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In the first edition of Classification Theory, the second author 
characterized the stable theories in terms of saturation of ul-
trapowers. Prior to this theorem, stability had already been 
defined in terms of counting types, and the unstable formula 
theorem was known. A contribution of the ultrapower charac-
terization was that it involved sorting out the global theory, 
and introducing nonforking, seminal for the development of 
stability theory. Prior to the present paper, there had been 
no such ultrapower characterization of an unstable class. In 
the present paper, we first establish the existence of so-called 
optimal ultrafilters on (suitable) Boolean algebras, which are 
to simple theories as Keisler’s good ultrafilters [15] are to all 
(first-order) theories. Then, assuming a supercompact cardi-
nal, we characterize the simple theories in terms of saturation 
of ultrapowers. To do so, we lay the groundwork for analyzing 
the global structure of simple theories, in ZFC, via complex-
ity of certain amalgamation patterns. This brings into focus 
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a fundamental complexity in simple unstable theories having 
no real analogue in stability.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

We begin by giving some history and context of the power of ultraproducts as a tool 
in mathematics, and specifically in model theory. Ultrafilters on an infinite cardinal λ
are maximal (under inclusion) subsets of the power set of λ which are closed under finite 
intersection, upward closed, and do not contain the empty set. These give a robust notion 
of largeness, allowing for infinite averaging arguments and the study of asymptotic or 
pseudofinite behavior in models. Early appearances were in the work of Tarski 1930 [35]
on measures and Cartan 1937 [4,5] in general topology. The groundwork for their use 
in model theory was laid in the 1950s and early 1960s by Łoś [20], Tarski, Keisler [14], 
Frayne, Morel, and Scott [10], and Kochen [18] in terms of the ultraproduct construction. 
Given an ultrafilter D on λ, the ultraproduct N of a sequence of models 〈Mα : α < λ〉
in a fixed language L has as its domain the set of equivalence classes of elements of 
the Cartesian product 

∏
α<λ Mα under the equivalence relation of being equal on a 

set in D. One then defines the relations, functions, and constants of L on each tuple of 
elements of the ultraproduct to reflect the average behavior across the index models. The 
fundamental theorem of ultraproducts, Łoś’ theorem, says that the set of statements of 
first order logic true in the ultraproduct are precisely the statements true in a D-large 
set of index models, i.e. the theory of N is the average theory of the models Mα. Model 
theorists concentrated further on so-called regular ultrafilters, as will be explained in due 
course.

This construction gave rise to some remarkable early transfer theorems. For example, 
Ax and Kochen [1–3] and independently Eršov [8] proved that for any nonprincipal 
(= containing all cofinite sets) ultrafilter D on the set of primes, the ultraproduct Qp =∏

p Qp/D of the p-adic fields Qp and the ultraproduct Sp =
∏

p Fp((t))/D of the fields of 
formal power series over Fp are elementarily equivalent, i.e. satisfy the same first-order 
statements. Then from Lang’s theorem that every homogeneous polynomial of degree 
> d with more than d2 variables has a nontrivial zero in Fp((t)) for each p they deduce 
the corresponding theorem in Qp for all but finitely many p.

Working with ultrapowers, meaning that all the index models are the same, a similar 
averaging process happens. The central “algebraic characterization of elementary equiv-
alence” now appears: two models satisfy the same set of first order statements precisely 
when they have isomorphic ultrapowers, proved by Keisler 1961 under GCH [14] and by 
Shelah 1971 [32] in general.
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The theorems of Ax–Kochen and Ersov just mentioned used only ultrafilters on ω, 
Łoś’ transfer of the first order theory and ℵ1-saturation. The first order theory is a 
relatively superficial description of models shared by many in the same class, e.g. all 
algebraically closed fields of characteristic 0. From a model-theoretic point of view, the 
deeper structure of ultrapowers has to do with the Stone space of types and the property 
of saturation.1

Keisler, one of the major architects of model theory beginning in the 1960s, in partic-
ular has done much on ultrapowers, see [16]. He proved that one could define and build 
a family of so-called good regular ultrafilters [15],2 and he noticed that for any D in this 
family of good regular ultrafilters and any model M in a countable language, the ultra-
power Mλ/D is sufficiently, i.e. λ+-, saturated. Moreover, ultrapowers of certain theories 
are only saturated if the ultrafilter is good. In 1967 [17], Keisler proposed a means of 
comparing the complexity of theories according to the difficulty of saturating their ultra-
powers (Definition 2.4). Progress on this far reaching program, known as Keisler’s order, 
requires advances in model theory on one hand, and advances in ultrafilter construction 
on the other.

From the model theoretic point of view, a major motivation for understanding Keisler’s 
order comes from the search for dividing lines, that is, properties whose presence gives 
complexity and whose absence gives a good structure theory. For example, the dividing 
line of stable versus unstable theories has been fundamental since the 1970s [34]. However, 
there are many unstable theories, and for some of them a ‘positive theory’ may be 
analyzed; so if one hopes to generalize stability theory, a natural approach is to find 
and develop other dividing lines one by one in response to suitable questions. By a 1978 
theorem of Shelah, Keisler’s order independently detects the dividing line at stability. 
This suggests that a fruitful and moreover uniform way of looking for meaningful divisions 
in the enormous class of unstable theories is to progress, if possible, in the unstable 
classification of Keisler’s order. In short, Keisler’s order provides a uniform point of view 
from which to approach the problem of looking for dividing lines for a large and central 
family of theories, and a model-theoretic incentive to characterize equivalence classes. 
A natural target is the family of simple theories, a central and popular family in model 
theory for more than two decades. For background on simple theories and some history, 
see the survey [11]. We mention here that simple unstable theories include examples such 
as pseudofinite fields [13] and have been a fertile ground of model-theoretic interaction 
with algebra, geometry, combinatorics and number theory.

1 Saturation is a fullness condition. Informally, we may identify types over a given set A with orbits under 
automorphisms of some much larger universal domain which fix A pointwise, so call a model M κ-saturated 
if it contains representatives of all orbits under any automorphism of the larger universal domain which fix 
some subset of M of size < κ pointwise. Syntatically, an A-type p is a maximal consistent set of formulas 
in a fixed number of free variables and parameters from A; it is realized in the model M ⊇ A if for some 
ā ∈ Dom(M), M |= ϕ(ā) for all ϕ ∈ p; and a κ-saturated model is one in which all types over sets |A| < κ
are realized.
2 Keisler’s proof assumed GCH, an hypothesis removed by Kunen [19], in a proof which introduced some 

central techniques in ultrafilter construction.
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For many years there was little progress on Keisler’s order. Recently, a series of papers 
by the authors has significantly changed the landscape (see [26] for some history) and 
given us the leverage for the present work. In the current paper, we establish the existence 
of a new family of ultrafilters in parallel with developing the model theory of simple 
theories in a direction very different from prior work. Combining the two, we prove a 
characterization of the class of simple theories in terms of saturation of ultrapowers, 
assuming a supercompact cardinal. (For a discussion of our use of a large cardinal, see 
§2.2 below.) As would be expected, our work here has two complementary parts: on one 
hand we define and establish the existence of optimal ultrafilters, and on the other we 
extend the model theory of simple theories in order to show that such ultrafilters affect 
saturation. We hope to eventually be able to eliminate the large cardinal hypothesis in 
the main theorem of this paper, but for now it clarifies the model-theoretic content by 
allowing us to work with models as closed sets (as will be explained in due course).

Although there has been much interest in and work on simple theories, many basic 
structural questions about simple theories and the extent to which they may differ es-
sentially from a few canonical examples remain wide open. One theme of this paper has 
to do with finding the right frame for seeing divisions in complexity classes among the 
simple unstable theories. The complexity we detect has primarily to do with amalgama-
tion; it appears built on non-forking, and has no real analogue in the stable case (where 
we have amalgamation even of P−(n)-diagrams, see [34] Chapter XII). We give a model-
theoretic formulation of this property, which we call explicit simplicity, in Section 3. The 
history of classification theory would suggest that future work may well reveal other 
formulations of this property; such a formulation would be likely to arise from progress 
on determining the identity of equivalence classes in Keisler’s order among the simple 
theories (as opposed to the identification of dividing lines).

1.2. Results

We prove the following theorems. In each case, the results will hold for any four-tuple 
of infinite cardinals (λ, μ, θ, σ) satisfying the following hypotheses, plus any additional 
requirements given in the theorem.

Definition 1.1. Call λ, μ, θ, σ suitable when:

(a) σ ≤ θ ≤ μ < λ.
(b) θ is regular, μ = μ<θ and λ = λ<θ.
(c) (∀α < θ)(2|α| < μ).

Conditions 1.1(b) and (c) will essentially guarantee that certain equivalence relations 
defined in the course of our proofs are not unnecessarily large. We will be mainly in-
terested in cases where μ < λ. Note that the hypotheses of 1.1 hold when σ = θ = ℵ0
and μ < λ are any infinite cardinals, or when σ = θ is regular, μ = (2θ)+, and μ+ = λ
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(hence the existence of a suitable tuple with uncountable σ is provable in ZFC), or when 
σ is uncountable and supercompact, σ = θ = μ, and μ+ = λ. It will follow from the 
main definitions that these cardinals λ, μ, θ, σ each control specific aspects of both the 
model-theoretic and the set-theoretic picture, and varying their values, modulo the basic 
constraints of 1.1, will give useful information.

We first state the theorem which organizes our main results, before discussing “ex-
plicitly simple.”

Theorem. (Organizing theorem, Theorem 8.1 below.) Assume (λ, μ, θ, σ) are suitable and 
that σ is an uncountable supercompact cardinal. There exists a regular ultrafilter D over 
λ such that for every model M in a countable signature, Mλ/D is λ+-saturated if Th(M)
is (λ, μ, θ, σ)-explicitly simple, and Mλ/D is not μ++-saturated if Th(M) is not simple.

Regarding supercompact, usually “σ a compact cardinal” will suffice (keeping in 
mind that we will be working with σ-complete filters and ultrafilters), but the exis-
tence theorem for optimal ultrafilters given below assumes existence of an uncountable 
supercompact cardinal. As the statement of this theorem suggests, a model-theoretic 
contribution of the paper is the development of a notion we call (λ, μ, θ, σ)-explicitly 
simple, a measure of the complexity of amalgamation, discussed further in the introduc-
tion to Section 3. It will be clear from Section 3 that (λ, μ, θ, σ)-explicitly simple becomes 
weaker as μ increases, and that every (λ, μ, θ, σ)-explicitly simple theory is simple, even 
when μ = λ. More remarkable is that it is possible to capture simplicity in this way.

Theorem. (Simple theories are explicitly simple, Theorem 4.10 below.) Assume (λ, μ, θ, σ)
are suitable. If μ+ = λ, then every simple theory T with |T | < σ is (λ, μ, θ, σ)-explicitly 
simple, and moreover this characterizes simplicity of T .

As discussed later in this paper, we believe this new characterization will re-open the 
research on simple theories, which has long been dominated by analogies to stability the-
ory, by allowing for a classification of simple unstable theories according to the possible 
values of μ << λ.

Complementing the development of explicit simplicity, we define and prove existence 
of a new family of ultrafilters, called (λ, μ, θ, σ)-optimal. These ultrafilters, defined in 
Section 5, may be thought of as an analogue of Keisler’s good ultrafilters from [15]
which handle patterns arising from explicitly simple theories. The Boolean algebra in 
the statement of this theorem will be defined in 2.19(3).

Theorem. (Existence theorem for optimal ultrafilters, Theorem 5.9 below.) There exists 
a (λ, μ, θ, σ)-optimal ultrafilter on the Boolean algebra B = B1

2λ,μ,θ whenever (λ, μ, θ, σ)
are suitable and σ > ℵ0 is supercompact.
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On the connection of this ultrafilter on a Boolean algebra to a regular ultrafilter on λ, 
see Section 1.3 below. Finally, leveraging explicit simplicity and optimality, we prove the 
algebraic characterization of simple theories.

Theorem. (Ultrapower characterization of simplicity, Theorem 8.2 below.) Suppose 
(λ, μ, θ, σ) are suitable where σ is an uncountable supercompact cardinal and μ+ = λ. 
Then there is a regular ultrafilter D on λ such that for any model M in a countable 
signature, Mλ/D is λ+-saturated if Th(M) is simple and Mλ/D is not λ+-saturated if 
Th(M) is not simple.

Theorem 8.2 has the following consequence for Keisler’s order:

Conclusion. (On Keisler’s order �, Conclusion 8.4 below.) Assume there exists an un-
countable supercompact cardinal. If T , T ′ are complete countable theories, T is simple, 
and T ′ � T , then T ′ is simple.

Finally, we return to ultrafilters in the case σ = θ = ℵ0. We define and prove existence 
of so-called perfect ultrafilters for σ = θ = ℵ0, and prove that such ultrafilters are 
optimal. Theorem 9.4 is proved in ZFC.

Theorem. (Existence of perfect ultrafilters, Theorem 9.4 below.) Let (λ, μ, ℵ0, ℵ0) be suit-
able. Let B = B1

2λ,μ. Then there exists a (λ, μ)-perfect ultrafilter on B.

To conclude this catalogue of results, we record that the technology developed here 
has some surprising consequences, which will appear in subsequent work. Notably, over-
turning a longstanding conjecture that Keisler’s order has finitely many classes, we prove 
in [29] that already within the simple theories there is substantial complexity:

Theorem A. (See Malliaris and Shelah [29], in ZFC.) Keisler’s order has infinitely many 
classes. In fact, there is an infinite strictly descending chain of simple low theories in 
Keisler’s order, above the random graph.

Thus Keisler’s order is sensitive to the fine structure of amalgamation as measured 
by our criterion of explicit simplicity. This framework raises questions which we plan to 
address in work in progress, related to the natural interpretation of the coloring criterion 
developed here within particular classes of simple theories.

1.3. Introduction for set theorists

Here we briefly outline the innovations of the paper which may be of interest to set 
theorists, independent of the model-theoretic questions of saturation of simple theories. 
These are of two kinds (as we will explain). First is constructing ultrafilters on λ or 
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on related Boolean algebras. Second, the classes ModT , for T simple, include examples 
natural for set theorists such as the random graphs and certain classes of hypergraphs.

A major part of the paper has to do with the construction of regular ultrafilters using
large cardinals. Historically, model theorists had typically focused on regular ultrafilters 
because of the connections to the compactness theorem, and in particular their nice sat-
uration properties (see e.g. Theorem B, p. 622 below) whereas set theorists had typically 
focused on understanding quite complete ultrafilters under the relevant large cardinal 
hypotheses (or remnants of this like ℵℵ1

0 /D = ℵ1). Our present approach, following our 
earlier paper [27], reunites the two. Let B be a complete Boolean algebra of cardinality 
≤ 2λ with the ≤ λ+-c.c. Following [27], we build regular ultrafilters on λ by first building 
a regular, λ+-good filter D0 so that P(λ)/D0 is isomorphic to B, and then complete the 
construction by specifying an ultrafilter D∗ on B, which need not be regular. In the 
present paper, our main case is B = B1

2λ,μ,θ, the completion of the free Boolean algebra 
generated by 2λ independent partitions of size μ, where intersections of size < θ are 
nonempty. (Further work considering the case where B is not necessarily the completion 
of a free Boolean algebra will be developed in [30].) In the present paper, we use B
exclusively to refer to one of these completions of a free Boolean algebra.

In this setup, our focus is on construction of appropriate ultrafilters D∗ on B. The 
present paper introduces two new set-theoretic properties of ultrafilters on such Boolean 
algebras, “optimal” in 5.8 and “perfect” in 9.1, and proves that such ultrafilters exist. 
Both definitions capture in some sense being as good (c.f. Keisler’s ‘good’ ultrafilters) 
as possible modulo some background cardinal constraints. We succeed to prove that if 
σ ≤ θ ≤ λ and σ is supercompact then on B = B1

2λ,μ,θ an optimal ultrafilter exists; 
and we prove existence of a perfect ultrafilter on B in ZFC assuming σ = θ = ℵ0, 
and show that any such ultrafilter is optimal. In the present paper, we require that σ, 
if uncountable, is supercompact rather than simply requiring existence of a σ-complete 
ultrafilter on λ, because this is what we use in the existence proof for optimal ultrafilters.

The model-theoretic usefulness of this “separation of variables” approach was estab-
lished by [27], in particular Theorem F quoted in the next section, which says that the 
resulting saturation properties of the regular ultrafilter D induced on λ by D0 and D∗
may be characterized in terms of related conditions on the ultrafilter D∗. So we are free 
to address saturation problems by working with σ-complete ultrafilters D∗ on Boolean 
algebras (in the present case, completions of free Boolean algebras), a much richer con-
text. But it has also pure set-theoretic meaning: for instance, finding ultrafilters on λ
which are flexible but not good, see 5.18 below, as asked by Dow 1985 [6].

Readers unfamiliar with simple theories may prefer to keep in mind one of the many 
natural combinatorial examples of such theories. For each n > k ≥ 2, let Tn,k be the 
theory of the unique countable generic hypergraph in a language with a k+ 1-ary graph 
hyperedge (a symmetric, irreflexive k + 1-place relation) where the axioms say that the 
theory is infinite and any configuration of edges and non-edges is allowed provided that 
there are no complete hypergraphs on n +1 vertices (i.e. there do not exist n +1 vertices 
of which every distinct subset of size k + 1 is a hyperedge). When k = 1 such theories 



M. Malliaris, S. Shelah / Advances in Mathematics 290 (2016) 614–681 621

Sh:1030
are not simple (e.g. the triangle-free random graph) but when k ≥ 2 they are (e.g. the 
tetrahedron-free three-hypergraph), as proved by Hrushovski [13]. These examples will 
be central to a further analysis of simple theories via perfect ultrafilters in [29].

The reader interested primarily in these new ultrafilters may skip ahead to Sections 5
and 9. Such a reader may also find it useful to skim Section 2 for insight into the 
saturation claims we make about these ultrafilters, which are largely combinatorial in 
nature.

2. Overview and preparation

2.1. Overview

We begin by giving an overview of some main themes of the paper. For additional 
information on Keisler’s order the reader may wish to consult Keisler 1967 [17], or the 
recent papers [26,23], and [31].

Convention 2.2. (On types.) Given N := Mλ/D an ultrapower,

(a) Call a type or partial type p over A, A ⊆ N small if |A| ≤ λ.
(b) Any small type may be enumerated (possibly with repetitions) as {ϕi(x, ai) : i < λ}, 

where �(ai) need not be 1.
(c) For each parameter a ∈ A ⊆ N , fix in advance some lifting of a to Mλ. Then by 

the notation a[t] we mean the t-th coordinate of this lifting of a. When a is a tuple 
a1, . . . , an, the notation a[t] is understood to mean the tuple a1[t], . . . , an[t].3 We will 
use this notation throughout the paper.

(d) By Łoś’ theorem, if p is a consistent partial type in N then we may define the Łoś 
map f : [p]<ℵ0 → D by

u �→ {t ∈ λ : M |= ∃x
∧
i∈u

ϕi(x, ai[t])}

(e) [A]<κ denotes the set of all subsets of A of cardinality < κ.
(f) Dom(M) denotes the universe of a structure M , and ||M || = | Dom(M)|.

Definition 2.3. The ultrafilter D on λ is regular if it contains a regularizing family, that 
is, a set {Xi : i < λ} ⊆ D such that for any u ⊆ λ, |u| ≥ ℵ0,

⋂
i∈u

Xi = ∅.

3 Informally, a[t] is the “projection of a to index t” or “to the index model Mt”.
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Equivalently, D is regular if every set of size ≤ λ in any D-ultrapower is covered by a 
pseudofinite set.

The hypothesis regular entails that saturation of ultrapowers is a property of the 
(countable) theory, not the model chosen:

Theorem B. (See Keisler [15] Cor. 2.1a.) When D is a regular ultrafilter on λ and M ≡ N

in a countable signature, then Mλ/D is λ+-saturated iff Nλ/D is λ+-saturated.

Theorem B justifies the quantification over all models in the next, central definition.

Definition 2.4. (Keisler’s order, Keisler 1967 [17].) Let T1, T2 be complete countable first 
order theories. Say T1 � T2 if whenever λ ≥ ℵ0, D is a regular ultrafilter on λ, M1 |= T1, 
M2 |= T2 we have that

(M2)λ/D is λ+-saturated =⇒ (M1)λ/D is λ+-saturated

Keisler’s order � is a preorder on theories, often thought of as a partial order on the 
�-equivalence classes.

Question 2.5. (See Keisler 1967.) Determine the structure of Keisler’s order.

The state of what was known about the structure Keisler’s order through 2012 can 
be found in section 4 of the authors’ paper [23]. Since that paper was written, and prior 
to the current paper, the following results have been obtained:

Theorem C. (See Malliaris and Shelah [27].) Keisler’s order has at least two classes 
among the simple unstable theories.

Theorem D. (See Malliaris and Shelah [25], announced in [26].) Any theory with the 
model-theoretic tree property SOP2 belongs to the maximum class in Keisler’s order.

To explain what is, in general, at stake in questions of saturation of ultrapowers, we 
now discuss types in regular ultrapowers. For transparency, in this section, all languages 
and thus all theories are countable. (Beginning in §3, we will allow the language to be 
uncountable.)

Definition 2.6. Let D be a regular ultrafilter on λ, M a model in a countable signature, 
p a small partial type over A ⊆ N := Mλ/D. A distribution of p is a map d : [p]<ℵ0 → D
such that:

(a) d is monotonic, i.e. u ⊆ v =⇒ d(v) ⊆ d(u), and d(∅) = λ

(b) d refines the Łoś map f , meaning that d(u) ⊆ f(u) for each u ∈ [p]<ℵ0

(c) the image of d is a regularizing family, 2.3 above.
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In some sense, the problem of realizing types in ultrapowers is already visible in what 
Łoś’ theorem does not guarantee. Although a type is “on average” (in the ultrapower) 
consistent, i.e. distributions exist, when we try to realize it by assigning finitely many 
formulas of the type to each index model via a distribution 2.6 it becomes apparent that 
there is no guarantee that the finite set of formulas {ϕi(x, ai[t]) : t ∈ d({ϕi})} assigned 
to index t has a common realization.

Note that 2.6(a) is not necessary, as it may always be ensured (refining a given map 
by induction on the size of u).

Specifically, the following fact explains a basic mechanism controlling saturation of 
regular ultrapowers.

Fact 2.7. (See [23] 1.8.) Let D be a regular ultrafilter on λ, M a model in a count-
able signature, p a small partial type over A ⊆ N := Mλ/D. Then the following are 
equivalent:

1. p is realized in N .
2. Some distribution d of p has a multiplicative refinement, that is, a map d′ :

[p]<ℵ0 → D such that for any u, v, first, d′(u) ⊆ d(u), and second, d′(u) ∩ d′(v) =
d′(u ∪ v).

The property of (monotonic) maps from [λ]<ℵ0 → D admitting multiplicative refine-
ments is a natural set-theoretic question:

Definition 2.8. (Good ultrafilters, Keisler [15].) The filter D on λ is said to be μ+-good
if every f : [μ]<ℵ0 → D has a multiplicative refinement, where this means that for some 
f ′ : [μ]<ℵ0 → D, u ∈ [μ]<ℵ0 =⇒ f ′(u) ⊆ f(u), and u, v ∈ [μ]<ℵ0 =⇒ f ′(u) ∩ f ′(v) =
f ′(u ∪ v).

Note that we may assume the functions f are monotonic.
D is said to be good if it is λ+-good.

Keisler proved that good regular ultrafilters on λ always exist assuming GCH [15]; 
this was proved in ZFC by Kunen [19]. Thus, by Fact 2.7, for any λ there exists a regular 
ultrafilter on λ such that Mλ/D is λ+-saturated for any M in a countable signature. In 
the other direction, there exist T able to code failures of goodness, e.g. Th([ω]<ℵ0 , ⊆), 
so that if M |= T then Mλ/D is λ+-saturated iff D is good (Keisler [17] Theorem 1.4c). 
This proves existence of a maximum class in Keisler’s order.

Definition 2.9. Reflecting the saturation properties of good ultrafilters, when D is an 
ultrafilter on λ we will say that “D is good for T ,” or “D is (λ+, T )-good,” to mean that 
for any M |= T , Mλ/D is λ+-saturated.

We now know that it is also possible for a theory to be Keisler-maximal without 
explicitly coding all failures of goodness:
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Theorem E. (See Shelah 1978 [34] VI.3.9.) Any theory with the strict order property is 
maximal in Keisler’s order, e.g. Th(Q, <).

In fact, SOP2 suffices (Malliaris and Shelah, Theorem D above). The “basis” of func-
tions whose multiplicative refinements ensure that of all others is not yet understood. 
We know the only essential complexity is local:

Fact 2.10. (Local saturation suffices, Malliaris [21] Theorem 12.) Suppose D is a regular 
ultrafilter on I and T a countable complete first order theory. Then for any M I/D, the 
following are equivalent:

1. M I/D is λ+-saturated.
2. M I/D realizes all ϕ-types over sets of size ≤ λ, for all formulas ϕ in the language 

of T .

To understand classes other than the Keisler-maximal class, as in the present paper, it 
is therefore necessary to realize some types while omitting others, that is, to understand 
how certain model-theoretically meaningful families of functions may have multiplicative 
refinements while others do not. A point of leverage on this problem was built in [27]
and applied there to obtain the first ZFC dividing line among the unstable theories. It 
translates the problem just described into a problem about patterns in some quotient 
Boolean algebra, as we now explain. For 2.11, note that the notion of an λ+-excellent filter 
is defined in [27]. It is proved in Theorem 12.3 of that paper that a filter is λ+-excellent 
if and only if it is λ+-good and in the present paper, λ+-excellent and λ+-good are used 
interchangeably.4

Definition 2.11. (Regular ultrafilters built from tuples, from [27].) Suppose D is a regular 
ultrafilter on I, |I| = λ. We say that D is built from (D0, B, D∗) when the following hold. 
Note that λ is given by D0, and if not mentioned otherwise, we will assume the index 
set of D is λ.

1. D0 is a regular, |I|+-excellent filter on I
(for the purposes of this paper, it is sufficient to use regular and good)

2. B is a complete Boolean algebra of cardinality 2λ and ≤ λ+-c.c.
3. D∗ is an ultrafilter on B
4. there exists a surjective homomorphism j : P(I) → B such that:

4 More precisely, one can define a notion of “excellent for a theory T” and likewise of “good for a theory T .” 
What is proved in [27] is that “excellent” i.e. “excellent for all countable T” coincides with “good” i.e. “good 
for all countable T” i.e. every monotonic function from finite subsets of I into the filter has a multiplicative 
refinement. This is the property we need for Theorem F, so the reader may substitute good for excellent 
in that theorem. However, it is important to mention that for specific values of T , “excellent for T” and 
“good for T” need not coincide. If one wanted to work with more precise versions of Theorem F where D0
is excellent only for certain theories, the situation might be different.



M. Malliaris, S. Shelah / Advances in Mathematics 290 (2016) 614–681 625

Sh:1030
(a) D0 = j−1({1B})
(b) D = {A ⊆ I : j(A) ∈ D∗}.

We may make j explicit and write “built from (D0, B, D∗, j)”.

It was verified in [27] Theorem 8.1 that whenever μ ≤ λ and B is μ+-c.c. there exists a 
regular good D0 on λ and a surjective homorphism j : P(I) → B such that D0 = j−1(1). 
Thus, Definition 2.11 is meaningful, and this opens up many possibilities for ultrafilter 
construction.

We now state Theorem F, used throughout the present paper, and then define “moral-
ity” in 2.14.

Theorem F. (Separation of variables, Malliaris and Shelah [27] Theorem 6.13; see Ob-
servation 2.15 below.) Let κ ≤ λ. Suppose that D is built from (D0, B, D∗, j), and D0 is 
excellent.5 Then the following are equivalent:

(A) D∗ is (κ, B, T )-moral, i.e. κ-moral for each formula ϕ of T .
(B) For any M |= T , Mλ/D1 is κ+-saturated.

The practical consequence of Theorem F is that one can construct regular ultrafilters 
in a two-step process. First, one constructs a λ+-excellent filter D0 admitting the desired 
homomorphism j to a specified Boolean algebra B. One may ensure the non-saturation 
half of the argument at this stage by clever choice of B: for example, a key move of 
[27] is to show that if B has the μ+-c.c. for μ < λ, then D cannot be good for non-low 
or non-simple theories, regardless of the choice of D∗. See Section 2.2 below.6 See §2.2
below for the present analogue. Second, one builds an appropriate ultrafilter D∗ on the 
Boolean algebra B, usually focused on the positive (saturation) side of the argument. 
Theorem F ensures that D∗ controls the resulting saturation properties of D. This will 
be our strategy below.

We now explain the condition of “morality” on D∗.

Definition 2.12. (Possibility patterns, c.f. [27].) Let B be a Boolean algebra and ϕ =
〈ϕα : α < λ〉 a sequence of formulas of L. Say that b is a (λ, B, T, ϕ)-possibility when:

1. b = 〈bu : u ∈ [λ]<ℵ0〉
2. u ∈ [λ]<ℵ0 implies bu ∈ B+

3. if v ⊆ u ∈ [λ]<ℵ0 then bu ⊆ bv (monotonicity) and bu = 1B

5 The requirement “D0 is λ+-excellent” is assumed in the definition of “built from” but we repeat it here 
for emphasis.
6 Informally, there is too little room in the Boolean algebra to account for the “wideness” of theories with 

significant forking: see [27] §9, specifically Conclusion 9.10. That proof uses in an essential way that (in our 
notation) θ = ℵ0, as will be explained in due course.
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4. if u∗ ∈ [λ]<ℵ0 and c ∈ B+ satisfies

(u ⊆ u∗ =⇒ ((c ≤ bu) ∨ (c ≤ 1 − bu)))

then we can find a model M |= T and aα ∈ M for α ∈ u∗ such that for every u ⊆ u∗,

M |= (∃x)
∧
α∈u

ϕα(x; aα) iff c ≤ bu.

When the sequence ϕ is constant with each ϕα = ϕ, say b is a (λ, B, T, ϕ)-possibility.

Definition 2.12 ensures that a could have plausibly arisen as the image under j of the 
distribution of a ϕ-type by asking that the Venn diagram of the elements a accurately 
reflects the complexity of ϕ: that is, whenever some nonzero element b of B induces an 
ultrafilter on some {av : v ⊆ u}, we can find a set of instances {ϕi : i ∈ u} in a monster 
model of T whose pattern of intersection corresponds exactly to that dictated by b.

Example 2.13. Let D be built from (D1, B, D0, j). Let p ∈ S(A), A ⊆ Mλ/D1 be a small 
ϕ-type and, identifying p with λ, let f : [λ]<ℵ0 → D1 be the Łoś map of p. Let a = 〈au :
u ∈ [λ]<ℵ0〉 be given by au = j(f(u)), so au ∈ B+. Then a is a (λ, B, T, ϕ)-possibility.

Then morality, 2.14, is simply the Boolean algebra equivalent to a regular ultrafilter 
being good for a theory, see 2.7 and 2.9 above.

Definition 2.14. (Moral ultrafilters on Boolean algebras, [27].) We say that an ultrafilter 
D∗ on the Boolean algebra B is (λ, B, T, ϕ)-moral when for every (λ, B, T, ϕ)-possibility 
b = 〈bu : u ∈ [λ]<ℵ0〉 such that bu ∈ D∗ for each u ∈ [λ]<ℵ0 , there is a multiplicative 
D∗-refinement b′ = 〈b′

u : u ∈ [λ]<ℵ0〉, i.e.

1. u1, u2 ∈ [λ]<ℵ0 =⇒ b′
u1 ∩ b′

u2 = b′
u1∪u2

2. u ∈ [λ]<ℵ0 =⇒ b′
u ⊆ bu

3. u ∈ [λ]<ℵ0 =⇒ b′
u ∈ D∗.

We write (λ, B, T, Δ)-moral to mean (λ, B, T, ϕ)-moral for all ϕ ∈ Δ. We write 
(λ, B, T )-moral to mean (λ, B, T, ϕ)-moral for all formulas ϕ.

In the last sentence of the definition of “moral”, we could equivalently have said: 
we write (λ, B, T )-moral to mean (λ, B, T, ϕ)-moral for all sequences ϕ of formulas and 
all (λ, B, T, ϕ)-possibilities, because our theories T are countable. (On uncountable T , 
see [33].) The equivalence is by Fact 2.10 and Theorem F. Since in the present paper it 
is not usually necessary to restrict to ϕ-types, we will often use this second formulation.

The statement of [27] Theorem 6.13 was stated just for the case κ = λ. For complete-
ness, we justify the use of κ ≤ λ in Theorem F above.
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Observation 2.15. Fix |I| = λ and κ ≤ λ. Then (1) iff (2).

(1) D is a regular ultrafilter on I, built from (D0, B, D∗), and D∗ is (κ, B, T )-moral for 
all formulas ϕ of T .

(2) For any model M |= T , and any type p ∈ S(N) where N ⊆ M , ||N || = κ, p is 
realized in M .

Proof. (1) implies (2): This is the direction we use in the present paper. Recall that 
“built from” implies D0 is λ+-excellent. By regularity of D, we may choose any model 
M of T , in particular we may choose M λ+-saturated. By Fact 2.10, we may assume 
p is a ϕ-type. Let 〈ϕ(x, ̄a∗α) : α < κ〉 be an enumeration of ϕ. Fix some lifting of the 
parameters so that we may write “a[t]” for a ∈ N and t ∈ I. For each u ∈ [λ]<ℵ0 , define

Bu = {t ∈ I : (∃x)
∧
α∈u

ϕα(x, āvα [t])}.

Without loss of generality, B∅ = I. Define 〈Au : u ∈ [λ]<ℵ0〉 by: Au = Bu∩κ. Let 
au = j(Au) ∈ D∗, which gives us the sequence ā = 〈au : u ∈ [λ]<ℵ0〉, which is a possibility 
pattern, by Łoś’ theorem, c.f. 2.13. By hypothesis (1), there exists ā′ = 〈a′

u : u ∈ [λ]<ℵ0〉
such that ā′ is a sequence of elements of D∗ which form a multiplicative refinement of ā. 
For each u ∈ [λ]<ℵ0 , choose A′

u such that j(A′
u) = a′

u. Let A′′
u = A′

u ∩ Au. Then the 
sequence 〈A′′

u : u ∈ [λ]<ℵ0〉 refines 〈Au : u ∈ [λ]<ℵ0〉 and is multiplicative mod D0.
Now we use the definition of excellent, specifically Claim 4.9(1) of [27], using D0 and 

Ā′′ here for D and Ā there. By that Claim, there is a sequence B̄′ = 〈B′
u : u ∈ [λ]<ℵ0〉 such 

that first, B̄′ refines Ā′′ so a fortiori B̄′ refines Ā, and second, B̄′ is actually multiplicative, 
not just multiplicative mod D0. The map f : [κ]<ℵ0 → D given by u �→ B′

u is therefore 
a multiplicative map, which means that for each t ∈ I, the set

{ϕ(x, ā∗α[t]) : t ∈ f({α})}

is a partial type in M . Since M is λ+-saturated, we may choose some b∗[t] realizing this 
type. Let b∗ =

∏
t∈I b∗[t]/D. Then b∗ realizes p as desired.

(2) implies (1): This is immediate from Lemma 6.12 of [27] replacing λ by κ in con-
clusions (A) and (B) of that lemma and in the corresponding proof. �
2.2. Why a large cardinal?

The cardinal σ is supercompact iff on every set A of cardinality ≥ σ there exists a 
normal σ-complete ultrafilter on [A]<σ (see 5.2 below). This implies that σ is compact, 
i.e. that every σ-complete filter can be extended to a σ-complete ultrafilter.

Where do complete filters appear, given that all ultrafilters in Keisler’s order are 
regular? The idea is that Theorem F allows us to build regular ultrafilters from complete 
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ones: D∗ may be σ-complete for some uncountable σ, assuming the existence of σ > ℵ0
compact.

Why is this useful? In the main theorem of [27], we proved existence of a ZFC di-
viding line in Keisler’s order among the unstable theories, by separating the minimum 
unstable theory, the random graph, from all non-simple and simple non-low theories. The 
non-saturation half of that argument proved, in the context of Theorem F, that when 
the quotient Boolean algebra is B = B1

2λ,μ,ℵ0
and CC (B) = μ+ ≤ λ, i.e. the maximal 

size of an antichain in B is μ, then the resulting D1 was not good for any non-low or 
non-simple theory, see also 9.6 below. It is crucial there that B is the completion of a free 
Boolean algebra and that the last of the three cardinal subscripts for B is ℵ0, so in our 
notation, σ = θ = ℵ0. [The saturation part of the proof showed that the lack of global 
inconsistency in the random graph meant that its types could still be realized when μ
was small.] To the extent that the random graph is typical of simple theories, one can 
ask whether higher octaves of those arguments would work to separate all simple theo-
ries from all non-simple ones. Our strategy here is, therefore, to continue working with 
completions of free Boolean algebras, and to continue to concentrate on the case where 
CC (B) = μ+ ≤ λ. (We will consider other Boolean algebras in the paper [30] in prepa-
ration.) However, the ultrafilter D∗ we construct is σ-complete for some uncountable σ, 
so in our present notation θ ≥ σ > ℵ0, in order to have a chance at saturating simple 
theories which are non-low. The large cardinal assumption gives us enough room in the 
construction to deal with the extra amount of forking in simple non-low theories, while 
still allowing us to ensure non-saturation of any non-simple theory. The remarkable fact 
is that, after taking care of this one possible problem at lowness, we are able to leverage 
a new analysis of amalgamation in simple theories to build ultrafilters which precisely 
characterize the dividing line at simplicity.

We consider both σ = ℵ0 and also σ uncountable and supercompact in our various 
ultrafilter existence proofs. We use the second case in this paper to characterize simplicity, 
and will use the first [which necessarily does not saturate non-low simple theories, but 
is in ZFC] in [29].

2.3. Structure of the paper

The structure of the paper is as follows. We assume throughout that our tuples 
(λ, μ, θ, σ) of cardinals are suitable in the sense of 1.1 above. In §3, we develop the 
model-theoretic amalgamation condition called “(λ, μ, θ, σ)-explicitly simple.” In §4, we 
characterize simple theories as explicitly simple using μ+ = λ. As discussed there and 
carried further in [29], varying the distance of μ and λ outlines a new approach to clas-
sifying the simple unstable theories. In §5, we define the new property of ultrafilters on 
certain Boolean algebras, called “(λ, μ, θ, σ)-optimal,” and prove an existence theorem 
assuming σ is uncountable and supercompact. (Existence in the case σ = θ = ℵ0 will 
follow from Theorem 9.4 below.) If D is a regular ultrafilter on λ built from (D0, B, D∗)
where D∗ is (λ, μ, θ, σ)-optimal, we will call D (λ, μ, θ, σ)-optimized. Assuming μ < λ, 
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we then show how to ensure optimized ultrafilters do not saturate non-simple theories. 
§6 proves a technical lemma about arranging presentations to interact well with liftings 
in ultrapowers. In §7, assuming μ+ = λ (as well as σ uncountable and supercompact 
to quote the ultrafilter existence theorem of §5), we prove that optimized ultrafilters 
saturate simple theories. §8 contains the paper’s main theorems, characterizing simple 
theories via saturation of ultrapowers. §9 states and proves existence of so-called perfect 
ultrafilters on certain Boolean algebras, which will be useful for σ = ℵ0 in future papers. 
§10 contains a list of open problems.

2.4. Basic definitions

For history on simple unstable theories, and for statements of theorems from the 
literature, we refer to the survey article [11]. We will use:

Definition 2.16 (Simple theories). Given a background theory T ,

1. A formula ϕ = ϕ(x, y) has the k-tree property, for k < ω, when there exist parameters 
{aη : η ∈ ω>ω}, �(aη) = �(y), so that:
(a) for each η ∈ ω>ω, the set {ϕ(x, aη�i) : i < ω} is k-inconsistent
(b) for each η ∈ ωω, the set {ϕ(x, aη|n) : n < ω} is consistent.

2. A formula ϕ is simple if it does not have the tree property, i.e. it does not have the 
k-tree property for any k.

A theory is called simple if all of its formulas are.

Definition 2.17 (D-rank, lowness). Again fix T .

1. For each formula ϕ(x̄, ȳ), an integer k < ω, and a formula θ(x̄), all possibly with 
parameters, we define D(θ, ϕ, k) to be ≥ 0 if θ(x̄) is consistent, and ≥ α+ 1 if there 
exists āα which forks over the parameters of θ such that D(θ(x̄) ∧ϕ(x, ̄aα), ϕ, k) ≥ α. 
Equivalently, T is simple if and only if for all formulas ϕ and θ and all k < ω, the 
rank D(θ, ϕ, k) is finite.

2. We say T is low if for each formula ϕ(x̄; ȳ) there is k < ω such that for any indis-
cernible sequence 〈ān : n < ω〉, with �(ān) = �(y), we have that {ϕ(x̄; ̄an) : n < ω}
is consistent iff it is k-consistent.

Theorem G. (Independence theorem, version of [11] Theorem 2.11.) Let T be simple and 
M |= T . Let A, B be sets such that tp(A/MB) does not fork over M . Let p ∈ S(M). 
Let q be a nonforking extension of p over MA and r be a nonforking extension of p
over MB. Then q ∪ r is consistent, moreover q ∪ r is a nonforking extension of p over 
MAB.
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Definition 2.18 (Partitions).
1. A partition of a Boolean algebra is a maximal set of pairwise disjoint nonzero ele-

ments. We may also apply this to sequences with no repetitions.
2. CC (B) = sup{μ+ : B has a partition of size μ}.
3. When a ∈ B and c̄ = 〈cε : ε < μ〉 is a partition of B, we say that c̄ supports a when 

ε < μ =⇒ (cε ≤ a) ∨ (cε ≤ 1 − a) (in B).
4. When c̄ = 〈cζ : ζ < μ〉, d̄ = 〈dε : ε < μ〉 are partitions of B, say that d̄ refines c̄ if 

for each ε < μ, there is ζ < μ such that dε ≤ cζ .

We focus on completions of free Boolean algebras, mainly B = B1
2λ,μ,θ, the completion 

of the Boolean algebra generated freely by 2λ independent partitions of size μ, where 
intersections of fewer than θ nonzero elements are nonzero precisely when no two are 
from the same partition. It will be convenient to describe such objects as follows.

Definition 2.19 (Boolean algebra notation7). Let α be an ordinal, μ ≥ θ cardinals; the 
existence statement is 2.21.

1. Let

FIμ,θ(α) = {h : h is a function, Dom(h) ⊆ α, |Dom(h)| < θ and Range(h) ⊆ μ}

2. B0 = B0
α,μ,θ is the Boolean algebra generated by:

{xf : f ∈ FIμ,θ(α)} freely subject to the conditions that
(a) xf1 ≤ xf2 when f1 ⊆ f2 ∈ FIμ,θ(α).
(b) xf ∩ xf ′ = 0 if f, f ′ are incompatible functions.8

3. B1
α,μ,θ is the completion of B0

α,μ,θ.

In 1, 2, 3 when θ = ℵ0 we may omit it.

Convention 2.20. We will assume that giving B determines a set of generators 〈xf : f ∈
FIμ,θ(α∗)〉, so also α∗, μ, θ.

Fact 2.21. Assuming λ = λ<θ, B0
2λ,μ,θ and thus its completion exists.

Proof. See Engelking and Karlowicz [7], Fichtenholz and Kantorovich [9], Hausdorff [12], 
or Shelah [34] Appendix, Theorem 1.5. �
Convention 2.22 (Conventions on notation). Some effort has been made to standardize 
notation as follows (these objects will be defined below, and will be subject to further 

7 Following [34] VI §3 or [24]. “FI” recalls the simplest case θ = ℵ0, i.e. “finite intersection.”
8 Note that ‘iff’ follows. It also follows that when j < θ, g =

⋃
i<j fi implies xg =

⋂
i<j xfi

in B0 and 
in B

1.
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hypotheses). The reader can quickly scan the following list at this point, and refer back 
to it later on as needed.

• The letters D, E always indicate a filter.
• When occurring together, the symbols D, D0, D∗, j, I are used in compliance with 

Theorem F, p. 625.
• B is a Boolean algebra; in the proofs, it is always a completion of a free Boolean 

algebra, so of the form B1
2λ,μ,θ, as defined in 2.19.

• B+ is B \ {0}.
• When D is a filter on B, D+ = {a ∈ B : a �= 0 modD}.
• λ ≥ μ ≥ θ ≥ σ are suitable infinite cardinals (1.1), where:

– λ is the size of the index set for our background regular ultrafilter D1, thus, we are 
interested in realizing types in simple theories over sets of cardinality ≤ λ.

– μ ≤ λ, in the interesting case μ < λ: this is the range of the coloring function 
we build on fragments of types in simple theories, and also the size of a maximal 
antichain in our Boolean algebra B.

– θ (note σ ≤ θ ≤ μ) is the last parameter for the underlying Boolean algebra 
B = B1

2λ,μ,θ, see 2.19.
– if σ is an uncountable supercompact cardinal then we build D∗ to be σ-complete.
We have kept θ and σ separate due to their different roles and requirements, but the 
casual reader will not lose much by assuming they are equal.

• Boldface letters c, x, b . . . are elements of B.
• Fraktur letters are generally used for objects of interest having multiple parts, e.g. 

m for presentations, r for elements of the set of type fragments Rm associated to a 
presentation m.

• f, f1, f2 . . . are elements of FIμ,θ(α∗), noting that xf ∈ B is an element correspond-
ing to the function f as in 2.19.

• Ω ⊆ [λ]<σ is stationary, which means cofinal if σ = ℵ0.
• u, v, w are subsets of λ; generally u ∈ Ω, so |u| < σ, whereas w, v may be larger.
• ε, ζ, ξ are elements of μ, i.e. ordinals < μ.
• δm is an ordinal ≤ |T |, usually clM(∅) in the context of a presentation m.

3. Definition of “explicitly simple”

In this section and the next we develop a new perspective on simplicity.
This section gives the first main definition of the paper: “the theory T is (λ, μ,

θ, σ)-explicitly simple.” The definition makes sense for any suitable four-tuple of infinite 
cardinals λ ≥ μ ≥ θ ≥ σ > |T | in the sense of 1.1, and so varying these cardinals will give 
information about the theory. The parameter we are mainly interested in varying is μ. 
As mentioned, it will follow from the definitions in this section that (λ, μ, θ, σ)-explicitly 
simple becomes weaker as μ increases, and that every (λ, μ, θ, σ)-explicitly simple theory 
is simple, even when μ = λ.
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Recall from 2.6 that when analyzing saturation of ultrapowers, Łoś’ theorem guaran-
tees that while projections of finite pieces of a type to a given index model may each 
be consistent, their ‘relative position’ is a priori not preserved, so there is no guarantee 
that the union of these pieces is consistent.

An informal model-theoretic description of this problem is the following. Suppose, 
for clarity, that T is a theory whose only forking comes from equality, and p is a type 
over a set of size λ. Suppose that finitely many finite pieces of the type are moved 
by piecewise automorphisms of the monster model agreeing on common intersections 
and introducing no new forking. Is the union of these automorphic images consistent? 
Not necessarily: consider the effect of piecewise automorphisms f, g, h on three formulas 
{R(x, a, b)}, {R(x, b, c)}, {R(x, a, c)} in the generic tetrahedron-free three-hypergraph 
where despite f(a) = h(a), f(b) = g(b), g(c) = h(c) we may have R(f(a), g(b), h(c)). 
So instead we may try to gauge the complexity of the ‘amalgamation problems’ arising 
under such partial automorphisms by asking: can we color the pieces [p]<ℵ0 with no more 
than μ colors in such a way that within each color class, after piecewise automorphism, 
the union is always consistent? Note that when μ = λ there is trivially a coloring, as 
each piece gets its own color. To make the question precise, one will want to add some 
clarifying hypotheses, such as closure conditions on the finite pieces, and in the general 
case, some natural conditions on forking. After doing so, however, the question is whether 
a non-trivial coloring exists (μ < λ).

Our picture is that all simple theories are in some sense close to what we see in these 
generic hypergraphs: the noise arising from forking may be muted so that the basic 
amalgamation problems controlling consistency rise to the surface. Enumerating each p in 
such a way that an algebra defined on its indices captures this additional noise, a precise 
general formulation of this partial-automorphism condition “T is (λ, μ, θ, σ)-explicitly 
simple” may be given. The first main theorem of the paper, which we prepare for here 
and prove in the next section, will prove that we may essentially always find such a 
coloring when T is simple and μ+ = λ (so using the first nontrivial number of colors), 
and moreover that this characterizes simplicity of T .

Context 3.1. In this section we make the following assumptions. However, many of the 
definitions make sense under weaker hypothesis.

1. ℵ0 < σ ≤ θ ≤ μ < λ are suitable in the sense of 1.1. Note that the definitions in 
this section will also make sense in the case where μ = λ. The reader may wish to 
assume σ = θ.

2. T is a complete first order theory, with infinite models, and |T | < σ. The definition 
of ‘explicitly simple’ will entail that T is simple, i.e. κ(T ) exists, see Fact 3.8.

3. C = CT is the monster model for T , of cardinality > λ.
4. For transparency, T eliminates imaginaries, i.e. T = T eq

∗ for some complete the-
ory T∗. In particular, we assume that whenever M |= T , every finite sequence of 
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elements of M is coded by some a ∈ Dom(M). Otherwise, write T eq and Meq

throughout.9
5. “Independent” means nonforking and “dnf” means does not fork.

We begin by stating the organizing definition. We will define the key items “m is 
a presentation,” “n refines m,” the set of type fragments “Rm” associated to m, and 
“G : Rm → μ is an intrinsic coloring” over the course of the section, in 3.3, 3.6, 3.9, 3.11
respectively.

Definition 3.2 (Explicitly simple). Assume (λ, μ, θ, σ) are suitable. We say T is 
(λ, μ, θ, σ)-explicitly simple if T is simple and for every N |= T , ||N || = λ, p ∈ S(N)
nonalgebraic,

(a) there exists a presentation m of p.
(b) for every presentation m of p, there is a presentation n of p refining m and a function 

G : Rn → μ such that G is an intrinsic coloring of Rn.

Note that Definition 3.2 makes sense because we will prove the existence of presenta-
tions m for all simple theories in Section 4. Why is simplicity of T assumed in 3.2? See 
Discussion 3.12 below.

Next we define a presentation of a type. This will essentially be the data of a certain 
enumeration of that type along with an algebra to capture nonforking and amalgamation 
bases. By ‘algebra’ on λ we mean a first order structure with functions and no relations 
whose domain is λ. The closure of a set u ⊆ λ in such an algebra M, denoted clM(u), 
is the substructure generated by u, so u ⊆ clM(u) = clM(clM(u)). We also give a value 
to clM(∅).

Definition 3.3. Suppose we are given N |= T , ||N || = λ, and p ∈ S(N). A (λ, θ, σ)-pre-
sentation for p is the data of an enumeration and an algebra,

m = (〈ϕα(x, a∗α) : α < λ〉,M)

where these objects satisfy:

1. p = 〈ϕα(x; a∗α) : α < λ〉 is an enumeration of p, which induces an enumeration 〈a∗α :
α < λ〉 of Dom(N), possibly with repetitions, and with the a∗α possibly imaginary.

2. M is an algebra on λ with < θ functions.

9 For general T this assumption indeed makes things clearer, although for certain specific T it may be more 
transparent to stick to elements. The use of imaginaries poses no problems in ultrapowers, since ultrapowers 
commute with reducts, so there is no issue in passing to a larger theory and proving realization of types 
there. We use imaginaries below in the definition of the algebra, as 〈a∗

α : α < λ〉 is allowed to be a sequence 
of imaginaries. However, by use of a more complex indexing scheme and algebra, this assumption could 
straightforwardly be avoided, as is done for the notationally simpler case of certain hypergraphs in [29].
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3. For any finite u ⊆ λ, | clM(u)| < σ. Thus, for any u ⊆ λ, if |u| < σ then | clM(u)| < σ, 
and if |u| < θ then | clM(u)| < θ.

4. clM(∅) is an infinite cardinal ≤ |T |, so an initial segment of λ.
M∗ := N � {a∗α : α < clM(∅)} is a distinguished elementary submodel of N , and we 
require that p does not fork over M∗.

5. Moreover, for each u ∈ [λ]<σ, Nu := N � {a∗α : α ∈ clM(u)} is an elementary 
submodel of N , and {ϕα(x, a∗α) : α ∈ clM(u)} is a complete type over this submodel 
which dnf over M∗. (In particular, {ϕα(x, a∗α) : α ∈ clM(∅)} is a complete type 
over M∗.)

6. If α ∈ clM(u), β ≤ α, writing Aβ = {a∗γ : γ < β}, we have that
tp(a∗α, Aβ ∪M∗) does not fork over {a∗γ : γ ∈ clM(u) ∩ β} ∪M∗.

In a context where (λ, θ, σ) are given, “presentation” means “(λ, θ, σ)-presentation.”

Remark 3.4. From a presentation m, the following were unambiguously defined: M∗ in 
item 4, clM(∅) in item 4, Nu in item 5 for any u ⊆ λ, Aα in item 6 for any α < λ.10

Although we don’t pursue this approach in the present paper, it is worth noting that 
in Definition 3.3, for certain less complicated theories (e.g. T with no function symbols 
and trivial forking, as is the case in [29]) we might prefer to allow clM(u) to be a set, 
rather than requiring it to be a submodel, and in particular to only require of clM(∅)
that the following observation holds.

Observation 3.5. (Independence theorem over clM(∅), see [11] 2.13, p. 17.) By the 
definition of presentation and the simplicity of T , the following will be true for any 
presentation m. If � = 1, 2 are such that:

1. clM(∅) ⊆ u� ⊆ λ

2. u� = clM(u�), thus u1 ∩ u2 = clM(u1 ∩ u2)
3. A� = {a∗α : α ∈ u�} and A1 is independent from A2 over A1 ∩A2

4. p� ∈ S(A�) dnf over {a∗α : α ∈ clM(∅)} and p� ⊇ p � {a∗α : α ∈ A�}

then p1 ∪ p2 is a consistent type which does not fork over {a∗α : α ∈ clM(∅)}.

Definition 3.6 (Refinements of presentations). Suppose we are given N |= T , ||N || = λ, 
and p ∈ S(N). Let m = (ϕ̄m, Mm), n = (ϕ̄n, Mn) be presentations of p. We say that n
refines m when:

10 Although it is already a global assumption for the section, note that together items 3, 4, and 5 and the 
fact that σ is strongly inaccessible imply that |T | < σ essentially, i.e. identifying two non-logical symbols 
under the relation of equivalence modulo T . That is, if T is a complete first order theory, T has a model 
M = M∗ of cardinality δ < σ, and E is the equivalence relation on τ(T ) which identifies functions, resp. 
predicates, iff they have the same interpretation in M , then we may conclude E has ≤ 2δ < σ classes.
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(a) ϕ̄m = ϕ̄n.
(b) clMm

(∅) = clMn
(∅).

(c) Mm ⊆ Mn, i.e. the algebra of n extends that of m.

Since we allow the sequence 〈a∗α : α < λ〉 to contain repetitions, some care was needed 
in the definition of the models Nu: the set {α : aα ∈ |Nu|} could have size λ, although 
Dom(Nu) has cardinality < θ. Note also that the cardinal θ has two roles: first, the size 
of clM(u) thus ||Nu|| is < θ, call this θ1, and second, in FIμ,θ(α∗) in §7, call this θ2. 
We don’t separate them here, but what we use is θ1 ≤ θ2, and we could have used 
σ = θ1 < θ2.

Let us emphasize that we have included simplicity of T in definition of explicitly 
simple, to avoid trivial satisfaction of the hypotheses (see also Discussion 3.12 below).

Observation 3.7. Let T be a theory and let (λ, μ, θ, σ) be suitable infinite cardinals. 
Suppose that for every N |= T of size λ every nonalgebraic type p ∈ S(N) has a 
(λ, θ, σ)-presentation. Then T is simple.

A fortiori, if T is (λ, μ, θ, σ)-explicitly simple, then T is simple.

Proof. By the definition. �
Nonetheless, the assumption of simplicity is natural because we assume that p does 

not fork over a small set. Recall that:

Fact 3.8. Let T be a complete theory. Then T is simple iff κ(T ) exists iff κ(T ) ≤ |T |+, 
where

κ(T ) = min{κ : if A ⊆ C, q ∈ S(A) then q dnf over some B ⊆ A, |B| < κ}.

Proof. See Theorems 3.4 and 3.6 of [11]. �
We now arrive to the right general analogue of a ‘fragment of a type.’ Its ingredients 

are a set of indices u, a closed set w ⊇ u (containing e.g. forking of u), the type of a 
model in the variables x̄w, and a type over that model in the variables x, ̄xw, satisfying 
some additional conditions suitable to automorphic images of pieces of p.

Definition 3.9 (The set of quadruples Rm). Let m be a presentation of a given type 
p = pm. Then R = Rm is the set of r = (u, w, q, r) such that:

1. u ∈ [λ]<σ, w ∈ [λ]<θ and w = clM(w).
2. u ⊆ clM(u) ⊆ w.
3. q = q(xw) is a complete type in the variables xw such that:

(a) for any finite v ⊆ clM(∅), if M∗ |= ψ(a∗v) then ψ(xv) ∈ q.
(b) for any finite {α0, . . . , αn} ⊆ u, ∃x 

∧
i≤n ϕα(x, a∗α) ∈ q.
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4. r = r(x, xw) is a complete type in the variables x, xw, extending

q(xw) ∪ {ϕα(x, xα) : α ∈ u}.

5. if b∗w realizes q(xw) in CT and α < clM(∅) =⇒ b∗α = a∗α, then
(a) r(x, b∗w) is a type which does not fork over M∗ and extends p � M∗.
(b) if w′ ⊆ w is M-closed, CT � {b∗α : α ∈ w′} � CT and r(x, b∗w) � b∗w′ is a complete 

type over this elementary submodel.
(c) if w′ ⊆ w is M-closed and α ∈ w′ then tp(b∗α, {b∗β : β ∈ w ∩ α}) dnf over 

{b∗β : β ∈ w′ ∩ α}.

Note that for tuples in R, the type r is like p in the sense of being a nonforking 
extension of p � M∗ to a set including the domain of Nu, however this type is not 
guaranteed to be “correct” on all of w. Since the definition Rm is fairly unconstrained, 
in comparing elements of this set we will be most interested in cases which avoid trivial 
inconsistency.

Definition 3.10. Suppose we are given r = 〈rt = (ut, wt, qt, rt) : t < t∗ < σ〉 from Rm. Say 
that b∗ = 〈b∗α : α ∈

⋃
t wt〉, with each b∗α ∈ C (possibly imaginary), is a good instantiation

of r when the following conditions hold.

1. α ∈ clM(∅) =⇒ b∗α = a∗α.
2. For each t < t∗, b

∗ �wt
realizes qt(xwt

).
3. For each t < t′ < t∗, if v ⊆ wt ∩ wt′ is finite, then:

(a) for each formula ψ(xv), ψ(b∗v) ∈ qt ⇐⇒ ψ(b∗v) ∈ qt′ .
(b) for each formula ψ(x, xv), ψ(x, b∗v) ∈ rt ⇐⇒ ψ(x, b∗v) ∈ rt′ .

4. If β ∈ wt for some t < t∗ then

tp(b∗β , {b∗γ : γ ∈
⋃
s≤t

ws and γ < β}) dnf over {b∗γ : γ ∈ wt ∩ β}.

5. For each t < t∗, if w′ ⊆ w and clM(w′) = w′ then CT � {b∗α : α ∈ w′} � CT and 
rt(x, b

∗
w′) is a complete type over this elementary submodel which does not fork over 

M∗ (noting that the domain of M∗ is {b∗α : α ∈ clM(∅)} by the first item).

Now we arrive at the key point, coloring Rm with few (μ < λ) colors to capture 
consistency.

Definition 3.11. Let m be a (λ, θ, σ)-presentation and R = Rm be from 3.9. Call G :
Rm → μ an intrinsic coloring of Rm if: whenever

r = 〈rt = (ut, wt, qt, rt) : t < t∗ < σ〉

is a sequence of elements of Rm and b
∗ = 〈b∗α : α ∈

⋃
t<t wt〉 is a good instantiation of r,
∗
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if G � {rt : t < t∗} is constant,
then the set of formulas

{ϕα(x, b∗α) : α ∈ ut, ϕα ∈ rt, t < t∗}

is a consistent partial type which does not fork over M∗.

Note that in 3.11, we ask for 〈b∗α : α ∈
⋃

t wt〉 when we only aim for consistency of 
{ϕα(x, b∗α) : α ∈ ut, ϕα ∈ rt, t < t∗}, however meeting the requirements of the larger 
type will affect the choice of b̄∗ thus of b̄∗ �

⋃
t ut.

We have now defined all terms necessary for ‘explicitly simple,’ so the reader may wish 
to re-read Definition 3.2. In the next section, we will use this definition to characterize 
simplicity.11

Discussion 3.12. Why is simplicity of T assumed in 3.2? Suppose we were to drop the 
assumption “|T | < σ” from 3.1 and also to drop the assumption “T is simple” from 
Definition 3.2; call this modified Definition 3.2*. It would continue to make sense to ask 
whether 3.2* holds for a given T and a given tuple of cardinals (λ, μ, θ, σ). If e.g. |T | > λ, 
then it may be that there are no models of T of size λ and so the hypotheses of 3.2* are 
trivially satisfied, even when T is not simple. However, under our present hypotheses, 
existence of presentations for every nonalgebraic type over every model N of T of size λ
necessarily implies T is simple:

Observation 3.13. When λ ≥ θ ≥ σ > |T | and θ is regular (as holds by our Hypotheses 3.1
and 1.1), the statement that “for every N |= T , ||N || = λ, p ∈ S(N) nonalgebraic, there 
exists a presentation m of p” implies “T is simple.”

11 Our proof in the next section will also work for the following slightly different definition, by 4.2.2, which 
we include for interest. Note it entails that any reasonable enumeration may be extended to a presentation, 
making explicit what is proved in 4.2, but does not say that every presentation may be refined to one which 
works.

Definition 3.2A. Assume (λ, μ, θ, σ) are suitable. We might alternatively have said that T is 
(λ, μ, θ, σ)-explicitly simple if T is simple and whenever we are given:

(i) N |= T , ||N || = λ, p ∈ S(N) nonalgebraic,
(ii) an enumeration 〈ϕα(x, a∗

α) : α < λ〉 of p, where each a∗
α is a singleton, possibly imaginary, {a∗

α : α <
λ} = Dom(N), and

(iii) for some cardinal δm ≤ |T |, {a∗
α : α < δm} is the domain of an elementary submodel of N over which 

p does not fork, and {ϕα(x, a∗
α) : α < δm} is a complete type over this submodel

(iv) S is an algebra on λ with < σ functions, with {α : α < δm} closed under S,

there exist

(a) an algebra M ⊇ S of functions on λ such that clM(∅) = clS(∅) and (〈ϕα : α < λ〉, M) form a 
(λ, θ, σ)-presentation m of p (thus the set of type fragments Rm associated to m is well defined)

(b) and a function G : Rm → μ

such that G is an intrinsic coloring of Rm.
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Proof. This is because the definition of presentation, 3.3, requires that the type p not 
fork over some N ′ ≺ N of size < σ ≤ λ. As any theory which is not simple has a formula 
with the 2-tree property, Definition 2.16, we may build a model N |= T of size λ as the 
union of an increasing continuous elementary chain 〈Mα : α < θ〉 and a nonalgebraic type 
p ∈ S(N) such that p forks over Mα for any α < θ. Since θ is regular and θ ≥ σ > |T |, 
if A ⊆ N is any set of size < σ, and in particular if A is an elementary submodel of N
of size < σ, then A must be contained in some Mα and so p will fork over A. �

Thus, to conclude Discussion 3.12, our current assumption “|T | < σ” implies that 
the hypothesis “T is simple” in Definition 3.2 is redundant. However, since the defini-
tion makes sense without the global hypothesis on σ, we prefer to leave this hypothesis 
to emphasize that Definition 3.2 is meant to be a strengthening of simplicity, even in 
contexts beyond that of this section.

Discussion 3.14 (A classification program). In the case of the random graph, any function 
G will work. In the case of an arbitrary simple theory, it will be shown in the next 
section that a suitable algebra and coloring can always be found assuming μ+ = λ. This 
outlines a program of stratifying the simple theories by determining which intermediate 
classes exist: that is, determine model-theoretic conditions which will characterize explicit 
simplicity for arbitrary μ, or just e.g. μ = ℵ0 or μ+ < λ. This work begins in [29].

4. Proof that simple theories are explicitly simple

Theorem 4.10 in this section will prove that all simple theories T with |T | < σ

are explicitly simple for suitable (λ, μ, θ, σ), when λ = μ+, by judicious use of Skolem 
functions, κ(T ), and the independence theorem. Recall that the a∗α may be imaginaries. 
In cases where we have more information about the theory T , it is to be expected that 
more direct arguments may be given. Is there a simple theory for which μ+ = λ is 
necessary? See Section 10.

Context 4.1. In this section we assume:

1. T is a simple theory with infinite models, T = T eq, in the signature τ .
2. (λ, μ, θ, σ) are suitable in the sense of 1.1.
3. |T | < σ ≤ θ, so in particular ℵ0 < σ.
4. μ+ = λ.
5. N |= T , |N | = λ.
6. p ∈ S(N) is nonalgebraic, and p = p(x).

The main ingredient in the proof that every simple theory is explicitly simple is the 
next Lemma 4.2. By essentially the same proof, we will show that under our present 
hypotheses: presentations exist, moreover any reasonable enumeration of a type given 
with some basic algebra may be extended to a presentation, and moreover that any
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presentation may be extended to one whose set of type fragments admits an intrinsic 
coloring.

Lemma 4.2. Let (λ, μ, θ, σ), T , N , p be as in 4.1, so μ+ = λ and T is simple.

1. Whenever ϕ̄ = 〈ϕα(x, a∗α) : α < λ〉 is an enumeration of p satisfying
(a) each a∗α is a singleton, possibly imaginary;
(b) {a∗α : α < λ} = Dom(N);
(c) for some cardinal δ ≤ |T |, {a∗α : α < δ} is the domain of an elementary submodel 

M∗ of N over which p does not fork, and {ϕα(x, a∗α) : α < δ} is a complete type 
over this submodel.

there exist an algebra M on λ and a function G such that m = (ϕ̄, M) is a presen-
tation, and G : Rm → μ is an intrinsic coloring.

2. Suppose that in addition to ϕ̄ from (1) we are given an algebra S on λ with < θ

functions, such that {α : α < δ} is closed under the functions of S and u ∈ [λ]<σ

implies clS(u) ∈ [λ]<σ. Then there exist an algebra M ⊇ S on λ and a function G
such that m = (ϕ̄, M) is a presentation, clM(∅) = δ, and G : Rm → μ is an intrinsic 
coloring.

3. Suppose that in addition to ϕ̄ from (1) we are given an algebra S on λ such that 
(ϕ̄, S) is a (λ, θ, σ)-presentation, and δ = clS(∅). Then there exist an algebra M ⊇ S
on λ and a function G such that m = (ϕ̄, M) is a presentation, clM(∅) = clS(∅) = δ, 
and G : Rm → μ is an intrinsic coloring.

Proof. It will suffice to prove (2). Since T is simple, recall that κ(T ) exists and 
κ(T ) ≤ |T |+, Fact 3.8. For clarity, rename δ as δm for the entirety of this proof. (Our 
construction will ensure that clM(∅) = δ = δm.)

The construction will take several steps and include some intermediate definitions and 
claims. First, we build a presentation by specifying an algebra M. Let

X0 = {δ < λ : δ ≥ δm and N �{a∗
α:α<δ}� N}. (4.1)

As λ is regular, X0 is a club of λ. We will construct M to satisfy the following additional 
properties:

1. clM(∅) = {α : α < clM(∅)} = {α : α < δm}, so in particular clM(∅) is a cardinal 
≤ |T |.

2. if u ∈ [λ]<ℵ0 then | clM(u)| < σ, and if u ∈ [λ]<σ then also | clM(u)| < σ.
3. for each v ∈ [λ]<θ, clM(v) ∈ Y0 where

Y0 ={w ⊆ λ : |w| < θ, {α : α < clM(∅)} ⊆ w,

(∀δ ∈ X0)
(
N �{a∗

α : α∈w∩δ}� N
)
,

(α ∈ w) =⇒ tp(a∗α, {a∗β : β < α}, N) dnf over {a∗β : β ∈ w ∩ α}}.
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4. if w ∈ [λ]<θ and w = clM(w) then, writing Z0 = {α : α < clM(∅)} ∪X0:
(i) α ∈ w ⇐⇒ α + 1 ∈ w

(ii) α ∈ w =⇒ min(Z0 \ α) ∈ w ∧ sup(Z0 ∩ (α + 1)) ∈ w

(iii) α ∈ w =⇒ α ∩ w ⊆ clM({α} ∪ (w ∩ μ))
(iv) if v ∈ [w]<ℵ0 then (∃α ∈ w)({a∗β : β ∈ v} ⊆ a∗α).

5. M contains functions Fi : λ × λ → λ, i = 1, 2 such that:
(i) if α ≥ μ then 〈F1(α, β) : β < α〉 lists μ without repetition; otherwise, it lists 

|α|.
(ii) 〈F2(α, β) : β < |α| ≤ μ〉 lists {γ : γ < α} without repetition.
(iii) β < α =⇒ F2(α, F1(α, β)) = β.

6. M ⊇ S.

In our construction of such an M we will do a little more than is necessary. The first 
collection of functions we add to the algebra are:

(A) Let δm = δ be as in (1)(c) of the Lemma. For each ε < δm, let Fε : λ → λ be the 
constant function equal to ε. This will ensure that12 {α : α < δm} ⊆ clM(∅).

(B) Recalling κ(T ) ≤ |T |+, for each ε ≤ |T | add functions F 0
ε : λ → λ such that 

F 0
ε (α) ≤ α and tp(a∗α, Aα) dnf over {a∗F 0

ε (α) : ε < |T |}.
(C) For each ε < |T | choose functions F 1

ε : λ → λ such that 〈F 1
ε (α) : ε < |T |〉 enumerates 

the elements of acleq(a∗α), possibly with repetition.
(D) We include all functions from S, which, without loss of generality, are denoted by 

symbols distinct from all other functions we add to M.
(E) It will be useful to add a family of Skolem functions which are guaranteed to choose 

the minimum witness with respect to our given enumeration 〈a∗α : α < λ〉. Fix some 
enumeration 〈ϕε : ε < |T |〉 of the L-formulas. For each ε < |T | choose functions 
F 2
ε : λ → λ such that F 2

ε (α) is the minimal β such that a∗β is a witness to ϕε(x, a∗α), 
if this is well defined and nonempty, and 0 otherwise. (Alternately, we could consider 
F 2
ε as a kε-place function, but this is not necessary as we have coded finite sets in 

condition 4.(iv).)
(F) For each ε < |T |, define F 3

ε : λ → λ so that F 3
ε (α) = β if ϕε = ϕ(x, y, a∗α) is an 

equivalence relation with finitely many classes and ϕ(x, a∗β , a∗α) ∈ p, and F 3
ε (α) = 0

otherwise.
(G) We’d like to ensure that the type restricted to closed sets is complete.13 For each 

formula ψ(x, ȳ) in the signature τ , let Gψ be a new function of arity �(ȳ) defined 
so that: Gψ(αi0 , . . . , αik−1) = β if β < λ is the least ordinal such that ϕβ(x, a∗β) is 
equivalent mod T to either ψ(x, a∗αi0

, . . . , a∗αik−1
) or its negation. Since N is a model 

and p is complete, this is well defined.

12 The reader may prefer to also add a single constant, 0.
13 Up to this point, if α ∈ w, our restricted type will include ϕα(x, a∗

α) but won’t necessarily decide the 
value of some other formula ψ(x, a∗

α) with the same parameter unless there is β ∈ w such that ϕβ = ψ or 
¬ψ and a∗

β = a∗
α.
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Next we add some families of functions which will help in partitioning our eventual Rm

into equivalence classes which are sufficiently tree-like to allow inductive amalgamation, 
since we have made no particular assumptions about the theory (beyond simplicity) 
which would otherwise guarantee such a coherence of patterns. The functions in family 
(I) use λ = μ+ in an essential way.

(H) Ji : λ → λ, i = 1, 2, 3 where J1(α) = α + 1 and J2(α) = min(Z0 \ α) and J3(α) =
sup(Z0 ∩ (α + 1)).

(I) (Recalling λ = μ+) Fi : λ × λ, i = 1, 2 such that:
1. if α ≥ μ then 〈F1(α, β) : β < α〉 lists μ without repetition; otherwise, let it list 

|α|.
2. 〈F2(α, β) : β < |α| ≤ μ〉 lists {γ : γ < α} without repetition.
3. β < α =⇒ F2(α, F1(α, β)) = β.
So for each w ∈ [λ]<θ, α ∈ w and β ∈ α ∩ w implies F1(α, β) ∈ w ∩ μ and 
β = F2(α, F1(α, β)).

Note that 〈F1(α, β) : β < α〉 maps α into μ, whereas 〈F2(α, β) : β < α〉 maps a subset 
of μ to α, so the third condition is natural. Note also that by choice of J1, J2 and unions 
of elementary chains we have that w ∈ Y0 implies sup(w) ∈ X0.

Let M be the algebra including the functions from (A) through (I) above. Let us 
check that the numbered conditions of the claim are satisfied:

1. We ensured with family (A) that {α : α < δm} ⊆ clM(∅). Let us check that equality 
holds by examining the functions of M. The functions in family (B) are nonincreasing 
so will not change an initial segment. The functions in families (C) and (F) will map 
tuples from {α : α < δm} back to this set as M∗ � N and T = T eq. As for family (D), 
we required that {α : α < δm} be closed under the functions of S. The new Skolem 
functions in (E) were chosen to give the least witness in the ordering inherited from 
the enumeration, and M∗ � N . As for the functions of (G), we assumed to begin 
with that p � M∗ is complete. Recalling the definition of Z0 in item (2) of the claim, 
the functions J1 and J2 are equal on clM(∅) and act by α �→ α+1. Since clM(∅) is a 
limit ordinal, indeed a cardinal this poses no problem. Finally, as | clM(∅)| < σ ≤ μ, 
the functions Fi on clM(∅) × clM(∅) will just list ordinals less than clM(∅). This 
proves that clM(∅) = δm.

2. Immediate, as u ∈ [λ]<σ implies clS(u) ∈ [λ]<σ and |M \ S| ≤ |T | < σ.
3. Given v ∈ [λ]<θ, we need to check that w = clM(v) ∈ Y0. We know |w| < θ, and 

{α : α < clM(∅)} ⊆ w by the addition of constant functions in item (A). The 
nonforking condition

(α ∈ w) =⇒ tp(a∗α, {a∗β : β < α}, N) dnf over {a∗β : β ∈ w ∩ α}

is guaranteed by the functions in item (B). Finally, why should
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δ ∈ X0 =⇒
(
N�{a∗

α : α∈w∩δ} � N
)

?

Suppose we don’t get an elementary submodel, i.e. there is a formula with parameters 
in {a∗α : α ∈ w ∩ δ} which has a solution in N but not in this submodel. However, 
we chose the Skolem functions in (E) to select the minimum possible witness. Since 
δ ∈ X0, the minimal witness must be of index β < δ, contradiction.

4. Conditions (i)–(ii) are ensured by the functions in family (H). For item (iii), recall 
from family (I) that for each w ∈ [λ]<θ, α ∈ w and β ∈ α∩w implies F1(α, β) ∈ w∩μ

and β = F2(α, F1(α, β)). For (iv) remember that we assumed that T eliminates 
imaginaries; in fact, in item (F) we have coded all finite sets.

5. Ensured by the functions of family (I).
6. We assumed M ⊇ S.

Let us check that (ϕ̄, M) is a presentation, by checking the requirements of Defini-
tion 3.3. 3.3.1 was assumed in the Claim. 3.3.2–3 were just verified in item 2. For 3.3.4, 
the first line was verified in item 1. M∗ follows by the hypothesis 1(c) of the Lemma 
and the fact that clM(∅) = δm. 3.3.5 was ensured by the functions of families (E), (G) 
respectively. Finally, 3.3.6 follows by the functions in (B). This shows that m = (ϕ̄, M)
is indeed a presentation.

Fix this presentation m for the remainder of the proof. (4.2)

Let Rm be the associated set of quadruples given by 3.9. We now work towards the 
definition of the coloring G. In particular, we look for underlying trees. This will require 
several definitions. Since we are assuming |T | < σ ≤ θ, we have θ ≥ ℵ1 always. We could 
avoid referencing the order topology by assuming θ > ℵ1.

Definition 4.3. For α an ordinal and w ⊆ α, write w for its topological closure, i.e. closure 
with respect to the order topology.

Definition 4.4. Recalling Y0 from condition 1. on the algebra above14 define Υ1 ⊆ Y0 to 
be the set

{w ∈ [λ]<θ : w = clM(w) and if v ∈ [w]<ℵ0 then (∃α ∈ w)({a∗β : β ∈ v} ⊆ a∗α)}.

By regularity of λ > ℵ1, Υ1 is cofinal in the natural partial order, and moreover is 
stationary. Since we constructed M so that the closure of a set clM(u) ∈ Y0, and in 
addition we have coding of finite sets, clM(u) ∈ Υ1 for each u ∈ Ω.

Definition 4.5. Define an equivalence relation E on Υ1 by w1 E w2 when:

14 and the fact that the a∗
α may be imaginary, so code finite sets.
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1. {w1, w2} ⊆ Υ1.
2. otp(w1) = otp(w2) and otp(w1) = otp(w2).
3. w1 ∩ μ = w2 ∩ μ.
4. (a) if h : w1 → w2 is order preserving onto then the map a∗α �→ a∗h(α) is elementary.

(b) if h : w1 → w2 is order preserving onto then the map a∗α �→ a∗h(α) is elementary.
5. If α ∈ w1 \ μ and β ∈ w1 ∩ μ then F1(α, β) = F1(h(α), h(β)).

Observation 4.6. E is an equivalence relation with μ classes.

Proof. There are ≤ θ ≤ μ choices of order type in both clauses of (2). For (3), recall 
by 1.1(b) that μ<θ = μ. Then for (4), let ρ = |w| or = |w|, so ρ < θ since θ is regular. 
Let v be otp(w) and fix an order preserving bijection π : v → w. As an upper bound, 
we count the v-indexed sequences of types 〈pi : i ∈ v〉 where pi = pi(xπ(i), {a∗j : j ∈
w ∩ π(i)}). For each i ∈ v (without loss of generality i ≥ |T |), suitability 1.1(c) implies 
that i < θ =⇒ 2|i| < μ, so there are < μ choices for pi thus no more than θ ·μ ≤ μ such 
sequences. The case where v = otp(w) is analogous. Finally, for (5): if α ∈ w1 \ μ then 
〈F1(α, β) : β < α〉 lists μ without repetition. So for each α ∈ w1 (of which there are < θ) 
and each β ∈ w1 ∩μ (of which there are < θ) we need to know the value of F1(α, β) ∈ μ. 
Since μ<θ = μ, (5) requires no more than μ classes. This completes the proof. �
Claim 4.7 (“Treeness”). Whenever wEv (so w, v are clM-closed), we have:

1. w ∩ v is clM-closed.
2. (“treeness”) w ∩ v � w (and w ∩ v � v).

Proof. By definition of E, w∩μ = v∩μ. Suppose we have μ ≤ β < α with α ∈ w∩v and 
β ∈ w. Recalling the functions from family (I), β′ := F1(α, β) ∈ w∩μ and so β′ ∈ v since 
w and v agree on μ. As v = clM(v), F2(α, β′) ∈ v and F2(α, β′) = F2(α, F1(α, β)) = β

by definition of F1, F2. This shows (2.): w ∩ v � w, and � v. Finally, closure (1.) is 
immediate because the algebra consists of functions and so the nonempty intersection of 
two clM-closed sets will be closed under these functions. �

We will refer to 4.7(2) as “by treeness” in the rest of the proof. We now define the 
coloring G : Rm → μ.

Claim 4.8. There is G : Rm → μ so that G(u, w, q, r) = G(u′, w′, q′, r′) implies:

(i) w/E = w′/E, where E is the equivalence relation from 4.5.
(ii) β ∈ w ∩ w′ =⇒ otp(β ∩ w) = otp(β ∩ w′).
(iii) if h : w → w′ is order preserving onto then h maps u to u′.
(iv) if h : w → w′ is order preserving onto then h maps q to q′ and r to r′ in the obvious 

way.
(v) Range(G) ⊆ μ.
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Proof. For (i), recall that E has μ equivalence classes. Now (ii) will follow by the “tree-
ness” condition 4.7. Recall μ = μ<θ by 1.1(b). So for (iii), there are indeed no more than 
μ ways to choose a sequence of ordinal length α < σ ≤ θ from a sequence of length < θ. 
For (iv), as in 4.6, there are likewise (relatively) few equivalence classes of types recalling 
α < θ =⇒ 2|α| ≤ μ by 1.1(c). (Note that q need not be the type of {a∗α : α ∈ w}.) So 
each condition requires no more than μ classes, and then (v) follows. �

For the rest of the proof, fix G satisfying 4.8. Fix r̄ = 〈rt = (ut, wt, pt, rt) : t <
t∗ < σ〉 from Rm. Let w =

⋃
t wt. Suppose that G � r̄ is constant and that b̄∗

w is 
a good instantiation of r̄ in the sense of 3.10. Recall that this definition ensures that 
{b∗α : α < clM(∅)} = Dom(M∗), and that if β ∈ wt then

tp(b∗γ , {aβ : β ∈
⋃

ξ wξ ∩ γ}) dnf over {b∗β : β ∈ wt ∩ γ}. (4.3)

Prior to the main amalgamation, let us record a case of good behavior.

Claim 4.9. Suppose γ ∈
⋂

t<t∗
ut. Then the set

{ϕ(x, b∗v) : there is t < t∗ s.t. v ∈ [wt ∩ β]<ℵ0 and ϕ(x, xv) ∈ rt(x, xwt
)}

is a partial type which does not fork over M∗.

Proof. This is simply because the treeness condition 4.7 along with conditions (i)–(iv) 
from the definition of G in 4.8 guarantee that for any t < t′ < t∗, there is an order 
preserving map h : wt → wt′ , and this map is constant on the common initial segment 
of the wt’s. Thus for some, equivalently every, t < t∗ the type in the statement of the 
claim is simply the partial type

{ϕ(x, b∗v) : v ∈ [wt ∩ β]<ℵ0 and ϕ(x, xv) ∈ rt(x, xwt
)}

which is consistent and does not fork over M∗ by definition of R. �
It remains to show that the set of formulas

{ϕα(x, b∗α) : t < t∗, α ∈ ut} (4.4)

is consistent. Let u =
⋃

t ut and recall w =
⋃

t wt, so {α : α < clM(∅)} ⊆ w. For each 
γ ≤ λ, define:

r∗γ = {ϕ(x, b∗v) : there is t < t∗ s.t. v ∈ [wt ∩ γ]<ℵ0 and ϕ(x, xv) ∈ rt(x, xwt
)} (4.5)
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We prove by induction on γ ≤ λ that r∗γ is a consistent partial type which does not fork 
over {a∗α : α < clM(∅)} = {b∗α : α < clM(∅)}. Clearly this will imply that equation (4.4)
is consistent.15

γ = 0: Trivial.
γ limit: Consistency is by compactness, and nonforking is by the finite character of 

nonforking in simple theories.
γ = β + 1: If β /∈

⋃
t wt, there is nothing to show.

Suppose then that β ∈ wt for at least one t. We can write t∗ as the disjoint union of 
two sets

Z0 := {t < t∗ : β /∈ wt}, Z1 := {t < t∗ : β ∈ wt}

where, by assumption, Z1 is nonempty. For i ∈ {0, 1} we define:

riγ := {ϕ(x, b∗v) : there is t ∈ Zi s.t. v ∈ [wt ∩ γ]<ℵ0 and ϕ(x, xv) ∈ rt(x, xwt
)}

Now both r0
γ , r1

γ are consistent partial types which moreover do not fork over M∗: the 
case of r0

γ is by inductive hypothesis (it is contained in r∗β by definition of Z0), and the 
case of r1

γ is 4.9. If Z0 is empty, there is nothing to amalgamate, so we are finished. If 
not, define W ⊆ β to be:

W := W0 ∩W1 where W0 :=
⋃

{wt : t ∈ Z0} ∩ γ, W1 :=
⋃

{wt : t ∈ Z1} ∩ γ.

Let us show that

C � {b∗γ : γ ∈ W} � C. (4.6)

By 3.10.5, to prove equation (4.6) it will suffice to prove

W = clM(W ). (4.7)

Suppose equation (4.7) did not hold. Then for some finite tuple of elements β0, . . . , βn ∈
W (of an appropriate length) and one of the functions of the algebra, call it X, 
X(β0, . . . , βn) = β∗ /∈ W . As t < t∗ =⇒ wt = clM(wt), β∗ ∈ wt for each t < t∗. 
Now for any ws, wt with s ∈ Z0 �= ∅, t ∈ Z1 �= ∅, we have that β∗ ∈ ws ∩ wt while by 
assumption, β ∈ wt and β /∈ ws∩wt. If β∗ > β, this contradicts treeness, 4.7. However, if 
β∗ ≤ β and β∗ ∈

⋃
t<t∗

wt then necessarily β∗ ∈ W , also a contradiction. This completes 
the verification of equation (4.7) and so also of equation (4.6).

We now check nonforking. By 4.7, W1 = wt∩γ for some, equivalently every, t ∈ Z1 �= ∅. 
So by equation (4.3), B1 = {b∗α : α ∈ W1} is independent from B0 = {b∗α : α ∈ W0} over 
B = {b∗α : α ∈ W}. B is the domain of an elementary submodel of C by equation (4.6).

15 We are actually proving something stronger than explicit simplicity as we will have consistency over all 
the w’s, not just the u’s.
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Let δ = sup(W ). From equations (4.7) and (4.6) and Definition 3.10(5), px := r∗δ � B
is a complete type over a model, which does not fork over M∗. By inductive hypoth-
esis, r0

γ and r1
γ are consistent extensions of px to B0, B1 respectively, which do not 

fork over M∗. If necessary, we can complete r0
γ , r

1
γ . Apply the independence theorem 

(Theorem G, p. 629) to complete the induction.
This proves that m, G satisfy 3.11 and completes the proof of Lemma 4.2. �
We arrive at the first main theorem of the paper:

Theorem 4.10 (Simple is explicitly simple). Suppose that T is a complete first order 
theory. Suppose that (λ, μ, θ, σ) are suitable cardinals in the sense of 1.1 and in addition:

(a) |T | < σ

(b) μ+ = λ.

Then T is simple if and only if T is (λ, μ, θ, σ)-explicitly simple.

Proof. If T is simple, apply Lemma 4.2. In the other direction, by Observation 3.13 and 
hypothesis (a), if T is (λ, μ, θ, σ)-explicitly simple then it is simple. �

Note that by the remarks after Definition 1.1, this gives a characterization of simplicity 
in ZFC:

Corollary 4.11. T is simple iff T is (λ, μ, θ, σ)-explicitly simple for some (every) suitable 
tuple (λ, μ, θ, σ) satisfying |T | < σ and μ+ = λ.

Proof. The existence of such suitable tuples is provable in ZFC, consider e.g. σ = θ

regular and > |T |, μ = (2θ)+, and μ+ = λ. �
What did we use in the characterization of Theorem 4.10?
First, note that to apply the independence theorem in the inductive step in Lemma 4.2

we needed that C � {bγ : γ ∈ X} � C; the addition of clM ensured that this would 
happen. More precisely, we used that given {rt : t < t∗ < σ} and β + 1 = γ < λ,

1. for each rt = (ut, wt, qt, rt), wt = clM(wt).
2. for each β < λ, really β ∈

⋃
t wt, C � {bγ : γ ∈ W} � C where W is the intersection 

of W0 :=
⋃
{wt : t < t∗, β /∈ wt} ∩ γ, W1 :=

⋃
{wt : t < t∗, β ∈ wt} ∩ γ.

For some theories no problem would arise, e.g. when every type is stationary, so no 
algebra would be necessary.

Second, it is natural to ask about Theorem 4.10 when the hypothesis (a) μ+ = λ is 
replaced by μ = λ. If |T | < σ, one can satisfy the definition of presentation by simply 
choosing the algebra to contain Skolem functions and functions to cover nonforking (a 
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small part of what was done in the argument above). Provided the cardinals λ, μ, θ, σ
are such that the corresponding Rm has cardinality λ, the existence of the required G
with range λ = μ may then be trivially satisfied by assigning each element of R its own 
color. Thus Theorem 4.10 remains true when “μ+ = λ” is replaced by μ = λ and Rm

has cardinality λ.
The choices for how to present the parameters 〈a∗α : α < λ〉 have different advantages. 

Listing imaginaries, as we currently do, makes the presentation of formulas much more 
compact but introduces a lot of redundancy: each singleton c ∈ Dom(N) appears in 
cofinally many tuples. This doesn’t interfere with the nonforking condition in 3.11, as 
we assumed μ+ = λ. To show (λ, μ, θ, σ)-explicitly simple for μ+ < λ, however, would 
require addressing this, perhaps by listing the domain of N in terms of actual singletons.

Discussion 4.12. We have stated Theorem 4.10 as “T simple iff T explicitly simple,” not 
“T simple iff T eq explicitly simple,” reflecting our claim that using imaginary elements 
is purely presentational. To see this, notice that throughout the entire proof of this 
theorem we could have considered each a∗α (or b∗α) as a finite set with respect to some fixed 
background enumeration of the singletons of Dom(N), and considered the corresponding 
variable xα as the corresponding finite sequence of variables. In this setup the only 
essential addition would be an additional coding function, i.e. an enumeration, translating 
between the finite set coded by index α and vice versa, so as to be able to define and apply 
the functions of the algebra M. Such a coding function could alternately be subsumed 
into the basic algebra S, much as we subsume Skolem functions in 6.1.

Finally, as this discussion reflects, Theorem 4.10 raises the question of the nature of 
an intrinsic coloring in certain examples, since we have given only a proof of its existence. 
One central example, the generic k-ary hypergraphs omitting complete sub-hypergraphs 
on n vertices [13], will be developed in our paper [29].

5. Existence of optimal ultrafilters

Convention 5.1. In this section we assume:

• λ, μ, θ, σ are suitable cardinals.
• B = B1

2λ,μ,θ.
• σ is ℵ0 or is uncountable and supercompact, see 5.2.
• All ultrafilters D∗ on B mentioned in this section are σ-complete; we may repeat this 

for emphasis.
• When V ⊆ 2λ, we write B � V to mean the subalgebra generated by {xf : f ∈

FIμ,θ(V)}.

Readers familiar with normal ultrafilters may wish to skip 5.2, 5.3 and 5.4, starting 
again with 5.5.
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Definition 5.2. (See e.g. Jech, p. 137.)

1. Call the uncountable cardinal σ supercompact if for any A, |A| ≥ σ there exists an 
ultrafilter E on I = [A]<σ which is:
(a) σ-complete.
(b) fine, meaning that in addition for any a ∈ A, {X ∈ I : a ∈ X} ∈ E .
(c) normal, meaning that in addition E is closed under diagonal intersections: if 

{Xa : a ∈ A} ⊆ E then {X ∈ I : X ∈
⋂

a∈X Xa} ∈ E .
2. If in 1. A = σ and E is normal on I = [σ]<σ, the set {X ∈ I : X is an ordinal 

< σ} ∈ E , so we may say “E is an ultrafilter on σ.”

Fact 5.3. If E is a normal ultrafilter on κ, then E contains every closed unbounded subset 
of κ. Moreover any f : κ → κ which is regressive on a set in E must be constant on a 
set in E.

Observation 5.4. Let χ be large enough. Fix A = (H(χ), ε) and let A = H(χ). Let J
be the set [A]<σ and let E be a normal ultrafilter on J . Then the set I := {X ∈ J :
X is an elementary submodel of A} ∈ E.

Proof. Let 〈aα : α < κ〉 be an enumeration of A and expand A to A∗ by Skolem functions 
which choose the least witness according to this enumeration. Th(A∗) eliminates imag-
inaries and has Skolem functions. For each of the countably many Skolem functions g, 
define fg : A → A by: fg(X) is the least β such that bβ ∈ X but g(bβ) /∈ X, if this 
exists, and otherwise fg(X) = X. If fg(X) �= X on an E-large set, then it is regressive 
on an E-large set, and so by normality constant and equal to some b ∈ A on an E-large 
set, contradicting the fact that E is fine. So it must be that fg(X) = X on an E-large 
set Yg for each of the countably many Skolem functions g, and since E is σ-complete, ⋂

g Yg ∈ E is the desired set of elementary submodels. �
Definition 5.5 (Continuous sequence). Let b̄ = 〈bu : u ∈ [λ]<σ〉 be a sequence of elements 
of B+. We call b̄ continuous when it is monotonic, meaning u ⊆ v implies bu ≥ bv, and 
in addition for all infinite u ∈ [λ]<σ,

bu =
⋂

{bv : v ⊆ u, |v| < ℵ0}.

So if σ = ℵ0 then “continuous” is just “monotonic.”

Definition 5.6 (Support of a sequence). Let b = 〈bu : u ∈ [λ]<σ〉 be a sequence of 
elements of B = B1

2λ,μ,θ.

1. We say X is a support of b in B when X ⊆ {xf : f ∈ FIμ,θ(α)} and for each 
u ∈ [λ]<ℵ0 there is a maximal antichain of B consisting of elements of X all of which 
are either ≤ bu or ≤ 1 − bu. Though there is no canonical choice of support we will 
write supp(b̄) to mean some support.



M. Malliaris, S. Shelah / Advances in Mathematics 290 (2016) 614–681 649

Sh:1030
2. When a support supp(b̄) is given, write

B
+
supp(b̄),μ,θ to mean B

+
α∗,μ,θ

where α∗ < 2λ is minimal such that 
⋃
{Dom(f) : xf ∈ supp(b)} ⊆ α∗.

3. When V ⊆ 2λ, we say “b̄ is supported by B � V” to mean that there is a support for 
b̄ contained in B � V, recalling the notation from 5.1.

We emphasize that the support need not be unique. In the next definition, λ, μ, θ
come from the Boolean algebra B and σ comes from the sequence b̄.

Definition 5.7 (Key Property). Let (λ, μ, θ, σ) be suitable, and B = B1
2λ,μ,θ. Let b̄ = 〈bu :

u ∈ [λ]<σ〉 be a continuous sequence of elements of B+. We say b̄ has the (λ, μ, θ, σ)-Key 
Property when there exist

(a) V ⊆ 2λ, |V| ≤ λ, such that a support of b̄ is contained in B � V
(b) a closed unbounded Ω∗ ⊆ [λ]<σ

such that for every α < 2λ with V ⊆ α, there is a sequence

b̄′ = b̄′(α) = 〈b′
α,{i} : i < λ〉

of elements of B+ which generates a multiplicative refinement 〈b′
α,u : u ∈ [λ]<σ〉 of b̄

such that for each f ∈ FIμ,θ(α), and each u ∈ Ω∗, if xf ≤ bu then we may extend 
f ⊆ f ′ ∈ FIμ,θ(2λ) so that xf ′ ≤ b′

u.

Definition 5.8. Assume λ, μ, θ, σ are suitable. D∗ is (λ, μ, θ, σ)-optimal if:

• D∗ is a σ-complete ultrafilter on B = B1
2λ,μ,θ, and

• whenever b̄ = 〈bu : u ∈ [λ]<σ〉 is a continuous sequence of elements of D∗ with the 
(λ, μ, θ, σ)-Key Property there is a multiplicative sequence b̄′ = 〈b′

u : u ∈ [λ]<σ〉 of 
elements of D∗ which refines b̄.

Theorem 5.9. Suppose (λ, μ, θ, σ) are suitable, σ > ℵ0 is supercompact, and B = B1
2λ,μ,θ.

1. There exists a (λ, μ, θ, σ)-optimal ultrafilter D∗ on B.
2. Let D∗

0 be a σ-complete filter on B generated by < 2λ sets, or16 just generated by a 
set supported by B � V, V ⊆ 2λ, |V| < 2λ. Then there exists a (λ, μ, θ, σ)-optimal 
ultrafilter D∗ on B which extends D∗

0.

16 Note that if μ < λ then μ+ < 2λ, a case we will use.
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Proof. Clearly it suffices to prove the second. Let D∗
0 be given. Fix a set X∗ ⊆ D∗

0 of 
generators for this filter, with |X∗| < 2λ. Choose V∗ ⊆ 2λ, |V∗| < 2λ which contains 
a support for X∗. Without loss of generality, V∗ = α∗ < 2λ (i.e. if necessary, use a 
permutation of 2λ mapping the relevant support into an ordinal < 2λ). We will use X∗, 
α∗ in our inductive construction. If no D∗

0 is given, let X∗ = ∅ and let α∗ = 0.
There are at most 2λ = |λB| sequences b̄ with the Key Property. For each such b̄, fix 

V ∈ [2λ]≤λ and Ω∗ ⊆ [λ]<σ satisfying 5.7(a)–(b). Choose an enumeration of these tuples

s̄ = 〈(b̄δ,Vδ,Ωδ) : δ ∈ S〉

which satisfies

• S ⊆ {δ < 2λ : δ > α∗ and δ is divisible by λ}.
• Vδ ⊆ δ for δ ∈ S.

For each δ ∈ S, let b̄′
δ be a multiplicative refinement of b̄δ as guaranteed by Definition 5.7

in the case where α of 5.7 is replaced by δ. Without loss of generality17 b̄′
δ is supported 

by B � (δ + λ).
Let A, I0, E be given by 5.4, so each N ∈ I0 is an elementary submodel of A of size < σ. 

Since E is fine, we may assume that on an E-large set I ⊆ I0 the elements λ, μ, θ, σ, B, ̄s
belong to N . When N ∈ I and λ, σ, δ, Ωδ ∈ N , N |= “Ωδ is closed and unbounded 
in [λ]<σ”, so from our external point of view, N ∈ I and δ ∈ S ∩N implies λ ∩N ∈ Ωδ.

Since each N is small it will (from an external point of view) only contain a small part 
of each of these objects. Both λ ∩N and S ∩N are of size < σ. Given N and δ ∈ S ∩N , 
bδ,λ∩N is (from an external point of view) an element of 〈bδ,u : u ∈ [λ]<σ〉, which we 
may call the “canonical element” for the sequence b̄δ as seen by N .

Fix for awhile N ∈ I. Let dN = ∩{d : d ∈ N ∩ X∗}, so dN ∈ D∗
0 is supported 

by B � α∗.
Enumerate S ∩N = 〈δε : ε < εN 〉 in increasing order, for some limit ordinal εN < σ. 

Working in the large background model, by induction on ε ≤ εN we will build an in-
creasing continuous sequence 〈fε = fN,δε : ε ≤ εN 〉 such that:

(a) each fε ∈ FIμ,θ(δε), so necessarily xfε ∈ B+.
(b) if γ < ε ≤ εN then fγ ⊆ fε, and if ε ≤ εN is a nonzero limit ordinal, then fε =⋃

{fγ : γ < ε}, i.e. the sequence is continuous and increasing.
(c) if ε = γ + 1 < εN then either

xfε ≤ bδγ ,λ∩N

or else xfε is disjoint to some bδγ ,v where v ∈ [λ ∩N ]<ℵ0 .

17 We may always appeal to an automorphism of B which is the identity on B � δ to find a sequence of 
appropriate support, as e.g. in Observation 9.2 below.
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(d) if ε = γ + 1 < εN and xfε ≤ bδγ ,λ∩N , then in addition xfε ≤ b′
δγ ,λ∩N .

(e) xf0 ≤ dN .

If ε = 0, choose f0 to satisfy (a) and (e), recalling that all elements of S are ≥ α∗. 
Otherwise, arriving to ε, let g =

⋃
γ<ε fε. If ε = εN or a nonzero limit ordinal, this suffices, 

so let fε = g. Otherwise, suppose ε = γ + 1, so g = fγ ∈ FIμ,θ(δγ) by hypothesis (b). 
As observed above, working in B we see that the canonical object for the sequence bδγ

in N , bδγ ,λ∩N , is an element c of B which is, by choice of S, supported by B � δγ . So we 
may extend g to g′ ∈ FIμ,θ(δγ) such that either xg′ ≤ c or xg′ ∩c = 0. (Either xg ∩c = 0
already, or not, and if not we can find g′ so that xg′ ≤ c using the fact that b̄δγ is 
continuous; so clause (c) holds.) Since we had chosen b̄′

δγ
to satisfy the Key Property 

and to be supported by B � (δγ + λ), and δγ + λ ≤ δε by choice of S, the Key Property 
ensures that if xg′ ≤ c = bδε,λ∩N , then we may extend g′ to g′′ ∈ FIμ,θ(δε) so that

xg′′ ≤ b′
δε,λ∩N .

Let fε = g′′. This completes the inductive successor step and therefore the construction. 
Let fN = fεN .

Having constructed fN for each N ∈ I, we now consider the Boolean algebra B. Each 
fN corresponds to the nonzero element xfN ∈ B+. Observe that for each N ∈ I we may 
choose a σ-complete ultrafilter DN on B which contains xfN . Moreover for each N , the 
choice of xf0 in condition (e) above ensures that DN contains {d : d ∈ N ∩X∗}.

In the remainder of the proof, we will build the optimal ultrafilter D on B by averaging 
these ultrafilters. Recalling Fact 5.2, let E be an ultrafilter on I which is σ-complete and 
normal. Define

D∗ = AvE(〈DN : N ∈ I〉) = {a ∈ B : {N ∈ I : a ∈ DN} ∈ E}. (5.1)

Let us verify that D∗ is σ-complete. Given a sequence 〈ai : i < i∗ < σ〉 of elements 
of D∗, by definition, for each i the set Xi := {N ∈ I : ai ∈ DN} ∈ E . Since E is 
σ-complete, X :=

⋂
{Xi : i < i∗} ∈ E . N ∈ X means that {ai : i < i∗} ⊆ DN , so by 

the σ-completeness of DN we have that a :=
⋂
{ai : i < i∗} ∈ DN . Then {N ∈ I : a ∈

DN} ⊇ X ∈ E , so a ∈ D∗ by definition of D∗. Clearly D∗ ⊇ D∗
0 because d ∈ X∗ implies 

that {N ∈ I : d ∈ N} ∈ E which implies that {N ∈ I : dN ≤ d} ∈ E which implies 
that {N : xfN ≤ d} ∈ X∗ which implies that d ∈ D∗. This suffices recalling that X∗
generates D∗

0 .
Now suppose b̄ has the (λ, μ, θ, σ)-Key Property. Let δ ∈ S be such that b̄ = b̄δ in 

the enumeration above. Let b̄′ be its canonical multiplicative refinement b̄′
δ, chosen at 

the beginning of the proof. It will suffice to show that if bδ,u ∈ D∗ for each u ∈ [λ]<ℵ0 , 
then for each i < λ,

b′
{i} ∈ D∗.
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Fix for awhile such an i. Consider any u ∈ [λ]<σ. By our present assumptions, bu ∈ D∗. 
By definition of D∗, this means that

{N ∈ I : bu ∈ DN} ∈ E

and moreover that bu occurs E-a.a. in models N such that {δ, i} ⊆ N , i.e. models which 
consider bu to be part of the correct problem and contain the index i:

{N ∈ I : {δ, i} ∈ N and if u ∈ ([λ]<σ) ∩N then bu ∈ DN} ∈ E .

For any N in this set, δ ∈ S ∩N and so by construction (see clause (d))

xfN,δ
≤

⋂
{bu : u ∈ [λ]<σ ∩N}.

So by clause (d) above, xfN ≤ b′
{i}. This shows that b′

{i} ∈ D∗, and as i < λ was 
arbitrary, this completes the proof. �
Remark 5.10. Regarding the case σ = ℵ0, we will prove existence of a (λ, μ, ℵ0, ℵ0)-op-
timal ultrafilter in Corollary 9.7 below.

Our next task is to build a useful choice for D∗
0 mentioned in the proof of Theorem 5.9, 

with the aim that any D built from (D0, B, D∗) where D0 is regular and excellent and 
D∗ is from Theorem 5.9 and this given D∗

0 will not saturate any non-simple theory. The 
following fact is well known; we include a proof for completeness.

Fact 5.11. Assume μ = μ<σ. Then there is 〈uα
ε : ε < μ, α < μ+〉 such that:

1. uα
ε ∈ [α]<σ

2. β ∈ uα
ε =⇒ uβ

ε = uα
ε ∩ β

3. if u ∈ [μ+]<σ then for some ε < μ we have that (∀β ∈ u)(u ∩ β ⊆ uβ
ε ).

Proof. To begin, fix a sequence 〈fα : α < μ+〉 where each fα : α → μ is injective 
and in addition is surjective whenever |α| ≥ μ. Define a symmetric binary relation E
on u1, u2 ∈ [μ+]<σ by: E(u1, u2) if (a) otp(u1) = otp(u2), and (b) if h : u1 → u2 is 
order-preserving and onto, and β < α are from u1, then fα(β) = fh(α)(h(β)). Then E
is an equivalence relation with ≤ μ classes. [To see this, note the number of its classes 
is bounded by the following count: for each set u, we first choose an order type (≤ σ

options), and then for each α ∈ u (of which there are < σ), there are ≤ μ<σ possible 
choices for the values of fα on u ∩ α. As we assumed μ<σ = μ, E is therefore an 
equivalence relation with σ · (μ<σ)<σ = μ equivalence classes.] Let 〈Eε : ε < μ〉 list these 
classes.



M. Malliaris, S. Shelah / Advances in Mathematics 290 (2016) 614–681 653

Sh:1030
Now for each u ∈ [α]<σ, let uα
ε = u iff for some w ∈ Eε and γ ∈ w

(w ∩ (γ + 1))E(u ∪ {α})

Otherwise, uα
ε is empty. This sequence will satisfy (1) by construction. To see that (2) 

is satisfied, suppose we are given u = uα
ε , w, γ satisfying the previous equation, and 

β ∈ uα
ε . Then letting w′ = uα

ε ∩β and γ′ = h−1(β) suffices. Finally, condition (3) follows 
from condition (2) and the fact that for each α and at least one ε, uα

ε is well defined 
(non-empty). �
Claim 5.12. Let (λ, μ, θ, σ) be suitable, μ = μ<θ, σ uncountable and compact.18 There 
exists a σ-complete filter D∗

0 on B1
2λ,μ,θ generated by μ+ sets such that:

if D is a regular ultrafilter on λ built from (D0, B, D∗, j) where B = B1
2λ,μ,θ and 

D∗ is a σ-complete ultrafilter on B extending D∗
0, then D is not μ++-good for any 

non-simple theory.

Proof. Let 〈uα
ε : ε < μ, α < μ+〉 be given by Fact 5.11. Let 〈cγ : γ < μ〉 be a maximal 

antichain of B. Define

D∗
0 = {

⋃
γ∈A

cγ : for some u ∈ [μ+]<σ, A ⊇ {ε : (∀α ∈ u)(u ∩ α ⊆ uα
ε )}}.

D∗
0 is a σ-complete filter on μ by Fact 5.11. It is supported by B � V when it supports 

all the cγ ’s, and so satisfies the requirement in 5.9.2.
Let C be the monster model of a non-simple theory. We now look for an omitted type 

in CI/D. Let ϕ(x; y) have the tree property in C (so without loss of generality it will 
have TP1 or TP2; we observe this distinction, but ultimately don’t really use it). We 
choose aη ∈ �(y)C for η ∈ σ>μ+ so that:

1. if η ∈ σ(μ+) then {ϕ(x; aη|i+1) : i < σ} is a 1-type.
2. if ϕ has TP1 then for η, ν incomparable elements of σ>(μ+), the set

{ϕ(x; aη), ϕ(x; aν)}

is inconsistent,
3. if ϕ has TP2 then for i ∈ σ and η, ν incomparable (or equivalently, not equal) 

elements of i(μ+), the set {ϕ(x; aη), ϕ(x; aν)} is inconsistent.

Now we use 5.11 to pick a proposed path through the tree. For ε < μ, α < μ+ let ηε,α
list uα

ε ∪ {α} in increasing order, so ηε,α ∈ σ>μ+. Fix a partition 〈Cγ : γ < μ〉 of I such 

18 The assumption that “σ is compact” is just used to ensure that there exists some σ-complete ultrafilter 
D∗ extending D∗

0 is nonempty, so that a D as described by the Claim actually exists.
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that j(Cγ) = cγ for each γ < μ. For each α < λ, define the function fα from I to �(y)C

by: if t ∈ Cε then fα(t) = aηε,α
.

Let p = {ϕ(x, fα/D) : α < μ+}. Then p is a set of formulas of the language of T
with parameters from CI/D. Let us check that p is a consistent partial 1-type. Since 
consistency depends on comparability in the partial ordering, it suffices to check all 
pairs. If β < α < μ+, let A1 = {ε < μ : β ∈ uα

ε }. By construction, 
⋃

γ∈A1
cγ ∈ D∗

0 , so 
we may choose X1 ∈ D in the j-preimage of this set. Unraveling the construction, this 
shows that p is indeed a consistent partial ϕ-type.

Assume for a contradiction that we have f ∈ IC such that f/D realizes p in CI/D. 
For each α < μ+, let

Aα = {t ∈ I : C |= ϕ(f(t), fα(t))} ∈ D

Let aα = Aα/D be the corresponding member of B.
As 〈cγ : γ < μ〉 is an antichain of B, for each α < μ+ there is γ(α) < μ such that 

bα = aα ∩ cγ(α) ∈ B+. By the pigeonhole principle, there is ζ < μ such that |U1| = μ+, 
where

U1 = {α < μ+ : γ(α) = ζ}.

As {otp(uα) : α ∈ U1} has cardinality ≤ σ < μ+, there is ρ < σ such that |U2| = μ+, 
where

U2 = {α ∈ U1 : otp(uα) = ρ}

However, B has the μ+-c.c. So for some α �= β ∈ U2, we have that b := bα ∩ bβ is 
positive. Let B ⊆ I be such that j(B) = b, so B �= ∅ modD0. Since B is contained in 
each of Aα, Aβ , and Cζ modD0, we may choose t ∈ B ∩ (Aα ∩Aβ ∩ Cζ).

Recall that ηε,α lists uα
ε ∪ {α} in increasing order, and Aα = {t ∈ I : C |=

ϕ(f(t), fα(t))}. Thus by our choice of t and ζ, f(t) realizes

{ϕ(x, fα(t)), ϕ(x, fβ(t))} = {ϕ(x, aηζ,α
), ϕ(x, aηζ,β

)}

But ηζ,α, ηζ,β are distinct members of σ>(μ+) of the same length. Thus by our choice of 
parameters in the tree, the set {ϕ(x, aηζ,α

), ϕ(x, aηζ,β
)} is inconsistent. [Note that this 

does not depend on whether we are in the case of TP1 or of TP2.] This contradiction 
shows that p is not realized, and so completes the proof. �
Conclusion 5.13. Let (λ, μ, θ, σ) be suitable, μ < λ, and suppose σ is uncountable and 
supercompact. Let B = B1

2λ,μ,θ. Then there is an ultrafilter D∗ on B such that:

(a) D∗ is (λ, μ, θ, σ)-optimal.
(b) whenever D is a regular ultrafilter built from (D0, B, D∗) then D is not μ++-good for 

any non-simple theory, thus not μ++-good.
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Proof. Use the filter D∗
0 from Claim 5.12 in Theorem 5.9(2). �

Definition 5.14. Let (λ, μ, θ, σ) be suitable and suppose that σ is uncountable and 
that a (λ, μ, θ, σ)-optimal ultrafilter exists. We say the ultrafilter D on I, |I| = λ

is (λ, μ, θ, σ)-optimized when there exists a regular excellent filter D0 on I and a 
(λ, μ, θ, σ)-optimal ultrafilter D∗ on B1

2λ,μ,θ such that D is built from (D0, B, D∗). Note 
that any such D will be regular.

We now record the following connection. On the relevance of this property, see sec-
tion 2.2, “Why a large cardinal?”

Definition 5.15. (Flexible filters, Malliaris [22].) We say that the filter D on a set I is 
λ-flexible if for any f ∈ IN with n ∈ N =⇒ n <D f , we can find Xα ∈ D for α < λ

such that for all t ∈ I

f(t) ≥ |{α : t ∈ Xα}|

Informally, we can find a λ-regularizing family below any given nonstandard integer.

Observation 5.16. Let (λ, μ, θ, σ) be suitable and σ > ℵ0 supercompact. Let D be a 
(λ, μ, θ, σ)-optimized ultrafilter. Then D is flexible.

Proof. It was proved in [22] Section 8 that any regular ultrafilter which is good for 
some non-low simple theory must be flexible. So this Observation will be an immediate 
corollary of the theorem, proved in the next section, that any such optimized ultrafilter 
is good for any countable simple theory.

One can also give a direct proof, which we only sketch as it is not central for our 
arguments. We know D is built from some (D0, B, D∗) where D0 is excellent (therefore 
good, therefore flexible) and D∗ is σ-complete for σ > ℵ0. Then the argument is exactly 
that worked out in Malliaris and Shelah [24] Claim 7.8. In particular, nothing about 
optimality of D∗ is used, only its σ-completeness on a completion of a free Boolean 
algebra. �

This gives a new solution to an old question of Dow [6], which we had also answered in 
an earlier paper [23] assuming a measurable cardinal. In our present terminology, using 
‘flexible’ for ‘ok,’ the question is:

Question 5.17. (Dow 1985, in our terminology) Does there exist a regular ultrafilter which 
is κ+-flexible and not κ+-good?

Conclusion 5.18. Let (λ, μ, θ, σ) be suitable and σ > ℵ0 supercompact. Then there is a 
regular ultrafilter D on λ which is λ-flexible and not μ++-good.
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Proof. An optimized ultrafilter will fit the bill by 5.13 and 5.16. �
Our final claim shows that “not μ++-good” in 5.13(b) is best possible.

Claim 5.19. Let (λ, μ, θ, σ) be suitable. If D∗ is a (λ, μ, θ, σ)-optimal ultrafilter on B =
B1

2λ,μ,θ then:

1. D∗ is μ+-good.
2. if D is a (λ, μ, θ, σ)-optimized ultrafilter built from some regular excellent D0 along 

with D∗ and B, then D is μ+-good.

Proof. For (1) it will suffice to show that if 〈b1
u : u ∈ Ω = [μ]<σ〉 is a continuous sequence 

of elements of D then it has a multiplicative refinement. Define b̄2 = 〈b2
u : u ∈ [λ]<σ〉

by: b2
u = b1

u∩μ. It suffices to show that b̄2 has the Key Property 5.7, and therefore has a 
multiplicative refinement by optimality. Choose V ⊆ 2λ, |V| ≤ μ as in 5.7(a). Let α < 2λ
be any ordinal such that α ⊇ V. Define a new maximal antichain of B by 〈cε : ε < μ〉
where cε = xfε and fε is the function with domain {α} and range ε. Let 〈uε : ε < μ〉
list Ω = [μ]<σ. Define b′

{i} for i < λ by: if i ≥ μ, then b′
{i} = 1B, and if i < μ then 

b′
{i} =

⋂
{b2

uε
∩cε : i ∈ uε}. Let 〈b′

u : u ∈ [λ]<σ〉 be the multiplicative sequence generated 
by 〈b′

{i} : i < λ〉. It remains to check that 5.7(b) holds. Fix u ∈ [λ]<σ and let ε∗ be such 
that u ∩ μ = uε∗ . If xf ≤ b2

u, then xf ∩ cε∗ ∩ b2
uε∗

> 0, and cε∗ ∩ b2
uε∗

≤ b′
{i} for each 

i ∈ u = uε∗ . So as b̄′ is multiplicative, xf ∩ cε∗ ∩ b2
uε∗

≤ b′
u as desired. This completes 

the proof that b̄2 has the Key Property, and so the proof of (1).
(2) follows from (1) by Theorem F, p. 625. �
In Claim 5.19, it would be natural to consider adding a monotonicity clause of the 

form “D∗ is (λ, μ, θ, σ)-optimal and λ′ ∈ [μ, λ) implies D∗ is (λ′, μ, θ, σ)-optimal.” This 
would require a slight change in the definition, since we have tied λ to the size of the 
underlying Boolean algebra 2λ, so we omit it. If we were to add an additional parameter 
so as to separate these two uses of λ, the size of the Boolean algebra and the length of 
the sequence b̄, then we have monotonicity in the second.

6. Presentations in ultrapowers

In this section we prove a lemma saying that presentations for types in ultrapowers 
can be arranged to interact with a choice of lifting of the parameters in a nice way. This 
lemma will proceed by building an algebra S which is the optional input to Lemma 4.2.2 
above.

Lemma 6.1. Suppose (λ, μ, θ, σ) are suitable, T is (λ, μ, θ, σ)-explicitly simple, T elimi-
nates imaginaries, T is complete and simple with infinite models, and |T | < σ. Suppose 
we are given:
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1. D a regular ultrafilter on I, |I| = λ.
2. M |= T is λ+-saturated, and admits an expansion M+ by new Skolem functions for 

formulas of T . Let T+ = Th(M+).
3. N � M I/D, ||N || = λ, N admits an expansion to N+ |= T+ such that N+ ⊆

(M+)I/D, and p ∈ S(N).

Then there exist

• a (λ, θ, σ)-presentation m = (〈ϕα(x, a∗α) : α < λ〉, M) of p
• an intrinsic coloring G : Rm → μ, which we may assume has range = μ

• and a choice of lifting {a∗α : α < λ} → M I

such that identifying each a∗α with its image under this lifting, we have that for any 
w = clM(w) ⊆ λ,

(a) for every t ∈ I,

CT � {a∗α[t] : α ∈ w} � CT ,

(b) for each finite sequence 〈αi0 , . . . , αik−1〉 of elements of w, and each formula ϕ(x, ȳ)
of T with �(ȳ) = k, there is β ∈ w such that for all t ∈ I,

M |= (∃x)ϕ(x, a∗αi0
[t], . . . , a∗ik−1

[t]) =⇒ ϕ(a∗β [t], a∗αi0
[t], . . . , a∗ik−1

[t]).

Before proving Lemma 6.1, we record that such types are enough.

Observation 6.2. Let T , D be as in Lemma 6.1. To prove that D is good for T it would 
suffice to show that every p arising in the form 6.1.3 is realized.

Proof. Since the ultrafilter D is regular, we are free to choose any infinite model M |= T

as the index model, in particular we may choose it to be sufficiently saturated. Fix any 
A ⊆ M I/D, |A| ≤ λ, and p0 a type over A. Let M+ be any expansion of M by Skolem 
functions and let T+ = Th(M). We may assume |T+| = |T | < σ. Since ultrapowers 
commute with reducts, there is an expansion of the ultrapower M I/D to a model of T+. 
In particular there is an elementary submodel N+ of the ultrapower (in the expanded 
language) such that A ⊆ Dom(N+) and ||N+|| = λ. Let N be the reduct of N+ to τ(T )
and let p ∈ S(N) be any type extending p0. Clearly to realize p0 it suffices to realize 
p. Finally, regarding the range of the function G: if G is an intrinsic coloring of some 
presentation m, let EG be the equivalence relation on elements of Rm given by EG(r, r′)
iff G(r) = G(r′). Then any function G′ : Rm → μ such that EG′ refines EG will also be 
an intrinsic coloring of Rm, so we may assume the range of G is exactly μ.

This completes the proof. �



658 M. Malliaris, S. Shelah / Advances in Mathematics 290 (2016) 614–681

Sh:1030
Proof of Lemma 6.1. Let τ+ denote the signature of N+ and τ that of N , and let C
denote CT , the monster model for T . Let E ⊆ λ denote the set of even ordinals less than 
λ. To begin, let

〈ϕα(x, a∗α) : α ∈ E〉 (6.1)

be an enumeration of p which satisfies:

(a) each a∗β is a singleton, possibly imaginary;
(b) {a∗β : α ∈ E} = Dom(N);
(c) {a∗β : α ∈ |T | ∩ E} is the domain of an elementary submodel M∗ of N over which p

does not fork, and {ϕα(x, a∗β) : α ∈ |T | ∩ E} is a complete type over this submodel.

For each α ∈ E, choose gα ∈ IM such that first, a∗α = gα/D, and second, if α, α′ ∈ E

and a∗α = a∗α′ , then gα = gα′ .
Let Terms be the set of all terms built up inductively from function symbols of τ+

and the free variables {xα : α ∈ E}. Choose a map ρ : Terms → λ such that:

(i) ρ is one-to-one and onto.
(ii) for each α ∈ E, xα �→ α ∈ E.
(iii) ρ−1({α : α < |T |} consists precisely of the elements of Terms whose free variables 

are among {xα : α < |T |}.

Now we define functions {gα : α ∈ λ \E} ⊆ IM , i.e. we need to define the value of gα
when α is odd. Fix for awhile α ∈ λ \E. Then ρ−1(α) is a term, say t = t(xi0 , . . . , xik−1) ∈
Terms, where k is finite and depends on t and this notation means that the free variables 
of t are precisely xi0 , . . . , xik−1 (in particular t is not necessarily a term arising as a single 
function applied to a series of variables). Fix t ∈ I. Since M+ |= T+, there is a unique 
a ∈ Dom(M+) such that

M+ |= “a = t[gi0(t), · · · , gik−1(t)]”

where the expression in quotations means that the term t evaluates in M+, on the given 
sequence of values, to a. Assign gα(t) = a. As α ∈ λ \ E and t ∈ I were arbitrary, this 
completes the definition of {gα : α < λ \ E}. Note that this definition applied to gα for 
α even would just return gα.

Before continuing, let us prove that if N and {a∗α : α < |T |} are closed under the 
functions of (M+)I/D then {gα/D : α ∈ X} = {gα/D : α ∈ E ∩ X} = X where X ∈
{|T |, λ}. In other words, we have not actually added new elements to either Dom(M∗)
or Dom(N), but have simply repeated existing elements in a larger enumeration. Note 
that the second equality was ensured by (b)–(c) above and the right to left inclusions 
are obvious. We prove the remaining inclusion, {gα/D : α ∈ X} ⊆ {gα/D : α ∈ E ∩X}, 
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by induction on the complexity of the term ρ−1(α). If ρ−1(α) is a single variable xβ with 
β ∈ X, then by our construction we know that 2β = α and so α ∈ E ∩X. Suppose then 
that ρ−1(α) is a term of the form fϕ(ti0 , . . . , ti	−1), where in slight abuse of notation, we 
write this to mean that fϕ is an �-place function symbol from τ+ \τ applied to the terms 
ti0 , . . . , ti	−1 . By inductive hypothesis, for each j < � there is αj ∈ E ∩X such that

gρ(tij )/D = gαij
/D.

Then as both M∗ and N were expanded to models of T+, writing “C+ � X” for the 
appropriate expansion, there is some β ∈ E ∩X such that

C+ � X |= f(gαi0
/D, . . . , gαi	−1

/D) = gβ/D

and then unraveling the definition of gα in the previous paragraph, clearly gα/D = gβ/D.
For α ∈ λ \ E, let ϕα be the formula “x �= y”, recalling that p is nonalgebraic (of 

course even simpler formulas would work e.g. “x = x”). For each α < λ, let a∗α = gα/D. 
Then the enumeration

ϕ̄ = 〈ϕα(x, a∗α) : α < λ〉

will satisfy the hypotheses of Lemma 4.2. So we have our enumeration and our lifting 
a∗α �→ gα (for α < λ), and it remains to translate these Skolem functions in the natural 
way into an algebra S on λ and to prove this algebra has the desired properties.

For each function symbol fϕ ∈ τ+ \ τ , of arity k = kϕ, add a function Fϕ of the 
same arity to the algebra defined as follows. Although similar to the argument just 
given, this definition will have an important additional uniqueness property. For each 
〈αi0 , . . . , αik−1〉 ∈ kλ, in slight abuse of notation, define

Fϕ(αi0 , . . . , αik−1) = ρ( “fϕ(ρ−1(αi0), · · · , ρ−1(αik−1))” )

where the expression in quotation denotes the element of Terms formed by applying 
the k-place function symbol fϕ to the sequence of terms ρ−1(αi0), · · · , ρ−1(αik−1). As 
ρ was a bijection, this value is unique and well defined. Let S be the algebra given by 
the functions {Fϕ : fϕ ∈ τ+ \ τ}, so clearly |S| = |τ+ \ τ | ≤ |T | < σ. We now make 
several observations about how the algebra S interacts with the enumeration ϕ̄ and the 
functions of τ+ \ τ . First, our construction has guaranteed that:

(1) For each Skolem function fϕ ∈ τ+\τ , say of arity k, and every distinct αi0 , . . . , αik−1

from λ, there exists β < λ such that for all t ∈ I, M+ |= “fϕ(a∗[t]αi0
, . . . , a∗αik−1

[t]) =
a∗β [t].”

This is more than would be guaranteed a priori by Łoś’ theorem: Łoś would say that if we 
fix an enumeration and a lifting, then for any such sequence of α’s we may find a β which 
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works almost everywhere. Here we have a single β, namely the value of Fϕ(αi0 , . . . , αik−1), 
which works everywhere.19

(2) For each k < ω and each fϕ ∈ τ+ \ τ of arity k, there is a function Fϕ ∈ S of arity 
k such that whenever αi0 , . . . , αik−1 , β satisfy condition (a),

FS
ϕ (αi0 , . . . , αik−1) = β.

This says that the Fϕ translate the action of the Skolem functions in the natural way. 
Finally, let us prove that:

(3) For any nonempty w = clS(w) ⊆ λ and t ∈ I, C � {a∗α[t] : α ∈ w} � C.

Since we have fixed a lifting, a∗α[t] = gα(t), so we will use these interchangeably. Fix some 
such w = clS(w) ⊆ λ and some t ∈ I. Since this set is a subset of the index model M , 
it will suffice to prove that M � {gα(t) : α ∈ w} � M . Suppose for a contradiction that 
{gα(t) : α ∈ w} = {a∗α[t] : α ∈ w} is not the domain of an elementary submodel of M . 
Then there are a formula ϕ = ϕ(x, ȳ) and αi0 , . . . , αi	(ȳ)−1 ∈ w such that

M |= (∃x)ϕ(x, a∗αi0
[t], . . . , a∗i	(ȳ)−1

[t])

but there does not exist γ ∈ w such that

M |= ϕ[a∗γ [t], a∗αi0
[t], . . . , a∗i	(ȳ)−1

[t]].

Let fϕ ∈ τ+ be the function symbol whose interpretation in T+ corresponds to the 
Skolem function for ϕ. Then

M+ |= (∃x)ϕ(x, a∗αi0
[t], . . . , a∗i	(ȳ)−1

[t]) =⇒

ϕ(fϕ(a∗αi0
[t], . . . , a∗i	(ȳ)−1

[t]), a∗αi0
[t], . . . , a∗i	(ȳ)−1

[t]).

Moreover, by observation (1), there is β < λ such that for all elements of I, and in 
particular for the t we have chosen,

M+ |= fϕ(a∗[t]αi0
, . . . , a∗αik−1

[t]) = a∗β [t].

By observation (2), w = clS(w) means that necessarily β ∈ w. This contradiction com-
pletes the proof of (3).

Notice that if M ⊇ S is any larger algebra and w = clM(w) ⊆ λ, then a fortiori 
w = clS(w) so (3) remains true.

19 Note that we accomplished this by “padding” our original enumeration so that 〈a∗
α : α < λ〉 may contain 

many repetitions.
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Then the enumeration ϕ̄ and the algebra S satisfy the hypotheses of Definition 3.2. As 
we have assumed that T is (λ, μ, θ, σ)-explicitly simple, we may apply that Definition to 
obtain a presentation m = (ϕ̄, M) and an intrinsic coloring G : Rm → μ, with M ⊇ S. 
This presentation m, the coloring G, and the lifting 〈gα : α < λ〉 are as desired. Note that 
by definition of presentation, any clM-closed set is nonempty, so we no longer need the 
proviso “nonempty” when applying (3) in the context of a presentation, Definition 3.3.

This completes the proof of the claim. �
7. Ultrapower types in simple theories

In this section we assume the following:

• (λ, μ, θ, σ) are suitable.
• σ > ℵ0 is strongly inaccessible.20
• B = B1

2λ,μ,θ.
• T is complete, countable, first-order, and (λ, μ, θ, σ)-explicitly simple.

In the next Theorem, we have assumed existence of an optimal ultrafilter rather than 
“σ is uncountable and supercompact”. This is because supercompactness was used for 
expediency to construct an optimal ultrafilter but nothing about the definition of optimal 
or optimized (Definition 5.14) seems to suggest its necessity, and supercompactness is 
not otherwise used in the proof.

Theorem 7.3. Suppose (λ, μ, θ, σ) are suitable. Suppose a (λ, μ, θ, σ)-optimal ultrafilter 
exists. Let T be a complete, countable theory which is (λ, μ, θ, σ)-explicitly simple, let 
M |= T , and let D be a (λ, μ, θ, σ)-optimized ultrafilter on I, |I| = λ. Then M I/D is 
λ+-saturated.

Proof. As ultraproducts commute with reducts, we may assume T eliminates imaginaries 
(if not, work in T eq throughout). To begin, quoting Lemma 6.1 and Observation 6.2, let 
us fix:

1. D0, D∗, j witnessing that D is optimized.
2. N � M I/D, ||N || = λ, and p ∈ S(N) nonalgebraic, for which there exist:

(a) a (λ, θ, σ)-presentation m = (〈ϕα(x, a∗α) : α < λ〉, M) of p
(b) an intrinsic coloring G : Rm → μ, with range exactly μ
(c) and a choice of lifting {a∗α : α < λ} → M I

20 What we use in this section is first, that there is an optimal, thus σ-complete, ultrafilter on B, and 
second, we use that σ is strongly inaccessible in Claim 7.6. As σ will be strongly inaccessible in our cases of 
interest (e.g. σ compact or strongly compact) there is no present cost to using this in Claim 7.6; however, 
that Claim could likely be circumvented.
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[i.e. let F : M I/D → M I be a choice function, meaning that F (a/D) ∈ a/D, and 
in the rest of the proof we allow ourselves to write a∗α instead of F (a∗α) when this 
is clear from the context, so for α < λ and t ∈ I the value “a∗α[t]” is well defined]

we have that for any w = clM(w) ⊆ λ,
(d) for any t ∈ I,

CT � {a∗α[t] : α ∈ w} � CT ,

(e) for each finite sequence 〈αi0 , . . . , αik−1〉 of elements of w and formula ϕ(x, ȳ) of 
T with �(ȳ) = k, there is β ∈ w s.t. for all t ∈ I,

M |= (∃x)ϕ(x, a∗αi0
[t], . . . , a∗αik−1

[t]) =⇒ ϕ(a∗β [t], a∗αi0
[t], . . . , a∗αik−1

[t]).

3. Recall that the properties ensured by the presentation m include:
(a) 〈a∗α : α < λ〉 is an enumeration of N = Neq (note that the next few conditions 

put some restrictions on this enumeration). We write Aα for the set {aβ : β < α}.
(b) ϕ̄ = 〈ϕα(x, a∗α) : α < λ〉, corresponding enumeration of the type p.
(c) M is an algebra on λ with ≤ θ functions such that for each u ∈ λ, if |u| < θ

then | clM(u)| < θ, and if |u| < σ then | clM(u)| < σ.
(d) {α : α ∈ clM(∅)} is a cardinal ≤ |T |.
(e) N � {a∗α : α ∈ clM(∅)} = M∗ � N , where ||M∗|| ≤ |T | < σ and p does not fork 

over M∗.
(f) for each u ∈ [λ]<σ, N � {a∗α : α ∈ clM(u)} is the domain of an elemen-

tary submodel Nu � N , and if in addition u = clM(u) then the partial type 
{ϕα(x, a∗α) : α ∈ u} implies the elementary diagram of Nu (and is an element 
of S(Nu) which does not fork over M∗).

(g) for each u ∈ [λ]<σ and β ≤ α ∈ clM(u), we have that tp(a∗α, Aβ ∪M∗) does not 
fork over {a∗γ : γ ∈ clM(u) ∩ β} ∪M∗.

4. Ω = [λ]<σ.

With the stage set, our first task is to build a continuous sequence 〈bu : u ∈ Ω〉 of 
elements of B which form a possibility pattern corresponding to the type p. Towards 
this, we shall describe N by a type in λ variables in the natural way. Let 〈xα : α < λ〉
be a sequence of singleton variables (possibly they will be filled by imaginaries) and as 
before, for v a sequence of elements of λ, let x̄v denote 〈xα : α ∈ v〉. [If v was defined 
to be a set, interpret x̄v by considering v as a sequence listing its elements in increasing 
order. The main set Γ1 of formulas, in the language L of T , is closed under permuting 
the variables.] Define

Γ1 = {ψ(x̄v) : v ∈ ω>λ, ψ an L-formula in |v| free variables }. (7.1)

For each finite u ⊆ λ, define
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ϕu = ϕu(x, x̄u) =
∧
α∈u

ϕα(x, xα). (7.2)

These are collected in the set

Γ2 = {ϕu : u ∈ [λ]<ℵ0}. (7.3)

Note that since p ∈ S(N), (∃x)ϕu(x, ̄xu) ∈ Γ1 for each ϕu ∈ Γ2. Now we invoke Łoś’ 
map. For each ψ(x̄v) ∈ Γ1, define

aψ(x̄v) = j(Aψ(x̄v)) where Aψ(x̄v) = {t ∈ I : M |= ψ[āv[t]]}. (7.4)

It will be useful to name the element of B recording that “M∗ appears correctly”:

aclM(∅) :=
⋂

{aψ(x̄v) : v ∈ [clM(∅)]<ω ∧ ψ(x̄v) ∈ Γ1 ∧ |= ψ[āv]} ∈ D∗. (7.5)

Note that in equation (7.5) we make essential use of σ > |T |. Likewise, for each ϕu ∈ Γ2, 
define

bϕu
= j(Bϕu

) where Bϕu
= {t ∈ I : M |= (∃x)ϕu(x, āu[t])}. (7.6)

By Łoś’ theorem, each bϕu(x,x̄u) belongs to D∗ and a fortiori to B+. As D∗ is σ-complete, 
we may define bu for all u ∈ Ω by setting bu = bϕu(x,x̄u) when u is finite and bu =⋂
{bv : v ∈ [u]<ℵ0} when u is infinite. Then

b̄ = 〈bu : u ∈ Ω〉 (7.7)

is a continuous sequence of elements of D∗ in the sense of 5.5 above, and is a possibility 
pattern 2.12 (for the formulas in the sequence ϕ̄) by Łoś’ theorem. So by Theorem F, 
showing b̄ has a multiplicative refinement 〈b′

u : u ∈ [λ]<σ〉 in D∗ will suffice to realize 
the type p.

Notice at this point that for any u ⊆ λ,

bclM(u) ≤ aclM(∅). (7.8)

This follows from condition 3.(f) from the beginning of the proof: “for each u ∈ [λ]<σ, 
N � {a∗α : α ∈ clM(u)} is the domain of an elementary submodel Nu � N , and if in 
addition u = clM(u) then the partial type {ϕα(x, a∗α) : α ∈ u} implies the elementary 
diagram of Nu.”

Our next task is to define a family of supporting sequences for b̄, recalling Defini-
tion 5.6. We will set the stage by defining several progressively more refined families

F ⊆ FIμ,θ(2λ) × [λ]<θ.

In each case, ≤F is the natural partial order on elements of F given by
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(f, w) ≤F (f ′, w′) when f ⊆ f ′, w ⊆ w′

where recall f ⊆ f ′ implies xf ′ ≤ xf , as befits having more information. In each case, 
the family F will be defined as 

⋃
{Fu : u ∈ Ω}.

For each u ∈ Ω, we define F0
u to be the set of pairs (f, w) such that

(i) f ∈ FIμ,θ(2λ), w ∈ [λ]<θ.
(ii) u ⊆ w = clM(w), so w is closed and contains the closure of u.

For each u ∈ Ω we define F1
u ⊆ F0

u to be the set of pairs (f, w) which are, in addition, 
decisive “on w”:

(iii) xf ≤ bϕv(x,xv) or xf ≤ 1 − bϕv(x,xv) when v ∈ [w]<ℵ0 and ϕv ∈ Γ2.
(iv) xf ≤ aψ(xv) or xf ≤ 1 − aψ(xv) when v ∈ [w]<ℵ0 and ψ(xv) ∈ Γ1.

The family F1
u is dense in F0

u, that is, for any (f, w) ∈ F0
u there is (f ′, w′) ∈ F1

u

with (f, w) ≤F0
u

(f ′, w′). This is because the generators 〈xf : f ∈ FIμ,θ(2λ)〉 are dense 
in B. Notice also that both families are closed under limits which are not too large, i.e. 
if α < θ is a limit ordinal and 〈(fβ , wβ) : β < α〉 is a strictly increasing sequence of 
elements of F1

u, then (
⋃

β<α fβ , 
⋃

β<α wβ) ∈ F1
u. To prove this we need to check that the 

limit 
⋃

β<α wβ remains closed, which is true because each wβ is closed.
Following an idea from [28], we now settle collisions. For α, β ∈ λ, write

Aaα=aβ
= {t ∈ I : M |= aα[t] = aβ [t]} and aaα=aβ

= j(Aaα=aβ
). (7.9)

Clearly for any f ∈ FIμ,θ(2λ) and α < λ, xf ≤ aaα=aα
. For each u ∈ Ω, let F2

u ⊆ F1
u be 

the set of pairs (f, w) such that, in addition,

(v) for each α ∈ w, f decides equality for α, meaning that there is β ≤ α, β ∈ w such 
that: xf ≤ aaα=aβ

and for no f ′ ⊇ f and γ < β (not necessarily from w) do we have

xf ′ ≤ aaα=aγ
.

To prove that F2
u is dense in F1

u, it suffices to show that for each (f, w) ∈ F1
u and α ∈ w

there is (fα, wα) with (f, w) ≤F1
u

(fα, wα) in which this condition is met for α. Suppose 
we are given (f, w) ∈ F1

u and α ∈ w. Let β0 = α, f0 = f . Arriving to i, xf ≤ aaα=aβi

and if in addition xf ∩ aaα=aβ
= 0 for all β < βi, then the condition is satisfied for α. 

Otherwise, let βi+1 < βi be a counterexample and as the generators are dense, we may 
choose fi+1 ⊇ fi so that xfi+1 ≤ aaα=aβi+1

. Since the ordinals are well ordered, this 
process stops at some finite stage n = n(α). Let wn be the closure of w ∪ {βn}. Fix 
(fα, wα) ∈ F1

u such that (fn, wn) ≤F1 (fα, wα). Then (fα, wα) is as required. As F1
u is
u
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closed under limits of cofinality less than θ, we may build the desired (f∗, w∗) ∈ F2
u as a 

limit of the elements (fα, wα), indexing suitably to handle the new βs added along the 
way.

Note that whenever (f, w) ∈ F2
u and α ∈ w we may define

ρα(f) = min{β ≤ α : xf ≤ aaα=aβ
and for all γ < β xf ∩ aaα=aγ

= 0}. (7.10)

Moreover, ρα(f) ∈ w and also ρα(f ′) = ρα(f) for any f ⊆ f ′ ∈ FIμ,θ(2λ), so this value 
is robustly defined.21

We now record how elements of F2
u naturally induce types. The key families F3

u, 
F4

u ⊆ F2
u will be defined in terms of conditions on these types. In what follows q(. . . ) is 

a type of parameters, and r(x, . . . ) may or may not correspond to a fragment of p; the 
notation is meant to invoke 3.9. For each u ∈ Ω and each (f, w) ∈ F2

u,

define qf,w to be the type in the variables x̄w given by:

qf,w(x̄w) = {ψ(xv) : xf ≤ aψ(xv), ψ(xv) ∈ Γ1}

∪ {¬ψ(xv) : xf ≤ 1 − aψ(xv), ψ(xv) ∈ Γ1}. (7.11)

Notice that if xf ≤ aclM(∅), then the restriction of qf,w to the variables x̄clM(∅) = x̄δm is 
realized by 〈a∗α : α < δm〉. Next, for each u ∈ Ω and each (f, w) ∈ F2

u,

choose rf,w = rf,w(x, x̄w) ⊇ qf,w to be a complete type such that: (7.12)

(a) if bw realizes q in C then r(x, bw) dnf over {bα : α < clM(∅)}.
(b) if consistent, choose r so that in addition

r ⊇ {ϕα(x, xα) : α ∈ u} ∪ {ϕα(x, xα) : α ∈ clM(∅)}.

The choice of each rf,w will be fixed for the rest of the proof. Note in particular that if 
b̄w satisfies α < clM(∅) =⇒ bα = a∗α then r(x, bw) dnf over M∗.

Let F3
u ⊆ F2

u be the set of (f, w) such that in addition:

(vi) whenever b̄w is a sequence of elements of the monster model realizing qf,w, then for 
any v ⊆ w, v = clM(v) we have that {bα : α ∈ v} is the domain of an elementary 
submodel.

Let us prove that F3
u = F2

u for all u ∈ Ω. Suppose for a contradiction that (vi) fails for 
some qf,w and b̄w. Then there is a finite v ⊆ w and a formula ϕ(x, ȳ) of T with �(ȳ) = |v|
witnessing the failure, i.e. C |= ∃xϕ(x, ̄bv) but there does not exist γ ∈ w such that

21 In some sense we have found a small region where the elements aα, aρα(f) move ‘in lockstep’. Note that 
we are simply tying them to each other, not to any particular values in the monster model.
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C |= ϕ(bγ , ̄bv). Since qf,w is a complete type, ψ(x̄v) = ∃xϕ(x, ̄bv) ∈ qf,w. By definition 
of qf,w, it must be that

xf ≤ aψ(x̄v) i.e. xf ≤ j(Aψ(x̄v) = {t ∈ I : M |= ∃xϕ(x, ā∗v[t])}).

By assumption (2)(e) at the beginning of the proof, there exists β ∈ w such that for all 
t ∈ I,

M |= (∃x)ϕ(x, ā∗v[t]) =⇒ ϕ(a∗β [t], ā∗v[t]). (7.13)

We will show xf ≤ aϕ(xβ ,x̄v). If not, aψ(x̄v) ∩ (1 − aϕ(xβ ,x̄v)) > xf > 0, thus

Aψ(x̄v) \Aϕ(xβ ,x̄v) �= ∅.

Let t be any element of this supposedly nonempty set. Then M |= (∃x)ϕ(x, ̄a∗v[t]) but it 
is not the case that M |= ϕ(a∗β [t], ̄a∗v[t]), contradicting (7.13). This contradiction proves 
that xf ≤ aϕ(xβ ,x̄v). So by the definition of qf,w, it must be that ϕ(xβ , ̄xv) ∈ qf,w. 
This contradiction proves that (vi) will always hold, i.e. Lemma 6.1 has arranged that 
F2

u = F3
u for each u ∈ Ω.

There is one more family to define, F4
u. First, let us record that the “if consistent” 

clause in the definition of rf,w, (7.12)(b), is often activated.

Observation 7.4. Suppose u ∈ Ω, (f, w) ∈ F3
u, and xf ≤ bclM(u). Then rf,w will always 

contain {ϕα(x, xα) : α ∈ u} ∪ {ϕα(x, xα) : α ∈ clM(∅)}.

Proof. In other words, we will show the “if consistent” from the definition of rf,w is 
consistent. Denote by Nu the elementary submodel C � {a∗α : α ∈ clM(u)}. (By our condi-
tions on the algebra this is an elementary submodel, which includes M∗.) The hypothesis 
on xf means that q � x̄clM(u) is realized by Nu, under an appropriate enumeration. Since 
nonforking is invariant under automorphism and all the types in question are complete, 
suppose without loss of generality that we are given b̄w realizing qf,w such that b̄clM(u)
enumerates Dom(M), and α < clM(∅) implies bα = a∗α. By the definition of presentation, 
p � Nu is a type which includes {ϕα(x, a∗α) : α ∈ u} ∪{ϕα(x, a∗α) : α < clM(∅)} and does 
not fork over M∗. We may choose r∗(x, ̄bw) to be any nonforking extension of p � Nu

to the elementary submodel C � b̄w. Let r(x, ̄xw) be the translation of r∗ to a type over 
the empty set in the variables x, ̄xw. This shows that “if consistent” indeed is, so we 
may assume rf,w has the stated properties, though it need not have arisen in this way.

Observation 7.4 �
To motivate our remaining step in the construction of a support, consider for a moment 

a sequence of four-tuples induced by the same f , say
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〈(vt, wt, qft,wt
, rft,wt

) : t < t∗ < σ〉

where (vt, wt, qft,wt
, rft,wt

) arises from (ft, wt) ∈ F3
ut

and vt ⊆ ut, and there is a single f
with ft ⊆ f for all t. A priori, this four-tuple need not be from Rm (e.g. if xf∩aclM(∅) = 0) 
nonetheless we may begin to analyze its properties. By definition of qf,w, existence of 
such an f means the union 

⋃
t<t∗

qft,wt
will always be a partial type in the variables x̄w, 

where w =
⋃
{wt : t < t∗}. Let b̄∗w be any sequence realizing this type. Then the types 

rft,wt
(x, ̄b∗wt

) may be explicitly contradictory as their definition allowed for arbitrary 
choices. Going forwards, our strategy will be to handle the issue of explicit inconsistency 
in the r’s with the construction of b̄′; before that, we ensure the necessary nonforking 
with the following definition.

Recall D-rank from 2.17 above. In the following, we do not require that D-rank is 
definable, only that the value is constant in the sense described.

Let F4
u be the set of pairs (f, w) ∈ F3

u such that in addition:

(vii) for every (f ′, w′) ∈ F3
u with (f, w) ≤F0

u
(f ′, w′), and every sequence 〈bα : α ∈ w′〉

of elements of the monster model which realizes qf ′,w′(xw′), and every α ∈ w,
• tp(bα, {bγ : γ ∈ w′ ∩ α}) dnf over {bγ : γ ∈ w ∩ α}.
• for any formula ϕ and k < ω,

D(tp(bα, {bγ : γ ∈ w′ ∩ α}), ϕ, k) = D(tp(bα, {bγ : γ ∈ w ∩ α}), ϕ, k).

Claim 7.5. As T is simple and θ is regular, F4
u is ≤F0

u
-dense in (F1

u, ≤F1
u
).

Proof. It suffices to prove it is dense in F3
u. Suppose for a contradiction that F4

u is not 
dense. By induction on α < θ we choose bα, qα, fα, wα such that:

• (fα, wα) ∈ F3
u

• β < α implies (f, w) ≤F1
u

(fβ , wβ) ≤F1
u

(fα, wα)
• if α is a limit then (fα, wα) = (

⋃
β<α fβ , 

⋃
β<α wβ)

• qα = qfα,wα
, so β < α =⇒ qβ ⊆ qα

• 〈bβ : β < α〉 realizes qα � {xγ : γ ∈ wα ∩ α}
• if α = β + 1 then for some i ∈ wβ

(α) tp(bi, {bγ : γ ∈ wα ∩ i}) forks over {bγ : γ ∈ wβ ∩ i}
(β) for some ϕ ∈ L(τT ) and finite k,

D(tp(bi, {bγ : γ ∈ wα ∩ i}), ϕ, k) < D(tp(bi, {bγ : γ ∈ wβ ∩ i}), ϕ, k).

As θ = cof(θ) > |T |, by Fodor’s lemma this contradicts the assumption that T is a simple 
theory. Claim 7.5 �

We are ready to choose partitions supporting each bu, u ∈ Ω. The next claim states 
our requirements, and adds a coherence condition.
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Claim 7.6. There exists

f = 〈fu : u ∈ Ω〉 = 〈 〈(fu,ζ , wu,ζ) : ζ < μ〉 : u ∈ Ω〉

which is a good choice of partitions for b̄, where this means

1. for each u ∈ Ω, f̄u = 〈(fu,ζ , wu,ζ) : ζ < μ〉 is a sequence of elements of F4
u such that 

〈xfu,ζ
: ζ < μ〉 is a maximal antichain of B and for each ζ < μ, either xfu,ζ

≤ bu

or xfu,ζ
≤ 1 − bu.

2. (Coherence) writing V =
⋃
{Dom(fu,ζ) : u ∈ Ω, ζ < μ},

if v0 ∈ [V]<θ and u1 ∈ Ω, then for some u∗ we have: u1 ⊆ u∗ ∈ Ω and ζ < μ =⇒
v0 ⊆ Dom(fu∗,ζ) and f̄u∗ refines f̄u1 .

Proof. B satisfies the μ+-c.c. and has maximal antichains of cardinality μ, so for any 
u ∈ Ω we may choose f

x

u = {(fu,ε, wu,ε) : ε < μ} ⊆ F4
u, such that:

〈xfu,ζ
: ζ < μ〉 is a maximal antichain of B, so ε �= ζ < μ =⇒ fu,ε �= fu,ζ .

[We build such a partition by induction on ζ, using the density of F4
u. In doing so we may 

assume, without loss of generality, that 0 ∈ Dom(f) for each f used in this partition; 
then the partition will have size at least μ, and since B has the μ+-c.c., the construction 
will stop at some ordinal < μ+. Renumbering, we may assume the sequence is indexed 
by ζ < μ.]

Say that fui
refines fuj

if for each ε < μ, fui,ε extends fuk,ζ for some ζ < μ. To 
ensure coherence across the family, 1.1 ensures that we may enumerate Ω × [λ]<θ as 
〈(ui, vi) : i < λ〉. Build fui

by induction on i < λ as follows. Arriving to i,

(a) if (∃j < i) 
(
(ui ⊆ uj) ∧ (ζ < μ =⇒ vi ⊆ Dom(fuj ,ζ))

)
then let j(i) be the least such j and let fui

be a common refinement of fx

u and fuj
.

(b) If there is no such j, choose fui
such that it refines fx

ui
and fuk

whenever k < i

and uk ⊆ ui and ζ < μ =⇒ Dom(fui,ζ) ⊇ vi. We can do this because there are 
≤ 2|ui| < θ such k, recalling that σ ≤ θ and σ is (by our hypotheses in this section) 
compact, thus strongly inaccessible.

For each u ∈ Ω, let fu = 〈(fu,ζ , w′
u,ζ) : ζ < μ〉 be the resulting family. This completes the 

construction. Claim 7.6 �
For the remainder of the proof, fix the support just built as well as

V ⊆ 2λ, |V | = λ such that
⋃

{Dom(fu,ζ) : u ∈ Ω, ζ < μ} ⊆ V. (7.14)
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Having built a support for the sequence b̄, our next task is to define the proposed 
multiplicative refinement b̄′. Towards this, let us take stock. For each u ∈ Ω and ζ < μ, 
we may henceforth unambiguously write

qu,ζ for qfu,ζ ,wu,ζ
, ru,ζ for rfu,ζ ,wu,ζ

. (7.15)

Claim 7.7. For each u ∈ Ω and ζ < μ,

if xfu,ζ
≤ bclM(u) then (u,wu,ζ , qu,ζ , ru,ζ) ∈ Rm.

Proof. We check Definition 3.9. For 3.9.1–2, u ∈ [λ]<σ, w ∈ [λ]<θ, and u ⊆ clM(u) ⊆
w = clM(w) by the definition of F0. Towards 3.9.3, qf,w is always a complete type in the 
variables x̄w, and if xf ≤ bclM(u) then xf ≤ aclM(∅) by equation (7.8). So 3.9.3(a), holds 
by definition of qf,w (really, of Γ1) and 3.9.3(b) holds by the remark after equation (7.3). 
3.9.4+5(a) follow from Observation 7.4. 3.9.5(b) is because rf,w is a complete type (notice 
that the condition “if w′ ⊆ w is M-closed then CT � {b∗α : α ∈ w′} � CT and rf,w(x, b∗w′)
is a complete type over this elementary submodel” does not ask for a given enumeration 
to have any closure properties, but simply that all formulas are decided). Finally 3.9.5(c) 
is by the fact that (f, w) ∈ F4

u. Claim 7.7 �
The four-tuple from the statement of Claim 7.7 is therefore in the domain of the 

function G giving the intrinsic coloring for m, which was fixed as part of the presentation 
at the beginning of the proof. (We may trivially extend G to all four-tuples arising from 
some (fu,ζ , wu,ζ) by setting G to be ∞ if it is not otherwise defined.) We will want to 
amalgamate certain such tuples later in the proof, but first we take advantage of the 
ultrapower setup to eliminate some extraneous noise. Define E to be the equivalence 
relation on pairs (u, ζ) ∈ Ω × μ given by:

(u1, ζ1)E(u2, ζ2) iff (7.16)

1. (u1, wu1,ζ) and (u2, wu2,ζ) satisfy:
(i) otp(u1) = otp(u2), otp(w1) = otp(w2)
(ii) if γ ∈ w1 ∩ w2 then otp(γ ∩ w1) = otp(γ ∩ w2)
(iii) if γ ∈ w1 ∩ w2 then γ ∈ u1 iff γ ∈ u2
(iv) the order preserving map from w1 to w2 carries u1 to u2.

2. There is an order preserving function h from Dom(f1) onto Dom(f2), s.t.:
(i) (implied) otp(Dom(f1)) = otp(Dom(f2))
(ii) γ ∈ Dom(f1) =⇒ f2(h(γ)) = f1(γ)
(iii) γ ∈ Dom(f1) ∩ Dom(f2) =⇒ h(γ) = γ.

3. ζ1 = ζ2.
4. G(u1, wu1,ζ1 , qu1,ζ1 , ru1,ζ1) = G(u2, wu2,ζ2 , qu2,ζ2 , ru2,ζ2), i.e the values are both de-

fined and equal or both ∞.
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Claim 7.8. E from (7.16) is an equivalence relation with μ classes, which we will list as

〈Eε : ε < μ〉.

Proof. For counting purposes we may assume ζ < μ is fixed.
For the first condition, the equivalence class of (u, wu,ζ) is fixed if we determine the 

ordinals γ = otp(wu,ζ), δ = otp(u), and determine which function from δ into γ gives u. 
There are ≤ θ ≤ μ choices of γ, ≤ σ ≤ μ choices of δ, and for any given γ < θ, δ < σ, we 
have by 1.1(c) that |δγ| < θ ≤ μ. So by 1.1(b), the total count is bounded by μ ·μ ·μ = μ.

For the second condition, the equivalence class of fu,ζ is fixed if we first determine 
the ordinal otp(Dom(fu,ζ)), call it β, and then determine which function from β into 
μ determines the values of the function. Since otp(Dom(fu,ζ)) is an ordinal < θ, the 
number of possible results is bounded by θ · μ<θ = θ · μ = μ.

This shows the number of equivalence classes is ≤ μ ·μ = μ, and by our choice of G it 
is exactly μ. Claim 7.8 �

Given 〈Eε : ε < μ〉 from Claim 7.8, fix also a choice of representatives by specifying 
some function

h : μ → Ω × [λ]<θ × μ× μ. (7.17)

We ask that h(ε) = (uh(ε), wh(ε), ζh(ε), ξh(ε)) satisfies: for some (u, ζ) ∈ Eε, u = uh(ε), 
ζ = ζh(ε), wh(ε) = wu,ζ , and ξh(ε) = G(u, w, qu,ζ , ru,ζ) or ∞.

The crucial set for each α < λ, ε < μ will be

Uα,ε = {u : u ∈ Ω and (u, ζh(ε)) ∈ Eε and xfu,ζh(ε)
≤ bclM(u)}. (7.18)

Recall V from (7.14) above. Let

α∗ < 2λ be such that U ⊆ α∗. (7.19)

Let Codeλ denote some fixed coding function from ω>λ to λ, and let Codeμ denote some 
fixed coding function from ω>μ to μ. Let 〈X0, . . . , X5〉 be a partition of λ into six sets 
of cardinality λ. For γ < λ and n < 6, let ρ(γ, Xn) denote the image of γ under a fixed 
one-to-one map of λ into Xn. Let tv denote the truth value of an expression (either 0
or 1).

For each u ∈ Ω, ζ < μ define f∗ = f∗
u,ζ as follows. (7.20)

1. Dom(f∗) ⊆ α+ λ is of cardinality < θ, Range(f∗) ⊆ μ, and f∗ is determined by the 
remaining conditions.
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2. If γ ∈ Dom(fu,ζ) then

f∗(α + ρ(γ,X0)) = Codeμ( 〈fu,ζ(γ), otp(γ ∩ Dom(fu,ζ))〉 ).

3. If γ ∈ wu,ζ , then

f∗(α + ρ(γ,X1)) = Codeμ(tv(γ ∈ u), otp(γ ∩ u), otp(γ ∩ wu,ζ)).

4. If β �= α are from wu,ζ then

f∗(α + ρ(γ,X2)) = tv( ρα(fu,ζ) = ρβ(fu,ζ) ).

5. If v ⊆ u, v̄ is this set listed in increasing order, and Codeλ( v̄ ) = γ, then

f∗(α + ρ(γ,X3)) = tv( xfu,ζ
≤ bv ).

6. If v ∈ ω>(wu,ζ), ϕ is the k-th L-formula in |v| free variables under some enumeration 
fixed in advance, and γ = Codeλ( 〈v, k〉 ), then

f∗(α + ρ(γ,X4)) = tv(xfu,ζ
≤ aϕ(x̄v

) = tv( ϕ(x̄v) ∈ qu,ζ ).

7. If v ∈ ω>(wu,ζ), ϕ is the k-th L-formula in 1 + |v| free variables under some enumer-
ation fixed in advance, and γ = Codeλ( 〈v, k〉 ), then

f∗(α + ρ(γ,X5)) = tv( ϕ(x, x̄v) ∈ ru,ζ ).

This completes the definition (7.20). Fix also a new maximal antichain:

let c̄ = 〈cε : ε < μ〉 be given by cε = x{(α+λ,ε)}}. (7.21)

We arrive at the definition of b̄′. For each α < λ, let

b′
{α} =

(⋃
{cε ∩ xf∗

u,ζh(ε)
∩ xfu,ζh(ε)

: ε < μ, u ∈ Uα,ε}
)
∩ bclM({α}). (7.22)

Why is (7.22) nonzero? For each ε < μ such that Uα,ε �= ∅, and each u ∈ Uα,ε,

cε ∩ xf∗
u,ζh(ε)

∩ xfu,ζh(ε)
∩ bclM(u) > 0.

since the domains of the functions corresponding to xfu,ζh(ε)
, cε and xf∗

u,ζh(ε)
are mutually 

disjoint, and adding bclM(u) is allowed by the definition of Uα,ε in (7.18). By monotonicity, 
bclM(u) ≤ bclM({α}) for any u ∈ Uα,ε. This verifies that (7.22) is nonzero.

For each u ∈ Ω \ ∅, define

b′
u =

⋂
{b′

{α} : α ∈ u}. (7.23)
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Let b′
∅ = 1B. This completes the definition of the sequence b̄′:

b̄′ = 〈b′
u : u ∈ Ω〉. (7.24)

By construction, b̄′ is multiplicative, and if |u| = 1 then b′
u ≤ bu.

An immediate consequence (as 〈cε : ε < μ〉 is a maximal antichain) of this definition 
is that whenever c ∈ B+

α∗ and 0 < c ≤ cε ∩ b′
{α},

⋃
{c ∩ xf∗

u,ζh(ε)
∩ xfu,ζh(ε)

: u ∈ Uα,ε} �= 0 (7.25)

so in particular there is u ∈ Uα,ε such that

c ∩ xf∗
u,ζh(ε)

∩ xfu,ζh(ε)
> 0 thus c ∩ xfu,ζh(ε)

∩ bclM(u) > 0 (7.26)

where again the conjunct “∩ bclM(u)” is by the definition of Uα,ε in equation (7.18). We 
now work towards proving that:

Claim 7.9. b̄′ is a multiplicative refinement of b̄.

Proof. Suppose for a contradiction that there is some u∗ ∈ Ω such that

0 < c ≤
⋂

α∈u∗

b′
{α} \ bu∗ . (7.27)

By continuity of b̄, we may assume that u∗ is finite. Let f ∈ FIμ,θ(2λ) be such that 
xf ≤ c, and as 〈cε : ε < μ〉 is a maximal antichain, without loss of generality there is 
some ε < μ such that xf ≤ cε. Since xf ≤ b′

{α} by construction, necessarily Uα,ε �= ∅
for each α ∈ u∗. Enumerate u∗ as 〈αt : t < t∗〉. By induction on t ≤ t∗, we will choose 
functions ft ∈ FIμ,θ(2λ) and sets ut ∈ Uαt,ε such that for each t:

(i) ft ⊇ f , thus for each t, xft ≤
⋂
{b′

{α} : α ∈ u∗} ∩ cε
(ii) t′ < t =⇒ ft′ ⊆ ft
(iii) ft ⊇ fut,ζh(ε) ∪ f∗

ut,ζh(ε)

(iv) xft ≤ bclM(ut).

Let f−1 = f so that f0 is the case “−1 + 1.” Arriving to t + 1, condition (i) implies that 
xft ≤ b′

{αt} ∩ cε. So adding the latter two onto a conjunction will not affect whether or 
not we get 0. Apply (7.25)–(7.26) to choose ut ∈ Uαt,ε such that

xf	 ∩ xfut,ζh(ε)
∩ xf∗

ut,ζh(ε)
∩ bclM(u) > 0.

Let ft+1 = ft ∪ fut,ζh(ε) ∪ f∗
ut,ζh(ε)

. This completes the induction. Note that (iv) will be 
satisfied by the definition (7.18).
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Let f∗ = ft∗ be the function so constructed.
Recalling the definition of Eε in 7.16, since ε is fixed all the ζh(ε)’s are the same, so 

going forward we will write ζ for ζh(ε). Then by Claim 7.7 and the fact that xf∗ ≤ bclM(ut)
for each αt ∈ u∗, we have that for each t < t∗,

rt := (ut, wut,ζ , qt = qut,ζ , rt = rut,ζ) ∈ Rm. (7.28)

Let r̄ = 〈rt : t < t∗〉. Moreover, the pairs (ut, ζ) all belong to the Eε class of our 
equivalence relation from (7.16). So equation (7.28) ensures that each rt is in the domain 
of G and item 4 of the definition of E ensures that the value of G is fixed. That is,

G � 〈rt : t < t∗〉 is constant. (7.29)

Thanks to the f∗
ut,ζ

from (7.20), we may now find a good instantiation of r̄:

Subclaim 7.10. Let w =
⋃

t wt. We can find 〈b∗α : α ∈ w〉 realizing 
⋃

t qt such that b̄∗w is 
a good instantiation for r̄ and

C |= ¬(∃x)
∧

α∈u∗

ϕα(x, b∗α). (7.30)

Proof. As the qt are all induced by the same f∗ = ft∗ the set q =
⋃

t<t∗
qt is consistent. 

First we will show it is consistent with ¬ϕu∗ , recalling (7.2). Suppose not, so let Σ0 =
{ϕ0(x̄v0), · · · , ϕk(x̄vk)} ⊆ q be finite such that Σ = Σ0 ∪ {¬ϕu∗} is inconsistent. Let 
v = v0 ∪ · · · ∪ vk. Let θ be an arbitrary finite conjunction of formulas from q � x̄clM(∅). 
Recalling notation (7.4), xf∗ witnesses that the set

Aθ ∩Aϕ0(x̄v0 ) ∩ · · · ∩Aϕk(x̄vk
) \Bϕu

> 0.

Let t be any element of this set. Then {a∗α[t] : α ∈ v} realizes Σ, contradiction. This 
proves we may find some sequence b̄∗w of elements of C, possibly imaginary, realizing q
such that b∗α = a∗α for α ∈ clM(∅) and |= ¬(∃x) 

∧
α∈u∗

ϕα(x, b∗α). Finally, let us check 
that this sequence is a good instantiation, 3.10. Conditions (1)–(2) of that definition 
we’ve just checked. (3) is ensured by the fact that

xft∗ ≤ xf∗
ut,ζ

for each ut, recalling (7.20)6+7. (4) was ensured by F4. (5) was ensured by F3, and 
already checked by membership in Rm, 3.9(5). Subclaim 7.10 �

Let b̄∗w be given by Subclaim 7.10. By equation (7.29), we may apply Defini-
tion 3.11, “G is an intrinsic coloring of Rm”, to conclude that {ϕαt

(x, b∗α ) : t <

t
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t∗} = {ϕα(x, b∗α) : α ∈ u∗} is consistent. This contradicts the choice of b̄∗, specif-
ically equation (7.30). This contradiction shows that c from equation (7.27) can-
not exist, i.e. b̄′ must be a multiplicative refinement of b̄. This proves the Claim.

Claim 7.9 �
The last part of the argument is to verify that b̄ has the Key Property 5.7 using V

from (7.14), α∗ from (7.19), Ω∗ = {u ∈ [λ]<σ : u = clM(u)}, and b̄′. Suppose u ∈ Ω∗
and f ∈ FIμ,θ(α∗) are such that xf ≤ bu. We hope to show

xf ∩ b′
u > 0. (7.31)

As xf ≤ bu, by choice of u ∈ Ω∗,

xf ≤ bclM(u). (7.32)

Since fu is a partition, after possibly extending f we have

xf ≤ xfu,ζ∗ for some ζ∗ < μ. (7.33)

Choose ε < μ such that (u, ζ∗) ∈ Eε. Then h(ε) = (u, wh(ε), ζh(ε) = ζ∗, ξh(ε)). For each 
α ∈ u, checking the definition (7.18) we have that

u ∈ Uα,ε. (7.34)

As b̄′ is a multiplicative sequence, b′
u =

⋂
α∈u b′

{α}. So to show (7.31) it would suffice 
to show that

xf ∩
⋂
α∈u

b′
{α}. (7.35)

Recalling the definitions (7.22), and equation (7.34), the expression

cε ∩ xf∗
u,ζh(ε)

∩ xfu,ζh(ε)
(7.36)

appears as a disjunct for each b′
{α}, and by (7.18) has nonzero intersection with bclM(u), 

so to show (7.35) it would suffice to show that

cε ∩ xf∗
u,ζh(ε)

∩ xfu,ζh(ε)
∩ bclM(u) ∩ xf > 0.

This is true because on one hand, xf ≤ xfu,ζh(ε)
∩ bclM(u) by our above argument, and 

on the other hand, the support of xf , cε, and xf∗
u,ζh(ε)

are pairwise disjoint and thus 
cannot cause inconsistency. This completes the proof that xf ∩ b′

u > 0.
As b̄ has the (λ, μ, θ, σ)-Key Property, in our optimal ultrafilter D∗ it has a multi-

plicative refinement. Thus by Theorem F, the original type p is realized in the ultrapower 
M I/D. This completes the proof of Theorem 7.3. �
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8. The ultrapower characterization of simple theories

We state our main result in two different ways, the first to underline the structure of 
the proof.

Theorem 8.1. Assume (λ, μ, θ, σ) are suitable and σ is an uncountable supercompact 
cardinal. There exists a regular ultrafilter D over λ such that for every model M in a 
countable signature, Mλ/D is λ+-saturated if Th(M) is (λ, μ, θ, σ)-explicitly simple, and 
Mλ/D is not μ++-saturated if Th(M) is not simple.

Proof. As σ is uncountable and supercompact, Theorem 5.9 and Conclusion 5.13 prove 
existence of a regular ultrafilter D on I such that: D is built from (D0, B, D∗) where D0
is regular and excellent on B = B1

2λ,μ,θ and D∗ is (λ, μ, θ, σ)-optimal, and moreover D
is not μ++-good for any non-simple theory. By Theorem 7.3, any such D is good for any 
(λ, μ, θ, σ)-explicitly simple theory. �
Theorem 8.2 (The ultrapower characterization of simple theories). Assume (λ, μ, θ, σ)
are suitable, μ+ = λ and σ is an uncountable supercompact cardinal. Then there is a 
regular ultrafilter D on λ such that for any model M in a countable signature, Mλ/D
is λ+-saturated whenever Th(M) is simple, and Mλ/D is not λ+-saturated whenever 
Th(M) is not simple.

Proof. Apply Theorem 8.1 assuming in addition that μ+ = λ. Then every countable 
simple theory is (λ, μ, θ, σ)-explicitly simple by Theorem 4.10. �
Remark 8.3. In Theorem 8.2, ‘countable signature’ may clearly be weakened to ‘signature 
of size < σ.’

Assuming existence of an uncountable supercompact cardinal, Theorem 8.2 has the 
following immediate consequence for the structure of Keisler’s order. Thanks to the 
referee for suggesting the formulation.

Conclusion 8.4. Assume there exists an uncountable supercompact cardinal. If T , T ′ are 
countable theories, T is simple, and T ′ � T , then T ′ is simple.

9. Perfect ultrafilters

In this section we shall give a natural set-theoretic condition on ultrafilters, called 
‘perfect’, which essentially says that they solve as many problems as possible modulo 
the cardinal constraints. We will use perfect ultrafilters in [29] in the case σ = ℵ0 in 
applying the analysis of this paper to theories with trivial forking. Recall the definition 
of support, 5.6 above.
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Definition 9.1 (Perfect ultrafilters for the case σ = θ = ℵ0). Let (λ, μ, ℵ0, ℵ0) be suitable. 
We say that an ultrafilter D∗ on B = B1

2λ,μ is (λ, μ)-perfect when (A) implies (B):

(A) 〈bu : u ∈ [λ]<ℵ0〉 is a monotonic sequence of elements of D∗
and supp(b̄) is a support for b̄ of cardinality ≤ λ, see 5.6, such that for every α < 2λ
with 

⋃
{Dom(f) : xf ∈ supp(b)} ⊆ α, there exists a multiplicative sequence

〈b′
u : u ∈ [λ]<ℵ0〉

of elements of B+ such that
(a) b′

u ≤ bu for all u ∈ [λ]<ℵ0 ,
(b) for every c ∈ B+

α,μ ∩ D∗, no intersection of finitely many members of {b′
{i} ∪

(1 − b{i}) : i < λ} is disjoint to c.
(B) there is a multiplicative sequence b̄′ = 〈b′

u : u ∈ [λ]<ℵ0〉 of elements of D∗ which 
refines b̄.

Observation 9.2. Suppose α < 2λ is fixed, Dα is an ultrafilter on B1
α,μ ⊆ B = B1

2λ,μ, 
and 〈bu : u ∈ [λ]<ℵ0〉 is a sequence of elements of Dα. Suppose that there exists a 
multiplicative sequence 〈b′

u : u ∈ [λ]<ℵ0〉 of elements of B+ such that

(a) b′
u ≤ bu for all u ∈ [λ]<ℵ0 ,

(b) for every c ∈ B+
α,μ ∩ Dα, no intersection of finitely many members of {b′

{i} ∪ (1 −
b{i}) : i < λ} is disjoint to c.

Then there is a multiplicative sequence 〈b′′
u : u ∈ [λ]<ℵ0〉 such that (a), (b) hold with b′

u, 
b′
{i} replaced by b′′

u, b′′
{i} respectively, and such that some support of b̄′′ is contained in 

B1
α+λ,μ.

Remark 9.3. Note that in 9.2(b), omitting “1 − b{i}” gives an equivalent condition.

Proof of Observation 9.2. Without loss of generality there is U of cardinality λ such that 
some support of b̄′ is contained in {xf : f ∈ FIμ(U)}. Let π be a permutation of 2λ
which is the identity on α and takes U into α + λ. This induces an automorphism ρ of 
B which is the identity on B1

α,μ, so in particular is the identity on Dα and thus on b̄. 
For each u ∈ [λ]<ℵ0 , let b′′

u = ρ(b′
u). Then clearly b̄′′ fits the bill. �

Theorem 9.4 (Existence of perfect ultrafilters). Let (λ, μ, ℵ0, ℵ0) be suitable. Let B =
B1

2λ,μ. Then there exists a (λ, μ)-perfect ultrafilter on B.

Proof. Begin by letting 〈b̄δ = 〈bδ,u : u ∈ [λ]<ℵ0〉 : δ < 2λ〉 be an enumeration of the 
monotonic sequences of elements of B+, each occurring cofinally often. Let z : 2λ → 2λ be 
an increasing continuous function which satisfies: z(0) ≥ 0 and for all β < 2λ, z(β) +λ =
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z(β+1). By induction on δ < 2λ we will construct 〈Dδ : δ < 2λ〉, an increasing continuous 
sequence of filters with each Dδ an ultrafilter on Bz(δ),μ, to satisfy:

(*) if δ = β + 1, if it is the case that

〈bβ,u : u ∈ [λ]<ℵ0〉 is a monotonic sequence of elements of Dβ and there exists 
a choice of supp(b̄) with 

⋃
{Dom(f) : xf ∈ supp(b)} ⊆ β and there exists a 

multiplicative sequence

〈b′
u : u ∈ [λ]<ℵ0〉

of elements of B+ such that
(a) b′

u ≤ bβ,u for all u ∈ [λ]<ℵ0 ,
(b) for every c ∈ B

+
z(β),μ∩Dβ , no intersection of finitely many members of {b′

{i}∪
(1 − bβ,{i}) : i < λ} is disjoint to c.

then there is a sequence b̄′′ = 〈b′′
u : u ∈ [λ]<ℵ0〉 of elements of B+ such that:

(i) b′′
u ≤ bβ,u for all u ∈ [λ]<ℵ0 ,

(ii) for every c ∈ B
+
z(β),μ ∩Dβ , no intersection of finitely many members of {b′′

{i} ∪
(1 − bβ,{i}) : i < λ} is disjoint to c.

(iii) some support of b̄′′ is contained in Bz(δ),μ, and
(iiv) Dδ is an ultrafilter on Bz(δ),μ which extends Dβ ∪ {b′

u : u ∈ [λ]<ℵ0}.

The induction may be carried out at limit stages because all of the Dδ are ultrafilters. 
Suppose δ = β + 1. If b̄ satisfies the quoted condition, then let b̄′′ be given by Observa-
tion 9.2, using z(β) here for α there. Then (i), (ii), (iii) are satisfied, so we need to prove 
that

Dβ ∪ {b′′
u : u ∈ [λ]<ℵ0}

has the finite intersection property. As Dβ is an ultrafilter on Bz(β),μ, and b̄′ is a mul-
tiplicative sequence, it suffices to prove that for any c ∈ Dβ and any finite u ⊆ λ,

c ∩
⋂

{b′′
{i} : i ∈ u} > 0.

As b{i} ∈ Dβ for each i ∈ u, we may assume that c ∩ (1 −b{i}) = 0 for each i ∈ u. Then 
we are finished by assumption (ii). This completes the induction. Let D∗ =

⋃
δ<2λ Dδ.

Let us check that D∗ is indeed a perfect ultrafilter. If b̄ satisfies condition 9.1(A), let U
be as there, and let δ = β+1 be an ordinal < 2λ such that b̄β = b̄ and U ⊆ Bβ,μ, which 
is possible as we listed each sequence cofinally often. Then since Dβ was an ultrafilter, 
D∗ � Bβ,μ = Dβ so at stage δ condition (*) of the inductive hypothesis will be activated 
and we will have ensured that b̄ has a multiplicative refinement in D∗. �
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Corollary 9.5. Suppose (λ, μ, ℵ0, ℵ0) are suitable. and let D∗ be an ultrafilter on B1
2λ,μ. 

If D∗ is (λ, μ)-perfect, then it is (λ, μ, ℵ0, ℵ0)-optimal.

Proof. We need to show that any sequence with the so-called Key Property 5.7 has 
a multiplicative refinement. Suppose then that b̄ = 〈bu : u ∈ [λ]<ℵ0〉 is a monotonic 
sequence of elements of D∗ with the Key Property, and fix a support supp(b̄) as given by 
that property. Let α be an ordinal < 2λ such that {bu : u ∈ [λ]<ℵ0} ⊆ Dα := D∗ � B1

α,μ

and 
⋃
{Dom(f) : xf ∈ supp(b)} ⊆ α. Write Bα for B1

α,μ for the remainder of this proof. 
The Key Property guarantees the existence of a cofinal Ω ⊆ [λ]<ℵ0 and a sequence 
b̄′ = 〈b′

{i} : i < λ〉 of elements of B+ which generates a multiplicative refinement 
〈b′

u : u ∈ [λ]<ℵ0〉 of b̄ such that for each f ∈ FIμ,ℵ0(α), and each u ∈ Ω, if xf ≤ bu then 
we may extend f ⊆ f ′ ∈ FIμ,ℵ0(2λ) so that xf ′ ≤ b′

u.
In order to guarantee that our perfect ultrafilter will have given b̄ a multiplicative 

refinement, it will suffice to show that for every c ∈ B+
α ∩Dα, no intersection of finitely 

many members of {b′
{i} ∪ (1 − b{i}) : i < λ} is disjoint to c. Let such an c be given, 

let v ∈ [λ]<ℵ0 and choose any u with v ⊆ u ∈ Ω. As c ∈ Dα and bu ∈ Dα, without 
loss of generality c ≤ bu. As the generators are dense in the completion, we may choose 
xf with 0 < xf ≤ c and f ∈ FIμ,ℵ0(α). Then xf ≤ bu so by the Key Property, we 
may extend f ⊆ f ′ so that xf ′ ≤ b′

u. This proves that xf ∩
⋂
{b′

{i} : i ∈ u} > 0, as 
desired.

Then b̄ contains a multiplicative refinement by the definition of ‘perfect,’ which proves 
that the ultrafilter is indeed optimal. �

Conclusion 9.6. Let (λ, μ, ℵ0, ℵ0) be suitable. Let B = B1
2λ,μ. Then there is an ultrafilter 

D∗ on B such that:

(a) D∗ is (λ, μ)-perfect, and indeed (λ, μ, ℵ0, ℵ0)-optimal.
(b) if D is any regular ultrafilter built from (D0, B, D∗) where D0 is a regular λ+-excellent 

filter on λ, we have that D is not good for any non-low or non-simple theory.

Proof. It remains to justify clause (b) by quoting known results. Ref. [34] VI.3.23, p. 364
proves that any ultrafilter constructed by means of such an independent family of func-
tions where μ < λ will not be μ+-good, however the proof shows more: that it will not 
be μ+-flexible. An alternate discussion is given in [27] Section 9.

The fact that an ultrafilter which is not flexible is not good for any non-low or non-
simple theory was proved by [22] and [25]. More precisely, in [22] Section 8 it was proved 
that any regular ultrafilter which is good for a theory which has TP2 or is simple and 
non-low, must be flexible. In [25] it was proved that any regular ultrafilter which is good 
for a theory with SOP2 is good, therefore a fortiori flexible. Since any non-simple theory 
has either TP2 or SOP2, this completes the proof. �
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Corollary 9.7. Let (λ, μ, ℵ0, ℵ0) be suitable and let B = B1
2λ,μ. Then there exists a 

(λ, μ, ℵ0, ℵ0)-optimal ultrafilter on B, and moreover we may arrange that the non-
saturation condition 9.6 holds.

10. Some further questions

The theorems in this paper suggest a broad classification program for simple theories 
according to their “explicit simplicity”. We believe the most urgent questions have to do 
with determining the identity of the equivalence classes of simple theories in Keisler’s 
order. The following specific natural questions also arise. Assume (λ, μ, θ, σ) are suitable.

For the first question, recall that from the point of view of explicit simplicity, μ bounds 
the range of the coloring function G on Rm. However, because we have asked in 1.1 that 
μ ≥ θ ≥ σ, the value of μ may be larger than the actual number of colors needed. The 
first question essentially asks if we can build a simple theory where the range of this 
coloring function is truly uncountable but does not depend on λ. (Without the negative 
condition, the random graph would be a trivial example.)

Question 10.1. Let σ = θ = ℵ1, μ = (2θ)++. Then whenever λ = λ<θ ≥ μ, (λ, μ, θ, σ)
is suitable and also (λ, κ, θ, σ) is suitable, where κ+ = μ. Does there exist a countable 
simple theory T such that for all λ = λ<θ ≥ μ, T is (λ, μ, θ, σ)-explicitly simple but not 
(λ, κ, θ, σ)-explicitly simple? What about other uncountable constant values of μ?

Recall that by our arguments above the random graph requires only one color, and it is 
not difficult to produce examples of essentially the same complexity requiring finitely or 
countably many colors. We have just asked for a simple theory requiring an uncountable 
(i.e. > |T |) but constant number of colors. The case where μ+n = λ, for n finite and 
greater than 1, is studied in the forthcoming paper [29]. The next question asks about 
n = 1:

Question 10.2 (A maximal simple theory). Suppose σ is uncountable. Is there a countable 
simple theory which is (λ, μ, θ, σ)-explicitly simple if and only if μ+ = λ?

Recall that in his paper [17] Keisler had developed the notion of a “versatile” formula 
to describe when theories T were saturated precisely by good regular ultrafilters. The 
next question asks whether something analogous can be done inside simplicity.

Question 10.3. For which, if any, values of (λ, μ, θ, σ) does there exist a simple theory T
which is saturated by a regular ultrafilter D on λ iff D is (λ, μ, θ, σ)-optimized, or iff D
is (λ, μ)-perfected in the sense of 9.1 above?

The ultrapower characterization of stable theories from [34] Chapter VI proceeded by 
proving that a model of a stable theory is λ+-saturated if and only if it is κ(T ) saturated 
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and every maximal indiscernible sequence has cardinality at least λ+. It would be inter-
esting to develop, perhaps from the arguments above, an analogous characterization of 
saturation in simple theories.

Question 10.4. Give an analogous characterization of the saturated models of simple 
theories.

Finally, we record the fundamental question of the minimum unstable Keisler class. 
The regular ultrafilters which saturate this class are known; see, for example, [23] Sec-
tion 4.

Question 10.5. Give an internal model-theoretic characterization of the equivalence class 
of the random graph in Keisler’s order.
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