (44, p,) and
(gp, pp) are compatible, moreover if q€ Py, q=>q, b, qp b, then q,(qy, p.) and
(gp, pp) are compatible.

Proof. By thinning out we can ﬁnd an uncountable set £ C w; such that:

(a) For a € E let w, =|J {u € [B;]S%: dom(q,)N M +# 0}, (each w, is finite). The sets
wy, (€ E) form a delta system with the root w and if a <f, £ €w,, {€wg, then
¢<(.

(b) uP* (x€E) form a delta system with the root u and a<pf, &€ u?*, {€uPt, then
EL, ub| =n*.

(c) vP»=v* for a € E and the structures (u”*,{q,(&): E€ur}, v*, {n: [m*: Ecur})
are isomorphic, (isomorphism given by the order preserving bijection between re-
spective uf*’s), where m* is such that lh(nfNn;)<m® for every {#(
in uf,

Lemma 3.5. P, has the property K.

Proof. Let { p,: o € w;} be an uncountable subset of P;,;. W.Lo.g. we can assume that
dom( p,,), (o € @) form a delta system with the root 4. We have to find an uncountable
subset £ C w; such that for any o, f € E, p, and pg are compatible. We prove it by
induction on k = |4|.

For k=0, trivial. For the induction step assume that A4 = {iy,...,i;} ordered by <,
where for o, f<ws, we define o< f iff otp(C,)<otp(Cg) or otp(C,)=otp(Cs) and
a<p.

By the induction hypothesis there is an uncountable set £’ C w; such that for o, f € E,
Py MU~ @i, and pg[\UJ,_, a; are compatible. Note that there is (€ w; such that
ai, V(U <4 i) CU{M: ue [B;,({)]S?}, (see Definition 2.2(D)). Now use the previ-
ous lemma.
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Now suppose that G(i) is Q;-generic. Let
A" = | J{u: 3w, ¥, Fo, Fy), (u, 0,9, 1, Fo, Fy) € G(i)}
In V[G] let A={ri: «€ A’} and let f;:[4]* — 2 be defined by

Jirsrp) =\ {Fin.p): 3w, 0.5, Fo, Fy) € G(),
% B Eu,(n,p)Ev,n<r,pary}.
Let V:U{U: E(M,G,ffl,Fo,Fl): (Z/l,U,\?,njl,F(),Fl)EG(l.)}.

Lemma 3.6. (1) For every a,f €A’ and n€ w, there is (n,p) € V" such that 1h(n)=
lh(p)=n and n<r, and p <rg,

(2) A is uncountable,

(3) fo, f1 are continuous,

(4) for every (o, B)E[AV, if =TV (0} <wnp)s then f(ry,ry)= fi(ri,rp).

Proof. (1) and (2) follow by a density argument. To prove (1) suppose that (p,q) €
P;x Q;, p forces that o, f € u?. W.l.o.g. o, f € dom( p). Let p; € P; be such that dom( p)

=dom(p1), p({)= p1({) for { € dom(p)\{a, B}, p(a) < pi(a), p(B)< p1(B), Ih(pi(a))
=1h(pi(B))=n, (remember that Q,, Og are Cohen). Let = p(a), p = p1(f), v=n; N
g, =TV (n; <ixnj). Let m € o be such that OPz, , 7, , (p{'l;(lﬂ)’m) is compatible with p;,
and let p, be the common upper bound. Now define g, >¢ as follows. u?' =u?, v1' =
WU{(mnp)}, (. p)=v, m?(n,p)=m, F/'(n,p) is the value forced by pl‘;;(ln),m.
Hence (p2, q1)=(p, q) and it forces what is required.

To prove (2) it is enough to show, in V%, that for every a« € w; and (p,q) € P; * O;
there is f>o and (p1, 1) =(p,q), such that f € u?. Let f>a be such that dom(p)N
Z;’ﬁ CMj and B>y for every y€uf. Let yeu? be such that (i}, Nnj) < (ny M) for
every y; € u?. Define condition ¢g;(ff) =¢q(7y) and let p; be a condition extending p and

cach of conditions OPy 7 ( Pt ) such that (n,p) € v, nag(y1). p<gq(y) and

=TV (n;, <ny). Finally extend g to ¢ such that u?' =u?U{p}.

Condition (3) follows from (1), (5) and (6) in the definition of Q;.

To prove (4) it is enough to show that for every n€ w, f(r}, ry) [ n= fi(rj,ry) I n.
By condition (1) there is (#, p) € V' such that k =1h(n)>n and <7 and p<rp. Recall

that p= pl‘lg(”q‘)’)ml(n , forces that f(rg,7{) I k=h for some fixed 7. Now working in ¥’

il

consider (1.,

., ) ER*P; | Z; |. By the construction the condition (+', p)=OP

B o, f2770, 1

(r;’fmn;, p)EH x G, and forces that f(r}, r;)=h. On the other hand, by definition

Fi(n,p)=h and Fi(n,p) <1f,(n;,r2) This finishes the proof.
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