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§1. On A-c.c. in ultraproducts of Boolean algebras
We point out that

(*):.0 if D is a filter on 6, for i <6, B, is a A-c.c. Boolean algebra, then
I1, . B;/D is a u-c.c. Boolean algebra

is independent of ZFC,' and that A *-c.c. is not preserved by ultraproducts of
countably many Boolean algebras.
Remember:

1.1. DEFINITION. Let A —[u]?, iffforanyc: [A]" — k thereis 4 €[] such
that |Rang(c ! [4]")]| = 6.

t Even fixing cardinal arithmetic.
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Also A —[u]¢ <4 is defined similarly.
We shall use the obvious monotonicity properties. By [Sh 288],!

1.2. THEOREM. If A<* =) =cfA <pu, u strongly Mahlo, then for some
At-c.c. A-complete forcing notion P of power u,

Fr“2 =pu&pu—[A%)2, foro<i’.
Now
1.2A. CLaM. (1) If g —[Alye <y,, then:

(*)146 IfDisafilter on 6, and B; is a Boolean algebra satisfying the A-c.c. for
i <46, then B =11, 4 B;/D satisfies the u-c.c.

(2) We can replace 2° by Min{ | E |: E C D generates D}.

ProoOF. Let, for a<py, a,=(a’:i<6)/D #0, fora<p<u, BFa,N
ag=0,and fora<u,BEF a,#0.

Letc(e, B) = {i:af Naf =0&a # 0 & af + 0}. So cis a coloring of u, two
place, |[Rangc| =< 2% (just the power of a set generating D is enough) and
clo, )ED fora< g <u.

So on some A€E[u]}, Rang(cl[4]?) is finite; so the intersection
M Rang(c 1 [4]?) is in D hence nonempty. So for some i (Va<Jp in A)
[af Naf =0&af #0&af +#0],s0 {a? : a€EA} C B;shows B; does not satisfy
A-c.c.; contradiction.

1.3. ConcLrusioN. The question whether (), , o holds does not depend on
cardinal arithmetic alone.

PrOOF. Start e.g. with V' GCH. By 1.2, 1.2A we get one case: (*);,4
holds. If we use P = adding u Cohen subsets to A we get 1(x); , 4, but the same
cardinal arithmetic.

1.3A. Cram. Ifu—[A]} <., u regular for simplicity and for i < 6, B;is a
Boolean algebra and B, the product of (B;:i < 8), does not satisfy the u-c.c.,
then for some a C 6, |a| <k, the product of (B;:iEa) does not satisfy the
A-c.C.

Proor. Similar, so we leave it to the reader.

t For a weaker (but sufficient) result, see [Sh 276].
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1.4. THEOREM. Suppose A > R, is regular. Then there are Boolean algebras
B, (n < w) such that:
(i) B, satisfies the A-c.c.,
(i1) for any uniform ultrafilter D on w (or filter containing the cobounded
subsets) I, ., B,/D does not satisfy the A-c.c. except possibly when

(*¥) A is Mahlo and for every {(C,: u <A, pis inaccessible), C, a club of
u there is C a club of A such that Va<A3pu(CNa=C,Na).

REMARK. If Ais a successor or just not Mahlo then () fails trivially. Also if
there are stationary S;CA such that for any inaccessible A’<<A
( 3i <A)S; N A’ not stationary] then () fails (see [Sh 276], 3.9).

ProoOF. See [Sh 276] proof of 3.11, 3.3, §3 (which continues Todorcevic
[T 2)). By the proof, for such 4, there is a symmetric function ¢ from [1}* to @
such that:

A ifn<ow,i =l <{P<---<{fori<2iand m <w, then for some

1<j:
(r<f! and A A (8L Hzm.
I=1k=1
We define a Boolean algebra B,: it is freely generated by {x/: i <1} except:
B,kExiNxi=0 whena<p&c(f,a)=n.
Now B, £ 1-c.c. by (A) (for each n) but I1 B,/D k 14-c.c. as
{xhin<w)D:a<li)

exemplify this.

1.5. ConcLusioN. If A = N, then for some B, (n < w)
(1) c(By) =4,
(i) ¢(I1,., B,/D)= A* for every uniform ultrafilter D on w.

1.6. OBSErVATION. If D is ultrafilter on I, A —(4,)%,, B; F 4;-c.c., then
I1B,/D F A-c.c.

§2. On length of Boolean algebras

2.1. DerFiNITION.  For a Boolean algebra, B, let:

Length(B) =sup{|Y|: Y C B, Y is linearly ordered}.
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We shall prove that the length of Il,..B; cannot be computed from
(Length(B;):i <x) alone.

22. LEMMA. (1) Let TC*3A be a tree (with k levels) [i.e.
neET={nta:a=lg(n)}CT)and

METN* A, a<Bf<k=3I>VET N AWIa=1)].

Foreachalet T,=T N °A, <,lexicographic order on T,. Let B, be the interval
Boolean algebra of (T, <,). Then
(a) Length(B,) = |T,| if T, is infinite, and 2'7) <R, if T, is finite;
(b) Length(Il,., B,) = | T, | (x = Ry, of course).
(2) Let B, be the interval Boolean algebra of the cardinal | T, |. Then
(a) Length(B2) = |T,| if T, is infinite, and 2'™=! (< V) if T, is finite,
aet

(b) Length(Il,., B)=pu = T, |T,|%+ 2" when k has uncountable
cofinality.

Proor. (1)(a) Immediate.

(1)b) Wlo.g 0,=(0:i<a)€T,, for n€ANT let a,=([0, 7a):
a<k)EIl .. B,.

(2)(a) Immediate.

(2)b) Let A=p, A =ik,

Let J be a linear order, |J| > 4 and suppose there are ¢, = (a7 :a<k)E
I B/for t€Jand (a,: t €J) a chain in I1 B/. We shall get a contradiction thus
finishing the proof.

Now for each «

(*)} we can find (47 :n <w), (M. n <w) and A? such that:

B\ {0}= U 4z,

n<w

hl:Ax—"|T,| (sequence of length m? of ordinals < | T, |) such that:

(D) if ¢, dE€ A4z, then the truth values of ¢ =d, ¢ <d depend just on the
equalities and inequalities between the ordinals in the sequences
hi(c), hi(d).

As A =2% we know that wlo.g. for some (n(a):a<k), we have:
(Vie€)ar €A4;.
Now for every 4 Ck, a, I 4 o (a}:a€A)EM , B, is =-increasing and

{ACk:|{at4:t€J}| =A)isanideal of xand, as A = A%, itis R;-complete.
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So w.l.o.g. n{e) = n(*) (in the case {a: n(a) = n(*)} is bounded in x, we can
redefine x, and A still satisfies the requirement).
Now we have that (w.l.o.g.):

(*+) there is n(*) <w such that for each o <x we have: {a7:¢t€J} has
ordertype a scattered set of rank = n(*) (the point is just that the n(*)
is fixed).

We get a contradiction by induction on n(x) (simultaneously for all Boolean
algebras and B,, J, and a;).

The case n(*) =0 is empty.

The case n(*¥)>1. There are convex' equivalence relations e, on
{a7:t€J} of order type =4 or =A* (=the inverse of A) with each
equivalence class scattered of rank =< n(x) — 1.

Now ¢, induces a convex equivalence relation e/ on J, i.e. t,e5t, iff a’e, a7 ;
e, is convex as [t =, —af =Za]. Also M, e, is a convex equivalence
relation on J. Now each equivalence class I has power = A, otherwise we have
{a,:t€I) and apply an induction hypothesis on n(*). Now choose J' CJ
which is a set of representatives for () ., e, i.e. such that for each
(N, e.)-equivalence class I we have |J’ N I'| = 1. So necessarily |J’| > 1. Now
we choose b7 for « <k, t €J such that:

b E{az:sEtlel},
b,c: = bgﬁtle‘:tz.

This is easy to do. Now apply our induction hypothesisto ({57 : t EJ’) : t EJ’),
n(x) — 1.

Now we come to the main case.

The case n(¥)=1. As we can replace I, .. B, and (a7 :a<k,t€J) by
M, B,and (a}:a€A,tEJ) aslongas |{a, 1 A:tEJ} | >4;and as we can
replace the a;*’s by (15, — a)’s, w.l.o.g.

(D) (a7 :t€J) is well ordered of order type = |T,| = A, (for each a).

So w.lo.g. J CTl,.,. 4, is ordered by n = v < A, n(a) = v(a). Let x be regular
large enough, <} a well order of H(y) (the family of sets of hereditary
power <x).

t An equivalence relation ¢ on [ is convex iff V.x €1 [x/e is a convex set].
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Let Ny < (H(x),€,<},J), 2 C Ny, [INoI1* S Ny, || No|| = 2. Let Ny <
M<HG).E, <KD M| =2 [IMRCM,AI+1CM.

Let ((yf:i <cfd):d <A)bethe <*first sequence such that (y: i <cfd)
is increasing with limit 6. Choose n €J — | M| and define (for N < M, such
that & + 1 C N): py(0)E*IN|, [py(m@) = Min{y EN: y = n(a)}. Note: if
n(a) € N then cf[(py(n)))] is a regular cardinal which belongs to N but is not
included in it and is > k. We choose by induction on #, {, <A as follows:
letting N, = Skolem Hull(N, U {{, ..., $uo1}), Of

{cfllpn, (M ()] : [on, (MU EN,,}

is a singleton {u,} (or is empty and we let 4, = k), we can choose {, <, such
that if o <k, [py (1)) EN,,, then

Yo > y(a)

(see above on ({y¢: { > 4d))). First assume {, is defined for each n.

So for every «, {[pn,(1)](a) : n) decreases and stops only when py (7)) €
N,. So if we succeed in continuing a step, then A, n(a) = o, (M) EN, for
some k,<w, so n Cthe Skolem Hull of NyU {{,:n<w}. Of course,
({,: n <w) depends on 7 but there are < A® such sequences, and

[ NoU{C:n<w}| =2%

so for some n€J, and n, {,, ..., {,_, are defined but not {,. So for this »n
{cf[(pn,(M])(@)) : « <k} has more than one element, i.e. for some o}, @, <k:

= oy, (M) <t cf(py, (1)),
Choose {*, sup[N, N u,] <{* <y, let
N* = Skolem Hull of (N, U {{*}).
So in N*, there is {* such that:

sup[N, N (pw, (M) )] < T* <[ py, (M)

Now
(0) sup N* Ny, = sup(N, N )
(as uy, ILEEN,, 1, < i, are regular).
(oY Similarly for

sup[N* N (py,(M))az)] = sup[N, N (px, (M) a)].



Sh:345

136 S. SHELAH Isr. J. Math.

(B) N, E (V(x)(if xis an ordinal <[py (7)](«;) then thereis y €J, such that
x <ylay) <[py, (M),
W(ay) <[pn,(n)a)).

Note: [ py,(m)(ay), [pn,(n))(«,) are in N, though not the function py (7)! Hence
also N* satisfies this formula; now apply it to x = y?. where d = [py,(1)](a;) to
get y=v. So v(a)) > n(a;) [choice of {*], v(a) <nlay) [as v(ia)EN*N
[pn,(1))(e2) and («)’]. This contradicts our assumption on J.

2.3. ConcLusION. Ife.g. A =A% A*> ] + 2~ then for some B,, B!, i <k,
Length(B/) = A = Length B,

Length( I B{) =A<AF= Length( I B,~> .

i<k i<k

§3. On depth of Boolean algebras

3.1. DeFINiTION. The depth of a Boolean algebra is
Dp(B) o sup{| X |: X is well ordered}.

We shall show that, in some universes of set theory, Dp(IT; ., B,/D) is </>
I1; .. .(Dp(B;))/ D for some Boolean algebra B; and ultrafilter D.

3.1A. REMARK. Length(Il; ., B;/D) = I, .. length(B;)/D for any ultrafilter
D on k, B; Boolean algebras, by Eos theorem as observed by S. Koppleberg and
the author independently.

REMARK. Of course, for some regular ultrafilter D on A, in w*/D there is a
decreasing sequence of length 2% (see e.g. [ShA 1, VI, NB]) so the problem is to
find cases in which this fails; necessarily GCH cannot hold.

3.2. THEOREM. Suppose CH, A >R, P is the product of A Sacks forcing
with countable support: 11, ., Q;. Then in V?*:
(a) 2% =(1")",
(b) for some ultrafilter D on w (non-principal) in (w,<)*/D there is no
increasing chain of length R, (nor decreasing),
(c) if By is atomless countable Boolean algebra, then in B¢/D there is no
increasing (nor decreasing) chain of length R,.
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ProoF. By a theorem of Laver, there is an ultrafilter D on @ (non-
principal) such that D is an ultrafilter also in V'* (more accurately — generates
one). This is our D.

Letp€E€P,p | “( £,/D: a<X,) acounterexample”. For each « < X,, there is
D., D < P,EP, such that above p,, f. (€ “w) (or €“B,) is a name in I¢; G,
I,CA, || =Ry, p,€EMig; Q. As VE CHw.log. (L, : a < w,) is a A-system
with heart I, and (I,, p., f) for a« <R, are pairwise isomorphic over I. For
a<f we know p |F “£./D'< f,/D” so there is 4,4 €D, w.Lo.g. from ¥ such
that i i

P4 €EDA N L(1)<fn)"

n€4as ~

We now know p,, ps are compatible (definition of P) so there is p, s = p,, ps,
P.s EP. Wlo.g p,, force a value to 4,4, say B, 5. S0 pg |F “Nes,, Lo (1)<
fz(n)”. Now every permutation of 4 induces an automorphism of P = fI,-< L0
let / be such permutation mapping I, onto I; over I and interchanging ( p,, f)
with (pg, f3)- S0 A( Pag) Z h(p.), (D) Ut A(p,) = ps, h(pg) = P, etc., 50

PEh(pg)lF" N f(n)<f(n);

n€B,
contradiction.
REMARK. The argument is good for any antisymmetric relation.

3.3. THEOREM. Let A = A<* <<y = u~* be such that (V k)[x <u=k<* <uj,
Os<u* :cta=up Qu- For a set I of ordinals we let

Q; = {f: fa partial function from I to A of power <1},

order: inclusion.
(A) In V%+ there is a uniform regular ultrafilter D on A such that:
(@) in (A, <)*/D there is no increasing chain of length u~,
(b) if B is the Boolean algebra of finite cofinite subsets of A then in
B*/D there is no increasing (or decreasing) sequence of length u*,
(c) in (b) we can let B be any Boolean algebra B (hence any partial
order) of power A.
B) InVo%+ A =1} 2 =put,

ProOF. Let
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ap; = {D: D a Q;-name of an ultrafilter (regular uniform) on A
s.t. for every o, D N P(A)V %neis a Q;,-name}.

AP =U{ap,: 1 Cu*,and |I| <u},let o(D) be the unique
a such that D Eap,,.

(1) Let a<u™. Let a type for D Eap, be a pair (M, ¢g) such that:
(i) Misamodelin V, |[L(M)| + | M || =u;
(ii) ¢q is a Q,-name of a set of formulas (in say m-variables) over
M*ID, finitely satisfiable in it (ultrapower in V'%).
We may omit M.
(2) The type (M, q) is strongly omitted for D Eap, if for y <y, in V%, if
we extended D by <u sets getting D’ still for no g€V %+
A{i<i:ME o@)i)}ED]

=
[where all parameters of g are functions from 4 to M/, we compute their value at {].

3.3A. THE GAME LEMMA. In the following game player / has a winning
strategy:
it lasts u* stages,
in stage o player I chooses D,E ap, extending each D; (j <i),
player II chooses a set I, of types, each strongly omitted for D,.
In the end player I wins if, for D,+, each (M, ¢)ET, (e <u™) is omitted.

REMARK. We do not use ¢ ,+.cr5-, for 3.3A.

Proor. By [Sh 162]. (For other applications and formulations see
[Sh 107]; on a similar construction see [Sh 326], §3.)

3.3B. The Game*. We can also demand on the D, (from player I)

(#) ifICu*, cfa=u, |I| <u, EaQ;-name of an ultrafilter, ET (] Na) C
D,, then some order preserving h: ] o J C a the A-image of Eis C D,,

ht (I Na)=id;n,.
[Hence D, (cfa = ) is a good ultrafilter.]

PrOOF OF THE THEOREM 3.3. Let B be a fixed order of power 4 of order
type { + 1 or ({ + 1)* Build D,Eap, increasing with «, by induction on «
according to the winning strategy of the game of 3.3A.

In stage d, ¢f & = s, O(5<,*cr6-u BiVEs us the guess ([;’/Q,; :a<<d) which is
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(forced to be) <p,-increasing, f?a Q,-name of a function from A to B. Now we
define (M, q):

M =13,
={f2/D; = x/Ds: a <d}
U {x/D,; <h/Ds: h€(*B)"*and A f¢/D; <h/l),,}

a<é
(remember that g is a Q;-name [and if { f2/D;: a <J) is <p,-decreasing, we
invert the order of % and continue similafrly; s0 we ignore this].

We should prove that it is strongly omitted; so we let G C Q; be generic over
V and work in V[G]. Let y <uand D’ be generated by D; U {4;:i <i(*)<u}
where 4, 1s a Qs .,,/G-name.

So assume g is a Q;4,/G-name, pE€Q;,,/G, p “g, {4iri<i(¥)<u}isa
counterexample and wlo.g {4;:i<i(x)<u}is closed under finite intersec-
tion”. So for each a < § there are p,, j(«) such that:

(@) p = p.€Q.1./G,

(®) po |- “[{i: f() <g(1)} 24(@) N B,,, B,ED, ja) <i()".

So for some unbounded Z C 4, for a€EZ, p,= p*, j(a) =j(*) (or really
P!, a+ 7] = p*).
Now for each i <A let T; C B be the set of b €B such that:

P* ¥ () =b Ai €4yl
Clearly A*={i: T, # J }ED. And by (b) above
0EZ&IEA*NB, & bET, =B F fi(i)<b.
So fora € Z:
(*) (b1 i <AYEMT)"*= f¢/D = (b;: i <Ai)/D.

Remember Bis { + 1 or ({ + 1)*, { <A*. So B is a well ordering (linear) or
inverse well ordering with minimal element. Let b, = inf T}, then

AfID <B/D  where § = (b;:i <i)E(*)"*

a

and so x/D < b/D € ¢, but this is impossible. This proves 3.3(A)(a).

END OF THE PROOF OF 3.3(A)(b). Let B be the finite cofinite subsets of 1; if
in B*/D there is a monotonic sequence (f;/D:a<pu*) then w.lo.g. it is
increasing (otherwise use 1y — f,/D) and w.l.o.g. {i : £,(i)is finite} € D for each
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a < A(if it fails for aguse ( f,,+o/D — fo./D: a <A)), hence w.l.o.g. f,(i) is finite
fora<u*,i<i;letf*(@)=|f.(i)|, hence { f*/D:a<A) is strictly monoto-
nic and we get a contradiction.

Proor oF 3.3(A)}c). Use the < -system density for #* which we are
allowed to use (see [Sh 162]) and the symmetry in the forming.

3.4. ConcLusioN. For the forcing notion from 3.3: in ¥'%+, D is a regular
ultrafilter on 4 (even good) and B the Boolean algebra we have

A = Depth B (obtained); II(Depth B)/D = u*,
Depth(I1B/D) = u.

3.5. REMARK. (1) The property of the order B we really use in the proof of
3.3(AXa) is that it is complete not only in ¥ but even in V%,

(2) Instead of u* we can get an inaccessible 2*. E.g. if u is strongly
inaccessible Mahlo, A = A<* < u; force with

R ={D:forsome ] Cu, (Vk)[A <k <u & k strongly inaccessible
=|INk|<k] and D is a Q;,-name of regular uniform
ultrafilter on 4 such that for every o, D N 2(1)"*™ is a
O; N a-name}.

§4. Spread and entangled orders

4.1. DEFINITION. For a Boolean algebra B let s(B), the spread of B, be

(*) s(B) =4 sup{|Y|: Y C B — {0} and no y€EY belongs to the ideal
generated by ¥ — {y}}

or equivalently

(*) s(B) = sup{c(B’): B’ is a homomorphic image of B} [where c(B’) is the
cellularity number of B’].

4.2. PROBLEM. So we have, for 4 = s(B) a limit cardinal, two attainment
problems:

A. Obtainment. Ifs(B)=2A,isthere Y CB — {0}, | Y| =Aas in (x)?

B. Weak Obtainment. 1f s(B)= A, is there a homomorphic image B’ of B
such that c(B’) = A?

Note that by [Sh 233]:
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4.2C. THEOREM. If s(B) is singular and not obtained, then 2°V® > s(B).

So the obtainment problem for singular u = s(B) is only for the case
248 >y,

Todorcevic (see Monk [M]) proves that for A = 2%, we can construct a
Boolean algebra B with non-weak obtainment for s(B) = 4 (if 2% is a limit
cardinal).

The problem of getting examples for non-obtainment is closely tied in with
entangled linear orders and related properties (on these see Todorcevic [T 1])
which has a long historical discussion; see Abraham-Rubin-Shelah [ARS 153]
and Bonnet-Shelah [BoSh 210].

Our main conclusion is 4.15.

4.3. OBSERVATION. If 5(4) (the spread) is singular and not obtained, then
A has no homomorphic image B such that c¢(B) = s(4), i.e. s(4) is not weakly
obtained.

Proofr. If for some homomorphic image Bof A, c(B) = s(4), then Bhas an
antichain of power s(4) (by the Erd8s-Tarski theorem) hence s(4 ) is obtained.

4.4, OBserVATION. (1) If s(4) (the spread) is not obtained and is strongly
inaccessible, then for some homomorphic image Bof 4, c(B) = s(A); in fact we
have B =A.

(2) If Aisinaccessible, then there is a Boolean algebra B such that ¢(B) = Ais
not obtained.

Proor. (1) If c(4)=s(4), we finish. If not, c(4)<s(4) hence
(Vu <s(A)u™ <s(A4) so (as necessarily (A | = s(4); see [Sh 92]) A has an
independent subset of cardinality s(4) so s(A4) is obtained; contradiction.

(2) Well known.

4.5. REMARK. We can conclude that the double problem of being obtained
is really double only for weakly inaccessibles.

4.6. DEFINITION. (1) Ens(A, u,x) means: there are linear orderings
(I,: a<x) such that:
(a) I, is a linear order of power A,
®)ifn<w, o,<-+-<a,<k, wC{l,...,n}, t{E€I, for { <u, |=
l,...,nand [{, # (=t} #t]], then for some { <& <y,
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Hew=tl<t}],
[1slsnalgw=tl>tl]

(2) Ens(4, u, k) is defined similarly but n = k.

(3) If we omit u, this means A = u.

(4) A linear order I is (u, n)-entangled if: for every pairwise distinct ¢t} €1
(1=21=n,{<y)suchthatt; <t <---<tfandwC{l,...,n}, there are
¢ <& < u such that:

(#*) 1=l=n=[l€Ewetl <t}]
(5) We omit g if {I| = u; we omit »n if it holds for all n < w.

4.7. Fact. (1) {I) witnesses Ens(1, u, 1) iff I is a linear order of power 4,
with no monotonic sequence of length 4.

(2) (1,J) witnesses Ens(4, , 2) iff I, J are linear orders of power 4, with no
monotonic sequence of length u, and I, J are u-far (i.e. have no isomorphic
subsets of power i) and I, J* are u-far where J* is the reverse order on J.

(3) If I has density <u, u = cfu, then in the definition (4.6(4),(5)) of “I is
u-entangled” we can add:

(k) th<tit' th<etforl=1,...,n—1

(4) If n = 2, Iis (u, n)-entangled, then I has density <pu.
(5) If I is u-entangled, I has k -pairwise disjoint intervals each of power 4,
then Ens(4, u, k).

ProOF. (3) Let JE[I]<* be dense in I. Suppose that ({t}:/=1,...,n):
¢ <u)isasin4.6(4),(5). Foreach/€(1,...,n},t} <t}*', and so there exists
s{ €J such that 1} =s} =t/*' (and at least one inequality is strict). Define
functions 4y, A; on u by:

h(8):= ({5 s 8270
h(Q):= ((TV(t} =s}), TV@ =sp)):l=1,...,n)
(where TV(-) is the truth value of -). dom(hy) = g and |Rang(h)| = |J|"" ' <
u. Similarly for A,. Since cf(u) = u, there exists A €[u]* such that A" 4 and

h,t A are constant. That’s to say, for some s',...,s""! in J, VIE
{1,...,n—1}, V€A,
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Since the ¢/ are given as pairwise distinct, using 4, I 4, one finds that
1p<st<utft'.

W.l.o.g. 4 = u (relabelling); now applying 4.6(4), there exists { <& <u such
that 1 =/ = n=[l€we1} <t}), and in addition, for I =1,...,n — 1,

th<st=s'=sl<t{*' and t}{<s{=s'=s}<t}™

so that (*)’ holds.

(4) Eg.n=2.

Suppose that I has density at least . By induction on { <u, choose #/, #
such that:

() & <#,

(i) o, &t} 3 E<(),

(1) (VE<OVIE{1, 2} <tl =1} <t}).

Continue to define for as long as possible.

There are two possible outcomes.

Outcome (a): one gets stuck at some { <u. Define J:= {#, #}: £ <{}. So
(V' <?€l — I IsET)t' <s<pt*<s). Since t', 2&J, it follows that ' <
sat’>sort'>sat*<s. So Jis dense in 7 and is of power 2|{| <u — a
contradiction.

Outcome (b): one can define ¢}, # for every { <pu. Then (¢}, #}:{ <u),
w = {1, 2} constitute an easy counterexample to the (u, 2)-entangledness of 1.

4.8. Fact. For a linear order I and regular uncountable cardinal u, the
following are equivalent:
(a) Iis pu-entangled.
(b) B = BA,,(7) (the interval Boolean algebra) is u-narrow, i.e. with no u
pairwise incomparable elements.

ProOF. (a)=(b). By 4.7(4) I has density <pu.

Let (1, : { <pu) be distinct elements of B. We know that for each { there are
aneven n({)<wand { <--- <#f©inIsuchthat r, = e (271, 2. As
cf u >Ry, w.lo.g. n({)=n(*);, now by 4.6(4) and 4.7(3) for some { < ¢, for

=1,...,n()/2, ' =¥ <t¥ =¥, hence B F 1, C 1, as required.



Sh:345

144 S. SHELAH Isr. J. Math.

(b)=(a). Note that I has density <u.
So let I, C I be a dense subset of I of cardinality <u. LetforJ C 1, s <t,
from J, (s, t); ={r€J:5s <r <t}. Let

J={t€l:ifIFs<tthen |(s,1),| =pandif I F t <sthen |(z,s),| = u}.
Clearly
(*), [I=J|<pandifs<tareinJthen |{rEJ:s<r<t}| =u.

[why?

@) If [T —J| =u,let t, €I — J be distinct for { <y, so for each { there is
s¢ €1 such that s, <t; & |[(s;, ;)| <por t, <s; & |(t;, ;)| <u. We can
replace {f;:{ <u} by any subset of the same cardinality so w.l.o.g. 5; <
t; =59 < tp,. By symmetry assume s, < ¢,, otherwise look at I*. For each {, as I,
is a dense subset of I there is r, €I, such that s; = r; = t,. As |Ij| <p = cf(u)
wlo.g r,=r for every {. As |[r, t;};| = 1(s;,t;) | +2<u for each (,
H{E<wp;t: =t} = |[rg, 1| <u. Clearly there is A({) <pu such that [ <u
&ézh()=t<t)and C={<u:(V{<EOM({)<&) is aclub of u, so
(#;: { €C) 1s strictly increasing, contradicting “I has density <pu”.

(b) s<t are in J=|(s,t);| =pu because tEJ implies u = |(s,1),| =
1(s, 8); | + [I\J |, but [INJ| <psop=|(s,t)].]

(%), There is a dense subset J; of J of cardinality <u [even easier].

Now let t; €I be distinct for { <p,/=1,...,nandw C {1,...,n}and we
should find { < & such that:

lew=t <d], IE{l,....,n}\w=1}>1].

We, of course, can replace {(/, . . ., ##) : { <u} by any subset of cardinality
u.Sowlo.g.

(*); no ¢ is first or last, and every ¢ isin J (as |I — J | <p).

So for each { we can find 7, ..., rz*! €J; such that

t [ has no well-ordered subset of power x4 nor an inverse well-ordered subset of power . So if /
has density = u, then there are disjoint closed-open intervals I, 7, with density = u. Now for
each I, we choose by induction on { < density(/,,) af* < bf" from I, such that [aZ*, bf"] is disjoint
from {af", b': £ <{). So &< {=[af', b1 ZLlap, bf'). Now ([af, bV (I, —[a}. B})): { <u)
shows B is not u-narrow.}
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r<g<ri<ti<---<g<nth.

As |Ij| <u = cf(p) w.l.o.g. r} =r for every l.
Let for each { <y,
we L (1€, ..., nyand thy <ti.}.

u; has = 2" possible values. W.l.o.g. u; = u* for every { <u.

Note [[€u; & [E{1,...,n}=1ty >ti 1] (@s tj; # ti;+,). For each { <,
IE€{1,...,n} there is p} €J, such that t§; < p} <t ,, Or tj; 4, < p} <ti.
W.lo.g. p{ = p.

Now we define by induction on { <y, for every / ={1,..., n}, members
g, g, g, gb* of J such that:

(i) if I €u; (ie. ti <ty ) then

n<gh <ty <q*<p <gP <ty <qpt <r
(ii) if /@ u; (but [E{1,..., n}, ie. t,; > ty;,,) then
n<qp <t <qf? <p <P <t <q* <r;
(iii) gf™(m€E(1,2, 3, 4}) does not belong to
(g &<l kE(l,... ,n}i€(l,..., 4 U {d:E<(IE€(L, ..., n}).
There are no problems by (*),. It is still possible that for some { <¢,
B#{gim:l=1,...,nandm=1,2,3,4)n{5p:/=1,...,n)}

for each {, there are at most 4n such &’s, so there is A,({) <u such that
hi=sét<u= Al,m Ay Qé’m #* té‘. So w.l.o.g.

(*), thesets {gb™,tt:1=1,...,nand m =1, 2, 3, 4} are pairwise disjoint.
¢l

Now we define for every { <u a sequence (s} :/=1,...,4n) by defining
st s 5§73, sf for each [E€(1, . . ., n} as follows:
Case 1. lew,l€u*,

43 al—-2 -1 A\ — (4 2 L3 4l
(3, sfm2 s sy = (g, b, ab?s e )-
Case 2. l¢w,lEu*,
4l-3 J4i-2 - = (bt ! s
(sE3, s s sy = (abt, e, B s aFY).

Case 3. lew, l¢u*,
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4=3 4—2 A1 A\ — Ll 4l 4
(s 77,8075, 8¢ ,Sc)—(‘k,lzcﬂ,téc,qg ).

Case 4. l&w, & u*,
(5873, 5872, 5870, 581y = (the v, a2, 08, 1),
Clearly for { <p, s} < - -+ <s{ and the s are pairwise distinct (by (*),) and
n<s{<sE<p <<t <n<S§E<SE<P,<s{<F<r<---.

Now for each { we define an element x; of the Boolean algebra BA(J):

2n
X = IU [s#71, s).
-1

Note

(*)s forl=1,...,n:
@) x;N[r, p)= [5?1—3, 5?1_2),
() x; N [P = (s, s¢).

So (x;: { <) is a sequence of 4 members of the Boolean algebra BA(Z). By
the assumption (we prove (b)= (a) in Fact 4.9) for some { <& <u, x;, x; are
comparable members of BA([); i.e. x; C x; or x; C x;. We derive our desired
conclusion (®) according to the case.

Case A. x; C x;.

In this case we shall prove that 2{ + 1, 2¢ + 1 are the ordinals we are looking
for; i.e. conditions (a), (B), (y) below hold, and we shall check those, thus
finishing this case.

Condition a. 2{+1<2E+1.
[Trivial by { <&.]

Condition B. IfIEwthen &, <t,,.
Possibility Bl. [E€u*.
Then ;. = s{, the 1, = s¢' (check the definition of the 5’s); now by (%)s(b):

x( N [pl’ rl+l) = [S?I—l’ S?l)a

hence (case 1 above)

XN [pntiy)= (b, th 1)

and

XN [p,n)= [Sé‘"‘, s,
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hence (case 1 above)

X: N [pls rl+1) = [qé,S’ té{-{-l).

But as we are in Case A, x; C x; hence x; N[ p;, r,44) € x, N[ by, 1141), Which
means by the previous sentence [gf*, 3 +,) C [¢}?, tie+1), which implies g}* <
giPand i, Sty But thy # ey (as { # &) 5oty <thy, as required.

Possibility 2. ¢ u*.
Then £, ,, = s¥'~2, ti,, = s§'? (check the definition of the s’s); now by

(*)s(a):

xC N [rl: pl) = [Sgl_Sa Sg[_z),
hence (by case 3 above)

x; N[, p)= [Qé‘l, léc“);
and
x{ N [rl’ pl) = [321_3, Sgl_z),

hence (by case 3 above)
x: N[, p)=1[gt", tess).

But as we are in Case A, x; C x;hence x; N [r;, p;) € x; N [r;, p;), which means
by the previous sentence [gf', #3;+1) C [g¢', the+1), which implies g}! = g/ and
By Sthepr But i,y # theyy (s § # &) s0 th 4 <ty as required.

Condition v. Iflg&w((but/€{l,...,n})then tl, >th.,.

Possibility y1. [€u*.
Then #5, = sf'~1, t} = s¥ ' (check the definition of the 5’s). Now by (*)s(b):

X, O [P rs)=Isf", s,
hence (by case 2 above)

Xe NP i) =415 g
and

Xe N[ oy ) =1[s87", s,
hence (by case 2 above)
Xe V[ D1 1141) = (e w15 4°).

But as we are in Case A, x; C x; hence x, N [ p;, ;1) € X N [y, 1141), which
means by the previous sentence [t};.,, gf*) C [t ,, 15%), which implies
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Brsr Zlerr and gf* Z qp*. But tp ) # the,, (as { #&) 50 ey >ty as
required.

Possibility y2. [&u*.
Then #;,, =s¥ 73, ey, = s# 73 (check the definition of the s’s); now by
(*)s(a):

X N r, p) =173, s¢2),

hence
xe N1, o) =1, 487,
and
xf N [rla pI) = [sg1_39 5?1_2),
hence

Xe N (1, 01) = [Besr aF2).

But as we are in Case A, x; C x;, hence x; N [r;, p;) € X N [r, p;), which
means by the previous sentence [, q}?) C[th 1, g+?), which implies
Beer Sty and gp* S g%, But £, #theyy (as { # &) 50 they) <ty as
required.

Case B. x; Cx;.

In this case we shall prove that 2{, 2& are a pair of ordinals we are looking
for; i.e. conditions (a), (£), (y) below hold and we shall check those, thus
finishing this case (hence 4.8).

Condition a. 2{ <2&.
[Trivial by { <¢&.]

Condition B. 1fIEw then £, <.

Possibility Bl. [Eu*.
Then t3, = s{'~3, tjs = s§'~? (check the definition of the s5’s); now by (¥),(a):

x( N [rls pl) = [S?I_3) sg1_2)5
hence (by case 1 above)

X N [r, p) =ty 4%,
and
xe O [r, p)=[s873, 5872,

hence (by case 1 above)
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Xg N [rla pl) = [téf’ qé,Z)‘

But as we are in Case B, x; 2 x; hence x; N [r, p) 2 x; N [, p;), which means
by the previous sentence [ty;, g5*) 2 [t} g¢*), which implies #, <t and
gi? = qb?. But t); # ti (as { # &), so ti; <t} as required.

Possibility B2. 1If I¢u* (but /[€{1,...,n} then t); ="', tf; = af'~!
(check the definition of the s’s); now by (*)s(b):

XN [ppre)=1[s¢"", s,
hence (by case 3 above)

xC N [pb rl+l) = [t’.gCa qé,4)’
and

Xe N [ppre)=[s#71, 58,
hence (by case 3 above)
X O [P ney) = [t a8°).

But as we are in Case B, x; 2 x; hence x; N [ py, r141) 2 X N [ Py, 7141), which
means by the previous sentence [t5;, /%) 2 [tL, ¢¢*), which implies #}; < #;
and g/* = gb*. But i, # ti (as { # &), so ti; <1}, as required.

Condition y. 1&w(but/€{1,...,n}), then t; > tl..

Possibility y1. [€u*.
Then #; = s#~2, ti; = s#~? (check the definition of the 5’s); now by (*)s(a):

xXe O [ry, o) =[sf' 73, s72),
hence (by case 2 above)

xC N [rl’ pl) = [qé’la té{);
and
Xe O [r, pr) = [s872, s872),

hence (by case 2 above)
X N[, p) =[ad", te).

But as we are in Case B, x; 2 x; hence x; N [, p) 2 x; N [r;, p;), which means

by the previous sentence [g', ti;) 2 [gF', i), which implies gf' < g}' and

the S th,. But th; # ti (as { # &), so ti; as required.
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Possiblity y2. l&u*.
Then &, = s{/, t5; = 5§’ (check the definition of the 5’s); now by (*)s(b):

xXe NP e =I[sf7", s,

hence

X N Lp, ) =lat?, fzﬂc);
and (by case 4 above)
411

XN [pns)=10ss", Sé"),
hence (by case 4 above)

Xe N[ i) = (g8, 1)

But as we are in Case B, x; 2 x; hence x; N [ py, 141) 2 X; N [ p1, 114+4), which
means by the previous sentence [g/*, £i;) 2 [¢}?, ti), which implies g;* = gf*
and th; < ti;. But £}, # ti (as { # &), so t5; <t} as required.

So we finish the proof of 4.8.

4.9. Fact. (1) There is an entangled linear order 4 C R of power cf(2%).

(2) Generalization to higher cardinals: if there is a linear order of power
cf(2*) and density A (e.g. 4 strong limit), then there is an entangled linear order
of power 2* and density A.

ProoF. Done independently by Bonnet-Shelah [BoSh 210], Todorcevic [T 1].

4.10. FacT. Suppose (4;: i <dJ) is a strictly increasing sequence of regular
cardinals, A; ;A4; <A =cfi, 4,> {41, D a filter on 4, cf(Tl, .;4/D) =4, i.e.
there is ( f, : « <) C II; .5 4; such that for every ultrafilter E extending D one
has:

(i) a<B<A=fi<ehp

(i) (VfEM, AN Fa<A)f<gf)

Suppose A4; C d (i <k) are such that, in #(5)/D, {4;:i <k} is independent
and for i <4, |{f,1i:a<A}| <A;. Then Ens(4, k).

4.10A. REMARK. If u > 29 then there are such (4,:i <J) and D for
k=29 21 =u*by§l.

PrOOF. Let I ={f,:a<A}. For each { <k we define a linear order <}
of It
f,<tfp  ifffor somei <d:

LD # R &LYi=[T1T&[LE)<f)=i€A]
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Letn<w,(i<---<{,<k.Forl=1,...,n,t = f,, are pairwise distinct
fory<ij;andletw C{l,...,n}. Let

g (i) £ Min{ f,,(i): 1E€(L,...,n}},
i < Min{i: (fan i3 TE{1, ..., n}) are pairwise distinct}.

W.lo.g. i, =i*for every y.
Let B={i <d: for every £ <4, there are A ordinals y <4 such that
8,(1)>¢}.

CLamM. BED.

PROOF. Suppose that B & D. Then, since D =\ {F: F D D&F is an ultra-
filter on &}, there is an ultrafilter Fon d, B&F.So C:=4J — BEF. From the
definition of B,

(VIECHIE <A Iy <A =y <i=g() =4).
Define A €11, _; 4, by
i+ 1 ifieC;
wiy= o T
0 ifigC.
{(fo./D:a<4) is cofinal in IT,_54,/D, hence (f,/F:a<A) is cofinal in
I, .; A;/F, so there exists § < A such that

h<fymodF.

W.lo.g Uecy; <B [since CC 4, |6] <A=cf(d) and A,cc(y; <A)). Since
ol, 0), (1 =1 =n, { <A) are pairwise distinct, and f <A, there exists { <A
such that AL (a/, {) > B). W.Lo.g. Uiecr: <. So ALy (fy < for, o mod F).
That means

E:= {i <5 1/_"\1 5 < jf,(,,o(i)}EF.

So E={i<d:f3(i)<g(i)}EF, using the definition of g, Since
h<fymodF, it now follows that {i <d:h(i)<g/(i)}EF and so CN
{i <d:h(i)<g(i)}EF. Choosing i in this (non-empty) intersection, one
obtains

() <& <&+ 1=h()<gl),

a contradiction. So B € D, proving the claim.
Then choose i < J as follows. First note that since |{ f,! i:a<4}| <4, for
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each i <4, and cf(IT; .;4,/D) = A, D cannot contain any bounded subsets of .
By hypothesis,
A:= N 4,n N (6 —A4,)¢D*
1¢w

lew

(the dual ideal of D), so d — A ¢ D and there exists an ultrafilter F on J such
that FO D and A€F. Hence C:={i <J:i*<i} N A NBEF and one can
choose i €C.

Then choose i:

*<i€BN N A4,n N (—A4,).
lew 1gl=n
igw

For each { <4, choose y; such that g,(i)>¢. For some S C 4; unbounded

E<&HES= N fuuy )< Satmoze )@). Wlog. (fqy,li:{ES) is constant
(by a hypothesis). The conclusion should now be clear.

4.11. Fact. If (A;:i<d) is a strictly increasing sequence of regular
cardinals A; _;4; <4 =cf A, 4, > |d]|, D an ultrafilter on d, cf(I; .;4,/D) = 4,
and there is (f,/D:a<A) <pincreasing cofinal in I, _;A,/D such that for
i <d we have y = [{fili:a<A}| <A; and Ens(4;, u;), then there is an
entangled linear order of power A.

PROOF. Let ( f,:a <) exemplify cf(l'Ll;/D‘) =A. Let (I : n €11;) where
I, = { f.1 i: « <A} witness Ens(4;, &,); w.l.o.g. I} has universe 4,.
Define <*on/l:={f:a<Ai}):

f,<*fs  iff there is i <J such that:
fiti=fti,
L B L)< f(0).

Checking — easy, choosing i €{i <J:i* <i} N Band S C 4, in the notation
of the proof of 4.10.

4.11A. REMARK. So we have another way to get:
if A =3, > cf A, then for some regular ¥ €(4, 2*) there is an entangled order.

4.12. FAcT. Suppose (4;:i <d) is strictly increasing, D the filter of



Sh:345

Vol. 70, 1990 PRODUCTS OF REGULAR CARDINALS 153

cobounded subsets of J, tcf(TIA,/D) =4, u <cfd, 6 <o, p <Ay <U,; 54 <
Ded u, 2* < A. Then Ens,(cf(d), 1).

PROOF. Let J be a dense linear order of power U, _; 4; with a dense subset /
of power u. Let #} (i <d, { <A;) be distinct members of J. Let ( f,; a <A4)
witness tcf(Il;s4,/D)= 4. For each « let I, = {t}; :i <d}. For a<A let
A,={p:1,, I are not cf(d)-far}. Now for each B €A, there are K., C I,
L, C I, each of power cf(d) and 4,4 an isomorphism or anti-isomorphism
from K, ; onto L, 4; let M, ; be a dense subset of K, ; of power < u.' Assume
[4,l =4.As 2¥ < Aforsome A, C A,, |A.| = 4 and for some M*, #, we have:
[BEA =M,z =M} & h, ;! M} = h,]. Essentially 4, defines uniquely /4, 5 (x)
where x €EDom A, 5. More fully, let

Y {x €1, thereis y €J, x, y is single in the Dedekind cut it realizes

in M}¥, h’,(M}) respectively (VzEMM)z <y=h,(z) <x]}.

Now [f€A4,=Dom h,z, CI*C1,] and h* & Use, Ao p is a function from I+
toJ.

Now define g*E€Il, 44, : g%(i) = sup{{ <4;: ¢ €ERang(h*)}, g°(i) <4, as
[Rang h®| = |Dom h*| = |I*| = |I,| = |6| so [BEA.=f,=g] But
|Aj| = A; contradiction. Hence |4, | <4, so we can find an unbounded 4* C 4
such that

a<PAraCA*ABEA*=LEA,.

I.e. we have 4 linear orders, each of power cf(d) > u, any two are cf(d)-far. By
4.7(2) we finish.

4.13. CrLamM. In Claim 4.10 suppose in addition u is a limit cardinal,
M54, Zu=cfu=2. Then
(1) Ens(u, ).
(2) Moreover, there are (I;: 1 + { <) exemplifying Ens(u, x) such that:
a) for each 8 <y there is a linear order of power 6 embeddable in
every I;
b) each I, has dense subsets of power Z, _;4; <u.

ProoF. (1) Lety=U, o sy, t, <p, [a<p=p, <mgland (f,/D:a<i)

t Such that if x €1, Min{y €K, z:y>x} is well defined, then it is in M, 5; similarly with
Max{y €K, 5: y <x}; similarly h”, 5(M,z), L, 5.
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be cofinal in TIA,/D. So for each «, as I, s{{: f£,(i)<{ <4,} has power
IT, s A; = u, it has a subset F, of cardinality u.'; as ( f,/D: a <A1) is cofinal in
IT; .s A,/ D, for some y, <A,

def

F, = {g€F,:g/D <[, /D} has power =,

(and w.lo.g. 7, =a+ 1). Let I = U, _, F’ and proceed as before (in 4.10).
(2 Wlog 4% Mc<xA; is such that e, 4 =u. [Why? Let us use
(Az: { <i) where 4} o AgU A if ey i zpand A7 =(0 —Al) U 4, if
Il;e4, A; <u.] Now we can choose F, C I14; such that:
(1) 1F,| =t

(i) for some 7, <A, gE€EF, = f,=g=p /.,

(iii) g, hEF, =gt (0 —A)=h1 (0 — A).
So on F, all orders <} are the same, and so (U, ., F,, <): { <k) are as
required.

4.14. THEOREM. If the conclusion of 4.13(2) holds for k = 3 (i.e. pair of
orders), then for some Boolean algebra B the spread of B is u but it is neither
obtained nor weakly obtained.

ProoF. By Todorcevic’s proof of [M] 1.9 from [M] 1.4 in Monk [M]
(also the part on: “s(B/K) is obtained for every ideal K of B” generalized;
but see 4.3).

4.15. CoNcLUSION. If 8 =cfl, (Vx <A)[x? <A], 8 uncountable (or at
least sup{cfTI, 44;: 4, <A} is A% or just = cfu), then:
(a) forevery u, A <cfu =u = A° Ens(y, 29);
(b) moreover this is exemplified by (I, ; { < 2¢) where every I, has density A
and for o <u there is an order of power ¢ embeddable into every I;;
(¢) forevery limit cardinal 4, A <cfu = u < 1% for some Boolean algebra 4,
s(4) = u but it is not obtained (nor weakly obtained).

4.15A. REMARK. We shall return to this in light of the additional infor-
mation on cofinalities of products of regular cardinals. Le. if u = 3%, cfx =
f < x, the conclusion holds.

ProOF. By 9.3, letting D be the cobounded filter on # and A4¥* C 6 pair-
wise disjoint for i <@, A* # & mod D there is {(A;:i <@) a strictly in-
creasing sequence of regular cardinals < A such that II; _, 4,/D has cofinality
cfu; so wlo.g A4, >TI ;4. Let (w;:i <2?) be independent in 2(6). Let
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A; =V, A* Now D, (4,:i <2%), (4;:i <8) are as required in 4.13 and we
get the conclusions by 4.14.

4.16. FacT. In 4.12, suppose in addition cf y = cfd <y = U, ;4. Then
we can find (I : { <A) such that:

(a) I is a linear order of power x with a dense subset of power 4;

(b) the linear orders {/,; { <A} are pairwise far.

PrOOF. Use 4.12, D={4CS8:0—A4 is bounded}, y =Z, 51, %>
%, <, x;; replace ¢ by x; elements.

§5. The basic properties of pcf(a)

NoOTATION. Let a, b, ¢ denote sets of regular cardinals. J denotes an ideal
(usually on some a), D a filter. For a set A of ordinals with no last element,
J33={B C A;sup B <sup A}, i.e. the ideal of bounded subsets.

5.1. DeFiNITION. (1) For a partial order P:

(a) P is A-directed if, for every 4 C P, |4| <A, there is ¢ €P such that
A,ea P = q{(q1s an upper bound of 4);

(b) P has true cofinality A ifthere is { p,: i <A) cofinal in P, i.e.

A pi<pj, VqEP[VqéP.]
i<j i

[and one writes tcf(P) = A for the minimal 1]

(if P is hinearly ordered it always has a true cofinality);

(c) Pisendlessif V pEP IqEP[p <q](soif Pis endless, in (a), (b), (d) we

can replace =< by <);

(d ACPisacoverif VpEP 3qE€EA[p =q],

(e) cf(P)=Min{|A4|: 4 C Pisa cover}.

(2) R'={A:A=cfA>k).

(3) If D is a filter on S, «, (for sES) are ordinals, f, g EM,¢sa,, then
fID<g/D, f<pgand f<gmod D all mean {sES: f(s) <g(s)}ED. Simi-
larly for =<, and we do not distinguish between a filter and the dual ideal in
such notions. So if J is an ideal on a and f, gE€Ila,, then f<gmod J iff
{6€a: f(O)<g@))EJ.

(4) For f, g: S — Ordinals, f < g means A,cg f(s) < g(s); similarly f < g.

5.2. DerFINITION. (1) For a property I' of ultrafilters (if I" is the empty
condition, we omit it):
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pefr(a) = {tcf(Tla/D): D is an ultrafilter on g satisfying I'}

(so it is a set of regular cardinals).
(2) J%,[a]={b Ca: for no ultrafilter D on a to which b belongs is
tcf(lla/D) = 1}.

5.3. CLamM. (0) (Tla, <;), (Tla =<,) are endless.
(1) Min(pcf{a)) = Min a.
(2) If a € b then pcf(a) C pcf(b); and for any b, ¢ pcf{c U b) =pcf(c) U
pcf(b) and:

x€JL[bUclexCcUbaxNcEIY, [claxNnbETY, [b].

(3) () if b Ca, b finite, then pcf(b)=5b and pcfla) - b C pefla — b) C
pcfla);

(i) in addition if b C{f€a:|0Nna|<R,}, then pcfla —b)=
pcfla) — b; e.g. b = {Min(a)};

(iii) in addition if A >max b, and (II(@ — ), <p;,-») is A-directed,
then (Tla, < po_y,) is A-directed.

(4) If D is an ultrafilter on a such that, for every § €a, (a — 01)ED, then
cf(Tla/D) = sup a (and if equality holds, then sup a is an inaccessible
cardinal, D a weakly normal ultrafilter).

(5) If a has no last element, then there is A € pcf(a) such that sup a <A.

(6) If D is an ultrafilter on a set S and for s €S, «, is a limit ordinal then
cf(M,es oy, <p) = cf(llcs of a5, <p) = cf(ll,es(a,, <)/ D), and

tcf( II «,, <D> = tcf( II cf ey, <,,>= tcf( 11 (e, <)/D).

SES SES SES

(7) If D is an ultrafilter on a set S, A, a regular cardinal, then
0 tcf(IT 4, <p) is well defined and |S| <Min{A:s€E€S} implies
6 Epcf{4:sES}.

(8) If |pcfa)| < Min(a), then pcf(a) has a maximal element.

(9) If | pcfa)| <Min(a), then pcfipcf(a)) = pcf(a); more generally, if ¢ C
pcf(a), |a| <Min(a), |c| <Min(a), then pcf(c) C pcfia).

(10) If there is no maximal element in pcf(a), then cflotp(pcf(a))] > Min(a);

moreover, sup pcf(a) is a (weakly) inaccessible cardinal.

Proor. E.g.
(8) Letd 4] pcf{a) and assume b has no last element; then by 5.3(5) there is
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A Epcf(b), A > sup(b). However, by 5.3(9), b = pcf(a) = pcf(pcf(a)) = pcf(b);
hence 4 €b — contradiction.
(9) See 5.10.
(10) See 5.11.

5.4. CLam. (1) JY,[a] s an ideal (of 2(a)).
(2) If A <y, then J%, [a] C J2,[a].

(3) If A is singular, J%; [a] =J%,+ [a].

(4) If A &pcf(a), then J,[a] =J%;+[a].

5.5. LeMMA. IfMin(a) Z |a|, A a cardinal > |a|*, then (Tla, <jo ;) is
A-directed.

Proor. By 5.3(3)(iii) w.lLo.g. |a|,|a|*€a so Mina > |a|*. Note: if
fE€MNa, f< f+ 1E€MNa (ie. (a, <,o,,) is endless). Let F CTa, |F| <4, and
we shall prove that for some g €Ella, (V fE€F)(f < gmod J%,[a]). The proofis
by induction on | F|. If | F| is finite, this is trivial. Also if | F| <Min a it is
easy: let gETlabe g(8) = sup{ f(0): fEF}. Soassume |F| =y, Mina =u <
A, so let F={f?:i<u}. By the induction hypothesis we can choose by
induction on i <y, f} €Ma, such that:

(a) f? = f! modJ%;[a],

(b) forj <i, f! = fl mod J;[a).

If 4 is singular, there is C C u unbounded, |C|{ =cfu <u, and by the
induction hypothesis there is g €Ta such that for i€C, f! < gmod J,[a].
Now g is as required:

s §f1\14in(c-i) =gmod J%,[a].

So w.l.o.g. u is regular, Now we define by inductionona < |a|*, g,, i, = i(a),
(b : i <u) such that:
(i) g.€MNa,

(11) for B <a, g = &.,

(iii) fori <plet b ¥ (6€a: £1(0)> £.(6)},

(iv) for each a, for every i €[i,, #), b¢ # b*! (and i(a) <p).
We cannot carry this definition: by letting i(+) = sup{i,: a<|a|*}, then
i(*)<usince y =cfu,u =Mina > |a|*.

We know that bf,) # bihy! for a < |a|* (by (iv)) and bg,, C a (by (iii)) and
[« < B = b, C bi,] (by (ii)), together a contradiction.

Now for =0 let g, be f¢.
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For o limit let g,(8) = U, ., 85(8) (note: g,ETMaasa < |a|* <Minaand a
is a set of regular cardinals).

For a=pf +1, suppose that (bf:i<u) is defined. If b¥E€J°,[a] for
unboundedly many / <y, then g is an upper bound for F and the proof is
complete So assume this fails; then there is a bounding i(8) <u such that

big&J % [al. As bis &J2%,[a), for some ultrafilter D on a, by €D and
cf(Tla/D) = A. Hence { f}/D: i <y} has a bound A,/D, h,ETla. Let us define
g, €la:
2.(0) = Max{g,(6), 4,(9)}.

Now (i), (i1) hold trivially and b is defined by (iii). Why does (iv) hold with
=i(B)? Suppose i(B)=i<p. As fip =f'modJY,[a] clearly bf; C
b"’ mod J %, [a]. Moreover J %, [a] is disjoint to D (by its definition) so bf, €D

implies ¥/ €D.

On the other hand, b7 is {#€a: f}(0)>g,(0)} which is equal to
{0€a: f](0)> g4(0), h,(0)}, which does not belong to D (h, was chosen such
that f} < h, mod D). We can conclude b? & D, whereas bf €D; so they are
distinct.

Now we have said that we cannot carry the definition foralla < |a |*, so we
are stuck at some «; by the above « is successor, say a = f + 1, and g; as
required to bound F.

5.6. LEMMA. IfMina = |a|, D is an ultrafilter on a and A = tcf(lla, <p),
then for some bED, (WIb,<; ;) has true cofinality i. (So
beJ%+[a]l—J2;1al)

PrROOF. Again wlo.g Mina> |a|*; and we know A =Mina. Let
(fi/D:i<A) be increasing unbounded in Ia/D (so f; ETa). By 5.5 w.l.o.g.
(Vj <i)f, < fimod J%;[a]). Now 5.6 follows from

5.7. LEMMA. Suppose |a| <Min(a), f€MNa, f <fmodJ%,[a] for
i <j <A, and there is no g €Ta such that for every i <A, f; <gmod J%, [a].

Then there are b; (i < 1) such that:

(A) b;Ca,b &l lal,

(B) i <j=b, CbymodJ%,[a] (i.e. b, — b,EJL,[a]),

(C) foreachi, (f!b;:j<A) iscofinal in (Tlh;, <;o 1)),

(D) for some g€MNa, A, f; <gmodJ where J =J%,[a] + {b;:i <A}; in
fact

(D)t for some i(*) <A, fiw+: <gmod(J %, [a]l + b)),

(E) if g = g’€Na, then for arbitrarily large i <A
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A [4(6) z fi(0)=g'(6) = f(O)].

f8€<a

PrROOF OF 5.7. Assume the lemma fails. We now define by induction on

a<l|al?, g, i(a), (bF:i <) such that:
(1) g.€Ma,

(i) for B <a, gg = g.,

(iii) b= (O€a: £(0)> g.(0)),

(iv) ifi(a) =i <Athen by #bzt'.

Fora=0letg,= f;.

For « limit let g,(8) = U;.,g(0) (now [B <a=g; <g,] trivially and
g.EMaasMina = |a|* > a).

Fora=p+ 1,if {i <4:bf€JY,[a]} is unbounded in 4, then g, is a bound
for ( f;:i <A)mod J%,[a). Soleti(B)besuchthat ViE[i(B), 1), ¥ ¢J%,[a].
If (bf:i(B) =i <A) satisfies the desired conclusion we are done.

Now among the conditions in the conclusion of 5.7, (A) holds by assump-
tion, (B) holds by 5#’s definition as [i <j= f < fimod J%,[a]], (D)* holds
with g = g; by the choice of b¢. Lastly if (E) fails, say for g, then it can serve as
g.- So only (C) (of 5.7) may fail, w.l.o.g. for i = i(B).Le. ( fi ! bfis :j <) isnot
cofinal in (T1bf,), <o o_a))- As this sequence of functions is increasing w.r.t.
<;o_4ap there is h, ETIbY, such that for noj <4, h, = £ ! bl niod J, [a]. Let
h, = h, U 0u_y,), and g,ETla be defined by g[,(G) = Max{ g(8), h.(B)}. Now
define b7 by (iii) so (i), (ii), (iii) hold trivially, and we have to check (iv). So we
candefine g,, i(a) fora < |a |7, satisfying (i)—(iv). As in the proof of 5.5, this is
impossible; so that lemma cannot fail.

5.8. LEMMA. Suppose |a| <Min(a).

(1) For every b€J%;+[al—J% [al, we have: (T1b, <,o ) has true co-
finality A.

(2) If 0<a<A and for B <a, c;€J%,+[a]l —J%,[a)], then for some cE
JL+[a] =T, [al:

foreach f <a, ¢;CcmodJ%;[al.
(3) If D is an ultrafilter on a, then cf(la/D) isMin{A: D N J%,+[a]l # & }.
(4) For 2 limit, J%;[a)l=U,.; J%, [a].
(5) Ipcfla)] =2'“! and [A Epcfla)=J%,[a] # T2, [all.

ProoF. (1) Let
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J={bCa:b€JY[a] or bEJL;+[a] —J%;[a] and (TTb, <o) has true
cofinality 4}.
Clearly J C J%;+ [a]; it is quite easy to check it is an ideal. Assume J # J2,+ [a]
and we shall get a contradiction. Choose b €J%,+ [a] — J; as Jis an ideal, there
is an ultrafilter Don asuchthat D N J = & and b €D. Now if cf(Tla/D) = A,
then b ¢J%,+[a] (by the definition of J%,+ [a]); contradiction. On the other
hand, if F C Ha, |F| <A, there is g EMa such that (V fE FXf < gmod J%,[a])
(by 5.5),s0 (VfEF)[f<gmod D] (as J%,[a] € J, D NJ = &), and this says
cf(Ila/D) = A. By the last two sentences we know that cf(Tla/D) is A. Now by
5.6 for some c€D, (lc,<;v,) has true cofinality 1. Clearly if ¢’Cec,
¢’ &J%;[a], then also (TIc’, <;o ) has cofinality 4, hence w.l.o.g. ¢ C b; hence
¢ €JY,+ [a], hence by the definition of J, ¢ €J. But this contradicts the choice
of D as disjoint from J.

We have to conclude that J = J%,+ [a] so we have proved 5.8(1).

(2) Foreach B <alet ( f}:j <A) exemplify that (Tla, <jo i1+ -c,) has true
cofinality 4; so f? €Ila and

[i(1)<j(2) <A= fly < fhy mod((J<,[a]) + (@ — c5))]
and
(Vg€Ma) 3j <Mg <ffmod([J,[a)]) + (a — cs)]D.

By 5.5 we can define f* €Ila by induction on j <A such that
(i) fori <j, f* < f*modJY,[al,
(i) for each B <a, ff < f¥mod J%;[al.
Let (b;:i <A) be as guaranteed by 5.7 (for ( f*:j <4)). Clearly for each
B <a,(f¥:j<A)is <;o4-crincreasing and cofinal. So for each f < a for
some i(f) <4
¢s C bygymod J2, [a].

[For if there is f <a such that 1 (V,c;c; € b;mod J2,[a]), then ¢, &J,
where J comes from 5.7(D). Choose now an ultrafilter D on a such that
€D ADNJ=F. Applying 5.7(D) yields a g such that A;; f* <gmod J,
so A, f¥<gmodD. On the other hand, for some j;<i, g<
frmod J;(a}+(a —¢), so g<f¥modD (since D NJ%[al+ (@ —cp)
= (&) — a contradiction.]

Let i(*)=sups,i(f). Now i(x)<A (as A=cfA>|a|) and ¢ C
biwymod J%,[a] for each B <a (because i, <i,= b, C b, mod J%,[a]) and
b EJ%;+[a] (by the choice of (b;:i <A) in 5.7).
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(3) Let AE€pcf(a) be minimal such that D NJ%,+[a] # & and choose
bED NJY;+[al. Now (Tla, <o 41+ -s) has true cofinality 4 by 5.8(1). As
beD,J%,[a]l N D= ; we've finished the proof.

(4) Clearly U, _,J%;[a]CJ%,[a] by 5.4(2). On the other hand, let us
suppose that there is b€(J%;[a] — U, J%;[a]). Put J:=U,_,J%,[al.
Since b €JY, [a], for every ultrafilter D on a, if bE D, then tcf(lla/D) < A.

Now Jis an ideal and (ITa, <;) is A-directed; i.e. ifa* <Aand { f,: a<a*} C
g, then there exists f€I1a such that

(Va<a*)(f,<fmodJ).

[Why? A is a limit, hence there is u* such that o* <p*<Ai. (W.Lo.g.
la|* <u*.) By 5.5, there is fE€TIa such that (Va <a*)[ f, < fmod J %,+[a]).
Since J%,.[a] C J, it is immediate that (V a < a*)(f, < fmod J).]

Choose an ultrafilter D on a suchthat b€EDand D N J = . Since (Tla, <,)
is A-directed and D N J = &, one has tcf(Tla/D) = A; contradiction

(5) Easy too by 5.8(3).

5.9. ConcLusioN. If |a| <Min g, then pcf{a) has a last element.

Proor. This is the minimal A such that a €J%;+[a]. [(A exists, since
k:=|Ma|E{A:a€JY,+[a]} # D]

5.10. CLAIM. Suppose k <Min(a), fori <k, D;is afilteron a, F a filteron
kand D*={b Ca:{i <x:bED,}EE} (afilter on a). Let 4, = tcf(lla, <p,)
be well defined. Let

2.* = [Cf(Ha, <Dt), ﬂ = ICf(m,, <E)'
Then A* = u (in particular, if one is well defined, then so is the other).

ProoF. Let (fi:a<4;) be a cofinal sequence in (Ila, <p,). Define, for
geni<xli’ F(g)ena by

F(g)0)=sup{f3(8):i<k,f=g()} <0 (asx <Mina).
Now for each f€Tla, define G(f)EI, , 4; by
G(f)(i)=min{y <4 f = fimod D;}

(it is well defined on fETla by the choice of ( f} : y <4,)).
Note that for /', f2€a:
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def

f'= f*mod D*= B(f', f)= {0€a: f(6) = f(6))ED*
def

=A(f, )= {i <xk:B(f', fHED,}EE

= A/(\ff)G(f‘)(i)é G(fH() where A(fi, H)EE

=G(fM=G(fHmod E.

So G is a homomorphism from (Ila, <j.) into (I1, .. 4;, =;). The range of G
is a cover of (I4;, =g):

if g €1, ., A; then f} ;) = F(g) (see definition of F) hence g(i) = [G(F(g))](i),
hence g = G(F(g)).

This finishes the proof.

5.11. CLamm. In 5.10, if |a|* <Mina, we can weaken the hypothesis
K <Minatox <Min{4:i <x}.

ProoOF. Similar to the proof of 5.10.

We define G:Tla —TI,_A; exactly as previously and also the proof of
[/'= fAmod D*=G(f") = G(fHmod E] does not change.

It is enough to prove that for g €11, . 4; for some fE€Tla, g = G(f)mod E.
By 5.5 (Ila, <,sy,) is x *-directed, hence for some f€Ia

(%), for i <k, fi;, <fmodJL,[a].

We assume x < 4; hence J%,[a] C J%, [a], which is disjoint from D; (use
5.8(3)), so together with (%),

(%), fori <k, fi; <fmod D,.
So clearly g < G(f) (more than required).

5.12. CoNcLusiON. If |a| <Mina, b Cpcfla), |b]<Minb, then
pcf(b) C pcfla).

§6. Normality of A Epcf(a) for a

6.1. DEFINITION. (1) We say A Epcf(a) is normal (for a) if, forsome b C a,
J%+[al=J%,[a] +b.
(2) We say A € pcf(a) is semi-normal (for a) if there are b, for i < A such that:
() i<j=b,ChmodJ%,[a]
and
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(i) JLp [al=J% [al+ {b;:i <A}

6.2. Fact. Suppose Mina > |a|, A Epcf(a). Now:

(1) 4 is semi-normal for a iff for some F = {f,:a <4} CTa for every
ultrafilter D over a, F is unbounded in (Ila, <,) whenever tcf(Ila, <,) = A.

(2) In 6.1(2) we can assume w.l.o.g. that either b, = bymod J%,[a] (so A is
normal) or b; # b;mod J%;[a] for i <j <A.

(3) Suppose F = (f,:a<4A)isasin(l)andis <o g,rincreasing. Then 4 is
normal [ff F has a <o gleast upper bound gEI,e,(0 + 1) and then
{6€a: g(0) =0} generates J2,+ [a].

Proor. Left to the reader. Use 5.7, 5.8(3) for (1), (2).
We shall give some sufficient conditions for this normality.

6.3. DEFINITION. For given regular 4, 6 <u <A,SCA,supS=A4.

(1) We call 4 = (4, : «<1) a continuity condition for (S, , ) if: 4, C «,
|4, <p for a€S, [ES=u>cfd=0] and [fEA,—=A;=4,Np],
[0 ES = = sup 4;].

(2) Wesay f=(f.:a<A)obeys A = (4,:a<A) if:

(a) for B EA,, Noea f5(0) < £.(8),
(b) if a €S then £, () = supge,, f3(0) for every B E€a.

(3) If 8 = R, we omit it; (S, a) stands for (S, Mina,|a|*), (4, u, 0) stands
for “(S, u, 8) for some stationary S C 1”; similarly (4, a).

(4) We add the adjective “weak” if “fE€A4,— Az = A, N B~ is replaced by
“aES& PEA =~ (Y <a)[d.NB CA,))".

(5) I#[A] & {S C A: there is a sequence (£,:a<A) such that 2, is a

family of <A subsets of A, and for every d €S for
some unbounded 4 C J, otpA4 <dand [0a€EA=A4 N
a€U; 5 241}

(6) I;"’g[,l] = {S C A:there is a sequence (£,:a<A1) such that 2, is a
family of < A subsets of A each of power < u and for
every 0 €S for some unbounded A CJ, (VaEA)
(Ix€U;s o)A Na C x]).

(7) Stationary members of I¥[A] are called good stationary sets; similarly,

stationary members of I:’; [A] are called weakly good stationary sets. Again
1:5{1] is IXO [4].

For definitions and proofs see [Sh 88], AP Lemma 2, [Sh 300a], Ch. III, §6,
[Sh 351] 4.1.
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6.4. FAcT. (1) There is a [weak] continuity condition A4 for (4, a) iffthere is
stationary Ssuch that S C {d <A:|a| <cfd <Mina}isin F[A][in I}® [A]].

@) fA=p", cfu=p>R, then {d <A:cf(d)<u}isin I#[A].

(3) fA =u*,0 <cfu,then {d <A:cfd = 0} contains a stationary set from
T [4] for some x < 4.

(4) If A=p*, u—(0)%,, then there are x <u and a stationary S C
{6 <A:cfdé =0} which is in I'3[1].

6.5. FacT. Suppose A is a weak continuity condition for (S, a), £, EMa for
a<i,Mina>|a|",A=cfA>|a|. Then:
(1) We can find ( f}: « <A) obeying 4, f.ETla, such that
(i) fora€A—-S,f, =1,
(ii) forevery o, £, = f} 1.
(2) Suppose (f2:a<<A) obeys A and satisfies (i). If g,EMa, (g, :a <)
obeysAand A, g, = f,,then A, g, = /2.
(3) We can add in (1)
(i) if { f%:a<A) obeys A, f%,ETla, and it satisfies (i), then for every a,
=1

ProoOF. Easy.

6.6. LEMMA. Suppose f.ETla for a <2, A regular, f=(f,: a<A) obeys
some A = (A, : « <A) which is a weak continuity condition for (1, a), and fis
J%, [a}-increasing (so A = Min(a)).

(@) (fi:a<l) has a <;oy.yleast upper bound g ETlye, (6 + 1).

(b) b,€JY;+[a] — JY,[a] where bgdéf {0€a:g(0)=06).

(¢) Letting us = cf(g(0)), we have that (TIyy, <jo_;,)) has true cofinality A and

Uy = f.

PrOOF. See [Sh 282], Lemma 14 for (a).

6.7. CLaM. Suppose:

(a) f.€MNa for a <1, AEpcfla) and f=(f,: a<A) is <o ,rincreasing.

(b) fsatisfies 4, a weak continuity condition for (S, @), A = sup S (hence
A =Min(a)> |a|t).

(c) Jis an ideal of #(a) extending J%,[a], and ( f,/J:a <A4) is cofinal in
(Ma, <)) (e.g. J =J%;[a] +(a — b), bEJI L+ [a] — T %, [a)).

(d) (f.:a<A) satisfies (a), (b) above.

(e) f, = f, for a <A, alternatively: ( f.: a <A) satisfies (c).

Then {6 <A:if 6 ES then f; = fymod J} contains a club of 1.
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ProoF. Not hard.

6.8. LEMMA. Suppose Mina > |a|*, A =cf A Epcfla) and there is a good
stationary set C {d <A:|a| <cfd <Min a} or at least a weakly good station-
aryset C{d <A:|a| <cfd <Mina}. Then 4 is normal for a.

PrOOF. Let A be a weak continuity condition for (S, a) for some S, where S
is a stationary subset of {0 <A:|a| <cfd <Mina}. We assume 1 is not
normal for a and eventually get a contradiction. By 6.2, 6.6 4 is not semi-
normal for a. Let us define by induction on { < |a|*, f=(ff:a<A) and
D¢, such that:

M () fiENa,

(i) a<p=fi<ffmodJ2al,
(iii) f* obeys 4,
(iv) foré <{<|a|*anda<i:fi<f}
(Il) (i) D, is an ultrafilter on a such that cf(Tla/D;) = 4,
(ii) ( fS/D;: a < 1) is not cofinal in INa/D,,
(ii1) ( fi*Y/Dy: <) is cofinal in Ia/Dy,
(iv) f§+'/D, is above { f3/D;: a <A}.

For { =0: No problem. [Use 6.5 and 6.2.]

For { limit: Let g§ €Ma be defined by g} (0) = sup, ., f%(#), which belongs
to Ma as |a|* <Min(a). Now use 6.5 and get (f5:a<A) obeying 4,
[CEA—S=gi=/%], [ = ff11]. Use 6.5 to find an appropriate D,. Now
(f%:a<A) and D, are as required.

For {=¢41: By 6.2(1) there is an ultrafler D, on a such that
tef(lla, <p) =Aand { f¢:a <A} is bounded in (Ila, <p,). Let (h¢:a<1) be
cofinal in (Tla, <j,) and w.l.o.g. f = h§ mod D;. We get D;and { f% : a <1) by
6.2 and 6.5 for (hS:a<A).

Now for each { < |a|™ we apply 6.7 for (fi*':a<A), (floI":a<i),
J = P(a)\D;. We get a club C; of 4 such that:

(*) a€ES N Cy= fi+' = f14" mod Dy.

So Micia*C; is a club of A since |a|* <A, so we can choose
a€ES NN pop Cp. Let ¢, ={0€a: f5(0) = £1°7(8)}. By (%), ¢;+,EDy; by
(D), (iv) ¢, € D, hence c; # c;,;. On the other hand, by (I) (iv), (¢;: { <
la]*) is C-increasing and by the previous sentence it is strictly C
-increasing; contradition.

6.9. CLAIM. Suppose Min(a)> |a|*, u =cfu <A Epcfla). Then for



Sh:345
166 S. SHELAH Isr. J. Math.

some K, = cf ki, < 0 (for § €Ea) we have (o, K, <)o y,)) has true cofinality u,
provided that

(*) u has a weakly good stationary set S C {d <u:|a| <cfd <Minal.
Proor. Easy, by 6.6, 6.5.

6.10. CLaM. Suppose the assumptions (a), (c), (d), (e) of 6.7 hold and
(by fobeys A, A a continuity condition for (S, x, Ro)(A = sup S).
(f) Jis k-complete, k = cf k > cf(d) for every 6 ES.

Then for some club C of 4

JESNC=f.=f modJ.
Proofr. Not hard. (See 6.7.)

6.11. LEMMA. Suppose Min(a) > |a|*, A Epcfla). Then there is b C a
such that b€J%;+[a] and

(*) for every cE€J%,+[a] there are b,EJ%,[a] for n <w such that ¢ C
bulU,.,b,.

PrOOF. Let S={d<Ad:cfd =R, or J is a successor ordinal}. We can
easily find a continuity condition 4 = (4, : a <1), for (S, R,, Ry) such that,
for limit 6 €S, A4; is an unbounded subset of J of order type w, and for
non-limit « €S, A4, is finite. Here is how one finds the continuity condition.

We prove by induction on a =<1 the existence of a continuity condition
A = (A i€anS):

(D a=w+1:letd,=ifori<a.

(2) Not (1) and a = + y where f <a, y <a, cf(f) # R,

Let
4o — A8, iEBNS
: +4;, i€anS\B, i—f=j

where B +A={f+(:{€A4}.
(3) Not (1), 2)and a =8, cf(f)=Roora=F+1,cff =R,
Let f=U,c,a, Where 0=ay<a;<a,<:--, cfla,,)# R (eg a,y;
successor),
45 = {ap: n <) [f(f) <,

A ={ay,:m<n},

. a —{a +1
if oy <y <oty let A% =, + Ay &0
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(4) Not (1), (2), (3), a> cf(a) > R,

Let k = cf(a). Let (o, : i <k) be inceasing continuous, U, . a; =: a, ay=0,
cfla; ) # Ro.

We define for each (4 : a; <y <a;,,) by the induction hypothesis

a a; = (a;+1)
Ay =(a,~+1)+A},_('ai+,, forai<y<a,-+1,

AL = {a;: JEAF).

(5) a=cfa>N,

Call « = k. Choose {«;: i <k) increasing continuous, U, ., a; = a, ay=0,
cfla;+,)>Ro' and ;11> (@ + W)+ (e, +a)+ . So E;={J +1:6 limit,
a; <0 + 1 <a;,,} has power = |a;]|.

Let g; be a function from E, onto U, _, E,.

We define h: k — k,

+ 1, SuCCcessor,
hw=k o

a, otherwise.
Choose A as follows: for a; <y <a; 4y, let Bf =(a; + 1)+ A;"'_*(';f{f ”, Ajpy =
h(By). So we have defined A5 for €U, ((a;, @; 1 )\ E)).
For y € E; we define A5 by induction on y:
1=0, A7 =0,
i > 0, A; = {h,(y)} U Af:,-(y)'
Lastly fory € {a;: i <k}, if cfla;) = R, then cf(i) = R, So there are (j,,: n <w):
O=jo<jr<:--

and
Uj,=i.
Choose inductively y; €EE;, h(yi,,)=7;. So
def

Ap={ ...y} and A2= {yi:n<w).

Now after this digression, we return to the proof of 6.11. The proof is the
same as that of 6.8, using 6.10 instead of 6.7, applied to J & JLilal=

! We assume x > R; if &k = R,, the changes are small.
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{U,b,:b,€J%;[a] for n <@} — which is an R;-complete ideal (we use J
instead of J%, [a]).

6.12. CoNcLusiON. Suppose Mina > |a|™.
(1) We can find (b, : A Epcfla)) such that:
(i) b,€JS;+[a]l — T, al,
(ii) every member of J%;[a] is included in some U,_, b, , for some
A <AL
(2) If every A €pcf(a) is normal for a, then we can replace (ii) above by
(ity J%,[a] is a generated by {b,: u €4 N pcfa)}.

6.13. Fact. (1) Suppose |pcf(a)i®<Min a (or (x), of 9.1). If A Epcf(a),
and

(%) [if y;Epcfla) N A for i <a <k thenIT,_, u; <Ai],

then J%,[a] is a k-complete ideal.
(2) If in (1) ¥ = R, then A is normal for a.

6.13A. REMARK. To prove 6.13, we rely here on a later Theorem (9.1), so
till 9.1 we cannot use 6.13.

ProOF. (1) Suppose J%;[a] is not k-complete, then there are o<k
and b,€J%[a] for i<a and U, b;&J%,[a]. W.log « is minimal,
hence a=cfla) and wlog [i<j<a=b;Ch] By 9.1(1) for some
c CU, . pef(b;), |cl=|a| and AEpcflc) Now b EJ% [a] hence
max pcf(b;) < A, hence c is a set of <k regular cardinals, each <A and from
U, <. pcf(®;) C pcf(a). By (*), we get a contradiction.

(2) By 6.11 and the first part.

6.14. LEMMA. Suppose |pcf(a)|®<Min a. Then every A Epcfla) is nor-
mal for a.

Proor. W.lo.g. a =pcf(a). [Just prove that if ¢ C b, || <min(b) and A
is normal for b, then 4 is normal for a.]
We prove by induction on 4, and for a fixed A by induction on 8, that

(*) if |pcfla){®<Min a, A Epcf(a), 6 =sup{u™* : u Epcfla), u <A}, then i
is normal for a.
Case I. 6=u".
Necessarily uEpcf(a). By the induction hypothesis for some b, Ca,
JY, +lal=J%,[a]+b,.
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Now A &pcf(b, so AEpcfla —b,), and by the choice of b, and 5.8(3),
u&pcfla — b,), so 6* o sup(4 N pefla — b,)) = u. So we can apply the induc-
tion hypothesis on 4, 6%, a — b, and get that 4 is normal for a — b,. As

A &pcf(b,), by 5.3(2), A is normal for a as required.

Case 11. 0 1is a limit cardinal.

Remember a = pcf(a).

Let ¢ =6 Npcfla), J¥ ={c’Cc;c’ is bounded in ¢}. Now if D is an
ultrafilter on ¢ disjoint from J, then tcf{llc, <) is necessarily = 6 (by
5.3(4)), but it belongs to pcf(c) which, by 5.11, is a subset of pcf(a), hence by
assumption it is = 4. We conclude D N J%,[a] = . As this holds for every
such D we know J,[a]Fc CJX, so easily J%, [a] C JMX.

Case 1la: cf(8) > X,.
J¥ is R -complete, so by the argument of 6.11 there is b* C ¢ such that:
(i) b*€J2;-al,
(i) (VB'EJL+[a])b’ — bEJTM).
We claim

(*) for some o Ec, A &pcf(c — o — b*).

[If not, forevery g Ecthereis b, €J%,+ [a] — J%,[a], b, C ¢, b, N b* = & and
Min b, = 6. By 5.8(2) there is b’ C ¢, b’€J%;+[a] such that 6Ec=b, C
b’ mod J%,[a]. As b, C ¢ — b*, Min b, = o we have b’ — b* C c unbounded in
¢, and contradicting (ii) above.]

Now 4 is normal for b* (as b*€J %, [a]). Also A &pcf(c — ¢ — b*¥) (by (¥))
hence 4 is normal for ¢ — ¢ — b*; moreover, by the induction hypothesis
applied to 4, ¢ N g Aisnormal for ¢ N ¢. Together (see 5.8(3)) 4 is normal for c.
Also, as Min(a — A)= A, A is normal for a — A so it is normal for a.

Case 11b: cf 8 = R,,.
Using |pcfa|®=|a*<Mina <Ai. Apply 5.8(2) to {bCc:|b| =R,
beJ%;+[a]l—J%;[a]} and proceed as in Case Ila.

§7. Getting better representations: generating sequences and cofinality
systems

We can replace systematically normal by semi-normal and b, by (b}: i <)
as in Definition 6.1, by avoiding it to ease the reading.

7.1. DEFINITION. (1) We say (b, ; A Ec) is a generating sequence for a if:



Sh:345

170 S. SHELAH Isr. J. Math.

(i) b, Ca,cCpcfa,
(ii) J2s+ [a] =L [a]) + b,
(2) Let J% [a] be the k-complete ideal on 2(a) generated by J%, [a].
(3) Let pcf**(a) = {A Epcfla) : JX4[a] # J ¥+ [a]) (See 7.1(6).)
(4) We say (b{: AEc) is a weak generating sequence for g if
(i) bf Ca, bf ¢J%,[a], bf €L+ [al,
(i1) ¢ C pcf(a).
(5) Wesay (b{: A Ec) isax-almost generating sequence for a if (i), (ii) of (4)
hold and
(i) J ¥+ [a] = (J 5 [a]) + bf.
(6) In (2), (3), (5) if k = R, we omit it.
(7) Wecallb = (b;: AEc) smooth if §Eb, = b, C b,.

7.2. FAact. Let |a|t* <Mina.

(1) AEpcfl(a) iff for some R;-complete ideal J on a, A = tcf(Tla, <,).

(2) There is an almost generating sequence (b, : A Epcf'(a)) for a.

(3) There is a generating sequence (b, : A Epcf(a)) for a if at least one of the
following holds:
(i) 2'*' <Mina,
(ii) |pefla)|®<Mina,
(ii1) every A E€pcf(a) has a (4, a)-weakly good stationary set (see Defini-

tion 6.3)

(4) An X, -almost generating sequence is a generating sequence.

(5) Suppose b = (b, : AEpcf(a)) is a generating sequence, and b Ca, b =
pef(b), then for some finite d C b, b C Ugey by.

Proor. (1) If A€Epcfi(a), ie. AEpcfR(a) (see 7.1(6)), this means

JL[a]l # T, [a), ie. I3 [a) # 234 [a). So choose b EJ L, [a], b &L, [a],

andletJ =J.,[a]+ (a — b).
The other direction is trivial too. (Use 5.8(3) and note that J.,[a] #

Jilaliff JL;[al 2T, [a]-)

(2) By 6.11.
(3) We can assume ¢ is infinite.
If (i), then as |pcfla)| <2'*! (by 5.8(5)) then |pcf(a)|®e=<(219)R0=
214l < Min a, so (ii) holds.
If (i1) holds, use 6.14.
If (iii) holds, use 6.8.
(4) Check.
(5) Ifnot, then I = {b N Uy by: d C b, d finite} is a family of subsets of b,
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closed under union, b & I, hence there is an ultrafilter D on b disjoint from I.
Let 0% cf(T1b/D); as b = pcf(b) necessarily 8 €b. Let D’ be the ultrafilter on a
which D generates, clearly § = cf(ITa/D’); by 5.8(3), by €ED’, hence b N b, ED,

contradicting the choice of D.

7.3. DEFINITION. (1) For a weak generating sequence b = (b, : A Ec) for a
we say f= ({ fia:@<A):AEc) is a cofinal sequence for (a, b) if
(i) (fia:a<A) is strictly increasing and cofinal in (i@ NA%),

<sula)+(a-b)-
(2) f is continuous if [* continuous]
(i1) if 6 <4, |a| <cfd <Min a then

ﬁ,a=f}1),zs [f/l,a(g)= U ff,a(e)]

where f7;(0) is defined by induction on n < w,

f25(6) =Min { U fl.(0):CCdisa club} ,
aEC

pii ' (0) =sup{f,(0): 0 =pu <A, u€a,a= ()} U {fI5(0)}.

(3) fis nice if it is * continuous and in addition:
(iii) if <4, then

6€Ea& a€a NIt = fy,,6(0) = fis(0),
except possibly when |a| <cfd <Mina, cf] f; 5(5)] # cfa.

7.4. FAcT. Assume |a| <Mina.
(1) For every weak generating sequence & for a, some f is a * continuous
cofinal sequence for (a, b).

(2) If ((fra:a<d):AEpcfla)) is a cofinal sequence for (a,b), b is a
generating sequence for a with domain pcf(a), then

(%), for every g €EIla there are n <w, 4y> A, > - - - > A, from pcf(a) and
a; < A, for [ = n such that

g =Max{fy.: I/ =n}.

(3) In (1), if b is only a k-almost generating sequence for a (so its domain
2 pef'*(a)), then
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(*); for every g €Ia there is a set b C pcfa of power <k and (ay: 0Eb)
such that oy < 6 and

g<sup{fi.,:AEb};
in fact VO€E€a Ve, g(0) < f, ().

ProOF. (1) We define (f,,:a<A) for each A€c. By 5.5 there is
(ffra<A), <pincreasing, where J =(J%;[a]+(a—b))I (anA*) and
cofinal in (Il(a N 4*), <;). We now choose f; , by induction on « such that:

(a) for a nonlimit, f¥, = f, ,€M(a N1 7),

(b) for B <a, f15<)fras

(c) if ais limit, |a| < cf o <Min a, then (ii) of 7.3(2) holds.

The only problematic point is, why, if =4, |a| <cfd <Mina, if we
define f, 5 as required in (c), then it satisfies (b) and belongs to IT(a N A*). The
latter holds as there is a closed unbounded C CJ, with otp(C) = cf(d) <
Mina, so f7,(0) < Usec f25(6) <8 as f,5(0)<6 and cff =60 =Mina >
|C|. Then we can prove by induction on n, f7,(8) <0, and then f, . (6) <6.

For the first point (for § <a =4, fi5 <, fis) forevery 6€a N A *, for some
club C, of  we have

() f25(0) = U {£5(6): BEC).

We can find y €M ye 0+ Cp, ¥ > B; by the induction hypothesis f;5 <, f;
whereas by (*) f,, = f};. Trivially f7, = f74' so f?, = f,... Together we finish.

(2) By 7.4(3) for k = X, (see 7.2(4)).

(3) Let b = (b,: AEc); and for each A Ec we can find « = a; < A such that
g by <fi.'bymodJL. Let b= {0€b,:8(0)< f,.(0)}, so b¥C b, and
b, \b¥eJL. If for some d Cc, |d| <k and a =U,c,b¥, we are done;
otherwise let J be the x-complete filter generated by {b¥:1€c}, let u be
minimal in ¢ such that J %5+ [a]ZJ. Necessarily u €pcf'*(a) C ¢, and choose
deJ+[a)—J; s0 d —b,EJ[a]lCJ and b, — b¥EJ Y [a] CJ, together
d €J, contradiction.

7.5. CLAIM. Suppose

(@) |a|t <Mina,

(b) b= (by: 6Ec) is a weak generating sequence for a,

(©) f=( fiaia<<A):AEc) is a * continuous cofinality sequence for
(a, b),

(d) x is large enough, |a| <o <Mina, g =cf(0), N; < (H(y),€, <) for
I=0,NEN,,,
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li<j<o=N;,<N], a€EN, fEN, cUaCN,

I N; || <Mina, and for i limit N, = U, ; N},
(e) define g, €EMa by g;(0) = sup(N; N 6) (for i = o).
Then

(o) forA€c,d =g, cf(§)E(la],Mina) we have f, .,y S g (@ NAT),

(B) for A€c, d=a, cfd€E(la|,Mina) we have f  ulb=g'b,
mod J%;[a],

() if bis a k-almost generating sequence, d < ¢, cfd > |a|, c = pcf*(a) =
Dom b, then for some d C ¢, |d| <k and g = Max{ f, .4 : AEd},

®) if (bF:i;(x)Si<A)EN, are as in 57(D)* then (if d=o,
cf6E(Ja|, Min a))

def

d, = {6€anit: fgau(0)=g(0)}

satisfies d;. EJ(LA*' [a], b;&(l) = d}. mod J&A [a],
(e) if A€c, 6=Z0, cf(d)>|a|, then g;'b; is the <, lub of
{fral by a<gs(A)}.

7.5A. REMARK. (1) UsingJX%[a] (A €pcf'*(a)) we have parallel results: if
we restrict ourselves to cf 6 E[R,, ) the same continuity notion is O.K. (i.e. in
addition to cf(d)E[|a|*, Min a)).

(2) For c¢fd =R, we should have a preassigned unbounded C;C 9,
otp C;=w for 6 <A, cfd =R, and use C C C; in the definition of con-
tinuous.

Proor. Note that if i <j=o then gEN,, s0 as a CN,, g <g;. As
fEN, < N;anda C N, < N, foreach fEa, &(0)E N, hence fj .5 E N, hence (as
Dom fj . =a Ni* C Ny < N;) we have Rang f; .4 C N,. By the definition of
g thisimplies f ;5 = g [ (@ N O*). Letf], (A€c,n <w,cfa€[|a|*, Min a))
be as in 7.3.

Note that for 0€a, (g(0):i = o) is strictly increasing continuous. So for
limit d = g, cf(gs(6)) = cf(d), and C, « {g:(0):i<d}isaclubof g;(h). Soas f
is * continuous, if § = g, |a| <cf(d) <Min a, then f} 4, is defined by:

for{€an, f}}&(g)(C)=Min{ gLéJc Jop(£):C Cgs(B)a club} .

Using C, we get
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fg,g,;(O)(C) = U ﬁ)ﬁ(C) =U ﬁa,g,-(e)(C)-
BECy i<d

But we have noted above that i <d=fy,0=g;M (@ NB*). So fi,e =
&' (a N @*). The same argument shows that if A€C, y <4, yEcl(A N Ny)
(closure in the order topology), 6 =g, Mina >cfd > |a|, then Rang f°C
cl(A N Ny), noting

cfy # cf6&yEcl(d N N;)=yEN;= f), EN;=Range 1Y, C N;,

so y Ecl(A N Ns)=Rang 7, C N;. Now we can prove by induction on A €C
that

(*) =0, |a|<cfd<Mina, yEcl(A N N;), n < w;
we have Rang f75 C cl(N; N 1) (this by induction on #); hence Rang f;, C
cl(A N Nj;). So we have proved (a).

On the other hand, for each AE€c¢, i <j =0, as g E(Ila) N N;, for some
a=cafl, i) we have

a€EN, & < fi.mod(J%;[a] + (a — by)).

J
Now w.l.o.g., as «EN; we have a < g{(4), so
Sra < frgaymod(J%;[a]l + (a — b)),

hence
8 < figwmymod(J2,[a] + (a — by)).

Soifd =0, |a] <cfd, we have

& < figaymod(J%;[a]+ (a — b)) foreachi <.

Let, for i =4, ¢ o {0€anNA™:8(0)>f ou(0)}. Now as [i <j=—g = g]

we have [i <j=¢; C ], so (as cf(d)> |a| = |Domg]|) (c;:i<dJ) is even-
tually constant (by the definition of the ¢;’s and as ( g;(f) : j = ) is increasingly
continuous). As ¢; =, _5¢;, s0 ¢; =¢; for some i <. But we have shown
above that for i <d, ¢;€(J%;[a]+(a—b)); so ¢;EJL, [a]l +(a — b)),
hence

{0€anNit:g(0)> fiuun(DYE(IL, [al + (a — b)),
therefore
&= ﬁ,g,(&) mod(J%, [a] + (a — b))

As we have proved (a), if cfd €(]a |, Min a),
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&b = ﬁ,g,a) mod(J2, [a]l +(a — b)),

1.e. we get (B).

Now (y), (g) is left to the reader.

For a fixed A let g€Ia be as in 5.7(D), wlog g€N, Let
d, & {(0€a N it :gsa)= fi,u()}. By the definition of d; (as g <g; since
g €N;) we have

ge dA =’g(0) < f/l,g;(l)(e)’

i.e. (noting that the minimal i(*) satisfying 5.7(D)* belongs to N, and
i(*)+ g(1) = g;(A) for every i) by 5.7(D)"*

(*) d; N (a\b}y)EJ L [al, ie, d; C by modJL;[al.

On the other hand by (E) of 5.7 (and 5.5) certainly for every a<Jd,
i€ANN,,ifi = i(x), then proof of (#) (of (7.5) holds also if we replace b, by
b}, hence

fogay! bf = gs ! b} mod J %, [a],

hence b} C d; mod J,[a].
To finish by () above we need just b} C d; mod J, [a]; ook at the proof of
5.7 and note:

7.6A. SuBcLAIM. In 5.7, if (fi:i<<A) is continuous (i.e. for d <4,
la} <cfd <Mina, f;(6) = Min{ U,e¢ £,(8) : C C daclub}, thenford C a, if
b; Cdmod J%, [a] for arbitrarily large i <J, then bs C d mod J%, [a].

PrOOF OF 7.6A. Look at (iii) in the proof of 5.7.

7.6. LEMMA. Suppose |a| <Mina, b = (b,: A Ea) is a weak generating
sequence for a.

Then we can find b = (bj: A€a), f= ({ frn; a<A) : A Ea) such that:

() B’ is a smooth generating sequence,

(B) for A€a, b, C bjmod J,]a],

(y) fis a nice cofinality system.

PROOF. Let f= ({ S¥.ra<i):AEa) be a * continuous cofinality system
for (a, b). By 5.7 we can define (b:i;(*)<i<A1), g* as there, satisfying
(A)—(E) of 5.7. W.lo.g. i;(*) =0. We now define, by induction on 1E€gq,
(fia:@<A). We define f; , by induction on « such that:

(1) fas1 S fra €M@ N AT,

(2) for B<a, fipl b, < finl bymodJY,[a];
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(3) if a<4, cfa=|a| or cfla)=Mina, we choose f,, satisfying the
relevant cases of (1) and (2) and, if possible,

(*) 0ELANa=fo ;0= fi.(@anb)

4) ifa<A4, |a| <cfa<Mina, then f7,(8) = Min{ Uec f; 4(8) : Caclub
of a}. f1., /1. are defined as in 7.3(2).
There are no problems in this.

Now choose x large enough, ¢ o la|* and (N;:i =) increasingly con-
tinuous, N; <(H(X),€,<}), |N:/| =lail*, la|*CN, NEN,, and
(f, ({b}:i<A):AEa), a}EN, Now 7.5(z),(8) apply for 6 = o, A Ea with
b} for b, for any i EN,. We can now show that in (3) above, (*) was always
possible: if not there is a minimal A for which it fails and then a minimal a. So
(A, a) is definable from parameters which belong to N, hence (4, a) €E Ny Now
g, ! (a N A*) shows (¥) is possible (g,(#) o sup(f N N,), of course). Moreover
(*) now holds also if a < 4, |a | <cf(a) <Min a when cf] f; ,(0)] = cf e So fis
* continuous and nice. Now let

b={6€anit:glh) =ﬁ,g,(1)(0)};

they are as required.

§8. Kurepa trees from strong violation of GCH

8.1. LEmMA. (1) IfAEpcf(a), every A’ Epcfla), is normal for a and for no
inaccessible u, p = |pcf(a) N u|, then for some ¢ C A N pcfa) with no last
element

A = tcf(Ilc, <;w).

(2) If AEpcf(a), A = max[pcfla)], sup A N pcfla) is singular, then for every
unbounded ¢ C A N pcf(a) of power <Minc,

l = th(r[C, <qu)'

Proor. (1) Find bE€J,[a] —J;[a]; by (2) we can find ¢ € A N pcf(b) as
required.

ProoF oF 8.1(1). In more detail, the proof is by induction on u =
sup[A N pcfal.

Case 1. In A N pcf(a) there is no last element. So u is a limit cardinal and
cannot be inaccessible by a hypothesis. So u is singular. We can find ¢ C
pefla) Ny, || =cf(u)(<p), (cfu)* <Minec.
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By part (2) of 8.1, A = tcf Ilc/J .

Case 2. Not 1, s0 A N pcf(a) has a last element x say; so k is normal for a,
then b? is defined, and necessarily AEpcfla\b?); but x&pcfla\b?),
so if sup(pcf(a) N A) = «, we get Case 1, otherwise we use induction hypothesis

on K.
(2) By 5.12.

PROOF OF 8.1(2). Again the details are as follows: first max pcfic) = 4, as
peflc) C pefla) by 5.12. If 1 [tef(TIc, <) = A), then J; [c] € J ¥ (definitions),
so forsomed Cc,dgJ>and ¢ & max pef(d) < A.

Now (Ild, <;«) is sup(d)-directed, so 6 = sup(d); supd is singular, so
supd <6 <A. Now dCpcfla) and |d| =|c|<Minc =Mind, hence
pcf(d) C pef(c) by 5.12, but 8 Epcfid) so 8 Epcfic). sup(pcfa N1)=supc =
sup d < 8 < A — contradiction.

8.2. THEOREM. Suppose:

(a) k =cfxk >K,,

(b) (u*:i<k) is strictly increasing continuous,

(©) u*=((u¥)")" is less than p?,,,

(d) p =32 uk,

(e) ZicklRegN (u¥, u**)| + |Reg N (u, p7)) <p.t

Then we can find functions {h; : AEReg N (1, u*)) such that:

(i) Dom h; =«;

(i) hy(P) is a finite subset of Reg N U, <; (u¥, 1£*);

(iii) if A # 0 are from Reg N (u, u*) and i <k, then

h;_(l) = hg(l)=’hl M= hg M.

8.2A. REMARK. (1) We ignore the possibility of exploiting “|[u*, w**) N
Reg| is small for a stationary set of i’s”; look at the proof and use Fodor’s
Lemma to do it.

(2) For i <k of cofinality X, we can replace u** by

Min{4: for no 4; €[, 4#*], A > max pcf{A;:j <i}}.

PrRoOF. Let a;=RegN(u*,u*), a=U,a, a.=Regn(y,u],
a*=a VU a,. By assumption (¢), |a| <u, hence w.l.o.g. |a| <Min gand even

t Reg is the class of regular cardinals.
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(la|*)* <Mina. By the Galvin-Hajnal theorem |a.| <(jal*}*, so
(la*|*)* < Min a*. For each A € a* we can choose b, such that:

(*). () b Ca*Ni™;

(ii) b, €J L+ [a] — T [al;
(iii) J<;+[a] =J%,[a] + b,
{use 7.2(3)).

Now by 7.6, w.l.o.g. (b, : A Ea*) is a smooth generating sequence. Note also
that pcf(c) C U,-;,- a;foreach i <xand c C Ujé ; a; of cardinality = x.

Now for each A EReg N (i, #*], there is ¢; E[a]” such that 4 € pcfic;) (see
[Sh 111], 2.10" or [Sh 282], 12). By 5.8(3) w.l.o.g. A = max pcf(c;), hence
G, #* C, oA # A LetcF = by, 50 4, # e 0 # ¢ 0 p;so pef(c¥) = ¢, So
for every i <k,

pcf(c,{"ﬂ U aj)=cj"n U a,

=i JEi

hence by 7.2(5) for some finite d(4,i) CcF N U, < q;, U {by: 0€d 4, 0)} =
¢ N U, a;. (We use smoothness.)
We can define A¥; h¥(i)=d(4, i).

8.3. ConcLusioN. If 2M<R,, i<w=RM <R, and (R,)% =R,
a(*) = w,, then there is an X -Kurepa tree with = |a(*)| branches.

Check (a)—(c) of 8.2, k =R, u = R,,.
For the neophyte, the tree T is the following one:

The ith level is T; = {h; I (uF, yf*) : A€EReg N (u, u)};
the order is inclusion.

Clearly this is a tree with x levels.

For i <k, by (iii), |T;| = |{h,(i): A€EReg}| which, by (ii), has power
= Ro+ (i, 1*}|, and for each A€EReg N (u, u*) let n, = (M i:i<k).
1, is a k-branch and clearly 7,y # hi) # My # My hence T has at least
|Reg N (i, £*)| x-branches.

t See paragraph before 2.8, and 2.8 which is from [GHJ; there k¥ = w, is just for notational
simplicity.
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§9. Localizing pcf

9.1. CLAaM. Suppose {(q;:i =k) is increasing continuous, x regular and
a = a, satisfies

(*), |pcf(a)|®<Mina
or even just
(*), there is a smooth generating sequence for pcf(a) and | pcf(a,)| <Min a.

(1) If A€pcfla,) — U, ., pef(a;) then for some b C U, pefla,), || =k,
A Epcf(d).
(2) If A€pcfla,) — U, .. pcfla), k > R, then
@ for some S C x unbounded, 4; Epcfia;) — UJ-< ;pefla;) for i €S, we
have tcf(IT;es A;, <;») = 4, max pef{4;: j <i} <4,.

9.1A. QuEesTioN. What about pcf'?

9.1B. REMARK. In(2), we can waive the last demand but have S a club; see
9.3.

Proor. (1), (2). Let b = (by: 8 €pcfla,)) be a generating sequence (exists:
if (), by 6.14; if (x),, trivially). W.lLo.g. (by 5.8) A =max pcfla,) and
A N pef(a,) has no last element. By 7.6 w.l.o.g. b is smooth. By 7.2(5) for each i
there is a finite d; C pcf(a;) such that:

(1) pefla;) C Ugey bo, 1d;| <R,

Let d=U,_.d, so dCU,_..pcfla;), |d] =k, so Min(d)> |d|. If
max pcfid) <A, then d€J%;[pcfa,], hence for some finite ¢ C pcf(d),
pef(d) € Use, by, hence U, .. pefla;) € U,e, by, but

A = max pcf a, < max pcf ( U pcf(a,-)) = max pcf < U bo>

i<k fec

= nalax (max pcf(by)) = max(c) < 4;
Ec¢

contradiction.

By the same proof we know that

(2) for any unbounded S C x, A Epcf U,esd,.

So max pcf(d) = 4 but pcfid) C pef(a,) C A + 1, so max pcf(d) = 4 which
suffices for (1).

For (2) by Fodor’s Lemma (note that x is regular), so there are a <k,
n(*) < w, and stationary .S C x such that
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d; N < U pcf(a,-)) C pefa,),

j<i

=n(*).

\df - U pefla)

j<i

We now define by induction on [ = n(*), S, d;, such that:

(G) li)==‘s’ Sb+l - éh’ Iéhl =K,

(B) dip=4d; - Uj<i pcfla)) for i €S,

(7) d; 4. 1s a proper subset of d;, for i €S, ,,

(6) max pef(U {d,; — di ;11 1€8,4}) <A,

(e) foralli€S,, |di| =ny.
We continue till we are stuck; say (d;, : i €S;) are defined for / = m, but not for
/=m+ 1. By (3)

max pcflU {d, —d;;:i€S}) <A forl=m

(just prove it by induction on /, using (8) and 5.3(2)). However, as said above
(in (2)), A = max pcf U, s, d;, we conclude 4 = max pcfiU {d;,: i €S,}), hence
d;; # & for i €S, s0 S, cannot be defined. If (4, ,,: i €ES,,) is last defined,
d* =U,cs, d; , satisfies almost all we need.

Now by the choice of m

¢ Cd*& |c| = k=2 =max pcflc).

(Otherwise S;, ., = {i €S, : c Nd;,, # &} is unbounded in x, hence for some
unbounded S, ., C S, 41, and 1,

. def
[ESus1=diy—cl=np):now S, ,andd n,y = dim—c¢
contradict the maximality of m.

On the other hand
cCad*& |c| <k=(3i<k)c Cpcfla;)
=max pcfic) <A.

We can easily make pcfid*) — {4} have no last element and its sup minimal
(replacing d* by d’ C d; |d’| = k). But pcfid* N pcfia;)) has a last element
(which is <4), s0 {4, < max pef(d* N pefla;) : i <x) is monotonic increas-
ing and not eventually constant, and max pcf{4;: i <j} <sup{4;:i <j}. So
we have proved 9.1(2) too.
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9.2. CLAIM. Suppose
(*) |pcfla)|® < Min(a)
or just
(*), there is a generating sequence for pcf(a), and
|pcf(a)! <Mina.
If b C pcf(a), A €Epcf(b), then for some b’ C b:|b’| = |a|, A Epcf(d).

ProoF. We prove it by induction on |b| and for a fixed |b| by induction
on A. We can ignore the case “a is finite”; and w.l.0.g. b = max pcf(a).

Case A: |b)| = |a].

Trivial, let b’ = b.

Case B: |b| > |a|.

Letx =cf(|b]).

Let (b;:i <x) be increasingly continuous, |b;| <k, b =U, . b;. If for
some i <k, A4 €pcf(b;), by the induction hypothesis there is b’ C b; such that
A Epcf(b’), |b’| =k and we finish. So w.Lo.g. for i <k, A &pcf(h;). Now if
k=8, we use 9.1(1): so there are A,Epcf(h,) for n <w such that
A E€pcf{l, : n <w}. By the induction hypothesis for each » for some b, C b,,
|b,] < |a| and A, Epcf(by). So U, ., b}, is as required. So assume x > R,. By
9.1(2) for some 4; € pcf(b;), max pcf{4;: j <i} <4,, tef(TIA;, <;») = 4. For each
i <, there is b/ C b; such that |b/| < |a| and A, Epcf(d!). If | b| is singular,
we have

U b,"_S_lc—% lal =cf(|b])+ |a| < |b]

i<k

and as A Epcf({4;: i <k}) C pef U, _, b}, by the induction hypothesis on |b |
there is b’ C U, ., b, A Epcf(b’), so we finish.

Hence w.lo.g. k= [b|,letc; = {4;:j <i}. Let(see 7.6) (b, : § Epcfla)) bea
smooth generating sequence for pcf(a). Let (by 7.2(5)) for each i <k, d; be a
finite subset of pcfic;) such that pcfic;) € Upe,, by. Now (Uey by i <k) is
increasing (since for i <j, d; C pcfic;) € pefic;) € Ugey by and 1€ U, by =
b, € Upey by) and hence so is (a N (Uyey by) 1 i <k). As k> |a| the se-
quence is constant for i €[i(*), k) for some i(*) <k. But (remember that
6 = max by (trivially) hence max pcf{U,e,, b5) = max pef(c;) = max Uge,, by =
max d;):
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max pcf (a N < U bﬂ>) = Max dj.4,

0€dj(x)+1

= max pcf(C;qy+1)
<Aigy+1

émaxpcf(aﬂ( U ba>>,

0€dj(a)+ 1

contradiction by the previous sentence.

9.3. LEMMA. If (Vxy <up)(x* <), cflu) =Kk >R, (u;:i <k) is increas-
ingly continuous, U, <. p; = u, a; = Reg N (y;, ¥, a = U, .. a;.

Then for any regular cardinal A€ (u, u*] there is ¢; Ca, |¢| =k, u=
sup(c;) such that tcf(Tlc;,, <) =4 and {i <k:c; N(w;, uf1+ B} is closed
unbounded.

Proor. W.lo.g. u,> 2~

Let b, = U, <, a;, so (b;: i <k) is increasing, b, = pcf(b;). By [Sh 111], 2.10
for every AEReg N (u, 4], AEpcf(c) for some ¢ Ca, |c| =k. Let ¢} =
pef(c) N b;, as 21¢! < 2% < uy < Min ¢, we can apply claim 9.1(2) to (¢} : i <k)
toget (A,:i <k). Now ¢, -] (pcf{4;: j <k}) N pis as required.

§10. Consistency of uniform copies of w,

10.1. THEOREM. V Fk “S = {Kk <A :«k measurable} is stationary”. Then for
some semi-proper P, |P| =A, Pk k-c.c. and

I\ for every partition of (w,) to 2 there is a
monochromatic homomorphic copy of w, (in topology)”.

PrRoOOF. We have ¢g w.l.o.g. We define by induction on a <k a RCS
iteration
(Pi-QiiiZa,j<a)

such that
(*) each Q; is semi-proper,
1P| =345

We know semi-properness is preserved (see [Sh A2], Ch. X, §2).
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For most j, Q; = Levi(R,, 2%, For x €S we know that in V'’

(D) V countable N < (H(3;),€) IN’ N < N’ < (H(3),€)
and N Nw, = N’ N w, and sup(N N @,) <sup(N’' N w,)

(essentially see [Sh A2, Ch. XII, §2], strictly [Sh 253] 1.9, 1.9A(3)).

Oggives us a P.-name f = f,.

Assume |f-p f: Q’(wl); {g}een, red} (otherwise use the usual Q,).

Ifin V'*for fthere is a homogeneous green set as required, do as usual: Levi
collapse.

If not, let, in V%, 2 = {4 C w, : A non-stationary},

O.={(4;:i Za): 4, C w, A, € P strictly increasing,
continuous in i and f(4,) = red})

(the only properties of the family of non-stationary sets we use are: union of X,
is again in the family and is # w,, and):

10.2. CLAaM. For N, N’ from © necessarily in V%,

U 4# U 4.

AENNDP AEN'N P

Proor. For our iteration in V%, 2% =R,. So 2 = (B, : a <®,}. We can
define 2 : w,— 2,

h(e) = Min{y: B, is not included in any union of countably
many sets from {B;:j <a)}.

Easily £ is well defined (even if 7 CH)' and such (B, : a < ®,), & belong to N.
Choose now a €N’ N W, \N. S0 U ennp A DAn S Usenna 4 as

NNPC{B,:7ENNw,} C{B,:y<a}.
10.3. CLamM. Q, is semi-proper (in V).

Proof. Let N < (H(3),E€) be countable, pEQ, N N.

We can define (use @ repeatedly) N, (o« <w,) increasingly continuous,
N, < (H(%),€), N,Nw, =N N, (sup(N, N @,):a<wm,) strictly increas-
ing. Now “A, <, flUepnn, 4) = green” is impossible as then ( f(Uepnny, 4):

t By the diagonal union for some BE 2, [j < a=>B;\B countable], B,={i <w,:i€EB or
i = sup(i N B) but otp(i N B) not divisible by w?).
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a<w) is a green set. So 3a U epnn 4)=red. In N, choose p, EN N Q,,
Do= D, D, increasing, (VD EN) [D dense subset of Q. —V, p,ED]. It is
enough “U p, has a limit”. Let p, = (B;: { = a,), a, increasing.

10.4. CLaiM. IfAEPNN,then(3In)4CB,.

PROOF. Dy={(B;:{=a)EQ,:ACB,} is a dense subset of Q,: if
(B{:{=B)EQ, also (IX)E PN XredA X 2 B; UA) — (if not we have a
green cone), then (B;: { = B) *(X) €ED,. Now DyE N, so use definition of the
D, above.

CONTINUATION OF PROOF OF 10.3. By the claim

LJ l;( = LJ A

{<Upay AEPNN,

which is red by choice of a. So (B;: { <U,a,) (U epnn,4) is a limit of
{p,:n <w), belongs to Q,, so we have finished the proof of “Q, is semi-
proper”, hence of 10.1.

10.5. REMARK. What about partitions of 2 _x(X,)?

Velickovic and I discussed it in Arcta: from 2 colors, you cannot get rid of
any; from 3, you can get rid of 1.

§11. On a problem of Archangelski

11.1. ExaMpPLE. (Answer q. 3 of Archangelski). Let 4 be a cardinal. There
is a space X = X:
(1) with a basis of clopen sets (so it is a T; and T space),
(2) AX)=yw(X)=1R,, i.e. in X X X, the diagonal is the intersection of
countably many open sets (hence every x € X has pseudo-character R),
(3) cellularity (X) = R,,
4) 1 X | =4

11.1A. Construction. We define for n < w, 0 < m < w what is an m-place
term (0 <m <w) of depth <n, by induction on n (for such a term,
m = m(t], n = n[7] are determined uniquely).
n =0: it is a sequence T = (0, m);
n>0: for some terms 7y,...,T;_, (k <w), n{r;,J]<n, and functions
h:{0,....,k—1}—~{1,—1}, g:{0,...,k—1}—={i:0<i<w}
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and for i <k strictly increasing functions f;: {0, 1,..., m[7,] — 1}~
{0,1,...,m—1}
such that (+) if [}, [, <k, 1, = 1, h(/) = 1, h(}) = 1, then g(}}) = g(L,).
Let t=(n,m,{(t;:i<k),h,g, (fi:i<k)) and we write 7, =7;[t], h =
hlz), k = k[7]}, etc.

11.1B. Observation. The set of terms is countable.
11.1C. The set of points. Now the set of points of X] is
{{(z, @) : 7 a term, & an increasing sequence of ordinals <A of length m[7]}.
We write 7(a) instead of (1, &).

11.1D. A basis and a pseudo nb basis for each point. For each 0</<w
and x € X, we define sets ! :

u, ={x} U {y:for some terms 7,0 and ordinals ay<::- <o,
we have x = T((Olo, ey am(r)—l))’ y= U(ﬁm v ,,Bm(a)—l)
and for some i<kfo]l:t[o]l=1, h[o)@)=+1,
[ <m(z) & f[o)(!) = j— oy = f; and g[o](}) = []}.

Note that @ul*' Cul.
Now the topology of X, has the following base:

p—1
{ N [ p <o, x()EX,, (i) <w,e(i)E{l,— 1} and

i=0

[i,j <p,x(i))=x(), e(}) = 1, e(j) = — 1=1()) > 1(1')]}

where u'=u,u'=X;, —uforu C X,.

11.1E. Explanation. We build the space like a free algebra. Each point x
has a pseudo nb basis {u) : n <}, such that ul*! Cul, M., ul = {x} (s0
w(X;) = R,); moreover

Nn{uU u,"Xu,’,)={(x,x):xEX1}.

<o (xEX;_

We start with {7(&): n(7) = 0}; the restriction to this set is the discrete
topology. So (1) + (2) + (4) are O.K. For (3) (cellularity) we consider any finite
intersection of !, X; — ul (x = t(a), n(r) = 0) for which there is no obvious
reason why it should be empty; we add a point, i.e. an appropriate term
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exemplifying its non-emptiness. So two Boolean combinations of u. ’s are not
disjoint except when there is an obvious reason (e.g. ¢, u? — #?) and a point
belongs to u! only if it was added as a witness to an intersection including it.

11.1F. Trivial properties. Trivially [ X;| = A (i.e. (4)) and X, has a basis of
clopen sets (i.e. (1)).

11.1G. A(X;)=N,. Suppose x+#y are from X, but (x,y)E
N (U, u! X ul). So x =1(a), y = a(B). Let I(*) be a natural number bigger
than any g[7](}) (i <k[z]), glo1(i) (i <k[a]).

Now look at the definition of u/®; clearly

XEuW=x =z,
YEU =y =7z,
Asy #x, (x,y)&U, ul® X u!®,

11.1H. Cellularity is X,. Let {u;:i <w,} be pairwise disjoint open non-
empty subsets of X,. So as we can decrease them, w.l.0.g.

a1
wy= N (&P e where x, , EX;.
=0

As we can replace {u;:i<w,} by any uncountable subfamily, w.l.o.g.
e(i, p)=¢(p),q(i)=4q,Il(i, p)=I(p)and foreach p, x; , (i <w,)are all equal
or all distinct. Also w.L.o.g. the truth value of x; ,, = x; ,, does not depend on i
and

Xio = Xip g = Xy, py = Ko p, = Xiy pre

Now we can easily form a t(a) in ¥y N u,.
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