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Abstract

It is consistent that for every function f :R×R→R there is an uncountable set A⊆R and
two continuous functions f0; f1 :D(A)→R such that f(�; �)∈{f0(�; �); f1(�; �)} for every
(�; �)∈A2; � 6= �. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Suppose that X is a topological space and f :X →R is a real-valued function on X .
Is there a “large” subset of X such that the restriction f �X is continuous? Obviously,
if A⊆X is a discrete subspace, then f �A is continuous. Hence in the case when
dom(f)=R, we can always �nd an in�nite subset on which f is continuous. The
problem whether there is such “large” set has been investigated by Abraham et al. [1].
They proved that it is consistent that every function from R to R is continuous on
some uncountable set. Later Shelah [4] showed that every function may be continuous
on a non-meager set.
In this paper we consider functions on the plane, R×R. The reasonable question

to ask in this case is: is there a “large” set A⊆R such that on A×A the function f
can be covered by two continuous functions? Note that we could not hope for f to be
just continuous on A×A, e.g., if g is a Sierpinski partition, then for every uncountable
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set A, g is not continuous on A×A. The main result of this paper is the following
theorem. For technical reasons we consider squares without the diagonal, i.e. for a
set A we consider D(A)= {(x; y): x; y∈A; x 6=y}.

Theorem. Assume 2ℵl=ℵl+1 for l¡4; and �s(ℵ4; ℵ1; ℵ0); see below. Then there
is a forcing notion P which preserves cardinals and co�nalities and such that in
VP; 2ℵ0 =ℵ4 and for every function f :R×R→R there is an uncountable set A⊆R
and two continuous functions f0; f1 :D(A)→R such that f(�; �)∈{f0(�; �); f1(�; �)}
for every (�; �)∈D(A).

The proof is separated into two parts. In Section 2, we prove the consistency of a
guessing principle, diamond for systems. Then, in Section 3, we give the proof of the
theorem.

Remark. (1) We can replace ℵ0 by any �= �¡�.
(2) Our main goal was to prove the consistency of the statement in the theorem

with 2ℵ0¡ℵ!. We get 2ℵ0 =ℵ4 naturally from the proof, but the values ℵ3 or ℵ2 may
be possible.

1.1 Notation. We use standard set-theoretic notation. Below we list some frequently
used symbols.
• For A; B subsets of ordinals of the same order type, OPB;A is the order preserving
isomorphism from A to B.

• If C is a set of ordinals, then (C)′ denotes the set of accumulation points.
• Let �; � be cardinals, � regular. S�� = {�∈ �: cf (�)= �}.
• For a statement � we de�ne TV (�)= 0 if � is true, otherwise TV (�)= 1.
• R= !2.
• If M is a model, X ⊆M , then Sk(X ) is the Skolem hull of X in M .
• L[�; �) is a “universal” vocabulary of cardinality �¡�, arity¡�.
2. Diamond for systems

In this section we prove the consistency of a guessing principle, diamond for sys-
tems �s.

De�nition 2.1. A sequence �M = 〈Mu: u∈ [B]62〉 is a system of models (of some �xed
language) if:
(1) Mu⊆Ord; B⊆Ord,
(2) B∩Mu= u for every u∈ [B]62,
(3) for every u; v∈ [B]62; |u|= |v|, the models Mu and Mv are isomorphic and OPMu;Mv

is the isomorphism from Mv onto Mu, OPMu;Mv(v)= u,
(4) for every u; v∈ [B]62; Mu ∩Mv⊆Mu∩v,
(5) if |u|= |v|; u′⊆u; v′={�∈v: (∃�∈u′)(|�∩u|= |�∩v|)}, then OPMu′ ;Mv′ ⊆OPMu;Mv ,

and OPMu;Mu = idMu , and if |w|= |u|, then OPMu;Mv ◦OPMv;Mw =OPMu;Mw .
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Remark. See [3] on the existence of “nice” systems of models for � a su�ciently
large cardinal, e.g., measurable. Here we do not use large cardinals, and try to get a
model in which the continuum is small, i.e., less than ℵ!. For this we need a suitable
guessing principle.

De�nition 2.2 (Diamond for systems �s(�; �; �; �)). Let {C�: �∈ �} be a square se-
quence on �. 〈 �M�: �∈W 〉 is a �s(�; �; �; �) sequence (or �s(�; �; �; �)-diamond for
systems) if:
(A) W ⊆ � and for every �∈W , �M�= 〈M�

u : u∈ [B�]62〉 is a system of models, M�
u is

a model of cardinality �, universe ⊆ �, vocabulary of cardinality6 �, arity¡�, a
subset of L[�; �).

(B) B�⊆ �= sup(B�), otp(B�)= �, so �=cf (�).
(C) if M is a model with universe �, vocabulary of cardinality6 �, arity¡�, a subset

of L[�; �), then for stationarily many �∈W for all u∈ [B�]62, M�
u ≺M ,

(D) if �; �∈W and otp(C�)¡otp(C�), then
(i) for some �∈B�,

⋃{M�
u : u∈ [B�]62}−

⋃{M�
u : u∈ [B� ∩ �]62} is disjoint from⋃{M�

u : u∈ [B�]62},
(E) if � 6= � in W , otp(C�)= otp(C�), then there is a one-to-one map h from

⋃
u∈[B�]62

M�
u onto

⋃
u∈[B�]62 M

�
u , order preserving, mapping B� onto B�, M�

u onto M
�
h(u)

which is the identity on the intersection of these sets and the intersection is an
initial segment of

⋃
u∈[B�]62 M

�
u and

⋃
u∈[B�]62 M

�
u .

(F) if �= � we may omit �.

Lemma 2.3. Assume: �¡�¡� are uncountable cardinals; �=�+; 2�=�; �; �S�� ;
�=�¡�; ��= �; �; �; � regular cardinals.
Then there exists a diamond for systems on �; �s(�; �; �; �).

Proof. Let �C = 〈C: ∈ �〉 be a square sequence on �. We assume that each C is
closed unbounded in , if  is a limit. Let C= {��: �¡otp(C)}. First choose a
sequence 〈b�i : i¡�〉 for every �¡� such that b�i ⊆ �; |b�i |¡�; b�i increasing, continuous
in i; �=

⋃{b�i : i¡�}. Next, choose a� for �¡� such that
(1) a�⊆ �,
(2) if cf (�)¡�, then |a�|¡�,
(3) if �∈ (C�)′, then a�⊆ a�,
(4) if �∈C� and i=otp(C�), then b�i ⊆ a�,
(5) if otp(C�) is a limit of limit ordinals, then a�=

⋃
�∈(C�)′ a�.

Note that if �∈ S�� , then there is a club C′
�⊆C� such that 〈��: �∈C′

�〉 is an increas-
ing, continuous sequence of subsets of � of cardinality ¡ � with union �. Let H0, H1
be functions which witness that �= �+, i.e., H0, H1 are two place functions, for every
�∈ [�; �); H0(�;−) is a one-to-one function from � onto � and H1(�; H0(�; i))= i for
every �∈ [�; �) and i¡�.
Now by induction on �¡� we de�ne the truth value of “�∈W ”, and if we declare

it to be true, then we also de�ne �M�. Suppose we have de�ned W ∩ � and �M� for
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�∈W ∩ �. Now consider the following properties of an ordinal �∈ �:
(a) a� ∩ �=otp(C�),
(b) a� is closed under H0 and H1,
(c) for every ∈ a� we have

(i) if cf ()¡�, then a� ∩ = botp(C�) and C⊆ a� and otp(C)6 otp(C�),
(ii) if cf ()= �, then sup(a� ∩ )= �otp(C�) and C�otp(C�) ⊆ a�,

(d) cf (�)= �.
If � does not satisfy one of the conditions (a)–(d), then we declare that � 6∈W . So
suppose that � satis�es (a)–(d). Let 〈M�: �∈ �〉 be the diamond sequence for S�� , i.e.,
each M� is a model on �, vocabulary as above, and for every model M on �, there
are stationarily many �∈ S�� , such that M ∩ �=M�. We say that M� is suitable if it
is of the form (�;¡∗

� ; M
∗
� ), where ¡

∗
� is a well-ordering of �. For each � such that

M� is suitable, let ��=otp(�;¡∗
� ). Let h� : �→ �� be the isomorphism between (�;¡∗

� )
and (��;¡). Let M

⊕
� be the model with universe ��, such that h� is the isomorphism

between M∗
� and M

⊕
� . For �∈ � let �(�)= otp(C�). Consider the following properties

of �∈ �:
(e) there is a system �N�(�) = 〈N�(�)s : s∈ [ �B�(�)]62〉, N�(�)s ≺M⊕

�(�), ‖N�(�)s ‖= �, �B�(�)
co�nal in ��(�); otp( �B�(�))= �,

(f) otp(a�)= ��(�).
If � does not satisfy (e), and (f), then declare � 6∈W . So assume that � satis�es (e)
and (f). Let g� : ��(�)→ a� be the order preserving isomorphism. Let �M�= 〈M�

u : u∈
[B�]62〉 be the system of models on a�, which is isomorphic to �N�(�) and the isomor-
phism is g�. If this system satis�es:
(g) for every �∈ (C�)′ there is �∈B� such that a� ∩

⋃{M�
u : u∈ [B�]62}⊆

⋃{M�
u : u∈

[B� ∩ �]62},
then we declare �∈W . This �nishes the de�nition of the diamond for systems sequence,
〈 �M�: �∈W 〉.
We have to prove that it is as required. Clauses (A) and (B) are clear.

Proof of clause (C). We need the following fact, it is proved essentially in [5], but
for completeness we give the proof at the end of the section.

Lemma 2.4. Assume:
(1) �=(2�)+; �= ��; �=cf (�)¿ℵ0; �¡�= �;
(2) M is a model with universe �; at most � functions each with ¡ � places and 6

� relations including the well-ordering of �.
Then for some club E of � for every �∈E of co�nality¿�+ we can �nd I ⊆ �= sup(I)
and 〈Nt : t∈[I ]62; s∈ I〉 such that
(�) 〈Nt : t ∈ [I ]62〉 is a system of elementary submodels of M; ‖Nt‖= �.

Suppose the A is a model on �, C a club on �. We have to �nd �∈C ∩W such
that M�

u ≺A for every u∈ [B�]62. Let E⊆ � be the club given by Lemma 2.4. W.l.o.g.
we can assume that E⊆C′, where C′ is the set of limit points of C, (so if �∈E, then
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C ∩ � is a club in �). Fix �∈ S�� ∩E. Let f� : �→ � be a bijection and let

D1 = {�¡�: � is a limit; f� maps a��� onto �}:

D1 is a �-club, i.e., unbounded, closed under �-sequences. Let A[�] be (�; f′′
� (¡ � �);

f′′
� (A � �)). Note that by Lemma 2.4 we have a system of submodels on A � �, we
transfer this system on A[�] by the bijection f� and, choosing a subsystem if necessary,
we can assume that we have an end-extension system on A[�] which is co�nal in �,
i.e., we have �N ∗= 〈N ∗

u : u∈ I〉, I ⊆ �, sup(I)= �, N ∗
u ≺A[�] and if �¡� in I , then

min(N ∗
{�}\N ∗

∅ )¿ sup(N ∗
{�}), and if u is an initial segment of v, then N

∗
u is an initial

segment of N ∗
v . Hence the set

D2 =


�¡� :

⋃
u∈[�∩I ]62

N ∗
u ⊆ �




is a club of � and such that for every �∈D2 there is a system of models on �,
(〈N ∗

u : u∈ [�∩ I ]62〉). Note that the set
D3 = {�¡�: ��� ∈C and ��� satis�es conditions (a)–(d)}

is a �-club of �. Note that A[�] is a model on �. Hence by �S�� , for stationary many
�∈ S�� we have guessed it, i.e., the set

S = {�∈ S�� : M�=A[�] � �}
is a stationary. Now if �∈ S ∩ (D1)′ ∩D2 ∩D3 then ��� ∈C, and ��� satis�es conditions
(a)–(d). Note that �(���)= otp(C��� )= �. Moreover, as �∈D1 ∩ S we have ��=otp(a��� ),
i.e., condition (f) holds. By the construction it follows that condition (e) holds, (the
system of submodels on �� is isomorphic to the system on a��� given by Lemma 2.4).

Finally (g) holds, as �∈ (D1)′ and the system of models of A[�] is end-extending.
Hence ��� ∈W ∩C, and �M��� is a system of models as required.

Proof of clause (E). Suppose �; �∈W; �=otp(C�)= otp(C�). By the construction,
both a� and a� are isomorphic to M

⊕
� and the isomorphisms are order preserving

functions. Hence a� is order isomorphic to a�. Note that a� ∩ �= a� ∩ �= �. Since
both a� and a� are closed under H0 and H1 it follows that a� ∩ a� is an initial segment
of both a� and a�.

Proof of clause (D). Suppose that �; �∈W and otp(C�)¡otp(C�). As above, since a�
and a� are closed under H0 and H1, it follows that a� ∩ a� is an initial segment of
a�. Let = sup(a� ∩ a�). We have four cases, we will show that the �rst three never
occur.
Case 1: ∈ a� ∩ a�. We can assume that each a� is closed under successor, so this

case can never happen.
Case 2: ∈ a� − a�. Note that C⊆ a�. Let 1 = min(a� − ). By (c)(i) for a� it

follows that we must have cf (1)= �. Now by (c)(ii), = sup(a� ∩ 1)= �1opt(C�). So
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∈C1 and otp(C)= otp(C�). Note that cf ()¡�. Hence by (c)(i) for a� we have
otp(C)6 otp(C�), a contradiction.
Case 3:  6∈ (a� ∪ a�). Let 0 = min(a�−) and, 1 = min(a�−). As above we have

otp(C)= otp(C�) and otp(C)= otp(C�), a contradiction.
Case 4: ∈ a�−a�. Let 0 = min(a�−�). We have cf (0)= � and otp(C)= otp(C�),

so C⊆ a�. Note that a� ∩ =
⋃
�∈C(a� ∩ �). But for �∈ a� with cf (�)¡� we have

a� ∩ �= b�otp(C�). Hence a� ∩ =
⋃
�∈(C)′ b

�
otp(C�)⊆a�1 , for some �1∈(C�)′ large enough.

Hence by (g) in the de�nition of the diamond for systems sequence, the conclusion
follows.

Proof of Lemma 2.4. We prove slightly more. In addition to the sequence 〈Nt : t∈[I ]62〉
there is a sequence 〈N ′

{�}: �∈ I〉 such that:
(�) N{�}; N ′

{�} realize the same L�;�-type over M , for �∈ I ,
() we have N ′

{�} ≺N{�} for �∈ I and for �¡� in I we have N{�;�}= Sk(N{�} ∪N ′
{�}).

Remark. (1) Note that for �¡�, N{�} is not necessarily a subset of N{�;�}. (2) The idea
of the proof is to de�ne N ∗

{0}; N
∗′
{1} and N

∗
{0;1} (and more, see de�nition of a witness

below). Then we use it as a blueprint and “copy” it many times using elementarity, to
obtain a suitable system.

We can assume that M has Skolem functions, even for L�;�. Let �∗ be large enough.
Let for i¡�; Bi≺ (H (�∗); ∈ ;¡∗

�∗) such that ‖Bi‖=2�¡�, and M ∈Bi ; Bi increasing
continuous with i, and if cf (i)¿�+ or i non-limit, then Bi≺L�+ ; �+ (H (�∗); ∈ ;¡∗

�∗).
Let E= {�¡�: � is a limit and B� ∩ �= �}, it is a club of �. Fix �∈E ∩ S�¿�+ . Note
that B�≺L�+ ; �+ (H (�∗); ∈ ;¡∗

�∗).
We say that (N ∗

∅ ; N
∗
{0}; N

∗′
{1}; N

∗
{0;1}; �0; �1) is a witness if:

(1) N ∗
u ≺M; |N ∗

u |= �; N ∗
{0} ∩N ∗′

{1}=N
∗
∅ ; N

∗
∅ ; N

∗
{0} ≺M �B�; N ∗

{0;1}= Sk(N
∗′
{1} ∪N ∗

{0}),
(2) N ∗

{1} ∩B�=N ∗
∅ ; �0 ∈N ∗

{0} − N ∗
∅ ; �1 ∈N ∗′

{1} − N ∗
∅ ,

(3) if �∈N ∗
{0;1}\N ∗′

{1}; �= min(N
∗′
{1}\�), then cf (�)¿�+,

(4) for every A⊆B�; |A|6� there are N ′
{1} ≺N{1} and N{0;1} such that

(a) N ′
{1}; N{0;1} ≺M ∩B�,

(b) N ′
{1} is order isomorphic to N

∗′
{1},

(c) N{1} is order isomorphic to N ∗
{0},

(d) OPN{0;1} ; N∗
{0;1}

is an isomorphism from N ∗
{0;1} onto N{0;1} which is the identity

on N ∗′
{1}, maps N

∗
{0} onto N{0},

(e) for �∈N ∗
{0;1}\N ∗′

{1}, if �= min(N ′
{1}−�), then OPN{0;1} ; N∗

{0;1}
(�)∈

sup(A∩ �; �).

Claim 2.5. There is a witness.

We can �nd C≺L�; L�(H (�∗); ∈ ;¡∗
�∗) such that ‖C‖= �; �C⊆C; � + 1⊆C and

(M;B�; �)∈C. As B�≺L�+ ; �+ (H (�∗); ∈ ;¡∗
�∗) it follows that there is a function

f; dom(f)=C; rang (f)⊆B�; f �C∩B� is the identity, f preserves satisfaction
of L�+ ; �+ formulas, i.e. f is an isomorphism.
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Let N≺ (H (�∗); ∈ ;¡∗
�∗) be such that {B�;C; f; �}∈N; ‖N‖= �. Let N1 =

N∩C; N0 =N∩B�. Let N′
0 =f(N1), note that N′

0 ⊆N0. Let �0 =f(�1). W.l.o.g.
we can assume that N= Sk(N0;N1). Let N∅=B� ∩C∩N. We claim that (N∅;N0;
N′
1 ;N; �0; �1) is a witness. Note that

(∗) if �∈N∩ (�+ 1); then min(C − �)∈N1:

Let us check condition (3). Suppose that �∈N−N1 and let �= min(N1 − �). Note
that by (∗) we have �= min(C − �). But as � + 1⊆C and C≺ (H (�∗); ∈ ;¡∗

�∗) we
must have cf (�)¿�+.
Now to verify (4), suppose that there is a set A such that the conclusion of (4) fails.

Then A is de�nable from: N1, the isomorphism type of N over N1 and the isomor-
phism type of N0 over N′

0 . As N1; N∅ are in C and C≺L�; L� (H (�∗); ∈ ;¡∗
�∗) and

�¡� it follows that such set A is in C. But now the witness itself is a counterexample.
Note that clause (e) follows from (∗).

Claim 2.6. If there is a witness; then there is a system as required; ( for our �∈E ∩
S�¿�+).

By induction on �¡�+ we de�ne ��¡� and a system 〈N ′
{�}; N{�}; N{�; �}〉, for �¡�.

Suppose that we have de�ned the system for all �¡�. Let A=
⋃ {Nu: u∈ [{��:

�¡�}]62}. Let N ′
{�} and N{�}; N{0; �} be as in the de�nition of a witness, for the

above A. For �¡� let N{�; �}= Sk(N{�}; N ′
{�}). It follows that N� is isomorphic to N0

and N{�; �} is isomorphic to N. Let ��=OPN{0; �} ; N∗
{0; 1}

(�0). Note that I = {��: �¡�+}
is such that sup(I)= � and Nu ∩ I = u for every u∈ [I ]62. This �nishes the proof.

3. Proof of the theorem

Start with a model satisfying the assumptions of the theorem, i.e. we have 2ℵl =ℵl+1
for l¡4; {C�: �∈!4} is a square sequence and 〈 �Mi

: i∈W 〉 is a diamond for systems,
♦s(ℵ4;ℵ1;ℵ1;ℵ0). Let �Mi

= 〈Mi
u: u∈ [ �Bi]62〉 and let �Bi= {�i�: �¡!1} be the increasing

enumeration.

De�nition 3.1. (1) A set b⊆ � is �Q � �-closed, i.e. �∈ b⇒ a�⊆ b.
(2) K=K� is the family of FS-iterations �Q= 〈P�; Q�; a�; : �¡�∗〉 such that:

(a) a�⊆ �,
(b) |a�|6�,
(c) �∈ a� ⇒ a�⊆ a�,
(d) for b⊆ �; P∗

b = {p∈P�: dom(p)⊆ b and (∀�∈ dom(p))p(�) is a P∗
b∩� name},

(e) Q� is a P∗
a� -name (see 3.2 below),

(f) P∗
�∗ has the property K (= Knaster).

Remark. The above de�nition proceeds by induction on �∗, so part (d) is not circular.
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Lemma 3.2. Suppose �Q= 〈P�; Q�; a�; : �¡�∗〉 ∈K. If b⊆ �∗ is �Q-closed; then
P∗
b ¡◦P∗

�∗ .

Proof. Straightforward, see [2, 3].

Let f : !1¿2→ ℵ1 be one to one, such that if � / �, then f(�) /f(�). For �∈ !12 let
w�= {f(� � i): i¡ℵ1}∈ [ℵ1]ℵ1 . Note that if �1 6= �2 in !12, then |w�1 ∩w�2|¡ℵ1. Let
R be the countable support forcing adding ℵ4 many Cohen subsets of !1; �i (i¡!4).
Note that in VR; {w�i : i∈!4} is a family of almost disjoint, uncountable subsets
of !1. Let Bi= {�i�: �∈w�i}. Note that {Mi

u: u∈ [Bi]62} is still a system of models
on i, hence without loss of generality we can assume that w�i =!1. For �∈!1 de�ne
Bi(�)= {�i�: �¡�}. In VR we shall de�ne an iteration 〈Pi; Qi; ai: i¡�〉 ∈Kℵ4 . Working
in VR, we de�ne �Q � i, by induction on i¡!4, and we prove that it is as in 3.1 (in VR).
We call i good if it satis�es: i∈W , each Mi

u has a predetermined predicate describing
�Q �Mi

u (as an R-name, with the limit P
˜

i
u and an R �M

i
u ∗ P

˜

i
u-name f

˜
for a function

from !2× !2 into !2 and each Mi
u is �Q-closed. (Recall that we do not distinguish

between the model Mi
u and its universe.) In this case we put ai=

⋃ {Mi
u: u∈ [Bi]62}

and de�ne Qi below.
If i is not good we put ai= ∅ and de�ne Qi to be the Cohen forcing, i.e., Qi=

(!¿2; /). We can assume that if �∈Bi, then Q� is Cohen, (or just replace Bi by
{�+ 1: �∈Bi}). For �∈Bi, let r� be the Cohen real forced by Q�.

Remark. The reason we add ℵ4 almost disjoint subsets of !1 is that, in VR, if i 6= j
are good and otp(Ci)= otp(Cj), then the systems associated with i and j are almost
disjoint, i.e., there is �∈!1 such that

(⋃{
Mi
u: u∈ [Bi]62

}) ∩
(⋃{

Mj
u : u∈ [Bj]62

})

⊆
(⋃{

Mi
u: u∈ [Bi(�)]62

}) ∩
(⋃{

Mj
u : u∈ [Bj(�)]62

})

Note that if otp(Ci) 6=otp(Cj) then we have almost disjointness by De�ni-
tion 2.2(D)(i).

Notation. For �; �∈!1 let Zi�; �=Mi
{�i�; �i�}

∪Mi
{�i�}

∪Mi
{�i�}
; Zi�=M

i
{�i�}

.

Now we �x a good i. Our goal is to de�ne Qi.

De�nition 3.3. For p; q∈R (or in P∗
!4 ), dom(p); dom(q)⊆Zi0;1 we say that p and q

are dual if OPZi1 ; Zi0 (p �Z
i
0)= q �Z

i
1 and OPZi1 ; Zi0 (q �Z

i
0)=p �Z

i
1.

Using GR �Mi
∅
we choose, by induction on k¡!, conditions r i�; r

i; l
� ∈R for �∈ k2;

l¡2, such that:
(a) r i� ∈ (R �Zi0)=GR�Mi

∅
.

(b) � / �⇒ ri�6r
i
�.
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(c) if l=m+1, if �∈ m2; l¡2, then r i; l� ∈ (R �Zi0;1)=GR�Mi
∅
and r i�6r

i; l
� �Z

i
06r

i
�˙〈l〉 and

OPZi1 ; Zi0 (r
i
�)6r

i; l
� �Z

i
16OPZi1 ; Zi0 (r

i
�˙〈1−l〉), and r

i;0
� and r i;1� are dual.

(d) r i; l� forces that A�; lk = {p
˜

�; l
k; n: n∈!} is a predense subset of P∗

Zi0;1
, such that each

p
˜

�;1
k; n forces the value f

�; l
k; n of f

˜
(r�i0 ; r�i1 ) � k.

(e) A�;0k and A�;1k are dual, i.e. for every m∈!; p
˜

�;0
k;m and p

˜

�;1
k;m are dual. Moreover if

k1¡k2, then A
�; l
k2 re�nes A

�; l
k1 .

Suppose we have r i�. We de�ne r
i;0
� ; r

i;1
� and A�;0k ; A

�;0
k as follows.

1. Let r1 = r i� ∩OPZi1 ; Zi0 (r i�).
2. Let r1;0¿r1; r1;0 ∈R �Z0;1, forces a maximal antichain A1;0 of P∗

Z0; 1 , such that each
element of A1;0 forces a value of f

˜
(r�i0 ; r�i1 ) � k.

3. Let r2 =OPZi1 ; Zi0 (r1;0 �Z
i
0)∪OPZi0 ; Zi1 (r1;0 �Zi1). Let r2;1¿r2; r2;1 ∈R �Z0;1 forces A2;1

to be a predense subset of P∗
Z0; 1 such that each element of A2;1 forces a value of

f
˜
(r�i0 ; r�i1 ) � k. Moreover, A2;1 =

⋃ {Ap: p∈A1;0}, which for every q∈Ap we have
q¿OPZi1 ; Zi0 (p �Z

i
0)∪OPZi0 ; Zi1 (p �Zi1).

4. Let r3 =OPZi1 ; Zi0 (r2;1 �Z
i
0)∪OPZi0 ; Zi1 (r2;1 �Zi1).

5. Let r3;0 = r3 ∪ r1;0 (note: r3;0 is dual to r2;1). Let A3;0 = {p∪
OPZi1 ; Zi0 (q � Z

i
0)∪OPZi0 ; Zi1 (q � Zi1): q∈Ap}.

6. Let r i;0� = r3;0; r i;1� = r2;1; A
�;0
k =A3;0 and A

�;1
k =A2;1.

Let for �∈ !2; r i�=
⋃
k¡! r

i
��k . In V choose 〈�∗� : �¡!1〉, distinct members of !2.

Recall that �j ( j¡ℵ4) are the Cohen subsets of !1 forced by R. InV [〈�j: j∈{i}∪ ai〉]
we can �nd wi ∈ [!1]!1 such that

(�) if �∈wi then OPZi� ; Zi0 (r�∗� )∈GR�Zi� ;
(�) if �0¡�1 are in wi; l=TV (�∗� 0¡lx �∗�1 ); then

OPZ∗
�0 ; �1

; Zi0;1
(ri; l�∗�0∩�∗�1

)∈GR�Zi�0 ; �1 :

We choose the members of wi inductively using the fact that R has (¡ℵ1)-support.

Notation. For �∈wi denote ri�= r�i� .

Let H be R-generic and G be P∗
ai -generic. In V [H ][G] we de�ne Qi. A condition in

Qi is (u; v; ��; �m; F0; F1), where:
(1) u is a �nite subset of wi.
(2) v is a �nite set of elements of the form (�; �), where

(a) �; �∈ !¿2; lh(�)= lh(�); � 6= �,
(b) � / ri�; � / r

i
� for some �; �∈ u and if �= �∗� ∩ �∗� then for every ∈ u we

have: if � / ri, then �
∗
 � (lh(�) + 1)= �

∗
� � (lh(�) + 1), and if � / r

i
, then

�∗ � (lh(�) + 1)= �
∗
� � (lh(�) + 1).

(3) �� is a function from v into !¿2 such that for (�; �)∈ v we have: ��(�; �) is such
that there is �; �∈ u such that �/ri�; �/ ri� and ��(�; �)= �∗� ∩ �∗�, ( �� is well de�ned
by (2)).
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(4) �m is a function from v to !. For (�; �)∈ v; �m(�; �) is such that for every �; �∈ u
such that �/ri�; �/r

i
�, we have OPZi�; �; Zi0; 1 (p

�; l
lh(�); �m(�; �))∈G, where l=TV (�∗�¡lx �∗�)

and �= �∗� ∩ �∗�.
(5) For l=0; 1; Fl is a function from v into !¿2, de�ned by: for (�; �)∈ v; Fl(�; �)

is the value of f
˜
(r0; r1) � lh(�) forced by p

��(�; �); l
lh(�); �m(�; �).

(6) For (�; �); (�1; �1)∈ v, if � / �1 and � / �1, then Fl(�; �) / Fl(�1; �1), for l=0; 1.
Order: (u; v; ��; �m; F0; F1)6(u1; v1; ��1; �m1; F10 ; F

1
1 ) if

(7) u⊆u1,
(8) v⊆v1,
(9) Fl=F1l � v; ��= ��

1 � v; �m= �m1 � v; l=0; 1.

Lemma 3.4. Suppose (q�; p�); ( for �∈!1); are in P∗
ai ∗Qi; q� forces p� to be a real

6-tuple in Qi; not just a P∗
ai -name of such a tuple; dom(q�) (�∈!1) form a delta

system with the root �; �∈!1. Let b=
⋃ {Mi

u: u∈ [Bi(�)]62}. Suppose � − {i}⊆ b
and dom(q�)∩ b=� for �∈!1.
Then there is an uncountable set E⊆!1 such that for every �; �∈E; (q�; p�) and

(q�; p�) are compatible; moreover if q∈P∗
b ; q¿q� � b; q� � b; then q; (q�; p�) and

(q�; p�) are compatible.

Proof. By thinning out we can �nd an uncountable set E⊆!1 such that:
(a) For �∈E let w�=

⋃ {u∈ [Bi]62: dom(q�)∩Mi
u 6= ∅}, (each w� is �nite). The sets

w�; (�∈E) form a delta system with the root w and if �¡�; �∈w�; �∈w�, then
�6�.

(b) up� (�∈E) form a delta system with the root u and �¡�; �∈ up� ; �∈ up� , then
�6�; |up� |= n∗.

(c) vp� = v∗ for �∈E and the structures (up� ; {q�(�): �∈ up�}; v∗; {�∗� �m∗: �∈ up�})
are isomorphic, (isomorphism given by the order preserving bijection between re-
spective up� ’s), where m∗ is such that lh(�∗� ∩ �∗� )¡m∗ for every � 6= �
in up� .

Lemma 3.5. Pi+1 has the property K .

Proof. Let {p�: �∈!1} be an uncountable subset of Pi+1. W.l.o.g. we can assume that
dom(p�); (�∈!1) form a delta system with the root �. We have to �nd an uncountable
subset E⊆!1 such that for any �; �∈E; p� and p� are compatible. We prove it by
induction on k = |�|.
For k =0, trivial. For the induction step assume that �= {i0; : : : ; ik} ordered by /,

where for �; �¡!4, we de�ne � / � i� otp(C�)¡otp(C�) or otp(C�)= otp(C�) and
�¡�.
By the induction hypothesis there is an uncountable set E′ ⊆!1 such that for �; �∈E′;

p� �
⋃
l¡k ail and p� �

⋃
l¡k ail are compatible. Note that there is �∈!1 such that

aik ∩ (
⋃
l¡k ail)⊆

⋃ {Mik
u : u∈ [Bik (�)]62}, (see De�nition 2.2(D)). Now use the previ-

ous lemma.
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Now suppose that G(i) is Qi-generic. Let

A′=
⋃

{u: ∃(v; ��; �m; F0; F1); (u; v; ��; �m; F0; F1)∈G(i)} :

In V [G] let A= {ri�: �∈A′} and let fl : [A]2→ !2 be de�ned by

fl(ri�; r
i
�) =

⋃
{Fl(�; �): ∃(u; v; ��; �m; F0; F1)∈G(i);
�; �∈ u; (�; �)∈ v; � / ri�; � / ri�

}
:

Let V=
⋃ {v: ∃(u; ��; �m; F0; F1): (u; v; ��; �m; F0; F1)∈G(i)}.

Lemma 3.6. (1) For every �; �∈A′ and n∈!; there is (�; �)∈V such that lh(�)=
lh(�)¿n and � / r� and � / r�;
(2) A is uncountable;
(3) f0; f1 are continuous;
(4) for every (�; �)∈ [A]2; if l=TV (�∗� ¡lx �∗�); then f(r

i
�; r

i
�)=fl(r

i
�; r

i
�).

Proof. (1) and (2) follow by a density argument. To prove (1) suppose that (p; q)∈
Pi ∗Qi; p forces that �; �∈ uq. W.l.o.g. �; �∈ dom(p). Let p1 ∈Pi be such that dom(p)
= dom(p1); p(�)=p1(�) for �∈ dom(p)\{�; �}; p(�) / p1(�); p(�) / p1(�); lh(p1(�))
= lh(p1(�))¿n, (remember that Q�; Q� are Cohen). Let �=p1(�); �=p1(�); �= �∗� ∩
�∗�; l=TV (�

∗
�¡lx �∗�). Let m∈! be such that OPZ�; �; Z0; 1 (p�; llh(�); m) is compatible with p1,

and let p2 be the common upper bound. Now de�ne q1¿q as follows. uq1 = uq; vq1 =
vq ∪{(�; �)}; ��q1 (�; �)= �; �mq1 (�; �)=m; F q1l (�; �) is the value forced by p�; llh(�); m.
Hence (p2; q1)¿(p; q) and it forces what is required.
To prove (2) it is enough to show, in VR, that for every �∈!1 and (p; q)∈Pi ∗Qi

there is �¿� and (p1; q1)¿(p; q), such that �∈ uq1 . Let �¿� be such that dom(p)∩
Zi; �⊆Mi

∅ and �¿ for every ∈ uq. Let ∈uq be such that (�∗1 ∩ �∗�) / (�∗ ∩ �∗�) for
every 1 ∈ uq. De�ne condition q1(�)= q() and let p1 be a condition extending p and
each of conditions OPZi1; � ; Z

i
0; 1
(p ��(�;�); llh(�); �m(�; �)) such that (�; �)∈ v; � / q(1); � / q() and

l=TV (�∗1¡�
∗
�). Finally extend q to q1 such that u

q1 = uq ∪{�}.
Condition (3) follows from (1), (5) and (6) in the de�nition of Qi.
To prove (4) it is enough to show that for every n∈!; f(ri�; ri�) � n=fl(ri�; ri�) � n.

By condition (1) there is (�; �)∈V such that k = lh(�)¿n and �/ ri� and �/ ri�. Recall
that p=p ��(�; �); llh(�); �m(�; �) forces that f(r

i
0; r

i
1) � k = h for some �xed h. Now working in V

consider (ri; l�∗� ∩�∗� ; p)∈R∗Pi �Z
i
0;1. By the construction the condition (r

′; p)=OPZi�; �; Zi0; 1
(ri; l�∗� ∩�∗� ; p)∈H ∗ G, and forces that f(ri�; ri�)= h. On the other hand, by de�nition
Fl(�; �)= h and Fl(�; �) / fl(ri�; r

i
�) This �nishes the proof.
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