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§1. On ~-c.c. in ultraproducts of Boolean algebras 

We point out that 

(*)~,,0 i f  D is a filter on 0, for i < 0, B~ is a 2-c.c. Boolean algebra, then 
FI, <o Bi/D is a/.t-c.c. Boolean algebra 

is independent of ZFC,t and that 2 ÷-c.c. is not preserved by ultraproducts of 
countably many Boolean algebras. 

Remember: 

1.1. DEFINITION. Let 3. ~ [/t]~,0 ifffor any c" [2]" --- x there  isA E [2]" such 

that I Rang(c r [A ]")l =< O. 

t Even fixing cardinal arithmetic. 
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Also 2 ~ [#]~,<0 is defined similarly. 

We shall use the obvious monotonicity properties. By [Sh 288], t 

1.2. THEOREM. I f 2  <~ = 2  = cf)~ </~, # strongly Mahlo, then for some 
2 +-c.c. 2-complete forcing notion P o f  power #, 

IFp"2 & # --- fora<2". 

Now 

2 
1.2A. CLAIM. (1) I f  # --" [2 ]Ee,<Ro, then: 

(*)~,0 i fD is a filter on 0, and B~ is a Boolean algebra satisfying the 2-c.c. for 

i < O, then B = 11i<0 B~/D satisfies the #-c.c. 

(2) We can replace 2 0 by Min{ IEI: E __c_ D generates D}. 

PROOF. Let, for a < # ,  a~ = (a ,  : i < O)/D 4= O, for a < f l  < # ,  B V a~ n 

ap = O, and for a < #, B ~ a~ -~ O. 

Let c(a, fl) = {i : al" n a( = 0 & a7 ~ 0 & a( :~ 0}. So c is a coloring of#,  two 
place, I Rang c I < 2 o (just the power of a set generating D is enough) and 

c(a, f l ) ~ D  for a < f l  < # .  
So on some A E[#]  a, Rang(ct[A] 2) is finite; so the intersection 

n Rang(c t [A] 2) is in D hence nonempty. So for some i (Va  < f l  in A) 

[a7 n a( = 0 & a~ :~ 0 & a~ ~ 0], so {a~" otEA } C Bi shows B~ does not satisfy 
2-c.c.; contradiction. 

1.3. CONCLUSION. The question whether (*)xj,,0 holds does not depend on 
cardinal arithmetic alone. 

PROOF. Start e.g. with V ~ GCH. By 1.2, 1.2A we get one case: (*)x,~,0 

holds. If we use P = adding # Cohen subsets to ;t we get n(*)a~,0, but the same 
cardinal arithmetic. 

,~ 2 1.3A. CLAIM. I f#  ~ [ ]0,<~, # regular for simplicity and for i < 0, Bi is a 

Boolean algebra and B, the product of  (Bi : i < 0), does not satisfy the #-c.c., 

then for some a c_ 0, lal < x ,  the product of  (B~: i ~ a )  does not satisfy the 
).-c.c. 

PROOF. Similar, so we leave it to the reader. 

t For a weaker (but sufficient) result, see [Sh 276]. 
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1.4. THEOREM. Suppose2 > RI is regular. Then there are Boolean algebras 
B, (n < to) such that: 

(i) B, satisfies the 2-c.c., 
(ii) for any uniform ultrafilter D on to (or filter containing the cobounded 

subsets) I-I,<,oB,/D does not satisfy the 2-c.c. except possibly when 

(*) 2 is Mahlo and for every ( C u : I~ < 2, It is inaccessible ), C u a club of  
# there is C a  club of  2 such that V a < 2  3/ t (C N o~ = C u N a). 

REMARK. If2 is a successor or just not Mahlo then (.) fails trivially. Also if 
there are stationary S~C_2 such that for any inaccessible 2 ' < 2  
( 3 i < 2')[Si N 2'  not stationary] then (*) fails (see [Sh 276], 3.9). 

PROOF. See [Sh 276] proof  of 3.11, 3.3, §3 (which continues Todorcevic 
[T 2]). By the proof, for such 2, there is a symmetric function c from [2] 2 to to 
such that: 

(A) i f  n < co, i < ~ < ~2 < . . .  < ~r for i < 2 and m < to, then for some 
i < j :  

( F < ~ )  and A C(~],~k)>_--m. 
l=1  k = l  

We define a Boolean algebra B~: it is freely generated by (x7 : i < ;t } except: 

B~ ~ x~ N x~ = 0  when a < fl & c(fl, a) < n. 

Now Bn b 2-c.c. by (A) (for each n) but FI B,/D ~ 72-c.c. as 

exemplify this. 

1.5. CONCLUSION. 
(i) c(Bn) < 2, 

( (X~a : n < to)/D : a < 2 )  

If;t  >_- RI, then for some Bn (n <o9)  

(ii) c(1-ln<o, Bn/D) > 2 + for every uniform ultrafilter D on co. 

1.6. OBSERVATION. If  D is ultrafilter on I, 2 ~(2i)2~t, Bi ~ 2rc.c.,  then 

rI Bi/D ~ 2-c.c. 

§2. On length of Boolean algebras 

2.1. DEFINITION. For a Boolean algebra, B, let: 

Length(B) = sup{ I Y I: Y -- B, Y is linearly ordered}. 
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We shall prove that the length of  Hi<xBi cannot  be computed  from 

(Length(Bi) : i < x)  alone. 

2.2. LEMMA. (1) Let T C~>2 be a tree (with x levels) [i.e. 
~/E T=* {~/~ a : a =<_ lg(r/)} C_ T] and 

[r lET n "2, a < f l  <x=* 3 >[vET  n P2(v ~ a =  q)]. 

For each a let T, = T n ~2, <,-lexicographic order on T~. Let B, be the interval 
Boolean algebra of  ( T~, <,) .  Then 

(a) Length(B~) = I T~I i f  T~ is infinite, and 2 jr t < F, ° i f  T~ is finite; 
(b) Length(Fl,<~ B,) > l Z ~ l  (x > R0, of  course). 

(2) Let B', be the interval Boolean algebra of  the cardinal I T~I. Then 
(a) Length(B,') = I T~I i fT ,  is infinite, and 2 ILl ( < R0) i fT ,  is finite, 

(b) Length(II,<~ B,') </1%~ Z~<~ I T~ I~0 + 2 ~ when x has uncountable 

co finality. 

PROOF. (1)(a) Immediate .  

(1)(b) W.l.o.g. O , = ( O : i < a ) ~ T ~ ,  for r/@~2 n T let a~ = ( [O~ , r /~a ) :  

a<x)EI - I ,<~B , .  
(2)(a) Immediate .  
(2)(b) Let 2 >=/~, Z = 2So. 

Let J be a linear order, I J I > 2 and suppose there are at = (a~ '  : a < x) E 
17 B; for t E J and (a t : t E J )  a chain in 1-I B;. We shall get a contradict ion thus 

finishing the proof. 

Now for each a 

( ,)  we can find (A~ : n < o9 ), (m~ : n < o) ) and hl  such that: 

B. ' \ {0}=  U A~', 
n < o J  

hl : A~ --- m:[ T, [ (sequence of  length m~ of  ordinals < I T, I ) such that: 

( (9)  if  c, dEA~,  then the t ruth values of  c = d, c < d depend just on the 

equalities and inequalities between the ordinals in the sequences 

h~(c), h'~(d). 

As 2 _-2 ~, we know that w.l.o.g, for some ( n ( a ) : a < x ) ,  we have: 

(V t ~J)a7 EA~(,,). 

Now for every A C_ ~, at ~ A ae~ (aT : a E A  ) EI'I,,eA B', is _--< -increasing and 

{A c x :1 {a, ~ A : t ~ J}l  --< 2 } is an ideal of  n and, as 2 -- 2 So, it is Rl-complete. 
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SO w.l.o.g, n(a)  = n ( , )  (in the case {a :  n(a)  = n( , )}  is bounded  in x, we can 

redefine x, and 2 still satisfies the requirement).  

Now we have that (w.l.o.g.): 

(**) there is n ( , )  < to such that for each a < x we have: {a~" t ~ J }  has 

ordertype a scattered set o f  rank < n ( , )  (the point  is just  that the n ( , )  

is fixed). 

We get a contradict ion by induct ion on n ( , )  (simultaneously for all Boolean 

algebras and B~, J ,  and aT). 

The  case n( , )  = 0 is empty.  

The  case n ( , ) >  1. There are convex t equivalence relations e~ on 

{ a T " t ~ J }  of  order type < 2  or < 2 *  ( = t h e  inverse of  2) with each 

equivalence class scattered of  rank _-< n ( , )  - I. 

Now e~ induces a convex equivalence relation e~' on J ,  i.e. tie, t2 iff at~e~ ate; 
a ~ a e'~ is convex as [t, < t2=*at, < a j .  Also n~<~e~' is a convex equivalence 

relation on J .  No w each equivalence class I has power  _-< 2, otherwise we have 

( a t : t E l )  and apply an induction hypothesis  on n(*). Now choose J'___ J 

which is a set o f  representatives for n,<~e~' ,  i.e. such that for each 

( n ,  e~')-equivalence c l a s s / w e  have [J '  n I I = 1. So necessarily I J ' l  > 2. N o w  

we choose b7 for a < x, t E J '  such that: 

b7 E {a7 : s E t/e'~}, 

bt ~, = b,: ~ tl e" t 2 . 

This is easy to do. No w apply our induction hypothesis to ((b~' : t E J ' )  : t ~ J ' ) ,  

n ( , ) -  1. 

Now we come to the main case. 

The  case n ( , )  = 1. As we can replace H,<~ B~ and ( a :  : ot < x, t ~ J >  by 

I I ~  B~ and (a t : o~EA, t E J> as long as I {at t A : t E J }  II > 2; and as we can 

replace the a~"s by (1Bo - a~')'s, w.l.o.g. 

( ~ )  < a7 : t ~ J )  is well ordered of  order type < I T~ I = 2~ (for each a). 

So w.l.o.g. J c_ 1-I~<~ 2, is ordered by r/_< v ~ A~ t/(a) < v(a). Let X be regular 

large enough, < *  a well order of  H ( Z )  (the family of  sets o f  hereditary 

power  <X) .  

t An equivalence relation e on I is convex iff Vx E1 [x/e is a convex set]. 
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Let No < (H(z),  E,  <* ,  J), 2 ~ c_ No, [I N01Y ___ No, II No II = Let No < 
M < ( H ( z ) , U , < * , J ) ,  {IM[[ = 2 ,  [IMI]~oC_M, 2 + 1C_M. 

Let ((Tfl" i < cf 8) "d < 2 ) be the <*-first sequence such that (y~: i < cf 8) 
is increasing with limit 6. Choose q G J  - IMI and define (for N < M, such 

that x + 1 _ N): PN(q) ~ ': IN I, [p~(q)](a) d~f Min{7 ~ N: Y > r/(a)}. Note: if 

q(a) ~ N then cf[(pN(r/))(a)] is a regular cardinal which belongs to N but is not 

included in it and is > x. We choose by induction on n, (, < 2 as follows: 

letting N, = Skolem Hull(No U { Co, . . . ,  (,-1}), if 

{cq[pN.(q)l(a)l : [Pu.(rl)l(a)q~N.} 

is a singleton {/~.} (or is empty and we let it. = x), we can choose (.  <I t .  such 

that i f  a < x, [plv.(q)](a)~N., then 

(see above on ( (Tg : ~ > 3) )). First assume (.  is defined for each n. 

So for every a, ([pu.(rl)](a):n) decreases and stops only when pu.(rl)(a)~ 
AT.. So if we succeed in continuing a step, then A~ r/(a)=pu~.(q)(a)~Nk, for 

some k. < w, so ~/_c the Skolem Hull of  No U { (. : n < to ). Of  course, 

( C. : n < o9) depends on q but there are =< 2~0 such sequences, and 

[I No u {~'.: n <o9}  II =<2~; 

so for some r/E J,  and n, C0,. . . ,  C.-1 are defined but not C.. So for this n 

{cf[(pu.(q)](a)) : a < x} has more than one element, i.e. for some al, a2<  x: 

def def 
U, = cf(p~.(r/)(a~))</t2 = cf(pu.(rl)(az)). 

Choose C*, sup[N. ('I/h] < C* < / h ,  let 

N* = Skolem Hull of(N.  U { (*}). 

So in N*, there is C* such that: 

sup[N, n (pN.(t/))(a,)] < C* < [pu.(r/)](a,). 

Now 

(ct) sup N* f3 #2 = sup(N, f3/~2) 

(as/tt, #2EN.,/zt </zz are regular). 

(a)' Similarly for 

sup[N* O (PN.(q))(a2)] = sup[N, n (pu.(q))(a2)]. 
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(~) N, V ( V (x) ( ifx is an ordinal < [PN.(q)](al) then there is y E J,  such that 

X < y(oL,) < [pNn(~)(O~ 1)], 

Y(a2) < [Pu.(q)(a2)). 

Note: [Pu.(q)](~3, [Pu.(q)](~z) are in iV,, though not the function Pu.(q)! Hence 
also N* satisfies this formula; now apply it to x = 7~* where d = [Pu.(q)](~0 to 

get y = v .  So v(~O>q(aO [choice of ~*], v(az)<q(a2) [as v(aOEN*N 
[Pu.(q)](a2) and (a)']. This contradicts our assumption on J.  

2.3. CONCLUSION. If e.g. 2 = 2 ~0, 2 ~ > 2 + 2 ~, then for some Bi, B[, i < K, 

Length(B/) = 2 = Length B~, 

§3. On depth of Boolean algebras 

3.1. DEFINITION. The depth of a Boolean algebra is 

Dp(B) def sup{ I X I: X is well ordered}. 

We shall show that, in some universes of set theory, Dp(IIi< ~ B/D) is < ! > 

IIi<~(Dp(Bi))/D for some Boolean algebra B, and ultrafilter D. 

3.1A. REMARK. Length(1-I~<~ B / D ) >  II~<~ length(Bi)/D for any ultrafilter 

D on x, B~ Boolean algebras, by Los theorem as observed by S. Koppleberg and 
the author independently. 

REMARK. Of course, for some regular ultrafilter D on 2, in ¢oZ/D there is a 

decreasing sequence of length 2 ~ (see e.g. [ShA 1, VI, NB]) so the problem is to 
find cases in which this fails; necessarily GCH cannot hold. 

3.2. THEOREM. Suppose CH, 2 > R~, P is the product of  2 Sacks forcing 
with countable support: II~<a Qi. Then in Ve: 

(a) 2 ~0 = (2~0) v, 

(b) for some ultrafilter D on ¢o (non-principal) in (co, < )°'/D there is no 
increasing chain of  length R2 (nor decreasing), 

(c) i f  Bo is atomless countable Boolean algebra, then in B~'/D there is no 
increasing (nor decreasing) chain of  length ~2. 
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PROOF. By a theorem of Laver, there is an ultrafilter D on o~ (non- 

principal) such that D is an ultrafilter also in V e (more accurately - -  generates 
one). This is our D. 

Let p E P, p IF "( f~/D" a < R2) a counterexample". For each o~ < R2, there is 
p,,, p <= poEP,  such that above p~, f~ ( ~  ~%o) (or E °'B0) is a name in ~ i .  Q~, 
I, c_ 2, I I, I = R0, p~ El-Imio Q~. As 17 ¢ CH w.l.o.g. (I," a < ~o2) is a A-system 
With heart I, and (I~, po, f~) for a < R2 are pairwise isomorphic over I. For 
a < f l  we know p I~-"~/D < ~ / D "  so there is 4~,~ ED,  w.l.o.g, from V such 
that 

p l~-"4~,pED^ A f ~ ( n ) < ~ ( n ) " .  
n E A ~ . p  ~ 

We now know p~, pp are compatible (definition of P) so there is p~,# >_- p,,  pp, 
p,,a ~ P .  W.l.o.g p~,a force a value to A~,a, say B~,a. So P~,B I~- "A.~B.,, # (n) < 
fp(n)". Now every permutat ion of 2 induces an automorphism o f P  = II~<~ Q~; 

let h be such permutat ion mapping I, onto I B over I and interchanging ( p~, f~) 
with (pp, ~).  So h(p~,p) > h(po), h(pp) but h(p~) = pp, h(pp) = p~, etc., so 

p < h ( p , , p ) ] } - "  A fp(n)<f~(n)" ;  
nEBr.# ~ 

contradiction. 

REMARK. The argument is good for any antisymmetric relation. 

3.3. THEOREM. Let 2 = 2 <~ < a = It <u be such that (V x)[x < # ~ x <a < #], 
<>ca<u + :cfa=ul, <>u. For a set I o f  ordinals we let 

QI = {f :  f a partial function from I to 2 o f  power < 2}, 

order: inclusion. 

(A) In VQ, + there is a uniform regular ultrafilter D on 2 such that: 
(a) in (2, < )a/D there is no increasing chain o f  length It +, 

(b) i f  ~ is the Boolean algebra o f  finite cofinite subsets o f  2 then in 
~3a/D there is no increasing (or decreasing) sequence o f  length It +, 

(c) in (b) we can let ~ be any Boolean algebra ~ (hence any partial 

order) o f  power 2. 

(B) In VQ,+,2 = 2  <a, 2 ~ = / t  + 

PROOF. Let 

Sh:345



138 S. SHELAH Isr. J. Math. 

apl = {Q : Q a Ql-name of  an ultrafilter (regular uniform) on 2 
s.t. for every a, Q n ~ (2 )V  Q,oo is a Qln~-name). 

AP = U (apt : I ___/1 +, and I I I < # ), let a(D) be the unique 
a such that Q E ap,. 

(1) Let a < # +. Let a type for Q E ape be a pair (M, q) such that: 

(i) M is a model in V, [ L (M) I + [IM II =< 
(ii) q is a Q,-name of a set of formulas (in say m-variables) over 

M~/Q, finitely satisfiable in it (ultrapower in VQo). 

We may omit M. 
(2) The type (M, q) is strongly omitted for Q ~ ap~ if  for y < / l ,  in VQo+,, if 

we extended Q by </~ sets getting D' still for no g ~  Veo+, 

A [(i < 2 : M  ~ ~(g)(i)}ED'] 

[where all parameters ofq are functions from 2 to M, we compute their value at i]. 

3.3A. THE GAME LEMMA. In the following game player I has a winning 

strategy: 
it lasts/~ + stages, 
in stage ~ player I chooses Q, Eap~ extending each Qj (j < i), 

player II chooses a set F, of types, each strongly omitted for Q~. 
In the end player I wins if, for Qu+, each (M, q)EF~ (a <~t +) is omitted. 

REMARK. We do not u s e  O{t~<g+:ef6=/t } for 3.3A. 

PROOF. By [Sh 162]. (For other applications and formulations see 
[Sh 107]; on a similar construction see [Sh 326], §3.) 

3.3B. The Game +. We can also demand on the Q~ (from player I) 

(,) if I ___/~ +, cf a = #, I I I < / t ,  E a Q r  name of an ultrafilter, E r (I n a) c_ 
D~, then some order preserving h" I --- J __. a the h- image of E is c D,,  

~ o n t o  ~ - -  " 

h r (I n a) = idl n ~. 

[Hence Q, (cfa  = #) is a good ultrafilter.] 

Pl~oov OF "rue THEOREM 3.3. Let ~ be a fixed order of power ;t of order 
type ~ + 1 or (( + 1)*. Build Q ~ a p ~  increasing with a, by induction on a 
according to the winning strategy of the game of 3.3A. 

In stage 8, cf 8 =/1, <>{, <#+:cft~ =u} gives us the guess (f~lQ,~ : a < 5) which is 
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(forced to be) <o,-increasing, f~ a ~ - n a m e  of a function from 2 to ~. Now we 
define (M, q): 

M = ~ ,  

q = (f~/Da <= x/D6 : a < ¢Y} 

U{  x/Da <-- h/Q~ : h ~ ( ~ )  v°* and A f ' /Qa < 

(remember that q is a Qr-name [and if ( f~ lQ6"a  < 5) is <o,-decreasing, we 
invert the order of  ~ and continue similarly; so we ignore this]. 

We should prove that it is strongly omitted; so we let G ___ Q.a be generic over 
Vand work in V[G]. Let 7 < / t  and D'  be generated by Da U {4~" i < i( . )  </~ } 
where A.i is a Q,~+/G-name. 

So assume g is a Q,~+JG-name, p EQ~+,~/G, p l~- "g, {4~" i < i ( , )  < i t }  is a 
counterexample and w.l.o.g. {A~" i < i( , )  < / t  } is closed under  finite intersec- 
tion". So for each a < 5 there are p,,, j(a) such that: 

(a) p <= p, EQ~+a/G, 
(b) p~ I~-"[{i:f~(i) < g(i)} D_ A j(a) n B,,, B,,ED, j(a) < i(.)". 

So for some unbounded Z __c_ 5, for a E Z ,  p,,= p*, j (a )=j ( . )  (or really 

p~ r [a, a + 7] = P*). 
Now for each i < 2 let T~ c_ ~ be the set of b ~ ~ such that: 

p* IV 7 [ g ( i )  = b n i EA:(.)]. 

Clearly A* = {i : T~ ~ ~ } ED. And by (b) above 

a E Z &  i~A* A B , , & b @ T , , ~  ~ f~( i )<b .  

So for aEZ:  

(,) (b~" i <2 )~(l-IT~)V°" ~ f~/D <-_ (bg: i <2 )/D. 

Remember  ~ is ( + 1 or (( + 1)*, ~ < 2  +. So ~ is a well ordering (linear) or 
inverse well ordering with minimal element. Let b~ = inf T~, then 

A f /O =< 6/D where/7 = (b~- i < 2 ) E (~2) vQ° 

and so x/D < 6/D E q, but this is impossible. This proves 3.3(A)(a). 

END OF "mE PROOF OF 3.3(A)(b). Let ~ be the finite cofinite subsets of 2; if 
in ~ / D  there is a monotonic sequence ( f / D ' a  < / l  +) then w.l.o.g, it is 
increasing (otherwise use 1~ - f JD)  and w.l.o.g. {i" f~(i) is finite} E D  for each 
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a < it (if it fails for a0 use (f,0+~/D - f J D  : a < it )), hence w.l .o.g.f ,( i)  is finite 

for a </~ +, i < it; let f * ( i )  = If~(i) I, hence ( f*/D : a < it ) is strictly monoto-  

nic and we get a contradiction. 

PROOF OF 3.3(A)(c). Use  the < - s y s t e m  density fo r / z  ÷ which we are 

allowed to use (see [Sh 162]) and the symmetry  in the forming. 

3.4. CONCLUSION. For  the forcing notion from 3.3: in VQ, +, D is a regular 

ultrafilter on ,l (even good) and ~ the Boolean algebra we have 

it = Depth B (obtained); H(Depth  B)/D = # +, 

De p th (HB/D)  < lt. 

3.5. REMARK. (1) The property of  the order ~ we really use in the p roof  of  

3.3(A)(a) is that it is complete  not  only in V b u t  even in Ve~ +. 

(2) Instead o f / z  + we can get an inaccessible 2 a. E.g. i f  p is strongly 

inaccessible Mahlo, it = it <x < ~; force with 

R = {D: for some I __./1, (V x)[2 < x < /z  & x strongly inaccessible 

=* I I ¢q x I < x] and Q is a Ql-name of  regular uniform 
ultrafilter on 2 such that for every a, Q A ~,(it)vQ, o. is a 

Q/tq a-name}. 

§4. Spread and entangled orders 

4.1. DEFINITION. For a Boolean algebra B let s(B), the spread of  B, be 

(*) s (B)defsuP(IYl:YC_B--{O} and no y E Y  belongs to the ideal 

generated by Y - { y } } 

or equivalently 

(.)' s(B) = sup{c(B')  : B '  is a homomorph ic  image of  B} [where c(B') is the 

cellularity number  of  B']. 

4.2. PROBLEM. 

problems: 

A. Obtainment. 

B. Weak Obtainment. 
such that c(B') = it? 

Note  that by [Sh 233]: 

So we have, for 2 = s(B) a limit cardinal, two at ta inment  

I f s ( B )  = 2, is there Y C B - (0}, I YI = it as in (.)? 

I f s ( B )  = 2, is there a homomorph ic  image B '  o f  B 
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4.2C. THEOREM. I f  s(B) is singular and not obtained, then 2 c~stn)l > s(B). 

So the obtainment problem for singular g = s(B) is only for the case 
2 cfu >/Z. 

Todorcevic (see Monk [M]) proves that for 2 = 2~0, we can construct a 
Boolean algebra B with non-weak obtainment for s(B) = 2 (if 2~o is a limit 
cardinal). 

The problem of getting examples for non-obtainment is closely tied in with 
entangled linear orders and related properties (on these see Todorcevic [T 1 ]) 
which has a long historical discussion; see Abraham-Rubin-Shelah [ARS 153] 
and Bonnet-Shelah [BoSh 210]. 

Our main conclusion is 4.15. 

4.3. OBSERVATION. Ifs(A) (the spread) is singular and not obtained, then 
A has no homomorphic image B such that c(B) = s(A ), i.e. s(A) is not weakly 
obtained. 

PROOF. If for some homomorphic image B of A, c(B) = s(A), then B has an 
antichain of power s (A) (by the Erd6s-Tarski theorem) hence s(A) is obtained. 

4.4. OBSERVATION. (1) Ifs(A) (the spread) is not obtained and is strongly 
inaccessible, then for some homomorphic image B of A, c(B) = s(A); in fact we 
have B = A. 

(2) If2 is inaccessible, then there is a Boolean algebra B such that c(B) = 2 is 
not obtained. 

PROOF. (1) If c(A)=s(A), we finish. If not, c(A)<s(A) hence 
(VIi <s(A))#ctA)<s(A) so (as necessarily IAI > s(A); see [Sh 92])A has an 
independent subset of cardinality s(A) so s (A) is obtained; contradiction. 

(2) Well known. 

4.5. REMARK. We can conclude that the double problem of being obtained 
is really double only for weakly inaccessibles. 

4.6. DEFINITION. (1) Ens(2, /t, x) means: there are linear orderings 
(I~ : ot < x) such that: 

(a) I~ is a linear order of power 2, 
(b) i f n < t o ,  a l < . . . < a , < x ,  w _ { 1 , . . . , n ) ,  t ~ I a ,  for ( < # ,  l =  

1 , . . . ,  n and [(1 + (2~t~, ~ t~2], then for some ( < ~ < a ,  
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[tsw t  <t l, 

[1 <-_ l < n ^lq~w=*t~ > t~]. 

(2) EnSk(2,/l,  X) is defined similarly but  n < k. 
(3) I f  we omi t  #,  this means  ;t = /z .  
(4) A linear order  I is (/~, n )- entangled if: for every pairwise dist inct  t~ e l  

(1 < 1 < n,  ~ < # )  such that  t~ < t~ < - - -  < t~ and  w c_ {1 . . . .  , n}, there are 
< ~ < /1  such that: 

(,) l < l < - _ n ~ [ l ~ w ~ t ~  <t~]. 

(5) We omi t /z  if  i i  I = #;  we omi t  n if it holds for all n < to. 

4.7. FACT. (1) ( I )  witnesses Ens(2,/z, 1) i f f l  is a l inear order  of  power  2, 
with no mono ton ic  sequence of  length/z.  

(2) (I ,  J )  witnesses Ens(2, #, 2) i f fI ,  J a r e  linear orders of  power  ~, with no 
mono ton i c  sequence of  length/~,  and  I ,  J are/~-far (i.e. have no i somorphic  
subsets of  power/z)  and I ,  J* are/~-far where J *  is the reverse order  on J .  

(3) I f  I has density < # , /z  = cf/z, then in the definit ion (4.6(4),(5)) of  " I  is 

/z-entangled" we can add: 

(*)' t~ < t ~ + l , t ~ < t ~ + l f o r l = l , . . . , n - 1 .  

(4) If  n > 2, I is (/~, n )- entangled,  then I has density < /z .  
(5) If  I is /z-entangled,  I has r -pairwise disjoint  intervals each of  power  2, 

then Ens(2,/~, x). 

PROOF. (3) Let J E [ I ]  < ' b e  dense in 1. Suppose  that  ((t~ : l = 1 , . . . , n ) :  
< /z  ) is as in 4.6(4), (5). For  each l ~ { 1 . . . .  , n }, t~ < t~ +l , and  so there exists 

s~ ~ J  such that  t~ _-< s~ < t~ ÷~ (and at least one inequali ty is strict). Define 

funct ions h0, h~ on # by: 

h0( ) : =  >, 

h , ( ~ ) ' =  ((TV(t~ = s ~ ) , T V ( t ~  +~ = s ~ ) ) "  l = 1 , . . . ,  n )  

(where TV(-)  is the t ruth  value o f - ) .  dom(ho) = # and  I Rang(ho) I < I J I" - ~ < 
/z. Similarly for h~. Since cf(#) = /z ,  there exists A E [/z] u such that  horA and  
h~tA are constant .  That ' s  to say, for some s ~ . . . . .  s "-~ in J ,  V l E  

{ 1 , . . . , n - 1 } , V ~ A ,  

t~ =< s'  = s~ = < t~ +l 
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Since the t[ are given as pairwise distinct,  using h I ~ A, one finds that  

t~<St<t~ +'. 

W.l.o.g. A =/z  (relabelling); now applying 4.6(4), there exists ( < ~ < /z  such 
that  1 < l < n ~ [1 ~ w ~ t} < t}], and  in addit ion,  for I = 1 , . . . ,  n - 1, 

t ~ < s ~ = s ' = s ~ < t ~  +' and  t ~ < s ~ = s ' = s ~ < t ~  +' 

so that  ( ,) '  holds. 
(4) E.g. n = 2. 

Suppose that  I has density at least/z. By induct ion  on ( < /z ,  choose t~, t~ 
such that: 

(i) t~ < t~, 
(ii) t~, t~ ~ {t~, t~ : ~ < (},  

(iii) (V~ < ( ) ( V I E  {1, 2})(t~ < t~ ~ t ~  < t~). 
Cont inue  to define for as long as possible. 
There are two possible outcomes.  
Ou tcome  (a): one gets stuck at some ( < /z .  Define J : =  (t~, t~: ~ < ( } .  So 

(V t~ < t2EI - J ) (  3 s ~J)( t~ < s*/*t2 < s). Since t ~, t2q~j, it follows that  t l <  

s ^ t 2 > s or  t ~ > s ^ t 2 < s. So J is dense in I and  is o f  power  21 ( I </Z - -  a 
contradict ion.  

Ou tcome  (b): one  can define t~, t~ for every ( < /z .  Then  (t~, t~" ( < / z ) ,  
w = (1, 2} const i tute  an easy counterexample  to the (/z, 2)-entangledness o f / .  

4.8. FACT. For  a l inear order  I and  regular uncountable  cardinal /z ,  the 
following are equivalent:  

(a) I is/z-entangled. 
(b) B = BAinter(I) (the interval Boolean algebra) is/z-narrow, i.e. with no/z  

pairwise incomparable  elements.  

PROOF. (a)=*(b). By 4.7(4) I h a s  densi ty < /z .  

Let (r~ : ( < / z  ) be dist inct  e lements  o f  B. We know that  for each ( there are 
I I"t~:~2 [t~ l - l  t~t). As an even n ( ( )  < m  and t~ < . . .  <t~tOinIsuchthatz¢=, j t_ l  

cf/z > R0, w.l.o.g, n ( ( )  = n( , ) ;  now by 4.6(4) and  4.7(3) for some ( < ~ ,  for 
l = 1 . . . . .  n ( , ) /2 ,  t~ z-1 -_< t~ t - '  < t~ / _-< t~ t, hence B ~ z¢ _c re as required.  
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(b) =* (a). Note  that  I has densi ty </2.* 
So let I0 c_ I be a dense subset of  I of  cardinali ty < / t .  Let for J _c I ,  s < t, 

f rom J ,  (s, t)j  = {r E J :  s < r < t }. Let 

J = {t E 1  : i f / ~  s < t then I(s, t)II = / t  and  i f / ~  t < s then I(t, S)l I = / t } .  

Clearly 

(*)1 I I - J I  < / t  a n d i f s  < t a r e i n J t h e n  I { r ~ J : s  < r  < t } l  = / t .  

[why? 

(a) I f  I I - J I = / t ,  let t¢E I - J be dist inct  for ( </2 ,  so for each ( there is 

stEI  such that  st <t  t & I(s¢,/¢)~1 < / t  or tc <s¢ & I(tt, sc)tl < / t .  We can 
replace {t¢: ( < / t )  by any subset of  the same cardinali ty so w.l.o.g, s t < 
tt *=*So < to. By symmet ry  assume So < to, otherwise look at I*. For  each ( ,  as I0 
is a dense subset o f / t h e r e  is rtEI o such that  s t < r t < t¢. As II01 < / t  -- cf(/t) 
w.l.o.g, r¢=r for every ~. As l[r¢,t:]zl < l(sc,t¢)~l + 2 < / t  for each ( ,  

I{~ < / t  ; t¢ < tt}l _-< I[r t, tcbl < / t .  Clearly there is h ( ( )  < / t  such that  [~ < / t  
& ~>h(()=,t¢<t~] and C = { ~ < / t : ( V ( < ~ ) h ( ( ) < ~ }  is a club o f / t ,  so 
(t¢ : ( E C)  is strictly increasing, contradict ing " I  has density < / t " .  

(b) s < t are in J=*  I(s, t)s I = / t  because t ~ J  implies  /t < I(s, t)~ I < 
I(s, t)jI + I I \ J I ,  but  IIXJI < / t  so / t  = I(s, t) jI .]  

(*)2 There  is a dense subset J0 of  J of  cardinali ty < / t  [even easier]. 

Now let t~ E I be dist inct  for ( < / t ,  / = 1 , . . . ,  n and  w ___ { 1 . . . . .  n } and  we 
should  find ( < ~ such that: 

[lEw=*t~ <t~], [ l ~ ( 1 , . . . , n } \ w = ~ t ~ > t ~ ] .  

We, o f  course, can replace { ( t ~ , . . . ,  t~')" ( < / t  } by any subset o f  cardinali ty 
/2. So w.l.o.g. 

(*)3 no t~ is first or last, and  every t~ is in J (as II - J I < / t ) .  

So for each ( we can find r~ . . . . .  r~' ÷' ~ J0 such that  

t [I has no well-ordered subset of power g nor an inverse well-ordered subset of power g. So if I 
has density > g, then there are disjoint closed-open intervals Io, I~ with density ->_ g.  Now for 
each I m we choose by induction on ( < density(Ira) a~' < b~' from Im such that [a~', b~'] is disjoint 
from {a~', b~': ~ < (}. So ~ < ( ~ [ a ~ ' ,  b~']CZ[a~', b~']. Now ([a~, b~) u (Il - [a~, b~)): ( < g )  
shows B is not g-narrow.] 
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r~ <t~  < r~  < t~  < . . .  <tff <rff +l 

As II01 < u  = cf(u)  w.l.o.g, r~ = rt for every l. 
Let for each ( < p, 

def l u~ = { l " / ~ { 1 , . . . ,  n} and t21~ <t2~+l}. 

u~ has < 2" possible values. W.l.o.g. u~ = u* for every ( </z .  
Note [l ~ u~ & l E { 1 , . . . ,  n } =~ t2t~ > tEl~ + l] (as t21~ ~ t21~. l). For each ( </z ,  

I l E { 1 , . . . ,  n } there is p~ ~ J0 such that t~ < p~ < tEt~. 1 or t2~+ 1 < P~ < t2t¢. 
W.l.o.g. p~ = Pt. 

Now we define by induction on ( < p, for every l = { 1 . . . . .  n }, members 
q~,,, q~.2, q~.3, q~,4 o f :  such that: 

(i) if 1 E u¢ (i.e. t2tc < t2t~ + 1 ) then 

rt < q~,l < tEl < q~,2 < p, < q~,3 < t2t +t < q~,4 < rl+,; 

(ii) i f lq~u~ (but IE{1 . . . . .  n}, i.e. t2~ > t2t~+l) then 

r, <q~,l < t2/+, <q~,2 < p, <q~.3 <t~c <q~,4 < r,+l; 

(iii) q~,m (m E { 1, 2, 3, 4}) does not belong to 

{q~,i:~ < ~ , k E { 1 , . . . ,  n}, i ~ ( 1  . . . .  ,4})  U {t~'~ < ~ , I E ( 1  . . . . .  n ) ) .  

There are no problems by (*)1. It is still possible that for some ( < ~, 

~ { q ~ , m ' l =  1 , . . . , n  and m = 1, 2, 3, 4) fq { t ~ ' l =  1 . . . . .  n}  

for each ~, there are at most 4n such ~'s, so there is h m ( ( ) < p  such that 
hi (~)  ~ ~ < ~/==~ Ai,m Ak q~,m ~ t~. So w.l.o.g. 

(*)4 the sets {q~,m, t~" l = 1 . . . . .  n and m = 1, 2, 3, 4} are pairwise disjoint. 

Now we define for every ~ </z  a sequence (s~" l = 1 . . . . .  4n)  by defining 
s~ ~-1 , s~ ~-~, s~ ~-3, s~ t for each 1~{1 . . . .  , n} as follows: 

Case 1. l ~ w ,  l ~ u * ,  

( s~t- 3 , s~t- z, s~t- l , s~t ) = ( tt , q~,2 , q~,3 , tt¢ + ~ ). 

Case 2. lq~w, l ~ u * ,  

( s~ t-3,  s~ ' -~,  s~ '-~ , s~ t ) = (q~:, t~¢, t2t¢ +,, q~,4). 

Case 3. l ~ w ,  l ~ u * ,  
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(Sff/--3,St/-2 Sff/-l,sffl) = (q~,l, t~+l,  t/c, q~,4). 

Case 4. lqiw, lqiu*, 

,,1.2 ,,1.3 t~ ). < s~ ' -  ~, st ~- ~, s~ '-1 , st ')  = <t~+,,  ~ , ~ , 

Clearly for ~ < / t ,  s~ < . . .  < s~ and the s~ are pairwise distinct (by (*)4) and 

r l<s~  < s  t < p l < s ~  <s~  < r 2 < s ~  <s~ < p E < s ~  <sff < r 3 < . . . .  

Now for each ~ we define an element x~ of the Boolean algebra BA(I): 

2n 
x ~ =  tO [ 4 ' - 1 , C ) .  

l= l  

Note 

(*)5 for I = 1 . . . .  , n: 
(a) xc A [rt, Pt) = [s~ t-3, s~l-1), 
(b) x~ N [Pl, r/+,) = [s~ j - l ,  sit). 

So (x¢ : ~ < #)  is a sequence of/~ members of the Boolean algebra BA(I). By 
the assumption (we prove (b)=* (a) in Fact 4.9) for some ( < ~ </z,  xc, x~ are 
comparable members of BA(I); i.e. xc _ x~ or x~ _c x~. We derive our desired 
conclusion ( ® )  according to the case. 

Case A. x~ c_ x~. 
In this case we shall prove that 2~ + 1, 2~ + 1 are the ordinals we are looking 

for; i.e. conditions (~), ([3), (,/) below hold, and we shall check those, thus 
finishing this case. 

Condition a. 2~ + 1 < 2~ + 1. 
[Trivial by ~ < ~.] 

Condition ~. If I ~ w then t2~ + 1 < tzt~ + 1. 

Possibility ~1. lEu* .  
Then t~c+ 1 = st t, t~e+ 1 = s~ t (check the definition of the s's); now by (*)s(b): 

x~ n [p,,  r,+l) = [s~/-~, sD ,  

hence (case 1 above) 

and 

x~ n [ p , ,  r~+~) = [q~,~, t~ .~) ;  

x~ n [ p , ,  r . , )  = [s~ '-~, sD ,  
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hence (case 1 above) 

X~ f') [Pl, r l + l ) =  [q~,3, tiC+l). 

But as we are in Case A, x¢ c_ x¢ hence x¢ A [Pt, rt+l) _ x¢ N [pt, rt+~), which 
means  by the previous sentence [q~,3, tEl + ~) C_ [q~.3, t2~ + l), which implies q~'3 < 
q~a and ~ < t t ~ t2t¢+ t~¢ +1 = t2¢+,. But t~+ ~ # t~¢+ ~ (as ( # ~) so < t2t¢+, as required. 

Possibility ~2. l q~ u*. 
Then t~¢ + i , t2¢ + 1 = S~t-2 t = S~ 1-2 (check the definition of  the s's); now by 

(*)5(a): 

x¢ N [rt, p,) = [s~ t-3, s~t-2), 

hence (by case 3 above) 

and  

hence (by case 3 above) 

x; n [r,, p~) [qp,  ~ = t2¢+1), 

x¢ N [rt, p,) = [s~ '-3,  s~t-2), 

X¢ (~ [rt, Pl) = [q~,l, t2/ +1). 

But as we are in Case A, x¢ __. x¢ hence x~. f~ [rl, Pt) C_ x~ f~ [rt, Pt), which means 
by the previous sentence [q~,l, t2t+ l) __c [q~a l = , t2¢ + 1), which implies q~.l > q~.l and 

tl¢+ l < ~ ~ ~ (as ~ ~ ~) so t~ + ~ < t~¢ + ~ as required. = t2¢ + i. But t2¢ + 1 ÷ t2¢ + l 

Condition 7. I f  l ~ w (but l E { 1 , . . . ,  n }) then t~¢+lt > t2e+l.t 

Possibility T1. lEu* .  
Then t~¢ = s~ t-~ , t:t¢ = s~/- l (check the definition o f  the s's). Now by (*)5(b): 

hence (by case 2 above) 

and 

hence (by case 2 above) 

x ;  n [ p t ,  r, + ,) = [ 4 ' -  ' , s~'), 

x¢ t3 [Pt, rl+~) = [t~¢+z, q~,4); 

x¢ (~ [Pl) El+l) = [S~ l - I  , S~I)) 

But as we are in Case A, x~ _C x¢ hence x¢ O [Pt, q + 0  --- x¢ N [Pt, rt+t), which 
means by the previous sentence  [t2tc+l,q~'4)_C [t2/¢+1, 1~'4), which implies 
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tz~+~ > t q~,a = q~,4. t ' (as ~ =/: ~) SO t2¢+1 > t2¢+~ as = t2¢+~ and > But t2~+l  5 ~ t2¢+l I 1 
required. 

Possibility 72. l $ u*. 
Then d~+~ =S~ 1-3, d~+l =S~ I-3 (check the definition of  the s's); now by 

(*)~(a): 

x~ N [r,, Pt) = [s~ t-3, s~t-2), 

hence 

and 

hence 

x~ n [rt, p,) = [t,~c+,, q[,2); 

x¢ n [r~, p~) = [s~ ~-3, s~-~) ,  

x~ n Jr,, p,) = [d~+,, qk'2). 

But as we are in Case A, x; _ x 0 hence x~ N [rt, Pt) C_ x~ A [rt, Pt), which 
means by the previous sentence [t21~+l,q~'2)_C [t2t~+l,q~'2), which implies 
t2t~+l < t2t~+l and q~.2 < q~.2. But t~¢+1 # t21~+l (as ~ ÷ ~ )  so t2t~+l <t2t~+l as 
required. 

Case B. x~ c_ x~. 
In this case we shall prove that 2( ,  2~ are a pair of  ordinals we are looking 

for; i.e. conditions (a), (fl), (~,) below hold and we shall check those, thus 
finishing this case (hence 4.8). 

Condition or. 2(  < 2~. 
[Trivial by ( < ~.] 

Condition I3. If  l ~ w then t2tc < t2t~. 

Possibility ~1. IEu*.  
Then t2t¢ = s~ t- 3, t21 = si t-  3 (check the definition of  the s's); now by (*)4(a): 

hence (by case 1 above) 

and 

x~ n [r,, p,) = [s~ '-3,  s~'-~), 

x~ n [r.  p,) = [d~, q~,2); 

x¢ n [r.  p,) = [sg '-3,  sg~-~), 

hence (by case 1 above) 
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x¢ n [r~, p~) = [t2~¢, q~,2). 

But as we are in Case B, x~ 3_ x¢ hence x¢ n [r~, p~) 3_ x~ n [r~, p~), which means 
by the previous sentence [t~¢, q~'~)_~ [t~¢, q~,2), which implies t2t¢ < t2t¢ and 
q~,2 < q~,2. But t~¢ =~ t2~¢ (as ( ÷ ~), so t2t~ < t2t¢ as required. 

Possibility p2. If  l ~ u* (but 1 E ( 1 . . . .  , n ) then t2t¢ = s~ t - I ,  t~¢ = a~ t-  1 
(check the definition of the s's); now by (*)5(b): 

hence (by case 3 above) 

and 

hence (by case 3 above) 

x~ n [ p , ,  r~÷,) = [s~ ~-1, s~'), 

x~ n [p,, r,÷,) = [t~'~, q~.'); 

x~ n [p~, r~+,) -- [s~ 't- ' ,  sZ), 

x~ n [pt, rj+,) = [t~¢, q}"). 

But as we are in Case B, x¢ ___ x¢ hence x¢ O [Pl, r~+~) 3- x¢ n [Pl, rj+~), which 
means by the previous sentence [t2t¢, q~,4) ___ [t2t¢, q~,4), which implies t/¢ < t2t¢ 
and q~,4 < q~,4. But t~¢ # t21¢ (as ( ÷ ~), so t21¢ < t2t¢ as required. 

Condition 7. l q~ w (but l ~ { 1 , . . . ,  n )), then t/~ > t2t¢. 

Possibility "[1. l ~ u * .  
Then t2t¢ = s~ t-2, tt~¢ = s~ t-2 (check the definition of the s's); now by (*)5(a): 

hence (by case 2 above) 

and 

hence (by case 2 above) 

x: n [r~, p,) = [s~ ' -~,  s~'-~), 

x¢ N [rt, Pt) = [q~", t2t¢); 

x~ n [r~, p~) -- [s~ ~-:, s~t-~), 

x~ n [rl, p,) = [q~,', t,~:). 

But as we are in Case B, x c 3- x¢ hence x c n [rt, pj) __ x~ n [rl, Pt), which means 
by the previous sentence [q~'~, t2t~) _ [q~,t, t2t¢), which implies q~,~ < q~,~ and 
t2t~ < t2t¢. But t~¢ ÷ t21~ (as ( ÷ ~), so t21¢ as required. 
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Possiblity T2. l qiu*. 
Then t~¢ = s~ z, tt2¢ = s~ t (check the definition of  the s's); now by (*)~(b): 

hence 

and (by case 4 above) 

hence (by case 4 above) 

x~ (3 [ p,,  r, + ,) = [s~'- ' , s~9, 

x~ (3 [pl, r,+,) = [q~,~, t~); 

x~ (3 [pl,  r~+,) = [s~ ~-~, s~),  

X~ (3 [Pt, rl+l) ----- [q~,3, tl2~). 

But as we are in Case B, x¢ _~ x~ hence x¢ (3 [Pt, rt+~) _ x¢ (3 [Pt, rt+~), which 
means by the previous sentence [q~.3, t t )  _~ [q~.3, t2t ), which implies q~.3 < q~.3 

and t21~ _-< t~¢. But t21¢ ~ t2t~ (as ~ # {), so t~¢ < t~¢ as required. 
So we finish the proof  of  4.8. 

4.9. FACT. (1) There is an entangled linear order A _C R of  power cf(2~o). 
(2) Generalization to higher cardinals: if there is a linear order of  power 

cf(2 a) and density it (e.g. it strong limit), then there is an entangled linear order 
of  power 2 a and density it. 

PROOF. Done independently by Bonnet-Shelah [BoSh 2 1 0], Todorcevic [T 1 ]. 

4.1 0. FACT. Suppose (iti : i < a ) is a strictly increasing sequence of  regular 
cardinals, Ai<aitj < i t  = cfit,  it~ > t8 I, D a filter on a, cf(H,<6it , /D)= it, i.e. 
there is (f~ : a < it ) c H~<ait~ such that for every ultrafilter E extending D one 

has: 

(i) a < f l  < i t ~ f ~ < e A ,  
(ii) (v fe r I ,<~ i t , ) (  3 ~ < i t ) ( f<~f~) .  

Suppose Ai _ ~ (i < x) are such that, in ~(a) /D,  {A~ : i < x} is independent  

and for i < ~, [ { f~ t i : a < it } I < iti- Then Ens(it, x). 

4.10A. REMARK. If # > 2  ¢fu then there are such ( i t , : i < 6 )  and D for 
K ---- 2 cfu, it = 1./+ by §7. 

Let I = { £ "  a < it }. For each ( < x we define a linear order <¢* PROOF. 
o f / :  

f~ <~'fp ifffor some i < 8: 

L( i )  ÷ fe(i) & £  r i = fe ~ i & [Z(i )  < f e ( i ) ~  / e & ] .  
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Let n < to, ~1 < " ° " < (n < ](" For  l = 1 , . . . ,  n, t~ = f~l.r) are pairwise dist inct  
for 7 < 2; and  let w _c { 1 . . . .  , n }. Let 

g~,(i) dof Min{ f,~.~,)(i) : l E {1 . . . . .  n }}, 

iy d~f Min{i  • ( f ,  tt.y) r i ; l ~ { 1 . . . . .  n }) are pairwise distinct}. 

W.l.o.g. i~ = i* for every 7. 
Let B = ( i < ~ :  for every ~ < 2 i ,  there are 2 ordinals  7 < , ~  such that  

g r ( i ) >  ~}. 

CLAIM. B E D .  

PROOF. Suppose that  B ~ D. Then,  since D = n {F: F ~ D&F is an ultra- 
filter on ~ }, there is an ultrafilter F on ~, B ~ F.  So C :  = g - B E F.  F r o m  the 
definit ion of  B, 

( V i ~ C )( 3 ~ < ~i)( 3 7i <'~ )(7i ~-~ 7 < 2 =*gr(i) < ~). 

Define h EI-I~<~ 2~ by 

h ( i ) : = { ~ 0 ~ + l  ifiq~c.ifiEC; 

( f~ , /D:a<2)  is cofinal in 1-Ii<62i/D, hence ( f ~ / F : a < 2 )  is cofinal in 
1-I~<6,~/F, so there exists fl < 2 such that  

h < fp m o d  F.  

W.l.o.g. Uiec 7i < f l  [since C c ~, I~ I < 2 = cf(2) and A,Ec (7i < 2)]. Since 
a(l, ~), (1 < l < n, ( < 2 )  are pairwise distinct,  and  fl < 2 ,  there exists ~ < 2  

such that  Af=l (a(l, ~) > fl). W.l.o.g. Uiec 7i < ~- So A f=l (fp < f~l. ~) m o d  F).  
That  means  

E ' - - { i < ~ "  t=l/~ fP(i)< f ' t '°(i)} ~F" 

So E = { i < t S : f p ( i ) < g ~ ( i ) } E F ,  using the defini t ion of  g¢. Since 
h < f p m o d F ,  it now follows that  { i < d : h ( i ) < g ( ( i ) } E F  and so C A  
{i < ~ : h(i) < g~(i)} E F .  Choosing i in this (non-empty)  intersection,  one 
obtains 

gc(i) < ~i < ~i 31 1 = h(i) < g¢(i), 

a contradict ion.  So B ~ D,  proving the claim. 
Then  choose i < ~ as follows. First note  that  since [ { f~ t i : a < 2 } [ < 2i for 
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each i < 6, and cf(l-I~ < 62flD) = 2, D cannot contain any bounded subsets of S. 
By hypothesis, 

A : = n A,, n n (6 - A,,) D* 
I~w I~w 

(the dual ideal of  D), so 6 - A  ~ D and there exists an ultrafilter F on 6 such 
that F D D and A E F .  Hence C := { i < 5" i* < i} n A n B E F and one can 
choose i E C. 

Then choose i: 

i * < i E B  n n A,, n n (6-A¢,). 
IEw l<l<n 

For each ~ <2~ choose 7~ such that gr~(i)> ~. For some S _c 2~ unbounded 

~1 < ~2 ~S=::~ At,,,,fet,r,~(i) < f,~m,rO(i). W.l.o.g. (f~t, rOr i" ~ S )  is constant 
(by a hypothesis). The conclusion should now be clear. 

4.11. FACT. If ( Z j ' i < 5 )  is a strictly increasing sequence of regular 
cardinals A~<62i < 2  = cf2,  2~ > 161, D an ultrafilter on 5, cf(II~<62flD ) = 2, 
and there is ( f , / D : a  < 2) <o-increasing cofinal in 1-I~<62~/D such that for 

def 
i < 6  we have /~  = I { f ~ r i ' a < 2 } l  <2~ and Ens(2~,/~), then there is an 
entangled linear order of power 2. 

PROOF. Let ( f , : o t < 2 )  exemplify cf(1-MflD') = 2 .  Let (I~" ~/EI-I~) where 
I I i =  {f~ ~ i : o~ < 2} witness Ens(2,-,/z~); w.l.o.g. 1~ has universe 2~. 

Define <*  on I : =  (f~" a < 2 } :  

£<*fp iffthere is i < 5 such that: 

f ~ r i = f p r i ,  

I~.r, ~ f~(i)<f#(i). 

Checking - -  easy, choosing i ~ {i < 5 : i* < i} n B and S c 2, in the notation 
of  the proof  of  4.10. 

4.11A. REMARK. So we have another way to get: 

i f2 -- :~ > cf2,  then for some regular x ~(2 ,  2 ~) there is an entangled order. 

4.12. FACT. Suppose (2i" i < 6 )  is strictly increasing, D the filter of  
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cobounded subsets of ~, tcf(I-I2JD)= 2 , / t  < cf6,  ~ < 20,/z <20 < Ui<t~ 2 i < 
D e d # ,  2 u < 2 .  Then Ens2(cf(O), 2). 

PROOF. Let J b e  a dense linear order of power U~<,~ 2~ with a dense subset I 
of power #. Let t~ (i < ~, ( < 2~) be distinct members of J.  Let ( f ~ ; a  < 2 )  
witness tcf(1-l~<a2JD) = 2 .  For each a let Is = {t)~): i  < ~ } .  For a < 2  let 
A~ = { f l : I~,  Ip are not cf(5)-far}. Now for each fl EA~ there are K~,p ___ I , ,  
L,,p _ Ip each of power cf(O) and hs.p an isomorphism or anti-isomorphism 
from K,,p onto L.,B; let M,,p be a dense subset of K~,p of power _-</t.t Assume 
[A, [ = 2. As 2u < 2 for some A~' c_ As, [A~'I = 2 and for some M*, h~ we have: 

[fl E A ' ~ M , , p  = M* & h,,p t M* = ha]. Essentially h~ defines uniquely h~,p (x) 
where x ~ Dom h~,a. More fully, let 

p def {x EIs :  there is y E J,  x, y is single in the Dedekind cut it realizes 

in M*, h "~ (M*) respectively ( V z E M*)[z  < y -~ ha (z) < x]}.  

Now [fl ~A~'=* Dom hs, p ___ I s ___ I~] and h ~ aef UpeA; h,,p is a function from P 
to J.  

Now define gS ~Hi<t~ 2i : g~(i) = sup{ ( < 2~ : t~ ERang(hs)}, g~(i) < 2~ as 

I R a n g h s l = l D o m h s l - - I P I  <1I~1=<1~1 so [ f l~A '=* f~<g~] .  But 
lAb I = 2; contradiction. Hence IA, I < 2, so we can find an unbounded A* ___ 2 
such that 

a < f l  ^ a E A *  ^ f l  E A * ~ f l  q iA, .  

I.e. we have 2 linear orders, each of power cf(O) > #, any two are cf(O)-far. By 
4.7(2) we finish. 

4.13. CLAIM. In Claim 4.10 suppose in addition/z is a limit cardinal, 
II;<6 2~ _-_ # >_- c f#  = 2. Then 

(1) Ens(#, x). 
(2) Moreover, there are (I¢ : 1 + ( < x) exemplifying Ens(#, x) such that: 

a) for each 0 < # there is a linear order of power 0 embeddable in 

every 16 
b) each I~ has dense subsets of power Z~<a 2i < #. 

PROOF. (1) Let / t  = U~<a/t., #~ < # ,  [a <fl=*#~ < / ~ ]  and ( f~ /D : a < 2 )  

t Such that if x~I ,  Min{y~K~,p:y >x} is well defined, then it is in Me,p; similarly with 
Max(yEKo,p : y <x}; similarly h],B(M~,p), L~,p. 
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be cofinal in 1-12i/D. So for each a, as rI~<~{(:f~(i)<(<2i} has power 
rI~ <62~ > It, it has a subset F,  of cardinality Its+ ; as ( f , /D  : a < 2 ) is cofinal in 
rI~<62~/D, for some L < 2 ,  

F'~ d¢_____f { g ~ F ,  " g/D < fr°/D} has power >#o 

(and w.l.o.g. 7~ = a + 1). Let I = U,,<,~ F 4 and proceed as before (in 4.10). 

(2) W.l.o.g. A aef N¢<~A~ is such that 1-Ii~A2~>it. [Why? Let us use 

(A~" ~ < x) where A~ def Ao U A~ +~ if II~Ao 2i > # and A~ = (~ - Ao) U AI +~ if 

rli~no ,~i < / 2  .] N o w  we  can choose F~ ___ I-I2g such that: 

(i) lEvi =i ts ,  
(ii) for some ~,~ < 2, g E F~ ~ f~ < g <D fyo, 

(iii) g, h ~ F ~ g  t ( g - A )  = h t ( ~ - A ) .  
So on F~ all orders <~* are the same, and so ((U,<a F~, <¢*)" ~ < x) are as 
required. 

4.14. THEOREM. I f  the conclusion of  4.13(2) holds for x = 3 (i.e. pair o/ 
orders), then for some Boolean algebra B the spread of  B is tt but it is neither 
obtained nor weakly obtained. 

PROOF. By Todorcevic's proof  of [M] 1.9 from [M] 1.4 in Monk [M] 
(also the part on: "s(B/K) is obtained for every ideal K of B" generalized; 
but see 4.3). 

4.15. CONCLUSION. If 0 = cf2,  (VZ < 2 ) [ Z  ° < 2 ] ,  0 uncountable (or a t  
least sup{cfrli<o2i: 2i < 2 }  is 20 or just > cfit), then: 

(a) for every It, 2 < cfit < It < 2 °, Ens(it, 2°); 
(b) moreover this is exemplified by (I¢ ; ( < 2 °) where every I¢ has density 2 

and for a < It there is an order of power a embeddable into every I¢; 
(c) for every limit cardinal It, 2 < cfit < It < 20 for some Boolean algebra A, 

s(A) = i t  but it is not obtained (nor weakly obtained). 

4.15A. REMARK. We shall return to this in light of the additional infor- 
mation on cofinalities of products of regular cardinals. I.e. if/~ = ;C +, c fx  = 
0 < Z, the conclusion holds. 

PROOF. By 9.3, letting D be the cobounded filter on 0 and A/* c_ 0 pair- 
wise disjoint for i<O,  A * ~  m o d D  there is ( 2 i ' i < 0 )  a strictly in- 
creasing sequence of regular cardinals < 2 such that IIi< 0 2i/D has cofinality 
cfp;  so w.l.o.g. 2g >II~<j2~. Let (w~: i < 2  °) be independent in ~(0).  Let 
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A~ = Usew, A*. Now D, (A~: i < 2°), (2~: i < 0) are as required in 4.13 and we 
get the conclusions by 4.14. 

4.16. FACT. In 4.12, suppose in addition c fz  = cfc~ < Z ----< [-J~<6 2~. Then 
we can find (I¢: ~ < 4 )  such that: 

(a) I¢ is a linear order of power Z with a dense subset of power/~; 
(b) the linear orders {I t ; ( < , l  } are pairwise far. 

PROOF. Use 4.12, D = ( A C S : O - A  is bounded}, Z=Z~<aX~, Z~> 

Es<~Zj; replace t~ by Z~ elements. 

§5. The basic properties of pcf(a) 

NOTATION. Let a, b, c denote sets of  regular cardinals. J denotes an ideal 
(usually on some a), D a filter. For a set A of ordinals with no last element, 
J ~  = (B C_ A ; sup B < sup A }, i.e. the ideal of bounded subsets. 

5.1. DEFINITION. (1) For a partial order P: 

(a) P is 2-directed if, for every A _c p,  I A I < 2, there is q ~ P such that 
Ap~A P _--< q (q is an upper bound of A); 

(b) P has true cofinality 2 if  there is ( p~ : i < 2 ) cofinal in P, i.e. 

i <j 

[and one writes tcf(P) = 2 for the minimal 2] 
(if P is linearly ordered it always has a true cofinality); 

(c) P is endless if V p ~ P 3 q ~ P[ p < q] (so i fP  is endless, in (a), (b), (d) we 
can replace -_< by < ) ;  

(d) A __c P i s a  cover i f  V p ~ P  3qEA[p  < q ] ;  
(e) cf(P) -- Min{ IA I: A c_ P is a cover}. 
(2) R ~'~ = {2:2  = c f 2  > x } .  

(3) If D is a filter on S, as (for s~S )  are ordinals, f ,  gEl-lsesUs, then 

flD < g/D, f <o g and f < g mod D all mean {s E S : f(s)  < g(s)} ~ D. Simi- 
larly for < ,  and we do not distinguish between a filter and the dual ideal in 
such notions. So if J is an ideal on a and f , g~Ha, ,  then f < g m o d J  iff 
{OEa: 7 f(O)<g(O)}~J. 

(4) For f ,  g :  S ---- Ordinals, f <  g means Ases f(s) < g(s); similarly f < g. 

5.2. DEFINITION. (1) For a property F of ultrafilters (if F is the empty 
condition, we omit it): 
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pcfr(a) = {tcf(IIa/D): D is an ultrafilter on a satisfying F} 

(so it is a set of regular cardinals). 
(2) J°a[a ] = {b c_ a" for no ultrafilter D on a to which b belongs is 

tcf(l-la/D) > 2 }. 

5.3. CLAIM. (0) (rla, <~), (1-Ia =<j) are endless. 
(1) Min(pcf(a)) =>_ Min a. 

(2) If a _ b then pcf(a) _ pcf(b); and for any b, c pcf(c U b) = pcf(c) o 
pcf(b) and: 

x~J°<~[b U c],~x C_ c U b ^ x  N c~J°~  [c]^x N b~J°a[b]. 

(3) (i) if b c_ a, b finite, then pcf(b) = b and pcf(a) - b c_ pcf(a - b) c 
pcf(a); 
(ii) in addition if b c_ {OEa:lO h a l  <R0}, then p c f ( a - b ) - -  
pcf(a) - b; e.g. b = {Min(a)}; 
(iii) in addition if 2 > max b, and (l-I(a - b), <d,~ta-b]) is 2-directed, 
then (Ha, < d,~ta]) is 2-directed. 

(4) I f D  is an ultrafilter on a such that, for every OEa, (a - O+)ED, then 
cf(IIa/D) >__ sup a (and if equality holds, then sup a is an inaccessible 
cardinal, D a weakly normal ultrafilter). 

(5) I f a  has no last element, then there is 2 ~pcf(a)  such that sup a < 2. 
(6) If  D is an ultrafilter on a set S and for s E S, as is a limit ordinal then 

cf(IIs~s as, <o)  = cf(1-Is~s cfas, <D) = cf(l"ls~s (~s, < )/D), and 

tc f(s~saS,<o)=tcf( ,~sCf as ,<o)=tcf(s~s(aS,<)/D) • 

(7) If  D is an ultrafilter on a set S, 2s a regular cardinal, then 

0 ~  tcf(l'12s, <o)  is well defined and ISI < M i n { 2 s ' s E S }  implies 

0 ~pcf{2s : sES} .  
(8) If  I pcf(a)l < Min(a), then pcf(a) has a maximal element. 
(9) If  I pcf(a) I < Min(a), then pcf(pcf(a)) = pcf(a); more generally, i f c  _ 

pcf(a), l a I < Min(a), I c I < Min(a), then pcf(c) c_ pcf(a). 
(10) If  there is no maximal element in pcf(a), then cf[otp(pcf(a))] > Min(a); 

moreover, sup pcf(a) is a (weakly) inaccessible cardinal. 

PROOF. E.g. 

(8) Let b ~ pcf(a) and assume b has no last element; then by 5.3(5) there is 
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,1 Epcf(b), ,l > sup(b). However, by 5.3(9), b = pcf(a) = pcf(pcf(a)) = pcf(b); 
hence ,1 ~ b - -  contradiction. 

(9) See 5.10. 
(10) See 5.11. 

5.4. CLAIM. (1) J°a[a] is an ideal (of ~'(a)). 
(2) If,1 < / t ,  then J°a[a ] C_ J°~[a]. 
(3) If,1 is singular, j o  [a] = j o +  [a]. 

(4) If,1 ~pcf(a) ,  then J °a  [a] = j o +  [a]. 

5.5. LEMMA. I fMin(a)> la I, ,1 a cardinal > la I +, then (1-Ia, <J%t~]) is 
,1-directed. 

PROOF. By 5.3(3)(iii) w.l.o.g, lal , lal+qia so M i n a >  lal  ÷. Note: if 
f E I I a , f < f +  1El-la (i.e. (rla, <jO~lal) is endless). Let F __. rla,  IFI <,1, and 
we shall prove that for some g ~ I/a,  ( V f ~  F ) ( f  < g rood J o a [a]). The proof  is 
by induction on IF l- If  IF I is finite, this is trivial. Also if I FI  < Min a it is 
easy: let g ~ I'la be g(O) = sup{ f(0)  : f ~  F}. So assume [ F I =/z,  Min a < g < 
,1, so let F = ( f ° : i  < # } .  By the induction hypothesis we can choose by 
induction on i < g,  f,l E Ha, such that: 

(a) ~ < f ~  m o d J ° ~ [ a ] ,  
(b) f o r j < i , f ]  < f )  m o d J ° ~ [ a ] .  
If  g is singular, there is C _c/l unbounded,  [ C[ = c fg  < / t ,  and by the 

induction hypothesis there is g~IIa  such that for i E C, f~ < g mod j o  [a]. 
Now g is as required: 

f~i ~_~ f l  ~ flin(C_i ) <__gmodjOa[a]. 

So w.l.o.g, p is regular, Now we define by induction on a < l a I ÷, g~, i~ = i(a), 
(b?" i < /z)  such that: 

(i) g~ ~ IIa, 
(ii) for/~ < a, gp _-< g.,  

(iii) for i < g let b? a~f {0 ~ a : f~  1 ( 0 ) >  g~(O)}, 
(iv) for each a, for every iE[i , .g) ,  b? ~ b? +1 (and i(a) < # ) .  

We cannot carry this definition: by letting i( . )  = sup{i~ : a < l a [+) ,  then 
i ( . )  < p  since g = cfg ,  g >_- Min a > [a [+. 

. t.~+ l for a < ] a I + (by (iv)) and b;~.) c a (by (iii)) and We know that b~.) ~: u~c. ) 
[a < p =~ b~.) c b~.)] (by (ii)), together a contradiction. 

Now for a = 0 let g~ be fd. 
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For a limit let g,(O) = Up<~ gp(O) (note: g~l - la  as o~ < l a I + < Min a and a 
is a set of regular cardinals). 

For a = f l  + 1, suppose that ( b f ' i < # )  is defined. If  b ~ J ° a [ a ]  for 
unboundedly many i < #, then gp is an upper bound for F and the proof  is 
complete. So assume this fails; then there is a bounding i ( , 8 ) < #  such that 
b~p~q~J°a[a]. As b~p~q~J°a[a], for some ultrafilter D on a, b~a~D and 
cf(Ila/D) > 2. Hence {f,~/D : i < / t }  has a bound h~/D, h~El-Ia. Let us define 
g~ E l-la : 

g,(O) = Max(ga(0), h~(0)}. 

Now (i), (ii) hold trivially and b7 is defined by (iii). Why does (iv) hold with 

i, :=  i(fl)? Suppose i(fl)_-< i < ~ .  As f/~p~ <f,.~ m o d J ° x [ a ]  clearly b~p~ ___ 
b/a mod j o  [a]. Moreover j o  [a] is disjoint to D (by its definition) so b~p~ E D  

implies b~ E D. 
On the other hand, b? is {OEa:f~l(O)>g~(O)} which is equal to 

{0 E a :fi  ~ (0) > gp(O), ho (0)}, which does not belong to D (h~ was chosen such 
that f t < h~ modD) .  We can conclude b? q~D, whereas b~ ~ D ;  so they are 
distinct. 

Now we have said that we cannot carry the definition for all a < I a [ +, so we 
are stuck at some a; by the above a is successor, say a = fl + 1, and gp as 
required to bound F. 

5.6. LEMMA. I fMin  a >= la 1, D is an ultrafilter on a and2 = tcf(l-Ia, <~), 
then for some b ~ D, (llb,<j~,t~j) has true cofinality 2. (So 
b ~ j o +  [a] - j o  [a].) 

PROOF. Again w.l.o.g. M i n a  > l a I+; and we know 2 > M i n a .  Let 
( f JD : i < 2 ) be increasing unbounded in 1-Ia/D (so f~ ~l'Ia). By 5.5 w.l.o.g. 
(Vj  < i)(fj < f~ mod J°a  [a]). Now 5.6 follows from 

5.7. LEMMA. Suppose l a l < M i n ( a ) ,  f~EIIa,  f ~ < f j m o d J ° a [ a ]  for 
i < j  < 2, and there is no g El-la such that for every i < 4, f~ < g mod j o  [a]. 

Then there are b~ (i < 4 )  such that: 
(A) b i C__ a, biq~J°x[a], 
(B) i <j=,b~ c_ bjmodJ°x[a] (i.e. b~-  bj~J°a[a]), 

(C) for each i, ( f j t  b i : j < 2 ) is cofinal in (Ilbi, <JOvial ), 
(D) for some gE17a, A~<xfi < g m o d  J where J = J°a[a] + (bg" i < 4 } ;  in 

fact 
(D) + for some i(.)  < 4, fit.~÷i < g mod(J°a  [a] + hi), 
(E) i f  g < g' ~ Ha, then for arbitrarily large i < 2 
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A [g(O) >f(O)~,g'(O) >f(O)] .  
OEa 

PROOF OF 5.7. Assume the lemma fails. We now define by induction on 
a <  la I +, g~, i(a), (b~: i < 2 )  such that: 

(i) g~ E Ha, 

(ii) for fl < a, gp < g~, 
(iii) v,h "def= {OEa'f(O)>g~(O)}, 
(iv) ifi(a)<--_i < 2 t h e n  b~' Cb~ '+t. 

For a = 0 let g~ = f0. 
For o~ limit let g,(O)= Up<,gp(0) (now [fl < a ~ g p  <g~] trivially and 

g ~ l i a  as Min a > l a I + > a). 
For a = fl + 1, if {i < 2 : b ( E J ° ~  [a]} is unbounded in 2, then gp is a bound 

for ( f "  i < 2 )mod j o  [a]. So let i(fl) be such that V i ~ [i(fl), 2), b( ~ j o  [a]. 
If (b(: i(fl) < i < 2 ) satisfies the desired conclusion we are done. 

Now among the conditions in the conclusion of 5.7, (A) holds by assump- 
tion, (B) holds by b/P's definition as [i < j  ~ f  < fj mod J °  a [a]], (D) ÷ holds 
with g = gpby the choice of b(. Lastly if(E) fails, say for g', then it can serve as 
g~. So only (C) (of5.7) may fail, w.l.o.g, f o r / =  i(fl). I.e. ( f j t  b~p) : j  < 2 )  isnot 
cofinal in (l-lb~), <JOa[a])" AS this sequence of functions is increasing w.r.t. 
<jo ,[a], there is h,~lib~p) such that for n o j  < 2, h, < f j t  b~p) n,od j o  [a]. Let 
h'~ = ha U O~a-¢,p,), and g~l-la be defined by g,(O) = Max{gp(0), h~' (fl)}. Now 
define b7 by (iii) so (i), (ii), (iii) hold trivially, and we have to check (iv). So we 
can define g~, i(~) for a < I a I +, satisfying (i)-(iv). As in the proof of 5.5, this is 
impossible; so that lemma cannot fail. 

5.8. LEMMA. Suppose l a I < Min(a). 
(1) For every b EJ°z+ [ a ] - J ° ~ [ a ] ,  we have: (lib, <jo,[a]) has true co- 

finality 2. 
(2) I f O < a < 2  and for fl <a,  QEJ°~+[a]-J°z[a] ,  then for some cE 

j o +  [a] - j o  [a]: 

for each fl <a,  ca C_ cmodJ°z[a].  

(3) I fD is an ultrafilter on a, then cf(Ha/D) is Min{2 : D N jo<a+ [a] # ~ }. 
(4) For 2 limit, j o  [a] = Uu< a j o  [a]. 
(5) }pcf(a)l < 2 lal and [2 E p c f ( a ) ~ J ° a  [a] ~ j o +  [a]]. 

PROOF. (1) Let 
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J = {b __. a : b EJ°x  [a] or b ~ j o +  [a] - j o  [a] and (lib, <jO,[a] ) has true 

cofinality 2 }. 
Clearly J __. j o  + [a ]; it is quite easy to check it is an ideal. Assume J ¢ j o +  [a ] 
and we shall get a contradiction. Choose b ~ j o +  [a] - J; as J i s  an ideal, there 
is an ultrafilter D on a such that D N J = ~ and b ~ D. Now if cf(Ila/D) > 2 +, 
then b ~ j o +  [a] (by the definition of j o +  [a]); contradiction. On the other 
hand, if F _ rla, IF I < 2, there is g E 1-la such that (V f E  F ) ( f <  g mod J°a [a]) 
(by 5.5), so ( V f E F ) [ f <  g mod D] (as J°a  [a] _ J,  D fl J = ~ ) ,  and this says 
cf(lla/D) > 2. By the last two sentences we know that cf(Fla/D) is 2. Now by 
5.6 for some c E D ,  (IIc,<jO,tal) has true cofinality 2. Clearly if c'C_c, 
c' ~ J ° a  [a], then also (1-lc', <~%a[a]) has cofinality 2, hence w.l.o.g, c C_ b; hence 
c ~J°a+ [a], hence by the definition of J,  c GJ.  But this contradicts the choice 
of D as disjoint from J. 

We have to conclude that J = j o +  [a] so we have proved 5.8(1). 

(2) For each fl < ot let ( fja : j  < 2 ) exemplify that (Ha, <jo<aial+(a - c  d) has true 
cofinality ;t; so f f  ~ Ha and 

[j(1) < j (2 )  < ~, =* f~2) < f~2) mod((J°a [a]) + (a  - ca))] 

and 

((Vg ~IIa) (  3 j  < ,;t)[g < f f  mod([J°~ [a]) + (a - ca))]]). 

By 5.5 we can define fj* E l l a  by induction o n j  < 2  such that 
(i) for i <j , f~* < f j * m o d  J°x[a] ,  
(ii) for each fl < a, f f  < fj* mod j o  [a]. 

Let (bi: i < 2 )  be as guaranteed by 5.7 (for (~Jj*:j < 2 ) ) .  Clearly for each 
p < a, (fj* : j  < ;t ) is <jO,ta]+~a_c,)-increasing and cofinal. So for eachfl < a for 
some i(fl) < 2 

cp __. bi~p) mod j o  [a]. 

[For if there is p < a  such that -1 (V~<ac a ___ b~modJ°a[a]), then caq~-J, 
where J comes from 5.7(D). Choose now an ultrafilter D on a such that 
c a E D  ^ D N J = ~ .  Applying 5.7(D) yields a g such that Aj<a fj* < g mod J,  
so A j < a f j * < g m o d D .  On the other hand, for some j 0 < 2 ,  g <  
~j0mod J°~[a]  + (a - ca), so g <j~jomodD (since D N J°~[a] + (a - c a) 
-- ~ )  - -  a contradiction.] 

Let i(*)=supa<ai(fl).  Now i ( * ) < 2  (as 2 - - c f 2 > l a l )  and ca___ 
bi~.) mod j o  [a] for each fl < a (because il < i2 =* b~, ___ hi2 mod j o  [a]) and 
bg~.)EJ°a. [a] (by the choice of (b~" i < 2 )  in 5.7). 
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(3) Let ; tEpcf(a)  be minimal such that D n j o .  [a] ~ ~ and choose 
bED N jo÷ [a]. Now (rla, <g%l~+~-b)) has true cofinality ;t by 5.8(1). As 
b E D ,  j o  [a] n D = Z~; we've finished the proof. 

(4) Clearly Uu<~J°a[a]  ___ J°,[a] by 5.4(2). On the other hand, let us 
suppose that there is b E ( J °~ [a ]  - Uu<a j o  [a]). Put J : =  U~<~ j o  [a]. 

Since b E J ° a  [a], for every ultrafilter D on a, if b ~D, then tcf(rla/D) < 2. 
Now J is an ideal and (I-Ia, <g) is ;t-directed; i.e. if a* < it and {f~ : a < a*} c 

Ha, then there exists f ~  rla such that 

(V o~ < a*)(f~ < f m o d  J). 

[Why? ;t is a limit, hence there is /t* such that a * < / t * < ; t .  (W.l.o.g. 

I o~1 ÷ </L*.) By 5.5, there is f ~ I I a  such that (Va  < a*)[f~<fmod jo+ [a]). 
Since j o .  [a] c J ,  it is immediate that (V a < a*)(f~ < f m o d  J).] 

Choose an ultrafilter D on a such that b ~ D  and D n J = Z~. Since (Ha, < j )  
is ;t-directed and D n J = Z~, one has tcf(Ha/D) > ;t; contradiction 

(5) Easy too by 5.8(3). 

5.9. CONCLUSION. If  l a [ < Min a, then pcf(a) has a last element. 

PROOF. This is the minimal ;t such that a~J°x+[a]. [(2 exists, since 
x ' =  [rlal E{;t'a~J°a.[a]} ~ Z~].] 

5.10. CLAIM. Suppose x < Min(a), for i < x, D~ is a filter on a, E a filter on 
x and D* = {b _ a : {i < x:  b ~Di} ~ E }  (a filter on a). Let ;t~ = tcf(rla, <0,) 
be well defined. Let 

,1,* = tcf(na, <D.), U = tcf(IIL, <e).  

Then ;t* =/~ (in particular, if one is well defined, then so is the other). 

PROOF. Let (f~ : a< ; t~ )  be a cofinal sequence in (Ha, <o,). Define, for 
gEIIi<x;ti, F(g)~IIa by 

F(g)(O)=sup{f~(O):i<x, fl=g(i)}<O (as x < M i n  a). 

Now for e a c h f E r l a ,  define G(f)~r l i<~; t i  by 

O(f)(i) = min(7 < ;t, : f <  f i  mod  D,} 

(it is well defined on f ~ r l a  by the choice of ( ~  : 7 < 22i)). 
Note that for f l ,  f2 ~ IIa: 
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f ,  =< f2 mod D * ~  B( f ' ,  f2) def (0 E a " f~(O) <= f2(0)} E D* 

~A(f~, f2)  ~r {i < x "  B ( f ' , f 2 ) E D , } E E  

A G(f~)(i)<=G(ff)(i) w h e r e A ( f ,  f2 )~E  
i~A(A,f2) 

=* G ( f  l) < G(f2)mod E. 

So G is a homomorphism from (Ha, ---<D.) into (I-Ii<~ 2i, <E). The range of G 

is a cover of (H).i, --<e): 
i fg  E l-lt_<__~ 2i then f~,) < F(g) (see definition o fF)  hence g(i) < [G(F(g))](i), 

hence g < G(F(g)). 
This finishes the proof. 

5.11. CLAIM. In 5.10, if l a l + <  Min a, we can weaken the hypothesis 
x < Min a to x < Min{2 t : i < x}. 

PRooF. Similar to the proof of 5.10. 
We define G:Ha----II~<~;t,. exactly as previously and also the proof  of 

[f~ < f2 mod D*=* G ( f  t) < G(f2)mod E] does not change. 

It is enough to prove that for g ~ 1-I t <~ At for some f E  Ha, g < G ( f ) m o d  E. 
By 5.5 (Ha, <J%tal) is x+-directed, hence for s o m e f E H a  

(*)1 for i <x,.[ig¢t~ < fmodJ°~[a] .  

We assume x < At hence j o  [a] c_ j o  [a], which is disjoint from Di (use 
5.8(3)), so together with (*)1 

(*)2 for i < x, f~c0 < f m o d  Di. 

So clearly g < G(f )  (more than required). 

5.12. CONCLUSION. If  l a l < M i n a ,  b___pcf(a), I b l < M i n b ,  then 
pcf(b) c: pcf(a). 

§6. Normality of 2 ~ per(a) for a 

6.1. DEFINITION. (1) We say 2 E pcf(a) is normal (for a) if, for some b _c a, 
J°a+ [a] = j o  [a] + b. 

(2) We say 2 ~ pcf(a) is semi-normal (for a) if there are bi for i < 2 such that: 
(i) i < j ~ b i  c_c_ bjmodJ°~[a] 

and 
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(ii) j O . [ a l = j O a [ a ] +  { b , ' i < 2 } .  

6.2. FACT. Suppose Min a > l a I, ,~ Epcf(a).  Now: 
(1) 2 is semi-normal for a iff for some F = { f , : a  < 2} C rla for every 

ultrafilter D over a, F is unbounded in (Ha, <o)  whenever tcf(rla, <l)) = 2. 
(2) In 6.1(2) we can assume w.l.o.g, that either b~ = b0 mod  J °a  [a] (so 2 is 

normal) or bi ~ bj mod j o  [a] for i < j  < 2. 
(3) Suppose F = ( f ,  : a < 2 )  is as in (1) and is <jO,[al-increasing. Then 2 is 

normal iff F has a <jo<~tal-least upper bound gEl-Ioea(O Jr 1) and then 
{OEa:g(O) = 0} generates j o +  [a]. 

PROOF. Left to the reader. Use 5.7, 5.8(3) for (1), (2). 
We shall give some sufficient conditions for this normality. 

6.3. DEFINITION. For given regular 2, 0 < / t  < 2 ,  S _ 2, sup S = 2. 
(1) We call .4 = (A, : a < 2 ) a continuity condition for (S, p,  0) if: A, _ a, 

IA~I</~ for aES,  [¢iES~p>cf~>=O] and [ f l E A ~ A p = A ,  Afl], 
[~ ES=~O = sup A6]. 

(2) We say f = ( f ,  : a < 2 ) obeys .4 = (A, : a < 2 ) if: 

(a) for fl EA,,  Ao~a fp(0) < f~(0), 
(b) i f a E S  thenf , (0)  = suppeAo fp(0) for every 0 E a .  

(3) If  0 = R0 we omit it; (S, a) stands for (S, Min a, [a 1+), (2,/t ,  0) stands 
for "(S, p,  0) for some stationary S c_ 2"; similarly (2, a). 

(4) We add the adjective "weak" if "fl EA,,~Ap = A,, O fl" is replaced by 
"a E S & fl EA.=* ( 3 7 < a)[A. n fl -C A,])". 

(5) Ig[2] de~ {S -C 2" there is a sequence ( 2 ,  "a < 2 )  such that 2 ,  is a 

family of < 2 subsets of 2, and for every ~ E S  for 
some unbounded A _c 0, otp A < 0 and [a~A ~ A  n 

(6) /~[2] = {S __ ;t: there is a sequence ( 2 .  : o r<2 )  such that 2 .  is a 
family of < 2 subsets of 2 each of power < p and for 
every 0 E S  for some unbounded A_cO, ( V a ~ A )  

( 3 x Up<6  p)[A n .  __ x]}.  
(7) Stationary members of Ig[2] are called good stationary sets; similarly, 

stationary members o f / ~ [ 2 ]  are called weakly good stationary sets. Again 

I~[2]  is I~.~o[2]. 

For definitions and proofs see [Sh 88], AP Lemma 2, [Sh 300a], Ch. III, §6, 
[Sh 351] 4.1. 
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6.4. FACT. (1) There is a [weak] continuity condition.4 for (4, a) iffthere is 
stationary S such that S c_ {~ < 2:1 a I < cfg < Min a } is in Ig[2] [in I~gi~ a [4]]. 

(2) If2 =/ t+,  cf/t = / t  >K0, then { ~ < 2 "  cf(~) </ t}  is in Ig[2]. 
(3) If2 =/ t  +, 0 < cf/t, then {~ < 4" cfg = 0} contains a stationary set from 

/ ~  [4] for some x </ t .  
(4) If 2 =/ t+,  /t-~(0)~f~, then there are x < / t  and a stationary S _  

{g < 4 "  cf~ = 0} which is in I~,~ [2]. 

6.5. FACT. Suppose .4 is a weak continuity condition for (S, a), f~ E Ha for 
a < 4, Min a > l a I +, 2 = cf2 > I a I. Then: 

(1) We can find ( ~ : a < 2 ) obeying .4, f~ E Ha, such that 
(i) for 
(ii) for every a, f ,  _-< f~+ 1. 

(2) Suppose ( ~ : a < 2 )  obeys .4 and satisfies (i). I fg~EIIa ,  (g~ " a < 2 )  
obeys .4 and A~ g, _-< f~, then A~ g~ =< f~. 

(3) We can add in (1) 
(iii) if i f " "  a < 2 ) obeys.4,f" ~ lIa, and it satisfies (i), then for every a, 

£ =< f".. 

PROOF. Easy. 

6.6. LEMMA. S u p p o s e f ~ Y l a f o r  a < 2 ,  2 regular, f =  ( f , , ' a < 2 )  obeys 
some .4 = (A~ " o~ < 2 ) which is a weak continuity condition for (2, a ), and f is 
j o  [a]-increasing (so 2 > Min(a)). 

(a) (f~" a < 2 ) has a <lo<~tal-least upper bound g ~IIo~,, (0 + 1). 
(b) bgEJ°~+ [a] - J°a[a ] where bg def {O~a :g(0) = 0}. 
(c) Letting/to = cf(g(0)), we have that (H/to, <.,'%[.,]) has true cofinality 2 and 

/to <=O. 

PROOF. See [Sh 282], Lemma 14 for (a). 

6.7. CLAIM. Suppose: 
(a) L rla for < 4, 2 Epcf(a) and f =  (f~" a < 2 ) is <j~a, rincreasing. 
(b) f satisfies `4, a weak continuity condition for (S, a), 2 = sup S (hence 

2 >_- Min(a) > I a I +). 
(c) J is an ideal of ~ (a )  extending j o  [a l, and ( f J J : a  < 2) is cofinal in 

(rla, <A (e.g. J = j o  [a] + (a - b), b ~ j o +  [a] - j o  [a]). 

( f~" a < 2 ) satisfies (a), (b) above. 
f, _-< ~ for a < 4, alternatively: (f" : a < 2 ) satisfies (c). 
{g < 2: if t~ E S then ~ = f~ mod J} contains a club of 4. 

(d) 
(e) 

Then 
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PROOF. Not hard. 

6.8. LEMMA. Suppose Min a > l a I +, 2 = cf2 6pcf(a)  and there is a good 
stationary, set c_C_ {6 < 2 "1 a I < cf5  < Min a } or at least a weakly good station- 
ary. set _ {6 < 2:1 a I < cf5  < Min a }. Then 2 is normal for a. 

PROOF. Let A be a weak continuity condition for (S, a) for some S, where S 
is a stationary, subset of  (6 < 2 : [ a [  < cf5  < Min a}. We assume 2 is not 
normal for a and eventually get a contradiction. By 6.2, 6.6 2 is not semi- 

normal for a. Let us defne  by induction on ( =< I a I +, f¢ = (f,¢ : a < 2 ) and 

D o such that: 
(I) (i) f~¢ E ha, 

(ii) o~ < fl =* f~¢ < f~ mod J % [a], 
(iii) f¢ obeys A, 
(iv) for ~ < ( =< la I + and a < 2 "  f~ _-<f~¢; 

(II) (i) De is an ultrafilter on a such that cf(rla/D¢) = 2, 

(ii) (fC~/D e • a < 2) is not cofinal in rla/D o 

(iii) ( f¢~ + YD e : o~ < 2 ) is cofinal in Ha/D e, 

(iv) f~  + 1/D¢ is above { f¢~ /D¢ : a < 2 }. 

For ( -- 0: No problem. [Use 6.5 and 6.2.] 
For ( limit: Let g~¢ E Ha be defined by g~¢ (0) = sup~<e f~ (0), which belongs 

to Ha as [ a l + < M i n ( a ) .  Now use 6.5 and get ( f ~ c ' a < 2 )  obeying A, 
[ ( E 2 - S = * ~  ,eo~ =j,,,<fq [g,~ =< f~+~]. Use 6.5 to find an appropriate D e. Now 

( f~" a < 2 ) and D e are as required. 
For ( = ~ +  1" By 6.2(1) there is an ultrafiler De on a such that 

tcf(IIa, <D~) = 2 and { f~" a < 2 } is bounded in (Ha, <D~). Let (hi"  a < 2 ) be 
cofinaI in (Ha, <D~) and w.l.o.g.f~ _< h~ rood De. We get D~ and (f,~" a < 2 ) by 
6.2 and 6.5 for (h,~ • a < 2 ) .  

Now for each ( <  [al + we apply 6.7 for (f~+~ "a < 2 ) ,  ( f ,  I~l+ " a < 2 ) ,  
J = P ( a ) \ D  o We get a club C e of  2 such that: 

(,) a E S  n C~=, f~, +1 = f ,  "1+ m o d D  o 

So f ')e<l,¢Ce is a club of 2 since l a l + < 2 ,  so we can choose 

a E S  n ne<lal+ C~. Let c~= {OEa ' f~ (O)=~" l+(O)} .  By (,), ce+,~D~; by 
(II)(ii), (iv) c e 6D~, hence c e :~ c~+~. On the other hand, by (I) (iv), (ce '~  < 
l a I +) is _- increasing and by the previous sentence it is strictly _ 
-increasing; contradition. 

6.9. CLAIM. Suppose Min(a) > l a I +, /~ = cf/t < 2 ~pcf(a) .  Then for 
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some x0 = cfx0 < 0 (for O~a) we have (HoEa x0, <s~a)) has true cofinality #, 

provided that 

( , ) /z  has a weakly good stationary set S __. {~ < # :1 a I < cf~ < M i n  a]. 

PROOF. Easy, by 6.6, 6.5. 

6.10. CLAIM. Suppose the assumptions (a), (c), (d), (e) of  6.7 hold and 

(b)' fobeys  ,4, ,4 a continuity condition for (S, x, R0)(2 = sup S). 

(f)  J is x-complete, x = c fx  > cf(~) for every ~ ~ S .  

Then for some club C of 2 

~ E S  n C = * f ~ = f ~ m o d J .  

PaOOF. Not hard. (See 6.7.) 

6.11. LEMMA. Suppose M i n ( a ) >  lal +, 2~pcf(a) .  Then there is b Ca  
such that b EJ°a+ [a] and 

(,) for every c EJ°a,  [a] there are b, EJ°~ [a] for n < to such that c c_ 
b u U,,<,,, b,,. 

PROOF. Let S = {8 < 2 : c f 8  = N0 or 8 is a successor ordinal}. We can 

easily find a continuity condition ,4 = (A, : a < ;t), for (S, N ~, R0) such that, 
for limit 8 E S, A6 is an unbounded subset of  8 of order type to, and for 
non-limit a E S, A, is finite. Here is how one finds the continuity condition. 

We prove by induction on a _-< 2 the existence of  a continuity condition 

,4a = (A~ . i Ea n S): 
(1) a < t o  + 1: let A,- = / for i < a .  

(2) Not (1) and a = fl + r where fl < a, 7 < a, cf(fl) 4 = No 
Let 

~ Af, iEf l  A S  

A~= +Af ,  i ~ a n S \ f l ,  i - f l = j  

where/~ + A  = {,8 + ~: ~EA}. 

(3) Not (1), (2) and a = p, cf(p) = No or a =/~ + 1, c f / / =  R ,  

Let fl = U,<o~a,, where 0=Ot0<Otl<Ot2<"" ", cf(a.+O ~ R0 (e.g. a,+~ 

successor), 
A~ = { a , ' n  < to}  [cf(fl) < a], 

A a = { a , , ' r n < n } ,  
an 

l~.t A a . _ _  ~ _l_Aa,~+l--(a,~ +1) i fo t ,<Y<ot ,+ l i~L~v  . - ' ~ . + l - - ~ v - ( a . + l )  • 
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(4) Not  (1), (2), (3), a > c f ( a ) >  R~ 

Let x = cf(a). Let (at :  i < x)  be inceasing continuous,  U~<~a~ = :  a, a o =  0, 

cf(at + l) ~ ~0. 
We define for each (AT : a~ < 7 < ai+ l) by the induction hypothesis  

A 7 = (ai + 1) -a- a"'*'-("'+l) - "r-(- ,+ l) for a i < ~) < O~ i + l ,  

A"., = ( a j : j E A ~ ) .  

(5) a = c f a  > R ,  

Call a = x. Choose (a~: i < x)  increasing continuous,  U~<~a~ = a, a o =  0, 

Cf(ai+l) > Ro t and at+l > (co + co) + (ai + ai) + co. So Ei = {5 + 1 : c~ limit, 

a t < ~  + 1 <at+l} has power  > lai l .  
Let g~ be a function from E~ onto Ui< z Ej. 

We define h : x----x, 

£ 

Ja  + 1, a successor, 
h(a) 

a, otherwise. 

dai+l--(ai +l) A o t  Choose A" as follows: for ai < 7 < ai + l, let B~ = (a t + 1) + ~ r-¢,,+ l) , ~ h(7)  = 

h(B?). So we have defined A~ for fl E U;((a~, a~+ i)\Ei). 
For 7 EE~ we define A~ by induct ion on  7: 

i = O, A 7 = O; 

i > 0, A 7 = (h,(7)} U Ah",(y). 

Lastly for 7 E {ai: i < x}, ifcf(ai) = R0, then cf(i) = R~ So there are ( j , :  n < o9): 

and 
0=j0<Jl<''" 

Uj. =i. 

Choose inductively y~ EEj, ,  h(7~ +l) = YR. So 

" =  . . . .  7,-1} and A , , =  ( 7 ; ' n < c o } .  

Now after this digression, we return to the p roof  of  6.11. The p roof  is the 

same as that o f  6.8, using 6.10 instead o f  6.7, applied to J ~ f  J~<z[a] = 

t We assume x > i% ifx = i% the changes are small. 
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{U,  b, "b, ~J°<a[a] for n < o9} - -  which is an R~-complete ideal (we use J 
instead o f J °~  [a]). 

6.12. CONCLUSION. Suppose Min a > I a I +. 
(1) We can find (b~ : 2 Epcf(a))  such that: 

(i) b ~ J ° + [ a ] - J °  [a], 
(ii) every member of j o  [a] is included in some U,<,o ba., for some 

2, < 2 .  
(2) If  every 2 ~ pcf(a) is normal for a, then we can replace (ii) above by 

(ii)' J°a[a] is a generated by {bu'l~ E2 n pcf(a)}. 

6.13. FACT. (1) Suppose I pcf(a)I ~o < Min a (or (*)z of 9.1). If 2 E pcf(a), 
and 

(*)~ [if/zi ~ pcf(a) n 2 for i < a < x then rIi <~/t, < 2 ], 

then jo<~ [a] is a x-complete ideal. 
(2) If  in (1) x >_- R 1, then 2 is normal for a. 

6.13A. REMARK. TO prove 6.13, we rely here on a later Theorem (9.1), so 
till 9.1 we cannot use 6.13. 

PRoov. (1) Suppose J%[a] is not x-complete, then there are a < x  
and biEJ°a[a] for i < a  and U,<~biqiJ°~[a]. W.l.o.g. a is minimal,  
hence a = c f ( a )  and w.l.o.g. [ i<j<a~bic_b j ] .  By 9.1(I) for some 
cC_Ui<,pcf(b~), l e l< lo~ l  and 2~pcf(c) .  Now bi~J°a[a] hence 
max pcf(b~) < 2, hence c is a set of < x regular cardinals, each < 2 and from 
Ui<~ pcf(bi) _ pcf(a). By (.)~ we get a contradiction. 

(2) By 6.11 and the first part. 

6.14. LEMMA. Suppose I pcf(a) l~0<Min a. Then every 2 E p c f ( a ) i s  nor- 
malfor a. 

PROOF. W.l.o.g. a = pcf(a). [Just prove that i f a  ___ b, I b I < min(b) and 2 
is normal for b, then ;t is normal for a.] 

We prove by induction on 2, and for a fixed 2 by induction on 0, that 

(.) if I pcf(a) I s0 < Min a, 2 E pcf(a), 0 = sup{/t + :/t E pcf(a),/t  < ;t }, then 2 
is normal for a. 

Case I: 0 = / t  +. 
Necessarily /t E pcf(a). By the induction hypothesis for some b~, ___ a, 

j O , [ a ] = j 0 <  uta] +b~. 
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Now 2$pcf(bu) so 2 ~ p c f ( a -  bu), and by the choice of  b u and 5.8(3), 

/t $ pcf(a - bu), so 0* def sup(2 ~ pcf(a -- b~,)) < lz. So we can apply the induc- 

tion hypothesis on 2, 0", a - b u  and get that 2 is normal for a -  bu. As 

2 $ pcf(bu), by 5.3(2), 2 is normal for a as required. 

Case II: 0 is a limit cardinal. 

Remember a = pcf(a) .  

Let c = 0 f~ pcf(a), J ~  = {c'___ c ;c '  is bounded in c}. Now if D is an 

ultrafilter on c disjoint from J ~ ,  then tcf(l-lc, <D) is necessarily > 0 (by 

5.3(4)), but it belongs to pcf(c) which, by 5.11, is a subset of  pcf(a), hence by 

assumption it is > 2. We conclude D A j o  [a] = ~ .  As this holds for every 

such D we know j o  [a] t c _c J ~ ,  so easily j o  [a] _c J ~ .  

Case IIa: cf(0) > R0. 

J ~  is N t-complete, so by the argument of 6.11 there is b* c c such that: 

(i) b*~J°~+ [a], 
(ii) (Vb 'EJ°a+ [a])(b' - b ~Jcbd). 

We claim 

(*) for some a ~ c ,  2 Spcf(c -- tr -- b*). 

[If not, for every tr U c there is bo ~ j o +  [a] - j o  [a], b~ c_ c, bo tq b* = ~ and 

Minb ,  >= tr. By 5.8(2) there is b'C_ c, b '~J°a+ [a] such that e ~ c = , b o  c__ 
b' mod j o  [a ]. As bo c_ c - b*, Min b, > tr we have b' - b* ___ c unbounded in 

c, and contradicting (ii) above.] 
Now 2 is normal for b* (as b*~J°~+ [a]). Also 2 Spcf(c - tr - b*) (by (*)) 

hence 2 is normal for c -  a -  b*; moreover, by the induction hypothesis 

applied to 2, c N a2  is normal for c ~ a. Together (see 5.8(3)) 2 is normal for c. 
Also, as Min(a - 2) = 2, 2 is normal for a - 2 so it is normal for a. 

Case lib: cf 0 = N0. 
Using Ipcfal  ~o= l a [ ~ o < M i n a < 2 .  Apply 5.8(2) to {b___c: lbl=R0,  

b ~J°a+ [a] - j o  [a]} and proceed as in Case IIa. 

§7. Getting better representations: generating sequences and cofinality 
systems 

We can replace systematically normal by semi-normal and b~ by (b~ : i < 2 ) 
as in Definition 6.1, by avoiding it to ease the reading. 

7.1. DEFINITION. (1) We say (ha ; 2 Uc)  is a generating sequence for a if: 

Sh:345



170 s. SHELAH Isr. J. Math .  

(i) ba __ a, c __ pcfa ,  
(ii) j O + [ a ] = ( j o  [a])+b~. 

(2) Let J ~  [a] be the x-complete ideal on ~ ( a )  generated by jo<x [a]. 
(3) Let pcfl,~(a) = {2 ~pcf(a)" 1,~ l,~ . J<x[a] ~ J<a+ [a]} (See 7.1(6).) 
(4) We say (b~ : 2 ~ c )  is a weak generating sequence for a if 

(i) b~ c_ a, b~ ~ j o  [a], b~ ~ j o +  [a], 

(ii) c c_ pcf(a). 
(5) We say (b~ : 2 ~ c ) is a x-almost generating sequence for a if (i), (ii) of(4) 

hold and 
(iii) 1,~ J<~+ [a] = (jL~ [a]) + b~. 

(6) In (2), (3), (5) i fx  = RL, we omit it. 
(7) We call 6 = (bz : 2 E c ) smooth if 0 E bz =* bo c_ b,~. 

7.2. FACT. Let ]a 1+ < Min a. 
(1) 2 E pcP (a) iff for some R l-complete ideal J on a, 2 = tcf(Yla, <j) .  
(2) There is an almost generating sequence (ba : 2 ~pcf~(a)) for a. 
(3) There is a generating sequence (b~ : 2 ~ pcf(a)) for a if at least one of the 

following holds: 
( i )  2 lal < M i n a ,  

(ii) Ipcf(a)l~0<Min a, 
(iii) every 2 Epcf(a) has a (2, a)-weakly good stationary set (see Defini- 

tion 6.3) 
(4) An R0-almost generating sequence is a generating sequence. 
(5) Suppose 6 = (b~ : 2 Epcf(a)) is a generating sequence, and b c_ a, b -- 

pcf(b), then for some finite d c_ b, b c_ Uoed bo. 

PROOF. (1) If 2~pcf~(a), i.e. 2Epcf~.~,(a) (see 7.1(6)), this means 
T1,R nr ., rl ,Rt Jl<a[a ] 4= Jla+ [a], i.e. a<a taj ~<a+ [a]. So choose b EJl<a. [a], b q~Jl<x[a], 

and let J = Jl<a [a] + (a - b). 
The other direction is trivial too. (Use 5.8(3) and note that J~<a[a] v ~ 

J~<a+ [a] i f f j la[a]~J°~+ [a].) 

(2) By 6.11. 
(3) We can assume a is infinite. 

If (i), then as Ipcf(a)l < 2  '~l (by 5.8(5))then [pcf(a)l~0<(21al)~0 = 
2 lal < Min a, so (ii) holds. 

If (ii) holds, use 6.14. 
If (iii)holds, use 6.8. 

(4) Check. 
(5) If not, then I = {b n Uo~d bo : d c_ b, dfinite} is a family of subsets of b, 
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closed under  union, b ~ I, hence there is an ultrafilter D on b disjoint f rom I. 

Let 0 ~ cf(IIb/D); as b = pcf(b) necessarily 0 E b. Let D '  be the ultrafilter on a 

which D generates, clearly 0 = cf(l-la/D'); by 5.8(3), bo ED', hence b n b0 ~ D ,  

contradicting the choice of  D. 

7.3. DEFINITION. (1) For a weak generating sequence 6 = (ba : 2 E c )  for a 

we say f = ( (fa,a : a < 2 ) : 2 ~ c) is a cofinal sequence for (a, 6) if  

(i) ( f a , a : a < 2 )  is strictly increasing and cofinal in ( I I ( a n 2 + ) ,  

<s°~ta] + (a - 5~)). 

(2) f is continuous if  [* continuous] 

(ii) if 5 < 2, I a I < cf  d < Min a then 

,] f~,o = f~a,~ ,6(0) = U f1,a (0 
t l  

where f~,6(0) is defined by induct ion on n < o9, 

~ , , ( 0 ) = M i n {  U.ec f~,a(O)'CC_disaclub}, 

p~,~(O) = sup{fu,a(0) : 0 ~ p  < 2 , / ~  E a ,  a = f],a(/t)} tO {f~,6(O)). 

(3) f i s  nice if it is • continuous and in addition: 

(iii) if  6 < 2, then 

O~a & aEa n O+ ~ fo~to)(a) < fa,6(a), 

except possibly when l a I < c f~  < Min a, cl]f~,a(a)] ÷ c fa .  

7.4. FACT. Assume l a I < M i n  a. 
(1) For  every weak generating sequence 6 for a,  some f i s  a * continuous 

cofinal sequence for (a, 6). 

(2) If  ((f~,a : a < 2 ) "  : 2 ~ p c f ( a ) )  is a cofinal sequence for (a, 6), 6 is a 
generating sequence for a with domain  pcf(a), then 

(*)2 for every g E I I a  there are n < to, 20 > ).~ > • • • > 2. f rom pcf(a) and 

at < 2~ for l < n such that 

g _-< Max{fa,,., : / =< n}. 

(3) In (1), i f  6 is only a x-almost  generating sequence for a (so its domain  

_D pcf~,~(a)), then 
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(*)3 for every g~r Ia  there is a set b _c pc fa  of power < x  and (ao: O~b)  
such that Oto < 0 and 

g < sup{fa,~ : 2 Eb};  

in fact V O E a  V~bg(0) < f~,,~(0). 

PROOF. (1) We define ( f ~ , , : a < 2 )  for each 2 ~ c .  By 5.5 there is 
(f~a,~" a < 2 ) ,  <j-increasing, where J = (J°~[a]  + (a - ba)) r (a ¢q 2 +) and 
cofinal in (lI(a (1 2 +), <j) .  We now choose f~,~ by induction on a such that: 

(a) for a nonlimit, J~a,~ < fa,~l-l(a f~ 2+), 

(b) forfl  < a , A . e  <JA, . ,  
(c) if a is limit, [a I < c fa  < Min a, then (ii) of 7.3(2) holds. 
The only problematic point is, why, if a = 5, [a I <  cf5  < Min a, if we 

define fa,z as required in (c), then it satisfies (b) and belongs to H(a rq 2 +). The 
latter holds as there is a closed unbounded C _c 5, with o t p ( C ) =  c f (5)<  
M i n a ,  so ~ , . (0 )  = < _ U~Ec~,p(O)<O as f ~ z ( 0 ) < 0  and cf0  = 0 >_-Mina > 
I CI.  Then we can prove by induction on n,~,,,(O) < 0, and then fa,~(0) < 0. 

For the first point (forfl < a  = ~, f~,a <jfa,6) for every OEa rq 2 +, for some 
club Co of 5 we have 

( . )  = U 

We can find 7E O O~ana* Co, 7 >f l ;  by the induction hypothesis f .e  <sfa,r, 
whereas by (*)fa,y ---< ~,~. Triviallyf~,. < f~+~ so~, .  =< f , . .  Together we finish. 

(2) By 7.4(3) for x = R0 (see 7.2(4)). 
(3) Let/~ = (b~ : 2 Ec ) ;  and for each 2 ~ c  we can find a = aa < 2  such that 

J<a. Let b*={O~ba:g(O)<f~, . (O)} ,  so b~'C_b~ and g r b~ < f~,, r ba mod ~'~ 
b~ \ ~,~h*'---,<~'--r~'~. If  for some d _c c, I dl < x and a = U~ed b~*, we are done; 
otherwise let J be the x-complete filter generated by {b*: 2 ~c} ,  let/~ be 
minimal in c such ~ ~ that J:~u+ [a] g J .  Necessarily/~ ~pcP,~(a) _ c, and choose 
d ~jL~+ [a] -- J; so d - bu ~ J ~  [a] _ J and b u - b* ~J~u [a] ___ J,  together 
d ~ J,  contradiction. 

7.5. CLAIM. Suppose 

(a) l a I ÷ < Min a, 
(b) 6 = (b0 : 0 E c) is a weak generating sequence for a, 
(c) f =  ((f~,~ : a < 2 ) : 2 ~ c )  is a • continuous cofinality sequence for 

(a, 6), 
(d) Z is large enough, l a I < cr < Min a, a = cf(a), Ni < (H(z), E ,  <*)  for 

i <=a,N, ENi+l, 
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[ i<j<a~Ni<N~],  a~No, f~No, cUaC_No, 

(e) 
Then 

(a) 

(r) 

II N, II < Min a, and for i limit N~ = Uj<~N~, 
define g~ ~l-la by g~(O) = sup(Ni n 0) (for i < tr). 

for 2 ~ c ,  5 < or, cf(5)e([  a I, Min a) we have f~,(z) < g~ t ( a n  2 +), 

for 2Ec, 5<a,  cfSE(laI,Mina) we have f~,g, ca)rbz=g~rbz 
mod j o  [a], 

if/~is a x-almost generating sequence, 5 < a, cf5  > l a l, c = pc£'~(a) = 

Dom 5, then for some d _ c, I dl < x and g6 = Max{f~,g,~z) : 2 Ed},  

if (b~:i~(.)<i<2)~No are as in 5.7(D) + then (if 5<=a, 
cf5 ~ ( l a  l, Min a)) 

da ~ed (O~a 0 2  + : f~,g, ta)(O)=g~(O)} 

satisfies d~ E J ° .  [a], --- dz mod J °  [a], b g • , ( a )  
(e) if 2 E c ,  5 < a ,  c f ( 5 ) > l a l ,  then gatbz is the <~,[z]-lub of 

7.5A. REMARK. (1) Using J ~  [a] (2 ~ pcfl'~(a)) we have parallel results: if 

we restrict ourselves to cf5  E [R~, x) the same continuity notion is O.K. (i.e. in 

addition to cf(5)~[I a l + , Min a)). 
(2) For cf5  = Ro, we should have a preassigned unbounded C~ ___5, 

otp q = to for 5 < 2 ,  cf5 = R0, and use C c_ C~ in the definition of con- 

tinuous. 

PROOF. Note that if i<j<=a then giENj,  so as a __.No, gi<gj. As 

f E  No < N~ and a ___ No < N~ for each 0 ~ a, g~(O) ~ Nj hence fo~,to)E Nj hence (as 

Dom fo~,to) = a O 2 + _C No < Nj) we have Rang fo~,to) _C Nj. By the definition of  

gj this impliesfo~,¢o) < gj t ( a n  0+). Letf~,~ (2 ~ c ,  n < to, c f a E  [I a I% Min a)) 
be as in 7.3. 

Note that for O~a, (g~(0) : i < a)  is strictly increasing continuous. So for 

limit 5 < a, cf(g~(0)) = cf(5), and Co def {gi(0) " i < 5} is a club ofg~(0). So a s f  

is • continuous, if 5 _-__ a, I a I < cf(5) < Min a, then ~,¢0) is defined by: 

for ~ ~a N O, ~o~,,o)( ()= Min { U foa( ()" C C_g~(O) a club}. 
#eC 

Using Co we get 
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fg0.,<0)(O= < U f0,a(O= U 
#eCo i<,~ 

But we have noted above that i < d=*f0,,t0) < g6 t (a  O 0+). So ~,,~0)=< 

g 6 t ( a  A 0+). The same argument  shows that i f 2 ~ C ,  ~, < 2 ,  7~c1(2 ¢q N6) 
(closure in the order topology), d _-< a, Min a > c f d  > la I, then R a n g j  ~ _ 
c1(2 A N6), noting 

e f t  ~ c f~&7~c l ( 2  (1 N a ) ~ T E N , ~ f ~ ,  7 E N a = ,  Range f~a,r C Na, 

so 7 ~c1(2 M Na)=~,Rang f°,r C_ Na. Now we can prove by induct ion on 2 E C  
that  

(*) ~ < a, la l  < c f O  < Min a, ~,~c1(2 N Na), n < o9; 

we have Rang~ ,a  _ cl(Na M 2) (this by induction on n); hence Rang f~,r - 
c1(2 M Na). So we have proved (a). 

On the other hand, for each 2 Uc ,  i < j  < a, as g~ ~(1-la) M Nj, for some 
= o~(2, i) we have 

a ~ N j ,  g~ < f~,~ mod( J °~ [a ]  + (a - ba)). 

Now w.l.o.g., as a E N  s we have a < gj(2), so 

f~,~ < f ,gj ta)m°d(J°~ [a] + (a - ba)), 
hence 

gi < f~s(a)mod(J°a [a] + (a - ba)). 

So if ~ < a, I a I < cf  d, we have 

gi < fa,~,~a)mod(J°~[a] + (a - ba)) for each i < ~ .  

def /~ + 
Let, for i = d, G = {0 ~ a  M : g~(O)> f~,g,~)(O)}. Now as [i < j = * g ,  <-_ g~] 

we have [i <j=*c i  c_ c~], so (as cf(d) > la l  = IDomgi l )  ( c i : i < ~ )  is even- 
tually constant (by the definition of  the cs's and as (gfiO) : j  < ~) is increasingly 

continuous). As ca = Us<a cj, so ca = ci for some i < ~. But we have shown 
above that for i < d ,  c i ~ ( J ° ~ [ a ]  + (a - ha)); so ca~J°~[a]  + (a - ba)), 
hence 

{ O E a  N 2 + : g6(O) > fa,g,(a)(O)}E(J°<a[a] + (a - ba)), 

therefore 

g6 < f~,g,t~) m o d ( J ° a  [a] + (a - b~)). 

As we have proved (ct), if  c f d ~ ( l a  I, Min a), 
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g~ ~ b~ = f~,g,(~) mod(J°x [a] + (a - ba)), 

i.e. we get (fl). 
Now (7), (8) is left to the reader. 
For a fixed 2 let g~l-la be as in 5.7(D); w.l.o.g, gENo. Let 

d~ de=f {O~a A 2 + "g~(a) = f~,g, ia)(0)}. By the definition of d~ (as g <g~ since 
g~N~) we have 

0 ~ d~ =* g(O) < A,e,,(~)(O), 

i.e. (noting that the minimal i( . )  satisfying 5.7(D) + belongs to No and 
i( . )  + gj(2) = g;(2) for every i) by 5.7(D) + 

E 0 (*) d~ f3 (a\bg,(~)) J<a[a], i.e, d~ c_ bg~(a)modJ°~[a]. 

On the other hand by (E) of 5.7 (and 5.5) certainly for every a <  J, 
i ~ 2  N N,, i f i  >_- i(*), then proof of (fl) (of (7.5) holds also if we replace b~ by 
b/~, hence 

fa,g,(~) ~ b~ = g~ ~ b~ moO j o  [a], 

hence b~ _ da mod j o  [a]. 
To finish by (*) above we need just b~ a _ d~ rood j o  [a]; look at the proof of 

5.7 and note: 

7.6A. SUBCLAIM. In 5.7, if ( f : i < 2 >  is continuous (i.e. for ~ < 2 ,  
lal < c f J  < M i n  a,f~(O) = Min{ U~ecf~(0) : C _ ~a club}, thenford c_ a, if 
b~ _ d rood j o  [a] for arbitrarily large i < ~, then b~ _ d mod j o  [a]. 

PROOF OF 7.6A. Look at (iii) in the proof of 5.7. 

7.6. LEMMA. Suppose la l < M i n a , / 7 =  (b~ : A Ea  ) is a weak generating 
sequence for a. 

Then we can find 6' = ( bJ : A E a ) , f = ((f~.~ ; a < 2 )  : 2 E a >  such that: 
(a) 6' is a smooth generating sequence, 
(~) for 2 ~ a ,  ba c_ b'a modJ°a[a],  
(7) f is a nice cofinality system. 

PROOF. Let f = ( ( f~.~ : a < 2 ) : 2 E a ) be a • continuous cofinality system 
for (a, 6). By 5.7 we can define (b~ ' i~ ( . )< i  < 2 ) ,  gX as there, satisfying 
(A)-(E) of 5.7. W.l.o.g. i~(*)=0. We now define, by induction on 2 ~ a ,  
(fa.~ : a < 2 ). We define fa.a by induction on a such that: 

(1) ~ + ~  ~ f~,.+, ~rI(a  n2+) ;  
(2) for fl < a, fa.~ r b~ < f~,~ r b~ mod j o  [a]; 
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(3) if a < 3 . ,  c / a <  lal  or c f ( a ) > M i n a ,  we choose f~,~ satisfying the 

relevant cases of  (1) and (2) and, if  possible, 

(*) 0~3. n a=~ fo,~(o) < fi,~t(a n 0+); 

(4) if a < 3., [a [ < cf  a < Min a, then f0,~ (0) = Min(  Up~c fa,p(0) : C a club 

of  a) .  f~,~, f~,~ are defined as in 7.3(2). 
There are no problems in this. 

Now choose Z large enough, a ~ [a [+ and (Ni: i < a) increasingly con- 

tinuous, N i < ( H ( x ) , ~ , < * ) ,  tlNill = l a l  +, lal+C--Nt, Ni~N~+I and 
{f,  ((b~:i < 2) :3. Ca) ,  a } ~No. Now 7.5(a),(fl) apply for ~ = a,  ,,l E a with 

b~ for ba for any iENo. We can now show that in (3) above, (,) was always 

possible: if not there is a minimal  3. for which it fails and then a minimal  a. So 

(3., a) is definable from parameters  which belong to No, hence (2, a) E N ,  Now 

go I (a n 3.÷) shows (.) is possible (go(O) d,f sup(0 n No), of  course). Moreover  

(.) now holds also i f a  < 3., l a I < cf(a) < Min a when ct~fa.~(0)] = c fa .  S o / i s  
• continuous and nice. Now let 

b'~ = (OEa n 3.+ : go(0) = fa,go(a)(0)}; 

they are as required. 

§8. Kurepa trees from strong violation of GCH 

8.1. LEMMA. (1) I f2  Epcf(a) ,  every 2 '~pc f ( a ) ,  is normal~or a and for no 
inaccessible p , / t  = [pcf(a) n # [ ,  then for some c __ 2 n pcf(a) with no last 
element 

3. = tcf(rlc, <Jr) .  

(2) I f 2  Epcf(a) ,  2 = max[pcf(a)] ,  sup 3. N pcf(a) is singular, then for every 
unbounded c c_ 3. n pcf(a) of power < Min c, 

3. = tcf(nc,  <j~). 

(1) Find b ~J.~a[a] - J<~[a]; by (2) we can find c ___ 3, n pcf(b) as PROOF. 

required. 

PROOF OF 8.1(1). In more  detail, the proof  is by induct ion on # = 

sup[2 n p c / a  ]. 
Case 1. In 2 n pcf(a) there is no last element. So/ t  is a limit cardinal and 

cannot  be inaccessible by a hypothesis. So/z  is singular. We can find c _ 

pcf(a) n / t ,  I cl = c f ( # ) ( < # ) ,  ( c /g )  + < Min c. 
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By part (2) of  8.1, 2 = tcfliC/Jc ~. 
Case 2. Not  1, so 2 N pcf(a) has a last element x say; so x is normal for a, 

then b~ is defined, and necessarily 2 ~ p c f ( a \ b ~ ) ;  but xqipcf(a\b~),  
so if sup(pcf(a) n 2) = x, we get Case l, otherwise we use induction hypothesis 
on  K. 

(2) By 5.12. 

PROOF OF 8.1(2). Again the details are as follows: first max pcf(c) < 2, as 
pcf(c) _ pcf(a) by 5.12. I f  1 [tcf(lic, <j~) = 2), then J<a[c] ~ J ~  (definitions), 

so for some d _c c, d ~ J ~  and 0 d~ max pcf(d) < 2. 
Now (lid, <:~) is sup(d)-directed, so 0 >= sup(d); sup d is singular, so 

sup d < 0 < 2.  N o w  d _c pcf(a) and I d I < J c I < Min c _-< Min d, hence 
pcf(d) c_ pcf(c) by 5.12, but 0 Epcf(d)  so 0 Epcf(c). sup(pcfa  tq 2) = sup c -- 

sup d < 0 < 2 - -  contradiction. 

8.2. THEOREM. Suppose: 

(a) x = c f  x > R0, 
(b) (/t*: i < x)  is strictly increasing continuous, 
(c) /z** = ((a*)'0 + is less than lt*+l, 
( d ) / t  --- E, <r/ t*,  

(e) X,<~lReg N (/t*, /***) l + IReg fl ( a , ~ ) l  </L.* 
Then we can find functions (hx : 2 EReg  N (# , /~ ] )  such that: 

(i) Dom ha = x; 
(ii) ha(i) is afinite subset ofReg n (-Jj__<i ( ~ ,  ~*) ;  

(iii) i f2 ÷ 0 are from Reg n (/t , / t  ~] and i < x, then 

ha(i) = ho(i)=*ha t i = hot i. 

8.2A. REMARK. (1) We ignore the possibility of  exploiting "1[#*,/~**) n 
Regl is small for a stationary set of  i's"; look at the proof  and use Fodor's 
l_emma to do it. 

(2) For i < x of  cofinality R0 we can replace/z** by 

Min{2: for no ;tj E [ ~ ,  ~*] ,  2 > max pcf{ Xj:j < i} ). 

PROOF. Let a~ = Reg n (g*, g**), a = 1,3~ a~, a~ = Reg tq (#, #~], 

a* = a t3 a~. By assumption (e), I a I < g,  hence w.l.o.g. I a I < Min a and even 

t Reg is the class of regular cardinals. 
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( l a l 0 + < M i n a .  By the Galvin-Hajnal  theorem l a ~ i < ( l a l O  +, so 
([a* 1~)+ < Min a*. For each 2 ~ a* we can choose ba such that: 

(*)a (i) ba ~ a* n 2+; 
(ii) ba ~ j o +  [a] - j o  [a]; 

(iii) J ° a .  [a] = j o  [a] + ba 

(use 7.2(3)). 
Now by 7.6, w.l.o.g. (ba : 2 Ca*)  is a smooth generating sequence. Note also 

that pcf(c) c_ Oj__<~ aj for each i < x and c _ Uj__<~ aj of cardinality < x. 

Now for each ;t EReg n (/t,/t~], there is ca ~ [a] ~ such that 2 ~pcf(c~) (see 
[Sh 111], 2.10 t or [Sh 282], 12). By 5.8(3) w.l.o.g. 2 =maxpcf(c~),  hence 

cA, ~ ca,~=*2, ~ 25. Let c* = ba, so 2~ # 22 ¢=~ C~ n/2 ~ C~ n fl; so pcf(c*) = c*. So 
for every i < x, 

pc f (c~ 'n  U a j ) = c ~ ' n  U aj, 
j<i  j<-i 

hence by 7.2(5) for some finite d(2, i)c_ c~ O Uj__<iaj, U {bo'OEd(2, i)} = 
c* n Uj__<~ aj. (We use smoothness.) 

We can define h*; h*(i) = d(2, i). 

8.3. CONCLUSION. If  21~l<R~o,, i < o g ~ R ~ ,  <Ro,, and (ROj1)~l = Rfl[($), 
a(*) > oh, then there is an R rKurepa tree with >_- I a(.)  I branches. 

Check (a)-(c) of 8.2, x = R~,/z = R,o,. 
For the neophyte, the tree T is the following one: 

The ith level is Ti = {ha t (#*,/ff~*) • 2 ~ R e g  n (lt,/t~)}; 
the order is inclusion. 

Clearly this is a tree with x levels. 
For i < x ,  by (iii), ITil < I{ha( i ) ' 2EReg}l  which, by (ii), has power 

_-< 1%+ I(~,~*]1, and for each 2 ~ R e g  n (#,#~) let rh = (ha t i" i < x ) .  
r h is a x-branch and clearly hao)~ h~c2)=# rh , )~  rh(2), hence T has at least 

I Reg n (#, #~)1 x-branches. 

* See paragraph before 2.8, and 2.8 which is from [GH]; there x = to~ is just for notational 
simplicity. 
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§9. Localizing pcf 

9.1. CLAIM. Suppose (a; : i _-< x) is increasing continuous, x regular and 
a = a~ satisfies 

(*)1 Ipcf(a)I ~0 < Min a 

or even just 

(*)2 there is a smooth generating sequence for pcf(a) and I pcf(a~) I < Min a. 

(1) I f ,1Epcf (a~) -  U;<~pcf(a;) then for some b __ Ui<~pcf(a;), Ibl _-<x, 
2 E pcf(b). 

(2) I f2  Epcf(a~) - Ui<~ pcf(ai), x > Ro then 
for some S ___ x unbounded, `1i E pcf(a;) - Uj<; pcf(aj) for i ES ,  we 
have tcf(1-lies`1;, <jp) = ,1, max pcf{,1j : j  < i} <,1;. 

9.1A. QUESTION. What about pct~? 

9.1B. REMARK. In (2), we can waive the last demand but have S a club; see 
9.3. 

PROOF. (1), (2). Let 6 = (b0: 0 Epcf(a~)) be a generating sequence (exists: 
if (*)1, by 6.14; if (*)2, trivially). W.l.o.g. (by 5.8) 2 =maxpcf(a~)  and 
2 (~ pcf(a~) has no last element. By 7.6 w.l.o.g. 6is smooth. By 7.2(5) for each i 
there is a finite di __ pcf(a;) such that: 

(1) pcf(a/) C_ Used, bo, Id;I < R0. 
Let d = U i < ~ d i ,  so d_cUi<~pcf(ai) ,  I d l < x ,  so M i n ( d ) > l d l .  If 

maxpcf(d)<`1,  then d~_J°a[pcfa~], hence for some finite c_pc f (d ) ,  
pcf(d) c Ueec b0, hence Ui<~pcf(ai) cc_ Uoec bo, but 

2 =maxpcfa , ,_ -<maxpcf (  i<,~U pcf(a;))_-<maxpcf( oU bo) 

=< max (max pef(bo)) = max(c) < ,l; 
OEc 

contradiction. 
By the same proof we know that 
(2) for any unbounded S _c x, 2 ~ pcf Utes d,-. 
So max pcf(d) > 2 but pcf(d) _ pcf(a~) __. ̀ 1 + 1, so max pcf(d) = `1 which 

suffices for (1). 

For (2) by Fodor's Lemma (note that x is regular), so there are a < x, 
n( . )  < co, and stationary S c_ x such that 
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d~ N (  [.J pcf(a~))Cpcf(a.) ,  
j<i  

d ~ -  jU p c f ( a t ) [ ~ n ( , ) .  

We now define by induction on 1 _-< n( , ) ,  St, d~.t such that: 

(a) So=S, St+~ c_ Sj, IStl--x, 
(f~) di,o = d~ - Uj<~ pcf(aj) for i ESo,  

(7) d~,t+~ is a p r o p e r  subset of  d~,t for i eSl+~, 
(5) max pcf( U { di,t - di,z +l : i ~ St + i }) < 2, 
(~) for all i E St, I d~,t I = at. 

We continue till we are stuck; say (d,,t : i ~ St ) are defined for I _-< m,  but not for 
l = m + 1. By (5) 

m a x p c f ( U { d i - d i , t : i e S t } ) < 2  for l < m  

(just prove it by induction on l, using (5) and 5.3(2)). However ,  as said above 
(in (2)), 2 = max pcf U~es, di, we conclude 2 = max pcf(U {d~,t : i E S t } ) ,  hence 
d~,t ~: ~ for i ~ S t ,  so S.(.) cannot  be defined. If  (d~,m : i E S m )  is last defined, 
d* = U~es.  d~,m satisfies almost all we need. 

Now by the choice of  m 

c _ d* & [ c [ = x ~ 2 = max pcf(c). 

(Otherwise S'm + i = { i E Sm : c N di,m ÷ ~ } is unbounded  in x, hence for some 
unbounded  Sm + l C_ S'm + l, and nm + l: 

I . d e f  d i m  - -  C [ i ~ S m + l  =~ I d i , t - c l  - -n~+t ] .  nowSm+l,  anddi,m+l = , 
contradict  the maximali ty of  m.  

On the other hand 

c c_ d* & [c I < x =* ( 3 i < x )c  c_ pcf(ai) 

=* max pcf(c) < 2. 

We can easily make pc f (d*) -  {2 } have no last element and its sup minimal 
(replacing d* by d' ___ d; Id'[ -- x). But pcf(d* N pcf(ai)) has a last element 
(which is < 2 ) ,  so (2, d~ max pcf(d* N pcf(a;) : i < x)  is monotonic increas- 
ing and not eventually constant, and max pcf{2~ : i < j }  < sup{2i : i < j } .  So 
we have proved 9.1(2) too. 
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9.2. CLAIM. Suppose 

(*)l IPcf(a)I K° < Min(a)  

or just  

(*)2 there is a generating sequence for pcf(a), and 

I pcf(a) I < Min a.  

If  b __ pcf(a), 2 ~ pcf(b), then for some b'  _ b : ] b'  I < I a I, 2 E pcf(b'). 

PROOF. We prove it by induct ion on I b I and for a fixed }b I by induct ion 
on 2. We can ignore the case "a is finite"; and w.l.o.g, b = max pcf(a). 

CaseA: I b l_ -< la l .  
Trivial, let b '  -- b. 
Case B: [bl > l a l .  
Let x = cf(Ib I). 
Let (b~ : i < x) be increasingly continuous,  I b~l < x, b - Ui<~ b;. If  for 

some i < x, 2 Epcf(b~), by the induct ion hypothesis there is b '  __. b; such that 
2 Epcf(b ') ,  Ib'l < x  and we finish. So w.l.o.g, for i < x ,  2 ~pcf(b~). Now if 
X=Ro we use 9.1(I): so there are 2 ,~pcf (bn)  for n < t o  such that 
2 ~ pcf{2n : n < to }. By the induct ion hypothesis for each n for some b,' __c b,,  
I b,~ I ---- l a I and 2, ~pcf(b;) .  So U,<~, b,' is as required. So assume x > R0. By 
9.1(2) for some 2, E pcf(b~), max pcf{2j : j  < i } < 2~, tcf(II2~, <j~)  - 2. For each 
i < x, there is b[ __. bi such that I b,-'l < l a I and 2~ Epcf(b~). If  I b I is singular, 
we have 

[~U b ; J _ - < x + l a l = c f ( l b l ) + l a l < l b l  

and as 2 Epcf({2i : i < x}) __ pcf LJ;<K b', by the induct ion hypothesis on I b I 
there is b '  c_ I.J,.<K b;, 2 ~ pcf(b'), so we finish. 

Hence w.l.o.g, x = I b I, let ci = {2j : j  < i }. Let (see 7.6) (bo : 0 E pcf(a)) be a 
smooth generating sequence for pcf(a). Let (by 7.2(5)) for each i < x, d~ be a 
finite subset of  pcf(ci) such that pcf(c~) __C I.Joed, bo. Now ( l.Joed, bo : i < x)  is 
increasing (since for i < j ,  d~ __ pcf(c~) c_ pcf(cj) __ I.Joed, be and z ~ I.Joedj bo =* 
b, c_ LJoedjbo) and hence so is (a N ((.Joed, bp):i < x ) .  As x > l a l  the se- 
quence is constant for i ~ [ i ( . ) ,  r )  for some i ( , ) <  x. But ( remember  that 
0 = max be(tr ivially)hence max PCf([-Joed, bo) = max pcf(ci) = max [-Joed, bo = 
max dj): 
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= max pcf(ci(.)+ l) 

< ~i(*)+ l 

 max cf(an( U 
Oedi( , )  + 1 

contradict ion by the previous sentence. 

9.3. LEMMA. I f ( V  g < / t ) ( g  x < / t ) ,  cf(/t) = K > ~0, (lti : i < ?¢) is increas- 
ingly continuous, Ui<~/ti = kt, a~ = Reg A (/ti,/t~], a = 1,3~<~ ai. 

Then for any regular cardinal 2 E ( / z , / t  ~] there is ca C a ,  Ical = x ,  ~ = 

sup(ca) such that tcf(l-lca, <s~) = 2 and { i < x: ca ~ (lti, ItS] v ~ ~ } is closed 

unbounded. 

PROOF. W.l.o.g./to > 2 ~. 
Let bi = I,.Jj~j aj, so (bi" i < x)  is increasing, bi = pcf(bi). By [Sh 111], 2.10 

for every 2 ~ R e g t 3 ( / t , / ~ ] ,  2 E p c f ( c )  for some c C_a, Icl < x .  Let # = 

pcf(c) N bi, as 2 i c u < 2 ~ < go < Min c, we can apply claim 9.1 (2) to (c~" i < x)  
def 

to get (2~" i < x) .  No w ca = (pcf{2j : j  < it}) A/~ is as required. 

§10. Consistency of uniform copies of col 

10.1. THEOREM. V ~ "S = { x < 2" x measurable} is stationary". Then for 

some semi-proper P, I e l  = 2, P ~ x-c.c, and 

PROOF. 

i teration 

such that 

]~-e "for every partition o f  ~(tn~) to 2 there is a 
monochromatic homomorphic copy o f  to I (in topology)". 

We have Os w.l.o.g. We define by induction on a < x a RCS 

(Pi. Q j" i _--< ol, j < a)  

(*) each Qj is semi-proper, 

IPil < ~i+3. 

We know semi-properness is preserved (see [Sh A2], Ch. X, §2). 
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For most  j ,  Qy = Levi(R t, 22"') • For x E S we know that in V e, 

(~)) V countable N < (H(~8), E)  3 N'  N < N'  < (H(~s), E)  
and N N col = N'  n col and sup(N n co2) < sup(N' N ('.02) 

(essentially see [Sh A2, Ch. XII, §2], strictly [Sh 253] 1.9, 1.9A(3)). 

<>s gives us a P~-name f =  f~. 
Assume I~-e, f :  ~(co0--" {green, red} (otherwise use the usual Q~). 
If  in V p, fo r f there  is a homogeneous green set as required, do as usual: Levi 

collapse. 
If not, let, in Ve,, ~ = C A ~ cot :A non-stationary}, 

Q~ = {(A~" i _-< a) : Ai - cot, A~ U ~ strictly increasing, 
continuous in i and f(A,-) = red} 

(the only properties of the family of non-stationary sets we use are: union of  R0 
is again in the family and is :# cot, and): 

10.2. CLAIM. For N, N'  from ~ necessarily in Ve,, 

U A v ~ U A .  
A ~ N A  ~ A E N ' N  

PROOF. For our iteration in VP,, 2 ~, = R 2. So ~ = {B, : a < co:}. We can 
define h" co2 ~ ~ ,  

h(a) = Min{7: By is not included in any union ofcountably 
many sets from {Bj : j  < a)}. 

Easily h is well defined (even if -1 CH) t and such (B, : a < co2), h belong to N. 

Choose now a E N '  n C O 2 \ N .  So Ua~un~,A ~Ah(.)C U,4EN, n~,A as 

N A ~' c__ {B~" TEN n co2} C_ {Br" 7 <ot}. 

10.3. CLAIM. Q~ is semi-proper (in Ve,). 

PROOV. Let N < (H(~s), ~ )  be countable, p E Q~ n N. 

We can define (use ~ repeatedly) N, (a < cot) increasingly continuous, 

N. < (H(:s),E), N. N cot = N N tot, (sup(N. N toz) : a < co2) strictly increas- 
ing. Now "A~<,o, f (UA~,  nu. A) = green" is impossible as then ( f(UA e~,n ~. A ) : 

t By the diagonal union for some B E 2 ,  [j <a~B~\B countable], B r ffi {i < Col:iEB or 
i = sup(/f)  B) but otp(i N B) not divisible by w2}. 
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a < to~) is a green set. So 3 a f(UAea, n~.A) = red. In N~ choose Pn ~ N  n Q~, 
Po--P, Pn increasing, ( V D ~ N )  [D dense subset of Q,:~VnP,,ED]. It is 
enough " U  pn has a limit". Let Pn = (Be : ~ < an), an increasing. 

10.4. CLAIM. IfA ~ ~ n N~ then ( 3 n)A _ B , .  

PROOF. Do={(B~:~<a)~Q,c:AC_B'~} is a dense subset of Q~: if 
(B~ : ( -<_ fl) ~ Q~ also ( 3 X) E ~ ) (X  red A X ~ B~ O A) - -  (if not we have a 
green cone), then (B~: ~ ~ fl) ^ iX)  ~D0. Now DoEN~, so use definition of the 

Pn above. 

CONTINUATION OF PROOF OF 10.3. By the claim 

U Be= U A 
~<L~na n AEPnN a 

which is red by choice o f a .  So (Be: ( < Unan) ^(UA~,oN.A) is a limit of  
(Pn :n  < to), belongs to Q~, so we have finished the proof  of "Q~ is semi- 
proper", hence of 10.1. 

10.5. REMARK. What about partitions of ~<a,(R2)? 

Velickovic and I discussed it in Arcta: from 2 colors, you cannot get rid of  
any; from 3, you can get rid of 1. 

§11. On a problem of Archangelski 

11.1. EXAMPLE. (Answer q. 3 of Archangelski). Let 2 be a cardinal. There 
is a space X = X~: 

(1) with a basis of clopen sets (so it is a T: and/ '3  space), 
(2) A(X)= ~ ( X ) =  R0, i.e. in X × X, the diagonal is the intersection of  

countably many open sets (hence every x E X has pseudo-character R0), 

(3) cellularity (X) = R0, 

(4) IXzl--~. 

11.1A. Construction. We define for n < to, 0 < m < to what is an m-place 

term ( 0 <  m < t o )  of depth < n, by induction on n (for such a term, 
m = re[z], n = n[z] are determined uniquely). 

n = O: it is a sequence z = (0, m) ;  
n > O :  for some terms % , . . . , T k - ~  ( k < t o ) ,  n[zi]<n, and functions 

h :{O . . . . .  k -  1 } ~ { 1 , -  1}, g : { O , . . . , k - 1 } ~ { i : O < i < t o }  
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and for i < k strictly increasing functions f :  {0, 1 . . . .  , m[Td - 1 } ~  

{0,1,  . . . .  m - l }  

such that ( .)  ifl~, l~ < k, z~, = %, h(lO = 1, h(12)= 1, then g(lO = g(12). 
Let z = (n,  m,  (zi: i < k ) ,  h ,g ,  (f~: i < k ) )  and we write zi = z~[z], h = 

h[z], k = k[z],  etc. 

11.1B. Observation. The set o f  terms is countable. 

11.1C. The set o f  points. N o w  the set o f  points o f  Xa is 

{(z,  ~) : z a term, & an increasing sequence of  ordinals < 2  o f  length m[z]}.  

We write z(a) instead of  (z, a ) .  

I I . I D .  A basis and a pseudo nb basis for each point. For each 0 < l < c o  

and x ~ Xa we define sets Ux t : 

u~ t = (x} t_J {y: for some terms z, tr and ordinals a 0 <  " . .  <amt,)-~ 

we have x = z((ao . . . .  , O/m(z)- l ) ) ,  Y = a(flO~ . . . .  f lm(o) - l )  

and for some i<k[ t r ] : z i [ t r ]=z ,  h [ t r ] ( i ) = + l ,  

[l < m(z)  & f [ a ] ( l )  - - j  =,  at = flj and g[tr](i) _-> 1]}. 

Note  that  ~) Ux TM _ Ux t . 

N o w  the topology of  X~ has the following base: 

f 
p - I  

N 
i -0  

[u~t(~))'°): p < co, x(i)  ~ Xa, l(i) < co, t ( i )  ~ { 1, - 1 } and 

[i,j  < p, x(i)  = x(j) ,  e(i) = 1, e(j) --- - 1 =* l(i) > l(j)]~ 
J 

where u t = u, u -  t = Xx - u for u _ X~. 

11.1 E. Explanation. We build the space like a free algebra. Each point  x 
has a pseudo nb basis {ut~:n < c o } ,  such that u~ +1 _ ux t , Nt<o, u~ -- {x} (so 

~(X~) = R0); moreover  

N ( U  U t x × u l ) = { ( x , x ) : x ~ X ~ } .  
I < oJ x ~ X  z 

We start with {z(&): n ( z ) =  0}; the restriction to this set is the discrete 

topology. So (1) + (2) + (4) are O.K. For  (3) (cellularity) we consider  any finite 

intersection of  u~, X~ - u / (x = z(&), n(z)  = 0) for which there is no obvious 

reason why it should be empty;  we add a point,  i.e. an appropriate  term 
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exemplifying its non-emptiness. So two Boolean combinations of Ux t ' s  are not 

disjoint except when there is an obvious reason (e.g. Ux s, u~ - u~) and a point 

belongs to Ux t only if it was added as a witness to an intersection including it. 

11. IF. Trivialpropert ies .  Trivially I Xa I = 2 (i.e. (4)) and Xa has a basis of  
clopen sets (i.e. (1)). 

l l . IG .  A ( X J =  R0. Suppose x ~ y  are from Xa but ( x , y ) ~  

Nl(t..Jz Uz t × u~). So x = z(&), y = a(]~). Let l( . )  be a natural number bigger 

than any g[z]( i )  (i < k[z]), g[cr](i) (i < k[a]). 

Now look at the definition of u~('); clearly 

XEU~ (*) ~ X  = Z, 

y ~ u~ ('~ ~ y = z.  

A s y  ~ x ,  (x,y)q~t-JzUtz ~*~ × u~ ~'). 

11.1H. Cellulari ty is R0. Let {u~: i < COl} be pairwise disjoint open non- 

empty subsets of  X~. So as we can decrease them, w.l.o.g. 

q(i)-- 1 

ui = N cut(i'P~ "(i'p~ where xi,~ EX~.  
p - O  

As we can replace {ui: i<co l}  by any uncountable subfamily, w.l.o.g. 
e(i,  p )  = e( p ), q ( i )  = q, l( i ,  p )  = l( p )  and for each p, xi.p (i < col) are all equal 
or all distinct. Also w.l.o.g, the truth value ofx~,p, = x~,~ does not depend on i 
and 

X i , , p  I = Xi2,p2==~ X i l , p l  = X i~ ,p  2 = X i l , p  2. 

Now we can easily form a z(&) in u0 Nut. 
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