

Annals of Pure and Applied Logic 103 (2000) 229-240

Covering a function on the plane by two continuous functions on an uncountable square – the consistency

Mariusz Rabus^{*}, Saharon Shelah¹

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

Received 15 January 1997; received in revised form 11 January 1998 Communicated by T. Jech*

Abstract

It is consistent that for every function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ there is an uncountable set $A \subseteq \mathbb{R}$ and two continuous functions $f_0, f_1 : D(A) \to \mathbb{R}$ such that $f(\alpha, \beta) \in \{f_0(\alpha, \beta), f_1(\alpha, \beta)\}$ for every $(\alpha, \beta) \in A^2, \ \alpha \neq \beta$. © 2000 Elsevier Science B.V. All rights reserved.

AMS Classification (1985 Revision): primary 03E35 Keywords: Continuous functions; Forcing

1. Introduction

Suppose that X is a topological space and $f: X \to \mathbb{R}$ is a real-valued function on X. Is there a "large" subset of X such that the restriction $f \upharpoonright X$ is continuous? Obviously, if $A \subseteq X$ is a discrete subspace, then $f \upharpoonright A$ is continuous. Hence in the case when dom $(f) = \mathbb{R}$, we can always find an infinite subset on which f is continuous. The problem whether there is such "large" set has been investigated by Abraham et al. [1]. They proved that it is consistent that every function from \mathbb{R} to \mathbb{R} is continuous on some uncountable set. Later Shelah [4] showed that every function may be continuous on a non-meager set.

In this paper we consider functions on the plane, $\mathbb{R} \times \mathbb{R}$. The reasonable question to ask in this case is: is there a "large" set $A \subseteq \mathbb{R}$ such that on $A \times A$ the function f can be covered by two continuous functions? Note that we could not hope for f to be just continuous on $A \times A$, e.g., if g is a Sierpinski partition, then for every uncountable

^{*} Corresponding author.

E-mail address: rabus@mathstat.yorku.ca. (M. Rabus)

¹Research supported by The Israel Science Foundation administered by The Israel Academy of Sciences and Humanities. Publication No. 585.

set A, g is not continuous on $A \times A$. The main result of this paper is the following theorem. For technical reasons we consider squares without the diagonal, i.e. for a set A we consider $D(A) = \{(x, y): x, y \in A, x \neq y\}$.

Theorem. Assume $2^{\aleph_l} = \aleph_{l+1}$ for l < 4, and $\diamond_s(\aleph_4, \aleph_1, \aleph_0)$, see below. Then there is a forcing notion P which preserves cardinals and cofinalities and such that in V^P , $2^{\aleph_0} = \aleph_4$ and for every function $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ there is an uncountable set $A \subseteq \mathbb{R}$ and two continuous functions f_0 , $f_1 : D(A) \to \mathbb{R}$ such that $f(\alpha, \beta) \in \{f_0(\alpha, \beta), f_1(\alpha, \beta)\}$ for every $(\alpha, \beta) \in D(A)$.

The proof is separated into two parts. In Section 2, we prove the consistency of a guessing principle, diamond for systems. Then, in Section 3, we give the proof of the theorem.

Remark. (1) We can replace \aleph_0 by any $\mu = \mu^{<\mu}$.

(2) Our main goal was to prove the consistency of the statement in the theorem with $2^{\aleph_0} < \aleph_{\omega}$. We get $2^{\aleph_0} = \aleph_4$ naturally from the proof, but the values \aleph_3 or \aleph_2 may be possible.

1.1 Notation. We use standard set-theoretic notation. Below we list some frequently used symbols.

- For A, B subsets of ordinals of the same order type, $OP_{B,A}$ is the order preserving isomorphism from A to B.
- If C is a set of ordinals, then (C)' denotes the set of accumulation points.
- Let λ, χ be cardinals, χ regular. $S_{\chi}^{\lambda} = \{ \alpha \in \lambda : \text{ cf } (\alpha) = \chi \}.$
- For a statement ϕ we define $TV(\phi) = 0$ if ϕ is true, otherwise $TV(\phi) = 1$.
- $\mathbb{R} = {}^{\omega}2.$
- If M is a model, $X \subseteq M$, then Sk(X) is the Skolem hull of X in M.
- $\mathscr{L}[\kappa, \theta)$ is a "universal" vocabulary of cardinality $\kappa^{<\theta}$, arity $< \theta$.

2. Diamond for systems

In this section we prove the consistency of a guessing principle, diamond for systems \Diamond_s .

Definition 2.1. A sequence $\overline{M} = \langle M_u : u \in [B]^{\leq 2} \rangle$ is a system of models (of some fixed language) if:

- (1) $M_u \subseteq \text{Ord}, B \subseteq \text{Ord},$
- (2) $B \cap M_u = u$ for every $u \in [B]^{\leq 2}$,
- (3) for every $u, v \in [B]^{\leq 2}$, |u| = |v|, the models M_u and M_v are isomorphic and OP_{M_u,M_v} is the isomorphism from M_v onto M_u , $OP_{M_u,M_v}(v) = u$,
- (4) for every $u, v \in [B]^{\leq 2}$, $M_u \cap M_v \subseteq M_{u \cap v}$,
- (5) if |u| = |v|, $u' \subseteq u$, $v' = \{ \alpha \in v : (\exists \beta \in u') (|\beta \cap u| = |\alpha \cap v|) \}$, then $OP_{M_{u'}, M_{v'}} \subseteq OP_{M_u, M_v}$, and $OP_{M_u, M_u} = id_{M_u}$, and if |w| = |u|, then $OP_{M_u, M_v} \circ OP_{M_v, M_w} = OP_{M_u, M_w}$.

Remark. See [3] on the existence of "nice" systems of models for λ a sufficiently large cardinal, e.g., measurable. Here we do not use large cardinals, and try to get a model in which the continuum is small, i.e., less than \aleph_{ω} . For this we need a suitable guessing principle.

Definition 2.2 (*Diamond for systems* $\diamond_s(\lambda, \sigma, \kappa, \theta)$). Let $\{C_{\alpha}: \alpha \in \lambda\}$ be a square sequence on λ . $\langle \overline{M}^{\alpha}: \alpha \in W \rangle$ is a $\diamond_s(\lambda, \sigma, \kappa, \theta)$ sequence (or $\diamond_s(\lambda, \sigma, \kappa, \theta)$ -diamond for systems) if:

- (A) $W \subseteq \lambda$ and for every $\alpha \in W$, $\overline{M}^{\alpha} = \langle M_{u}^{\alpha} : u \in [B_{\alpha}]^{\leq 2} \rangle$ is a system of models, M_{u}^{α} is a model of cardinality κ , universe $\subseteq \alpha$, vocabulary of cardinality $\leq \kappa$, arity $< \theta$, a subset of $\mathscr{L}[\kappa, \theta)$.
- (B) $B_{\alpha} \subseteq \alpha = \sup(B_{\alpha})$, $\operatorname{otp}(B_{\alpha}) = \sigma$, so $\sigma = \operatorname{cf}(\alpha)$.
- (C) if *M* is a model with universe λ , vocabulary of cardinality $\leq \kappa$, arity $< \theta$, a subset of $\mathscr{L}[\kappa, \theta)$, then for stationarily many $\alpha \in W$ for all $u \in [B_{\alpha}]^{\leq 2}$, $M_u^{\alpha} \prec M$,
- (D) if $\alpha, \beta \in W$ and $otp(C_{\alpha}) < otp(C_{\beta})$, then
 - (i) for some $\zeta \in B_{\beta}$, $\bigcup \{M_{u}^{\beta} : u \in [B_{\beta}]^{\leq 2}\} \bigcup \{M_{u}^{\beta} : u \in [B_{\beta} \cap \zeta]^{\leq 2}\}$ is disjoint from $\bigcup \{M_{u}^{\alpha} : u \in [B_{\alpha}]^{\leq 2}\},$
- (E) if $\alpha \neq \beta$ in W, $\operatorname{otp}(C_{\alpha}) = \operatorname{otp}(C_{\beta})$, then there is a one-to-one map h from $\bigcup_{u \in [B_{\alpha}]^{\leq 2}} M_{u}^{\beta}$ onto $\bigcup_{u \in [B_{\beta}]^{\leq 2}} M_{u}^{\beta}$, order preserving, mapping B_{α} onto B_{β} , M_{u}^{α} onto $M_{h(u)}^{\beta}$ which is the identity on the intersection of these sets and the intersection is an initial segment of $\bigcup_{u \in [B_{\alpha}]^{\leq 2}} M_{u}^{\alpha}$ and $\bigcup_{u \in [B_{\beta}]^{\leq 2}} M_{u}^{\beta}$.
- (F) if $\sigma = \kappa$ we may omit σ .

Lemma 2.3. Assume: $\kappa < \mu < \lambda$ are uncountable cardinals, $\lambda = \chi^+$, $2^{\mu} = \chi$, \Box_{λ} , $\diamond_{S_{\sigma}^{\chi}}$, $\kappa = \kappa^{<\theta}, \mu^{\kappa} = \mu, \sigma, \chi, \kappa$ regular cardinals.

Then there exists a diamond for systems on λ , $\Diamond_s(\lambda, \sigma, \kappa, \theta)$.

Proof. Let $\overline{C} = \langle C_{\gamma}: \gamma \in \lambda \rangle$ be a square sequence on λ . We assume that each C_{γ} is closed unbounded in γ , if γ is a limit. Let $C_{\gamma} = \{\alpha_{\zeta}^{\gamma}: \zeta < \operatorname{otp}(C_{\gamma})\}$. First choose a sequence $\langle b_i^{\alpha}: i < \chi \rangle$ for every $\alpha < \lambda$ such that $b_i^{\alpha} \subseteq \alpha, |b_i^{\alpha}| < \chi, b_i^{\alpha}$ increasing, continuous in $i, \alpha = \bigcup \{b_i^{\alpha}: i < \chi\}$. Next, choose a_{α} for $\alpha < \lambda$ such that

- (1) $a_{\alpha} \subseteq \alpha$,
- (2) if $cf(\alpha) < \chi$, then $|a_{\alpha}| < \chi$,
- (3) if $\beta \in (C_{\alpha})'$, then $a_{\beta} \subseteq a_{\alpha}$,
- (4) if $\beta \in C_{\alpha}$ and $i = \operatorname{otp}(C_{\alpha})$, then $b_i^{\beta} \subseteq a_{\alpha}$,
- (5) if $otp(C_{\alpha})$ is a limit of limit ordinals, then $a_{\alpha} = \bigcup_{\beta \in (C_{\alpha})'} a_{\beta}$.

Note that if $\alpha \in S_{\chi}^{\lambda}$, then there is a club $C_{\alpha}' \subseteq C_{\alpha}$ such that $\langle \alpha_{\beta} : \beta \in C_{\alpha}' \rangle$ is an increasing, continuous sequence of subsets of α of cardinality $\langle \chi \rangle$ with union α . Let H_0 , H_1 be functions which witness that $\lambda = \chi^+$, i.e., H_0 , H_1 are two place functions, for every $\alpha \in [\chi, \lambda)$, $H_0(\alpha, -)$ is a one-to-one function from α onto χ and $H_1(\alpha, H_0(\alpha, i)) = i$ for every $\alpha \in [\chi, \lambda)$ and $i < \alpha$.

Now by induction on $\alpha < \lambda$ we define the truth value of " $\alpha \in W$ ", and if we declare it to be true, then we also define \bar{M}^{α} . Suppose we have defined $W \cap \alpha$ and \bar{M}^{β} for

 $\beta \in W \cap \alpha$. Now consider the following properties of an ordinal $\alpha \in \lambda$:

(a) $a_{\alpha} \cap \chi = \operatorname{otp}(C_{\alpha}),$

- (b) a_{α} is closed under H_0 and H_1 ,
- (c) for every $\gamma \in a_{\alpha}$ we have
 - (i) if $cf(\gamma) < \chi$, then $a_{\alpha} \cap \gamma = b_{otp(C_{\alpha})}^{\gamma}$ and $C_{\gamma} \subseteq a_{\alpha}$ and $otp(C_{\gamma}) \leq otp(C_{\alpha})$, (ii) if $cf(\gamma) = \chi$, then $sup(a_{\alpha} \cap \gamma) = \alpha_{otp(C_{\alpha})}^{\gamma}$ and $C_{\alpha_{otp(C_{\gamma})}^{\gamma}} \subseteq a_{\alpha}$,
- (d) $cf(\alpha) = \sigma$.

If α does not satisfy one of the conditions (a)–(d), then we declare that $\alpha \notin W$. So suppose that α satisfies (a)–(d). Let $\langle M_{\zeta}: \zeta \in \chi \rangle$ be the diamond sequence for S_{α}^{β} , i.e., each M_{ζ} is a model on ζ , vocabulary as above, and for every model M on χ , there are stationarily many $\zeta \in S_{\sigma}^{\chi}$, such that $M \cap \zeta = M_{\zeta}$. We say that M_{ζ} is suitable if it is of the form $(\zeta, <_{\zeta}^*, M_{\zeta}^*)$, where $<_{\zeta}^*$ is a well-ordering of ζ . For each ζ such that M_{ζ} is suitable, let $\xi_{\zeta} = \operatorname{otp}(\zeta, <_{\zeta}^*)$. Let $h_{\zeta} : \zeta \to \xi_{\zeta}$ be the isomorphism between $(\zeta, <_{\zeta}^*)$ and $(\xi_{\zeta}, <)$. Let M_{ζ}^{\oplus} be the model with universe ξ_{ζ} , such that h_{ζ} is the isomorphism between M_{ζ}^* and M_{ζ}^{\oplus} . For $\alpha \in \lambda$ let $\zeta(\alpha) = \operatorname{otp}(C_{\alpha})$. Consider the following properties of $\alpha \in \lambda$:

(e) there is a system $\bar{N}^{\zeta(\alpha)} = \langle N_s^{\zeta(\alpha)} : s \in [\bar{B}_{\zeta(\alpha)}]^{\leq 2} \rangle, \ N_s^{\zeta(\alpha)} \prec M_{\zeta(\alpha)}^{\oplus}, \ \|N_s^{\zeta(\alpha)}\| = \kappa, \ \bar{B}_{\zeta(\alpha)}$ cofinal in $\xi_{\zeta(\alpha)}$, $\operatorname{otp}(\bar{B}_{\zeta(\alpha)}) = \sigma$,

(f)
$$\operatorname{otp}(a_{\alpha}) = \xi_{\zeta(\alpha)}$$
.

If α does not satisfy (e), and (f), then declare $\alpha \notin W$. So assume that α satisfies (e) and (f). Let $g_{\alpha}: \xi_{\zeta(\alpha)} \to a_{\alpha}$ be the order preserving isomorphism. Let $\overline{M}^{\alpha} = \langle M_{\mu}^{\alpha}: u \in$ $[B_{\alpha}]^{\leq 2}$ be the system of models on a_{α} , which is isomorphic to $\bar{N}^{\zeta(\alpha)}$ and the isomorphism is g_{α} . If this system satisfies:

(g) for every $\beta \in (C_{\alpha})'$ there is $v \in B_{\alpha}$ such that $a_{\beta} \cap \bigcup \{M_{u}^{\alpha} : u \in [B_{\alpha}]^{\leq 2}\} \subseteq \bigcup \{M_{u}^{\alpha} : u \in [B_{\alpha}]^{\leq 2}\}$ $[B_{\alpha}\cap v]^{\leq 2}\},$

then we declare $\alpha \in W$. This finishes the definition of the diamond for systems sequence, $\langle M^{\alpha}: \alpha \in W \rangle.$

We have to prove that it is as required. Clauses (A) and (B) are clear.

Proof of clause (C). We need the following fact, it is proved essentially in [5], but for completeness we give the proof at the end of the section.

Lemma 2.4. Assume:

(1) $\lambda = (2^{\mu})^+, \ \mu = \mu^{\kappa}, \ \kappa = \mathrm{cf}(\kappa) > \aleph_0, \ \kappa^{<\theta} = \kappa,$

(2) M is a model with universe λ , at most κ functions each with $\langle \theta \rangle$ places and \leq κ relations including the well-ordering of λ .

Then for some club E of λ *for every* $\delta \in E$ *of cofinality* $\geq \mu^+$ *we can find* $I \subseteq \delta = \sup(I)$ and $\langle N_t: t \in [I]^{\leq 2}, s \in I \rangle$ such that

(a) $\langle N_t: t \in [I]^{\leq 2} \rangle$ is a system of elementary submodels of M, $||N_t|| = \kappa$.

Suppose the \mathscr{A} is a model on λ , C a club on λ . We have to find $\alpha \in C \cap W$ such that $M_u^{\alpha} \prec \mathscr{A}$ for every $u \in [B_{\alpha}]^{\leq 2}$. Let $E \subseteq \lambda$ be the club given by Lemma 2.4. W.l.o.g. we can assume that $E \subseteq C'$, where C' is the set of limit points of C, (so if $\delta \in E$, then $C \cap \delta$ is a club in δ). Fix $\delta \in S_{\chi}^{\lambda} \cap E$. Let $f_{\delta} : \delta \to \chi$ be a bijection and let

 $D_1 = \{ \zeta < \chi: \zeta \text{ is a limit, } f_\delta \text{ maps } a_{\alpha_\zeta^\delta} \text{ onto } \zeta \}.$

 D_1 is a σ -club, i.e., unbounded, closed under σ -sequences. Let $\mathscr{A}^{[\delta]}$ be $(\chi, f''_{\delta}(\langle \langle \uparrow \delta \rangle), f''_{\delta}(\mathscr{A} \restriction \delta))$. Note that by Lemma 2.4 we have a system of submodels on $\mathscr{A} \restriction \delta$, we transfer this system on $\mathscr{A}^{[\delta]}$ by the bijection f_{δ} and, choosing a subsystem if necessary, we can assume that we have an end-extension system on $\mathscr{A}^{[\delta]}$ which is cofinal in χ , i.e., we have $\bar{N}^* = \langle N^*_u : u \in I \rangle, I \subseteq \chi, \sup(I) = \chi, N^*_u \prec \mathscr{A}^{[\delta]}$ and if $\xi < \zeta$ in I, then $\min(N^*_{\{\zeta\}} \setminus N^*_{\emptyset}) > \sup(N^*_{\{\zeta\}})$, and if u is an initial segment of v, then N^*_u is an initial segment of N^*_v . Hence the set

$$D_2 = \left\{ \zeta < \chi : \bigcup_{u \in [\zeta \cap I]^{\leq 2}} N_u^* \subseteq \zeta \right\}$$

is a club of χ and such that for every $\zeta \in D_2$ there is a system of models on ζ , $(\langle N_u^* : u \in [\zeta \cap I]^{\leq 2} \rangle)$. Note that the set

 $D_3 = \{\zeta < \chi: \ \alpha_{\zeta}^{\delta} \in C \ \text{and} \ \alpha_{\zeta}^{\delta} \ \text{satisfies conditions} \ (a)-(d)\}$

is a σ -club of χ . Note that $\mathscr{A}^{[\delta]}$ is a model on χ . Hence by $\Diamond_{S_{\sigma}^{\chi}}$, for stationary many $\zeta \in S_{\sigma}^{\chi}$ we have guessed it, i.e., the set

$$S = \{ \zeta \in S^{\chi}_{\sigma} \colon M_{\zeta} = \mathscr{A}^{[\delta]} \upharpoonright \zeta \}$$

is a stationary. Now if $\zeta \in S \cap (D_1)' \cap D_2 \cap D_3$ then $\alpha_{\zeta}^{\delta} \in C$, and α_{ζ}^{δ} satisfies conditions (a)-(d). Note that $\zeta(\alpha_{\zeta}^{\delta}) = \operatorname{otp}(C_{\alpha_{\zeta}^{\delta}}) = \zeta$. Moreover, as $\zeta \in D_1 \cap S$ we have $\xi_{\zeta} = \operatorname{otp}(a_{\alpha_{\zeta}^{\delta}})$, i.e., condition (f) holds. By the construction it follows that condition (e) holds, (the system of submodels on ξ_{ζ} is isomorphic to the system of $a_{\alpha_{\zeta}^{\delta}}$ given by Lemma 2.4). Finally (g) holds, as $\zeta \in (D_1)'$ and the system of models of $\mathscr{A}^{[\delta]}$ is end-extending. Hence $\alpha_{\zeta}^{\delta} \in W \cap C$, and $\overline{M}^{\alpha_{\zeta}^{\delta}}$ is a system of models as required.

Proof of clause (E). Suppose $\alpha, \beta \in W$, $\xi = \operatorname{otp}(C_{\alpha}) = \operatorname{otp}(C_{\beta})$. By the construction, both a_{α} and a_{β} are isomorphic to M_{ξ}^{\oplus} and the isomorphisms are order preserving functions. Hence a_{α} is order isomorphic to a_{β} . Note that $a_{\alpha} \cap \chi = a_{\beta} \cap \chi = \xi$. Since both a_{α} and a_{β} are closed under H_0 and H_1 it follows that $a_{\alpha} \cap a_{\beta}$ is an initial segment of both a_{α} and a_{β} .

Proof of clause (D). Suppose that $\alpha, \beta \in W$ and $\operatorname{otp}(C_{\alpha}) < \operatorname{otp}(C_{\beta})$. As above, since a_{α} and a_{β} are closed under H_0 and H_1 , it follows that $a_{\alpha} \cap a_{\beta}$ is an initial segment of a_{α} . Let $\gamma = \sup(a_{\alpha} \cap a_{\beta})$. We have four cases, we will show that the first three never occur.

Case 1: $\gamma \in a_{\alpha} \cap a_{\beta}$. We can assume that each a_{α} is closed under successor, so this case can never happen.

Case 2: $\gamma \in a_{\alpha} - a_{\beta}$. Note that $C_{\gamma} \subseteq a_{\alpha}$. Let $\gamma_1 = \min(a_{\beta} - \gamma)$. By (c)(i) for a_{β} it follows that we must have $cf(\gamma_1) = \chi$. Now by (c)(ii), $\gamma = sup(a_{\beta} \cap \gamma_1) = \alpha_{opt(C_{\beta})}^{\gamma_1}$. So

 $\gamma \in C_{\gamma_1}$ and $\operatorname{otp}(C_{\gamma}) = \operatorname{otp}(C_{\beta})$. Note that $\operatorname{cf}(\gamma) < \chi$. Hence by (c)(i) for a_{α} we have $\operatorname{otp}(C_{\gamma}) \leq \operatorname{otp}(C_{\alpha})$, a contradiction.

Case 3: $\gamma \notin (a_{\alpha} \cup a_{\beta})$. Let $\gamma_0 = \min(a_{\alpha} - \gamma)$ and, $\gamma_1 = \min(a_{\beta} - \gamma)$. As above we have $\operatorname{otp}(C_{\gamma}) = \operatorname{otp}(C_{\alpha})$ and $\operatorname{otp}(C_{\gamma}) = \operatorname{otp}(C_{\beta})$, a contradiction.

Case 4: $\gamma \in a_{\beta} - a_{\alpha}$. Let $\gamma_0 = \min(a_{\alpha} - \alpha)$. We have $\operatorname{cf}(\gamma_0) = \chi$ and $\operatorname{otp}(C_{\gamma}) = \operatorname{otp}(C_{\alpha})$, so $C_{\gamma} \subseteq a_{\alpha}$. Note that $a_{\alpha} \cap \gamma = \bigcup_{\zeta \in C_{\gamma}} (a_{\alpha} \cap \zeta)$. But for $\zeta \in a_{\alpha}$ with $\operatorname{cf}(\zeta) < \chi$ we have $a_{\alpha} \cap \zeta = b_{\operatorname{otp}(C_{\alpha})}^{\zeta}$. Hence $a_{\alpha} \cap \gamma = \bigcup_{\zeta \in (C_{\gamma})'} b_{\operatorname{otp}(C_{\alpha})}^{\zeta} \subseteq a_{\beta_1}$, for some $\beta_1 \in (C_{\beta})'$ large enough. Hence by (g) in the definition of the diamond for systems sequence, the conclusion follows. \Box

Proof of Lemma 2.4. We prove slightly more. In addition to the sequence $\langle N_t: t \in [I] \leq 2 \rangle$ there is a sequence $\langle N'_{\{\alpha\}}: \alpha \in I \rangle$ such that:

(β) $N_{\{\alpha\}}, N'_{\{\alpha\}}$ realize the same $L_{\theta,\theta}$ -type over M, for $\alpha \in I$,

(γ) we have $N'_{\{\alpha\}} \prec N_{\{\alpha\}}$ for $\alpha \in I$ and for $\alpha < \beta$ in I we have $N_{\{\alpha,\beta\}} = Sk(N_{\{\alpha\}} \cup N'_{\{\beta\}})$.

Remark. (1) Note that for $\alpha < \beta$, $N_{\{\beta\}}$ is not necessarily a subset of $N_{\{\alpha,\beta\}}$. (2) The idea of the proof is to define $N_{\{0\}}^*$, $N_{\{1\}}^{*\prime}$ and $N_{\{0,1\}}^*$ (and more, see definition of a witness below). Then we use it as a blueprint and "copy" it many times using elementarity, to obtain a suitable system.

We can assume that M has Skolem functions, even for $L_{\theta,\theta}$. Let χ^* be large enough. Let for $i < \lambda$, $\mathscr{B}_i \prec (H(\chi^*), \in, <^*_{\chi^*})$ such that $||\mathscr{B}_i|| = 2^{\mu} < \lambda$, and $M \in \mathscr{B}_i$, \mathscr{B}_i increasing continuous with i, and if $cf(i) \ge \mu^+$ or i non-limit, then $\mathscr{B}_i \prec_{L_{\mu^+,\mu^+}} (H(\chi^*), \in, <^*_{\chi^*})$. Let $E = \{\delta < \lambda: \delta \text{ is a limit and } \mathscr{B}_{\delta} \cap \lambda = \delta\}$, it is a club of λ . Fix $\delta \in E \cap S^{\lambda}_{\ge \mu^+}$. Note that $\mathscr{B}_{\delta} \prec_{L_{\mu^+,\mu^+}} (H(\chi^*), \in, <^*_{\chi^*})$.

We say that $(N_{\emptyset}^*, N_{\{0\}}^*, N_{\{1\}}^{*'}, N_{\{0,1\}}^*, \alpha_0, \alpha_1)$ is a witness if:

(1)
$$N_u^* \prec M, |N_u^*| = \kappa, N_{\{0\}}^* \cap N_{\{1\}}^{*i} = N_{\emptyset}^*, N_{\emptyset}^*, N_{\{0\}}^* \prec M \upharpoonright \mathscr{B}_{\delta}, N_{\{0,1\}}^* = Sk(N_{\{1\}}^{*i} \cup N_{\{0\}}^*),$$

- (2) $N_{\{1\}}^* \cap \mathscr{B}_{\delta} = N_{\emptyset}^*, \ \alpha_0 \in N_{\{0\}}^* N_{\emptyset}^*, \ \alpha_1 \in N_{\{1\}}^{*\prime} N_{\emptyset}^*,$
- (3) if $\alpha \in N^*_{\{0,1\}} \setminus N^{*\prime}_{\{1\}}$, $\beta = \min(N^{*\prime}_{\{1\}} \setminus \alpha)$, then $cf(\beta) \ge \mu^+$,
- (4) for every $A \subseteq \mathscr{B}_{\delta}$, $|A| \leq \mu$ there are $N'_{\{1\}} \prec N_{\{1\}}$ and $N_{\{0,1\}}$ such that (a) $N'_{\{1\}}$, $N_{\{0,1\}} \prec M \cap \mathscr{B}_{\delta}$,
 - (b) $N'_{\{1\}}$ is order isomorphic to $N^{*\prime}_{\{1\}}$,
 - (c) $N_{\{1\}}^{*}$ is order isomorphic to $N_{\{0\}}^{*}$,
 - (d) $OP_{N_{\{0,1\}},N_{\{0,1\}}^*}$ is an isomorphism from $N_{\{0,1\}}^*$ onto $N_{\{0,1\}}$ which is the identity on $N_{\{1\}}^{*'}$, maps $N_{\{0\}}^*$ onto $N_{\{0\}}$,
 - (e) for $\alpha \in N^*_{\{0,1\}} \setminus N^*_{\{1\}}$, if $\beta = \min(N'_{\{1\}} \alpha)$, then $OP_{N_{\{0,1\}}, N^*_{\{0,1\}}}(\alpha) \in \sup(A \cap \beta, \beta)$.

Claim 2.5. There is a witness.

We can find $\mathscr{C}_{L_{\mu},L_{\mu}}(H(\chi^*), \in, <_{\chi^*}^*)$ such that $\|\mathscr{C}\| = \mu, {}^{\kappa}\mathscr{C} \subseteq \mathscr{C}, \ \mu + 1 \subseteq \mathscr{C}$ and $(M, \mathscr{B}_{\delta}, \delta) \in \mathscr{C}$. As $\mathscr{B}_{\delta} \prec_{L_{\mu^+,\mu^+}}(H(\chi^*), \in, <_{\chi^*}^*)$ it follows that there is a function $f, \operatorname{dom}(f) = \mathscr{C}, \operatorname{rang}(f) \subseteq \mathscr{B}_{\delta}, f \upharpoonright \mathscr{C} \cap \mathscr{B}_{\delta}$ is the identity, f preserves satisfaction of L_{μ^+,μ^+} formulas, i.e. f is an isomorphism.

Let $\mathcal{N} \prec (H(\chi^*), \in, <_{\chi^*}^*)$ be such that $\{\mathscr{B}_{\delta}, \mathscr{C}, f, \delta\} \in \mathcal{N}, \|\mathscr{N}\| = \kappa$. Let $\mathcal{N}_1 = \mathcal{N} \cap \mathscr{C}, \mathcal{N}_0 = \mathcal{N} \cap \mathscr{B}_{\delta}$. Let $\mathcal{N}_0' = f(\mathcal{N}_1)$, note that $\mathcal{N}_0' \subseteq \mathcal{N}_0$. Let $\delta_0 = f(\delta_1)$. W.l.o.g. we can assume that $\mathcal{N} = Sk(\mathcal{N}_0, \mathcal{N}_1)$. Let $\mathcal{N}_{\emptyset} = \mathscr{B}_{\delta} \cap \mathscr{C} \cap \mathcal{N}$. We claim that $(\mathcal{N}_{\emptyset}, \mathcal{N}_0, \mathcal{N}_1', \mathcal{N}, \delta_0, \delta_1)$ is a witness. Note that

(*) if
$$\alpha \in \mathcal{N} \cap (\delta + 1)$$
, then $\min(\mathscr{C} - \alpha) \in \mathcal{N}_1$.

Let us check condition (3). Suppose that $\alpha \in \mathcal{N} - \mathcal{N}_1$ and let $\beta = \min(\mathcal{N}_1 - \alpha)$. Note that by (*) we have $\beta = \min(\mathscr{C} - \alpha)$. But as $\mu + 1 \subseteq \mathscr{C}$ and $\mathscr{C} \prec (H(\chi^*), \in, <^*_{\chi^*})$ we must have $cf(\beta) \ge \mu^+$.

Now to verify (4), suppose that there is a set A such that the conclusion of (4) fails. Then A is definable from: \mathcal{N}_1 , the isomorphism type of \mathcal{N} over \mathcal{N}_1 and the isomorphism type of \mathcal{N}_0 over \mathcal{N}'_0 . As \mathcal{N}_1 , \mathcal{N}_{\emptyset} are in \mathscr{C} and $\mathscr{C} \prec_{L_{\mu},L_{\mu}}(H(\chi^*), \in, <^*_{\chi^*})$ and $\kappa < \mu$ it follows that such set A is in \mathscr{C} . But now the witness itself is a counterexample. Note that clause (e) follows from (*).

Claim 2.6. If there is a witness, then there is a system as required, (for our $\delta \in E \cap S_{\geq u^+}^{\lambda}$).

By induction on $\alpha < \mu^+$ we define $\delta_{\alpha} < \delta$ and a system $\langle N'_{\{\alpha\}}, N_{\{\alpha\}}, N_{\{\alpha,\beta\}} \rangle$, for $\beta < \alpha$.

Suppose that we have defined the system for all $\beta < \alpha$. Let $A = \bigcup \{N_u: u \in [\{\delta_\beta: \beta < \alpha\}]^{\leq 2}\}$. Let $N'_{\{\alpha\}}$ and $N_{\{\alpha\}}$, $N_{\{0,\alpha\}}$ be as in the definition of a witness, for the above A. For $\beta < \alpha$ let $N_{\{\beta,\alpha\}} = Sk(N_{\{\beta\}}, N'_{\{\alpha\}})$. It follows that N_{α} is isomorphic to \mathcal{N}_0 and $N_{\{\beta,\alpha\}}$ is isomorphic to \mathcal{N} . Let $\delta_{\alpha} = OP_{N_{\{0,\alpha\}}, N^*_{\{0,1\}}}(\alpha_0)$. Note that $I = \{\delta_{\alpha}: \alpha < \mu^+\}$ is such that $\sup(I) = \delta$ and $N_u \cap I = u$ for every $u \in [I]^{\leq 2}$. This finishes the proof.

3. Proof of the theorem

Start with a model satisfying the assumptions of the theorem, i.e. we have $2^{\aleph_i} = \aleph_{i+1}$ for i < 4, $\{C_{\alpha}: \alpha \in \omega_4\}$ is a square sequence and $\langle \overline{M}^i: i \in W \rangle$ is a diamond for systems, $\langle s_i(\aleph_4, \aleph_1, \aleph_1, \aleph_0) \rangle$. Let $\overline{M}^i = \langle M_u^i: u \in [\overline{B}_i]^{\leq 2} \rangle$ and let $\overline{B}_i = \{\alpha_{\varepsilon}^i: \varepsilon < \omega_1\}$ be the increasing enumeration.

Definition 3.1. (1) A set $b \subseteq \alpha$ is $\overline{Q} \upharpoonright \alpha$ -closed, i.e. $\alpha \in b \Rightarrow a_{\alpha} \subseteq b$. (2) $\mathscr{K} = \mathscr{K}_{\mu}$ is the family of *FS*-iterations $\overline{Q} = \langle P_{\alpha}, Q_{\alpha}, a_{\alpha}, : \alpha < \alpha^* \rangle$ such that:

- (a) $a_{\alpha} \subseteq \alpha$,
- (b) $|a_{\alpha}| \leq \mu$,
- (c) $\beta \in a_{\alpha} \Rightarrow a_{\beta} \subseteq a_{\alpha}$,
- (d) for $b \subseteq \alpha$, $P_b^* = \{ p \in P_{\alpha} : \operatorname{dom}(p) \subseteq b \text{ and } (\forall \beta \in \operatorname{dom}(p)) p(\beta) \text{ is a } P_{b \cap \alpha}^* \text{ name} \}$,
- (e) Q_{α} is a $P_{a_{\alpha}}^*$ -name (see 3.2 below),
- (f) $P_{\alpha^*}^*$ has the property K (= *Knaster*).

Remark. The above definition proceeds by induction on α^* , so part (d) is not circular.

Lemma 3.2. Suppose $\bar{Q} = \langle P_{\alpha}, Q_{\alpha}, a_{\alpha} \rangle \in \mathscr{K}$. If $b \subseteq \alpha^*$ is \bar{Q} -closed, then $P_b^* \Leftrightarrow P_{\alpha^*}^*$.

Proof. Straightforward, see [2, 3].

Let $f: {}^{\omega_1 > 2} \to \aleph_1$ be one to one, such that if $\eta \triangleleft v$, then $f(\eta) \triangleleft f(v)$. For $\rho \in {}^{\omega_1}2$ let $w_\rho = \{f(\rho \upharpoonright i): i < \aleph_1\} \in [\aleph_1]^{\aleph_1}$. Note that if $\rho_1 \neq \rho_2$ in ${}^{\omega_1}2$, then $|w_{\rho_1} \cap w_{\rho_2}| < \aleph_1$. Let R be the countable support forcing adding \aleph_4 many Cohen subsets of ω_1 , ρ_i $(i < \omega_4)$. Note that in V^R , $\{w_{\rho_i}: i \in \omega_4\}$ is a family of almost disjoint, uncountable subsets of ω_1 . Let $B_i = \{\alpha_{\varepsilon}^i: \varepsilon \in w_{\rho_i}\}$. Note that $\{M_u^i: u \in [B_i]^{\leq 2}\}$ is still a system of models on i, hence without loss of generality we can assume that $w_{\rho_i} = \omega_1$. For $\zeta \in \omega_1$ define $B_i(\zeta) = \{\alpha_{\varepsilon}^i: \varepsilon < \zeta\}$. In V^R we shall define an iteration $\langle P_i, Q_i, a_i: i < \chi \rangle \in \mathscr{K}_{\aleph_4}$. Working in V^R , we define $\overline{Q} \upharpoonright i$, by induction on $i < \omega_4$, and we prove that it is as in 3.1 (in V^R).

We call *i* good if it satisfies: $i \in W$, each M_u^i has a predetermined predicate describing $\overline{Q} \upharpoonright M_u^i$ (as an *R*-name, with the limit P_u^i and an $R \upharpoonright M_u^i * P_u^i$ -name *f* for a function from ${}^{\omega}2 \times {}^{\omega}2$ into ${}^{\omega}2$ and each M_u^i is \overline{Q} -closed. (Recall that we do not distinguish between the model M_u^i and its universe.) In this case we put $a_i = \bigcup \{M_u^i: u \in [B_i]^{\leq 2}\}$ and define Q_i below.

If *i* is not good we put $a_i = \emptyset$ and define Q_i to be the Cohen forcing, i.e., $Q_i = ({}^{\omega>2}, \triangleleft)$. We can assume that if $\alpha \in B_i$, then Q_{α} is Cohen, (or just replace B_i by $\{\alpha + 1: \alpha \in B_i\}$). For $\alpha \in B_i$, let r_{α} be the Cohen real forced by Q_{α} .

Remark. The reason we add \aleph_4 almost disjoint subsets of ω_1 is that, in V^R , if $i \neq j$ are good and $\operatorname{otp}(C_i) = \operatorname{otp}(C_j)$, then the systems associated with *i* and *j* are almost disjoint, i.e., there is $\zeta \in \omega_1$ such that

$$\left(\bigcup \left\{ M_{u}^{i}: u \in [B_{i}]^{\leq 2} \right\} \right) \cap \left(\bigcup \left\{ M_{u}^{j}: u \in [B_{j}]^{\leq 2} \right\} \right)$$
$$\subseteq \left(\bigcup \left\{ M_{u}^{i}: u \in [B_{i}(\zeta)]^{\leq 2} \right\} \right) \cap \left(\bigcup \left\{ M_{u}^{j}: u \in [B_{j}(\zeta)]^{\leq 2} \right\} \right)$$

Note that if $otp(C_i) \neq otp(C_j)$ then we have almost disjointness by Definition 2.2(D)(i).

Notation. For $\xi, \zeta \in \omega_1$ let $Z^i_{\xi,\zeta} = M^i_{\{\alpha^i_{\xi},\alpha^i_{\xi}\}} \cup M^i_{\{\alpha^i_{\xi}\}} \cup M^i_{\{\alpha^i_{\xi}\}}, Z^i_{\xi} = M^i_{\{\alpha^i_{\xi}\}}$.

Now we fix a good *i*. Our goal is to define Q_i .

Definition 3.3. For $p,q \in R$ (or in $P_{\omega_4}^*$), dom(p), dom $(q) \subseteq Z_{0,1}^i$ we say that p and q are dual if $OP_{Z_1^i, Z_0^i}(p \upharpoonright Z_0^i) = q \upharpoonright Z_1^i$ and $OP_{Z_1^i, Z_0^i}(q \upharpoonright Z_0^i) = p \upharpoonright Z_1^i$.

Using $G_{R \upharpoonright M_{\emptyset}^{i}}$ we choose, by induction on $k < \omega$, conditions r_{η}^{i} , $r_{\eta}^{i,l} \in R$ for $\eta \in {}^{k}2$, l < 2, such that: (a) $r_{\eta}^{i} \in (R \upharpoonright Z_{0}^{i})/G_{R \upharpoonright M_{\emptyset}^{i}}$. (b) $v \triangleleft \eta \Rightarrow r_{v}^{i} \leqslant r_{\eta}^{i}$.

- (c) if l = m+1, if $\eta \in {}^{m}2$, l < 2, then $r_{\eta}^{i,l} \in (R \upharpoonright Z_{0,1}^{i})/G_{R \upharpoonright M_{\emptyset}^{i}}$ and $r_{\eta}^{i} \leqslant r_{\eta}^{i,l} \upharpoonright Z_{0}^{i} \leqslant r_{\eta^{\frown}(l)}^{i}$ and $OP_{Z_{1}^{i}, Z_{0}^{i}}(r_{\eta}^{i}) \leqslant r_{\eta}^{i,l} \upharpoonright Z_{1}^{i} \leqslant OP_{Z_{1}^{i}, Z_{0}^{i}}(r_{\eta^{\frown}(1-l)}^{i})$, and $r_{\eta}^{i,0}$ and $r_{\eta}^{i,1}$ are dual.
- (d) $r_{\eta}^{i,l}$ forces that $A_k^{\eta,l} = \{ p_{k,n}^{\eta,l} : n \in \omega \}$ is a predense subset of $P_{Z_{0,1}^i}^*$, such that each $p_{k,n}^{\eta,1}$ forces the value $f_{k,n}^{\eta,l}$ of $f(r_{\alpha_0^i}, r_{\alpha_1^i}) \upharpoonright k$.
- (e) $A_k^{\eta,0}$ and $A_k^{\eta,1}$ are dual, i.e. for every $m \in \omega$, $p_{k,m}^{\eta,0}$ and $p_{k,m}^{\eta,1}$ are dual. Moreover if $k_1 < k_2$, then $A_{k_2}^{\eta,1}$ refines $A_{k_1}^{\eta,1}$.

Suppose we have r_{η}^{i} . We define $r_{\eta}^{i,0}, r_{\eta}^{i,1}$ and $A_{k}^{\eta,0}, A_{k}^{\eta,0}$ as follows.

1. Let
$$r_1 = r_{\eta}^i \cap OP_{Z_1^i, Z_0^i}(r_{\eta}^i)$$
.

- 2. Let $r_{1,0} \ge r_1$, $r_{1,0} \in R \upharpoonright Z_{0,1}$, forces a maximal antichain $A_{1,0}$ of $P_{Z_{0,1}}^*$, such that each element of $A_{1,0}$ forces a value of $f(r_{\alpha_i^k}, r_{\alpha_1^i}) \upharpoonright k$.
- 3. Let $r_2 = OP_{Z_1^i, Z_0^i}(r_{1,0} \upharpoonright Z_0^i) \cup OP_{Z_0^i, Z_1^i}(r_{1,0} \upharpoonright Z_1^i)$. Let $r_{2,1} \ge r_2$, $r_{2,1} \in R \upharpoonright Z_{0,1}$ forces $A_{2,1}$ to be a predense subset of $P_{Z_{0,1}}^*$ such that each element of $A_{2,1}$ forces a value of $f(r_{\alpha_0^i}, r_{\alpha_1^i}) \upharpoonright k$. Moreover, $A_{2,1} = \bigcup \{A_p: p \in A_{1,0}\}$, which for every $q \in A_p$ we have $q \ge OP_{Z_1^i, Z_0^i}(p \upharpoonright Z_0^i) \cup OP_{Z_0^i, Z_1^i}(p \upharpoonright Z_1^i)$.
- 4. Let $r_3 = OP_{Z_1^i, Z_0^i}(r_{2,1} \upharpoonright Z_0^i) \cup OP_{Z_0^i, Z_1^i}(r_{2,1} \upharpoonright Z_1^i).$
- 5. Let $r_{3,0} = r_3 \cup r_{1,0}$ (note: $r_{3,0}$ is dual to $r_{2,1}$). Let $A_{3,0} = \{ p \cup OP_{Z_i^i, Z_0^i}(q \upharpoonright Z_0^i) \cup OP_{Z_0^i, Z_1^i}(q \upharpoonright Z_1^i) : q \in A_p \}.$
- 6. Let $r_{\eta}^{i,0} = r_{3,0}$, $r_{\eta}^{i,1} = r_{2,1}$, $A_k^{\eta,0} = A_{3,0}$ and $A_k^{\eta,1} = A_{2,1}$. Let for $\eta \in {}^{\omega}2$ $r^i = 1$ | r^i In V choose $\langle \eta^* \rangle$ is <

Let for $\eta \in {}^{\omega}2$, $r_{\eta}^{i} = \bigcup_{k < \omega} r_{\eta \restriction k}^{i}$. In *V* choose $\langle \eta_{\varepsilon}^{*} : \varepsilon < \omega_{1} \rangle$, distinct members of ${}^{\omega}2$. Recall that $\rho_{j} (j < \aleph_{4})$ are the Cohen subsets of ω_{1} forced by *R*. In $V[\langle \rho_{j} : j \in \{i\} \cup a_{i} \rangle]$ we can find $w^{i} \in [\omega_{1}]^{\omega_{1}}$ such that

(
$$\alpha$$
) if $\varepsilon \in w^{i}$ then $OP_{Z_{\varepsilon}^{i}, Z_{0}^{i}}(r_{\eta_{\varepsilon}^{*}}) \in G_{R \upharpoonright Z_{\varepsilon}^{i}},$
(β) if $\varepsilon_{0} < \varepsilon_{1}$ are in w^{i} , $l = TV(\eta_{\varepsilon_{0}}^{*} < l_{x} \eta_{\varepsilon_{1}}^{*})$, then
 $OP_{Z_{\varepsilon_{0},\varepsilon_{1}}, Z_{0,1}^{i}}(r_{\eta_{\varepsilon_{0}}^{i} \cap \eta_{\varepsilon_{1}}^{*}}) \in G_{R \upharpoonright Z_{\varepsilon_{0},\varepsilon_{1}}^{i}}.$

We choose the members of w^i inductively using the fact that R has $(<\aleph_1)$ -support.

Notation. For $\xi \in w^i$ denote $r^i_{\xi} = r_{\alpha^i_z}$.

Let *H* be *R*-generic and *G* be $P_{a_i}^*$ -generic. In V[H][G] we define Q_i . A condition in Q_i is $(u, v, \bar{v}, \bar{m}, F_0, F_1)$, where:

- (1) u is a finite subset of w^i .
- (2) v is a finite set of elements of the form (η, ρ) , where
 - (a) $\eta, \rho \in {}^{\omega>2}$, $\ln(\eta) = \ln(\rho), \rho \neq \eta$,
 - (b) $\eta \triangleleft r_{\alpha}^{i}$, $\rho \triangleleft r_{\beta}^{i}$ for some $\alpha, \beta \in u$ and if $v = \eta_{\alpha}^{*} \cap \eta_{\beta}^{*}$ then for every $\gamma \in u$ we have: if $\eta \triangleleft r_{\gamma}^{i}$, then $\eta_{\gamma}^{*} \upharpoonright (\ln(v) + 1) = \eta_{\alpha}^{*} \upharpoonright (\ln(v) + 1)$, and if $\rho \triangleleft r_{\gamma}^{i}$, then $\eta_{\gamma}^{*} \upharpoonright (\ln(v) + 1) = \eta_{\beta}^{*} \upharpoonright (\ln(v) + 1)$.
- (3) v
 is a function from v into ^{ω>2} such that for (η, ρ) ∈ v we have: v
 (η, ρ) is such that there is α, β ∈ u such that η⊲rⁱ_α, ρ⊲rⁱ_β and v
 (η, ρ) = η^{*}_α ∩ η^{*}_β, (v
 is well defined by (2)).

- (4) \overline{m} is a function from v to ω . For $(\eta, \rho) \in v$, $\overline{m}(\eta, \rho)$ is such that for every $\alpha, \beta \in u$ such that $\eta \triangleleft r_{\alpha}^{i}, \rho \triangleleft r_{\beta}^{i}$, we have $OP_{Z_{\alpha,\beta}^{i}, Z_{0,1}^{i}}(p_{lh(\eta), \overline{m}(\eta, \rho)}^{v,l}) \in G$, where $l = TV(\eta_{\alpha}^{*} < lx \eta_{\beta}^{*})$ and $v = \eta_{\alpha}^{*} \cap \eta_{\beta}^{*}$.
- (5) For $l = 0, 1, F_l$ is a function from v into ${}^{\omega>2}$, defined by: for $(\eta, \rho) \in v, F_l(\eta, \rho)$ is the value of $f(r_0, r_1) \upharpoonright lh(\eta)$ forced by $p_{lh(\eta), \bar{m}(\eta, \rho)}^{\bar{v}(\eta, \rho), l}$.
- (6) For $(\eta, \rho), (\eta_1, \rho_1) \in v$, if $\eta \triangleleft \eta_1$ and $\rho \triangleleft \rho_1$, then $F_l(\eta, \rho) \triangleleft F_l(\eta_1, \rho_1)$, for l = 0, 1. Order: $(u, v, \bar{v}, \bar{m}, F_0, F_1) \leq (u^1, v^1, \bar{v}^1, \bar{m}^1, F_0^1, F_1^1)$ if
- (7) $u \subseteq u^1$,
- (8) $v \subseteq v^1$,
- (9) $F_l = F_l^1 \upharpoonright v, \ \bar{v} = \bar{v}^1 \upharpoonright v, \ \bar{m} = \bar{m}^1 \upharpoonright v, \ l = 0, 1.$

Lemma 3.4. Suppose (q_{α}, p_{α}) , (for $\alpha \in \omega_1$), are in $P_{a_i}^* * Q_i$, q_{α} forces p_{α} to be a real 6-tuple in Q_i , not just a $P_{a_i}^*$ -name of such a tuple, dom $(q_{\alpha})(\alpha \in \omega_1)$ form a delta system with the root $\Delta, \zeta \in \omega_1$. Let $b = \bigcup \{M_u^i: u \in [B_i(\zeta)]^{\leq 2}\}$. Suppose $\Delta - \{i\} \subseteq b$ and dom $(q_{\alpha}) \cap b = \Delta$ for $\alpha \in \omega_1$.

Then there is an uncountable set $E \subseteq \omega_1$ such that for every $\alpha, \beta \in E$, (q_{α}, p_{α}) and (q_{β}, p_{β}) are compatible, moreover if $q \in P_b^*, q \ge q_{\alpha} \upharpoonright b, q_{\beta} \upharpoonright b$, then $q, (q_{\alpha}, p_{\alpha})$ and (q_{β}, p_{β}) are compatible.

Proof. By thinning out we can find an uncountable set $E \subseteq \omega_1$ such that:

- (a) For $\alpha \in E$ let $w_{\alpha} = \bigcup \{ u \in [B_i]^{\leq 2} : \operatorname{dom}(q_{\alpha}) \cap M_u^i \neq \emptyset \}$, (each w_{α} is finite). The sets w_{α} , $(\alpha \in E)$ form a delta system with the root w and if $\alpha < \beta$, $\xi \in w_{\alpha}$, $\zeta \in w_{\beta}$, then $\xi \leq \zeta$.
- (b) $u^{p_{\alpha}}$ ($\alpha \in E$) form a delta system with the root u and $\alpha < \beta$, $\xi \in u^{p_{\alpha}}$, $\zeta \in u^{p_{\beta}}$, then $\xi \leq \zeta$, $|u^{p_{\alpha}}| = n^*$.
- (c) $v^{p_{\alpha}} = v^*$ for $\alpha \in E$ and the structures $(u^{p_{\alpha}}, \{q_{\alpha}(\zeta): \zeta \in u^{p_{\alpha}}\}, v^*, \{\eta^*_{\zeta} \upharpoonright m^*: \zeta \in u^{p_{\alpha}}\})$ are isomorphic, (isomorphism given by the order preserving bijection between respective $u^{p_{\alpha}}$'s), where m^* is such that $\ln(\eta^*_{\zeta} \cap \eta^*_{\zeta}) < m^*$ for every $\zeta \neq \zeta$ in $u^{p_{\alpha}}$.

Lemma 3.5. P_{i+1} has the property K.

Proof. Let $\{p_{\alpha}: \alpha \in \omega_1\}$ be an uncountable subset of P_{i+1} . W.l.o.g. we can assume that dom (p_{α}) , $(\alpha \in \omega_1)$ form a delta system with the root Δ . We have to find an uncountable subset $E \subseteq \omega_1$ such that for any $\alpha, \beta \in E, p_{\alpha}$ and p_{β} are compatible. We prove it by induction on $k = |\Delta|$.

For k = 0, trivial. For the induction step assume that $\Delta = \{i_0, \ldots, i_k\}$ ordered by \triangleleft , where for $\alpha, \beta < \omega_4$, we define $\alpha \triangleleft \beta$ iff $\operatorname{otp}(C_{\alpha}) < \operatorname{otp}(C_{\beta})$ or $\operatorname{otp}(C_{\alpha}) = \operatorname{otp}(C_{\beta})$ and $\alpha < \beta$.

By the induction hypothesis there is an uncountable set $E' \subseteq \omega_1$ such that for $\alpha, \beta \in E'$, $p_{\alpha} \upharpoonright \bigcup_{l < k} a_{i_l}$ and $p_{\beta} \upharpoonright \bigcup_{l < k} a_{i_l}$ are compatible. Note that there is $\zeta \in \omega_1$ such that $a_{i_k} \cap (\bigcup_{l < k} a_{i_l}) \subseteq \bigcup \{M_u^{i_k} : u \in [B_{i_k}(\zeta)]^{\leq 2}\}$, (see Definition 2.2(D)). Now use the previous lemma.

Now suppose that G(i) is Q_i -generic. Let

$$A' = \bigcup \{ u: \exists (v, \bar{v}, \bar{m}, F_0, F_1), (u, v, \bar{v}, \bar{m}, F_0, F_1) \in G(i) \}.$$

In V[G] let $A = \{r_{\alpha}^{i}: \alpha \in A'\}$ and let $f_{l}: [A]^{2} \to {}^{\omega}2$ be defined by

$$f_l(r^i_{\alpha}, r^i_{\beta}) = \bigcup \left\{ F_l(\eta, \rho) \colon \exists (u, v, \bar{v}, \bar{m}, F_0, F_1) \in G(i), \\ \alpha, \beta \in u, (\eta, \rho) \in v, \eta \triangleleft r^i_{\alpha}, \rho \triangleleft r^i_{\beta} \right\}.$$

Let $\mathscr{V} = \bigcup \{ v: \exists (u, \bar{v}, \bar{m}, F_0, F_1) : (u, v, \bar{v}, \bar{m}, F_0, F_1) \in G(i) \}.$

Lemma 3.6. (1) For every $\alpha, \beta \in A'$ and $n \in \omega$, there is $(\eta, \rho) \in \mathcal{V}$ such that $lh(\eta) = lh(\rho) \ge n$ and $\eta \triangleleft r_{\alpha}$ and $\rho \triangleleft r_{\beta}$,

(2) A is uncountable,

(3) f_0 , f_1 are continuous,

(4) for every $(\alpha, \beta) \in [A]^2$, if $l = TV(\eta_{\alpha}^* <_{lx} \eta_{\beta}^*)$, then $f(r_{\alpha}^i, r_{\beta}^i) = f_l(r_{\alpha}^i, r_{\beta}^i)$.

Proof. (1) and (2) follow by a density argument. To prove (1) suppose that $(p,q) \in P_i * Q_i$, p forces that $\alpha, \beta \in u^q$. W.l.o.g. $\alpha, \beta \in \text{dom}(p)$. Let $p_1 \in P_i$ be such that $\text{dom}(p) = \text{dom}(p_1)$, $p(\zeta) = p_1(\zeta)$ for $\zeta \in \text{dom}(p) \setminus \{\alpha, \beta\}$, $p(\alpha) \triangleleft p_1(\alpha)$, $p(\beta) \triangleleft p_1(\beta)$, $\text{lh}(p_1(\alpha)) = \text{lh}(p_1(\beta)) \ge n$, (remember that Q_{α}, Q_{β} are Cohen). Let $\eta = p_1(\alpha)$, $\rho = p_1(\beta)$, $v = \eta_{\alpha}^* \cap \eta_{\beta}^*$, $l = TV(\eta_{\alpha}^* <_{lx} \eta_{\beta}^*)$. Let $m \in \omega$ be such that $OP_{Z_{\alpha,\beta},Z_{0,1}}(p_{\text{lh}(\eta),m}^{v,l})$ is compatible with p_1 , and let p_2 be the common upper bound. Now define $q_1 \ge q$ as follows. $u^{q_1} = u^q$, $v^{q_1} = v^q \cup \{(\eta, \rho)\}$, $\bar{v}^{q_1}(\eta, \rho) = v$, $\bar{m}^{q_1}(\eta, \rho) = m$, $F_l^{q_1}(\eta, \rho)$ is the value forced by $p_{\text{lh}(\eta),m}^{v,l}$. Hence $(p_2, q_1) \ge (p, q)$ and it forces what is required.

To prove (2) it is enough to show, in V^R , that for every $\alpha \in \omega_1$ and $(p,q) \in P_i * Q_i$ there is $\beta > \alpha$ and $(p_1, q_1) \ge (p, q)$, such that $\beta \in u^{q_1}$. Let $\beta > \alpha$ be such that dom $(p) \cap Z^i_{\gamma,\beta} \subseteq M^i_{\emptyset}$ and $\beta > \gamma$ for every $\gamma \in u^q$. Let $\gamma \in u^q$ be such that $(\eta^*_{\gamma_1} \cap \eta^*_{\beta}) \triangleleft (\eta^*_{\gamma} \cap \eta^*_{\beta})$ for every $\gamma_1 \in u^q$. Define condition $q_1(\beta) = q(\gamma)$ and let p_1 be a condition extending p and each of conditions $OP_{Z^i_{\gamma_1,\beta},Z^i_{0,1}}(p^{\tilde{v}(\eta,\rho),l}_{\operatorname{lh}(\eta),\tilde{m}(\eta,\rho)})$ such that $(\eta,\rho) \in v$, $\eta \triangleleft q(\gamma_1)$, $\rho \triangleleft q(\gamma)$ and $l = TV(\eta^*_{\gamma_1} < \eta^*_{\beta})$. Finally extend q to q_1 such that $u^{q_1} = u^q \cup \{\beta\}$.

Condition (3) follows from (1), (5) and (6) in the definition of Q_i .

To prove (4) it is enough to show that for every $n \in \omega$, $f(r_{\alpha}^{i}, r_{\beta}^{i}) \upharpoonright n = f_{l}(r_{\alpha}^{i}, r_{\beta}^{i}) \upharpoonright n$. By condition (1) there is $(\eta, \rho) \in V$ such that $k = \ln(\eta) \ge n$ and $\eta \triangleleft r_{\alpha}^{i}$ and $\rho \triangleleft r_{\beta}^{i}$. Recall that $p = p_{\ln(\eta, n, \overline{n}(\eta, \rho))}^{\overline{n}(\eta, \rho)}$ forces that $f(r_{0}^{i}, r_{1}^{i}) \upharpoonright k = h$ for some fixed h. Now working in V consider $(r_{\eta_{\alpha}^{i} \cap \eta_{\beta}^{*}}, p) \in R * P_{i} \upharpoonright Z_{0,1}^{i}$. By the construction the condition $(r', p) = OP_{Z_{\alpha,\beta}^{i}, Z_{0,1}^{i}}$ $(r_{\eta_{\alpha}^{i} \cap \eta_{\beta}^{*}}, p) \in H * G$, and forces that $f(r_{\alpha}^{i}, r_{\beta}^{i}) = h$. On the other hand, by definition $F_{l}(\eta, \rho) = h$ and $F_{l}(\eta, \rho) \triangleleft f_{l}(r_{\alpha}^{i}, r_{\beta}^{i})$ This finishes the proof.

References

 U. Abraham, M. Rubin, S. Shelah, On the consistency of some partition theorems for continuous colorings, and the structure of ℵ₁-dense real order types, Ann. Pure Appl. Logic 29 (1985) 123-206.

- [2] S. Shelah, Consistency of positive partition theorems for graphs and models, in: J. Steprans, S. Watson (Eds.), Set Theory and Its Applications Conference, York University, Lecture Notes in Mathematics, vol. 1401, Springer, Berlin, 1989, pp. 167–193.
- [3] S. Shelah, Strong partition relatons below the power set: consistency, was Sierpinski right II? Proc. Conf. on Set Theory and its Applications in honor of A. Hajnal and V.T. Sos, Budapest, 1991.
- [4] S. Shelah, Possibly every real function is continuous on a non-meager set, Publ. Inst. Math. Nouvelle Ser. tome 57 (71) (1995) 47–60.
- [5] S. Shelah, Universal classes classification theory, forthcoming.