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In the first edition of Classification Theory, the second author
characterized the stable theories in terms of saturation of ul-
trapowers. Prior to this theorem, stability had already been
defined in terms of counting types, and the unstable formula
theorem was known. A contribution of the ultrapower charac-
terization was that it involved sorting out the global theory,
and introducing nonforking, seminal for the development of
stability theory. Prior to the present paper, there had been
no such ultrapower characterization of an unstable class. In
the present paper, we first establish the existence of so-called
optimal ultrafilters on (suitable) Boolean algebras, which are
to simple theories as Keisler’s good ultrafilters [15] are to all
(first-order) theories. Then, assuming a supercompact cardi-
nal, we characterize the simple theories in terms of saturation
of ultrapowers. To do so, we lay the groundwork for analyzing
the global structure of simple theories, in ZFC, via complex-
ity of certain amalgamation patterns. This brings into focus
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a fundamental complexity in simple unstable theories having
no real analogue in stability.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction
1.1. Background

We begin by giving some history and context of the power of ultraproducts as a tool
in mathematics, and specifically in model theory. Ultrafilters on an infinite cardinal A
are maximal (under inclusion) subsets of the power set of A which are closed under finite
intersection, upward closed, and do not contain the empty set. These give a robust notion
of largeness, allowing for infinite averaging arguments and the study of asymptotic or
pseudofinite behavior in models. Early appearances were in the work of Tarski 1930 [35]
on measures and Cartan 1937 [4,5] in general topology. The groundwork for their use
in model theory was laid in the 1950s and early 1960s by Lo$ [20], Tarski, Keisler [14],
Frayne, Morel, and Scott [10], and Kochen [18] in terms of the ultraproduct construction.
Given an ultrafilter D on A, the ultraproduct N of a sequence of models (M, : o < \)
in a fixed language £ has as its domain the set of equivalence classes of elements of
the Cartesian product [],_,
set in D. One then defines the relations, functions, and constants of £ on each tuple of

M, under the equivalence relation of being equal on a

elements of the ultraproduct to reflect the average behavior across the index models. The
fundamental theorem of ultraproducts, ¥.o§’ theorem, says that the set of statements of
first order logic true in the ultraproduct are precisely the statements true in a D-large
set of index models, i.e. the theory of IV is the average theory of the models M,,. Model
theorists concentrated further on so-called regular ultrafilters, as will be explained in due
course.

This construction gave rise to some remarkable early transfer theorems. For example,
Ax and Kochen [1-3] and independently Ersov [8] proved that for any nonprincipal
(= containing all cofinite sets) ultrafilter D on the set of primes, the ultraproduct Q, =
[1, @»/D of the p-adic fields @, and the ultraproduct S, =[], F,((¢))/D of the fields of
formal power series over IF,, are elementarily equivalent, i.e. satisfy the same first-order
statements. Then from Lang’s theorem that every homogeneous polynomial of degree
> d with more than d? variables has a nontrivial zero in F,((t)) for each p they deduce
the corresponding theorem in @, for all but finitely many p.

Working with ultrapowers, meaning that all the index models are the same, a similar
averaging process happens. The central “algebraic characterization of elementary equiv-
alence” now appears: two models satisfy the same set of first order statements precisely
when they have isomorphic ultrapowers, proved by Keisler 1961 under GCH [14] and by
Shelah 1971 [32] in general.
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The theorems of Ax—Kochen and Ersov just mentioned used only ultrafilters on w,
t.0§’ transfer of the first order theory and Ni-saturation. The first order theory is a
relatively superficial description of models shared by many in the same class, e.g. all
algebraically closed fields of characteristic 0. From a model-theoretic point of view, the
deeper structure of ultrapowers has to do with the Stone space of types and the property
of saturation.'

Keisler, one of the major architects of model theory beginning in the 1960s, in partic-
ular has done much on ultrapowers, see [16]. He proved that one could define and build
a family of so-called good regular ultrafilters [15],> and he noticed that for any D in this
family of good regular ultrafilters and any model M in a countable language, the ultra-
power M* /D is sufficiently, i.e. \*-, saturated. Moreover, ultrapowers of certain theories
are only saturated if the ultrafilter is good. In 1967 [17], Keisler proposed a means of
comparing the complexity of theories according to the difficulty of saturating their ultra-
powers (Definition 2.4). Progress on this far reaching program, known as Keisler’s order,
requires advances in model theory on one hand, and advances in ultrafilter construction
on the other.

From the model theoretic point of view, a major motivation for understanding Keisler’s
order comes from the search for dividing lines, that is, properties whose presence gives
complexity and whose absence gives a good structure theory. For example, the dividing
line of stable versus unstable theories has been fundamental since the 1970s [34]. However,
there are many unstable theories, and for some of them a ‘positive theory’ may be
analyzed; so if one hopes to generalize stability theory, a natural approach is to find
and develop other dividing lines one by one in response to suitable questions. By a 1978
theorem of Shelah, Keisler’s order independently detects the dividing line at stability.
This suggests that a fruitful and moreover uniform way of looking for meaningful divisions
in the enormous class of unstable theories is to progress, if possible, in the unstable
classification of Keisler’s order. In short, Keisler’s order provides a uniform point of view
from which to approach the problem of looking for dividing lines for a large and central
family of theories, and a model-theoretic incentive to characterize equivalence classes.
A natural target is the family of simple theories, a central and popular family in model
theory for more than two decades. For background on simple theories and some history,
see the survey [11]. We mention here that simple unstable theories include examples such
as pseudofinite fields [13] and have been a fertile ground of model-theoretic interaction
with algebra, geometry, combinatorics and number theory.

! Saturation is a fullness condition. Informally, we may identify types over a given set A with orbits under
automorphisms of some much larger universal domain which fix A pointwise, so call a model M k-saturated
if it contains representatives of all orbits under any automorphism of the larger universal domain which fix
some subset of M of size < k pointwise. Syntatically, an A-type p is a maximal consistent set of formulas
in a fixed number of free variables and parameters from A; it is realized in the model M D A if for some
a € Dom(M), M = ¢(a) for all ¢ € p; and a k-saturated model is one in which all types over sets |A| < &
are realized.

2 Keisler’s proof assumed GCH, an hypothesis removed by Kunen [19], in a proof which introduced some
central techniques in ultrafilter construction.
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For many years there was little progress on Keisler’s order. Recently, a series of papers
by the authors has significantly changed the landscape (see [26] for some history) and
given us the leverage for the present work. In the current paper, we establish the existence
of a new family of ultrafilters in parallel with developing the model theory of simple
theories in a direction very different from prior work. Combining the two, we prove a
characterization of the class of simple theories in terms of saturation of ultrapowers,
assuming a supercompact cardinal. (For a discussion of our use of a large cardinal, see
§2.2 below.) As would be expected, our work here has two complementary parts: on one
hand we define and establish the existence of optimal ultrafilters, and on the other we
extend the model theory of simple theories in order to show that such ultrafilters affect
saturation. We hope to eventually be able to eliminate the large cardinal hypothesis in
the main theorem of this paper, but for now it clarifies the model-theoretic content by
allowing us to work with models as closed sets (as will be explained in due course).

Although there has been much interest in and work on simple theories, many basic
structural questions about simple theories and the extent to which they may differ es-
sentially from a few canonical examples remain wide open. One theme of this paper has
to do with finding the right frame for seeing divisions in complexity classes among the
simple unstable theories. The complexity we detect has primarily to do with amalgama-
tion; it appears built on non-forking, and has no real analogue in the stable case (where
we have amalgamation even of P~ (n)-diagrams, see [34] Chapter XII). We give a model-
theoretic formulation of this property, which we call explicit simplicity, in Section 3. The
history of classification theory would suggest that future work may well reveal other
formulations of this property; such a formulation would be likely to arise from progress
on determining the identity of equivalence classes in Keisler’s order among the simple
theories (as opposed to the identification of dividing lines).

1.2. Results

We prove the following theorems. In each case, the results will hold for any four-tuple
of infinite cardinals (\, u, 6, 0) satisfying the following hypotheses, plus any additional
requirements given in the theorem.

Definition 1.1. Call A, u, 0, 0 suitable when:

(a) c<O<pu<A
(b) 6 is regular, = u<% and A\ = A<?.
(c) (Va < 0)(2* < p).

Conditions 1.1(b) and (c) will essentially guarantee that certain equivalence relations
defined in the course of our proofs are not unnecessarily large. We will be mainly in-
terested in cases where u < A. Note that the hypotheses of 1.1 hold when o = 6 = Y
and p < \ are any infinite cardinals, or when o = @ is regular, u = (2°)%, and ut = A
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(hence the existence of a suitable tuple with uncountable o is provable in ZFC), or when
o is uncountable and supercompact, o = 6 = u, and p™ = A. It will follow from the
main definitions that these cardinals A, i, 0, 0 each control specific aspects of both the
model-theoretic and the set-theoretic picture, and varying their values, modulo the basic
constraints of 1.1, will give useful information.

We first state the theorem which organizes our main results, before discussing “ex-
plicitly simple.”

Theorem. (Organizing theorem, Theorem 8.1 below.) Assume (A, p,0,0) are suitable and
that o is an uncountable supercompact cardinal. There exists a reqular ultrafilter D over
A such that for every model M in a countable signature, M* /D is AT -saturated if Th(M)
is (\, 1, 0, 0)-explicitly simple, and M> /D is not u**-saturated if Th(M) is not simple.

Regarding supercompact, usually “c a compact cardinal” will suffice (keeping in
mind that we will be working with o-complete filters and ultrafilters), but the exis-
tence theorem for optimal ultrafilters given below assumes existence of an uncountable
supercompact cardinal. As the statement of this theorem suggests, a model-theoretic
contribution of the paper is the development of a notion we call (\, p, 6, o)-explicitly
simple, a measure of the complexity of amalgamation, discussed further in the introduc-
tion to Section 3. It will be clear from Section 3 that (A, u, 8, o)-explicitly simple becomes
weaker as p increases, and that every (A, u, 8, 0)-explicitly simple theory is simple, even
when p = A\. More remarkable is that it is possible to capture simplicity in this way.

Theorem. (Simple theories are explicitly simple, Theorem 4.10 below.) Assume (A, u, 0, 0)
are suitable. If ut = X, then every simple theory T with |T| < o is (\, u, 0, 0)-explicitly
simple, and moreover this characterizes simplicity of T'.

As discussed later in this paper, we believe this new characterization will re-open the
research on simple theories, which has long been dominated by analogies to stability the-
ory, by allowing for a classification of simple unstable theories according to the possible
values of p << A.

Complementing the development of explicit simplicity, we define and prove existence
of a new family of ultrafilters, called (A, i, 0, 0)-optimal. These ultrafilters, defined in
Section 5, may be thought of as an analogue of Keisler’s good ultrafilters from [15]
which handle patterns arising from explicitly simple theories. The Boolean algebra in
the statement of this theorem will be defined in 2.19(3).

Theorem. (Existence theorem for optimal ultrafilters, Theorem 5.9 below.) There exists
a (A, 0, 0)-optimal ultrafilter on the Boolean algebra B = %éA " whenever (A, 1,0, 0)
are suitable and o > Ng is supercompact.
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On the connection of this ultrafilter on a Boolean algebra to a regular ultrafilter on A,
see Section 1.3 below. Finally, leveraging explicit simplicity and optimality, we prove the
algebraic characterization of simple theories.

Theorem. (Ultrapower characterization of simplicity, Theorem 8.2 below.) Suppose
(M, 11,0,0) are suitable where o is an uncountable supercompact cardinal and p+ =
Then there is a reqular ultrafilter D on A such that for any model M in a countable
signature, M* /D is \*-saturated if Th(M) is simple and M /D is not \*-saturated if
Th(M) is not simple.

Theorem 8.2 has the following consequence for Keisler’s order:

Conclusion. (On Keisler’s order <, Conclusion 8./ below.) Assume there exists an un-
countable supercompact cardinal. If T, T’ are complete countable theories, T is simple,
and T' AT, then T" is simple.

Finally, we return to ultrafilters in the case o = § = Ry. We define and prove existence
of so-called perfect ultrafilters for ¢ = 6 = N, and prove that such ultrafilters are
optimal. Theorem 9.4 is proved in ZFC.

Theorem. (Ezistence of perfect ultrafilters, Theorem 9.4 below.) Let (A, p, Ro, Rg) be suit-
able. Let B = ‘B%A i Then there exists a (A, p)-perfect ultrafilter on B.

To conclude this catalogue of results, we record that the technology developed here
has some surprising consequences, which will appear in subsequent work. Notably, over-
turning a longstanding conjecture that Keisler’s order has finitely many classes, we prove
in [29] that already within the simple theories there is substantial complexity:

Theorem A. (See Malliaris and Shelah [29], in ZFC.) Keisler’s order has infinitely many
classes. In fact, there is an infinite strictly descending chain of simple low theories in
Keisler’s order, above the random graph.

Thus Keisler’s order is sensitive to the fine structure of amalgamation as measured
by our criterion of explicit simplicity. This framework raises questions which we plan to
address in work in progress, related to the natural interpretation of the coloring criterion
developed here within particular classes of simple theories.

1.3. Introduction for set theorists
Here we briefly outline the innovations of the paper which may be of interest to set

theorists, independent of the model-theoretic questions of saturation of simple theories.
These are of two kinds (as we will explain). First is constructing ultrafilters on A or
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on related Boolean algebras. Second, the classes Mody, for T simple, include examples
natural for set theorists such as the random graphs and certain classes of hypergraphs.

A major part of the paper has to do with the construction of regular ultrafilters using
large cardinals. Historically, model theorists had typically focused on regular ultrafilters
because of the connections to the compactness theorem, and in particular their nice sat-
uration properties (see e.g. Theorem B, p. 622 below) whereas set theorists had typically
focused on understanding quite complete ultrafilters under the relevant large cardinal
hypotheses (or remnants of this like Ng 1 /D = X;). Our present approach, following our
earlier paper [27], reunites the two. Let B be a complete Boolean algebra of cardinality
< 2* with the < A*-c.c. Following [27], we build regular ultrafilters on A by first building
a regular, A*-good filter Dy so that P()\)/Dy is isomorphic to 9B, and then complete the
construction by specifying an ultrafilter D, on B, which need not be regular. In the
present paper, our main case is B = ‘B%A% o> the completion of the free Boolean algebra
generated by 2% independent partitions of size j, where intersections of size < 6 are
nonempty. (Further work considering the case where B is not necessarily the completion
of a free Boolean algebra will be developed in [30].) In the present paper, we use B
exclusively to refer to one of these completions of a free Boolean algebra.

In this setup, our focus is on construction of appropriate ultrafilters D, on B. The
present paper introduces two new set-theoretic properties of ultrafilters on such Boolean
algebras, “optimal” in 5.8 and “perfect” in 9.1, and proves that such ultrafilters exist.
Both definitions capture in some sense being as good (c.f. Keisler’s ‘good’ ultrafilters)
as possible modulo some background cardinal constraints. We succeed to prove that if
o < 60 < X and o is supercompact then on B = %ék,u,e an optimal ultrafilter exists;
and we prove existence of a perfect ultrafilter on % in ZFC assuming o = 6 = N,
and show that any such ultrafilter is optimal. In the present paper, we require that o,
if uncountable, is supercompact rather than simply requiring existence of a o-complete
ultrafilter on A, because this is what we use in the existence proof for optimal ultrafilters.

The model-theoretic usefulness of this “separation of variables” approach was estab-
lished by [27], in particular Theorem F quoted in the next section, which says that the
resulting saturation properties of the regular ultrafilter D induced on A by Dy and D,
may be characterized in terms of related conditions on the ultrafilter D,. So we are free
to address saturation problems by working with o-complete ultrafilters D, on Boolean
algebras (in the present case, completions of free Boolean algebras), a much richer con-
text. But it has also pure set-theoretic meaning: for instance, finding ultrafilters on A
which are flexible but not good, see 5.18 below, as asked by Dow 1985 [6].

Readers unfamiliar with simple theories may prefer to keep in mind one of the many
natural combinatorial examples of such theories. For each n > k > 2, let T}, ; be the
theory of the unique countable generic hypergraph in a language with a k + 1-ary graph
hyperedge (a symmetric, irreflexive k 4 1-place relation) where the axioms say that the
theory is infinite and any configuration of edges and non-edges is allowed provided that
there are no complete hypergraphs on n+ 1 vertices (i.e. there do not exist n+ 1 vertices
of which every distinct subset of size k + 1 is a hyperedge). When k = 1 such theories
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are not simple (e.g. the triangle-free random graph) but when k > 2 they are (e.g. the
tetrahedron-free three-hypergraph), as proved by Hrushovski [13]. These examples will
be central to a further analysis of simple theories via perfect ultrafilters in [29].

The reader interested primarily in these new ultrafilters may skip ahead to Sections 5
and 9. Such a reader may also find it useful to skim Section 2 for insight into the
saturation claims we make about these ultrafilters, which are largely combinatorial in

nature.
2. Overview and preparation
2.1. Overview

We begin by giving an overview of some main themes of the paper. For additional
information on Keisler’s order the reader may wish to consult Keisler 1967 [17], or the
recent papers [26,23], and [31].

Convention 2.2. (On types.) Given N := M /D an ultrapower,

(a) Call a type or partial type p over A, A C N small if |A] < A

(b) Any small type may be enumerated (possibly with repetitions) as {@;(x,a;) : i < A},
where {(a;) need not be 1.

(c) For each parameter a € A C N, fixz in advance some lifting of a to M*. Then by
the notation alt] we mean the t-th coordinate of this lifting of a. When a is a tuple
ai,...,an, the notation alt] is understood to mean the tuple a1[t], ..., a,[t].> We will
use this notation throughout the paper.

(d) By Los$’ theorem, if p is a consistent partial type in N then we may define the Los
map f: [p]<N° — D by

u—{teX: ME /\ ©i(z,a(t])}

1EU

(e) [A]<" denotes the set of all subsets of A of cardinality < k.
(f) Dom(M) denotes the universe of a structure M, and ||M|| = | Dom(M)].

Definition 2.3. The ultrafilter D on A is regular if it contains a regularizing family, that
is, a set {X; : i < A} C D such that for any u C A, |u| > N,

ﬂXl-:QJ.

€U

3 Informally, a[t] is the “projection of a to index t” or “to the index model M;".
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Equivalently, D is regular if every set of size < A in any D-ultrapower is covered by a
pseudofinite set.

The hypothesis regular entails that saturation of ultrapowers is a property of the
(countable) theory, not the model chosen:

Theorem B. (See Keisler [15] Cor. 2.1a.) When D is a regular ultrafilter on X and M = N
in a countable signature, then M*/D is A\t -saturated iff N*/D is \*-saturated.

Theorem B justifies the quantification over all models in the next, central definition.

Definition 2.4. (Keisler’s order, Keisler 1967 [17].) Let T3, T be complete countable first
order theories. Say T7 < T3 if whenever A > Rg, D is a regular ultrafilter on A\, M; = T,
Ms | T, we have that

(M) /D is AT -saturated = (M;)*/D is A" -saturated

Keisler’s order < is a preorder on theories, often thought of as a partial order on the
<-equivalence classes.

Question 2.5. (See Keisler 1967.) Determine the structure of Keisler’s order.

The state of what was known about the structure Keisler’s order through 2012 can
be found in section 4 of the authors’ paper [23]. Since that paper was written, and prior
to the current paper, the following results have been obtained:

Theorem C. (See Malliaris and Shelah [27].) Keisler’s order has at least two classes
among the simple unstable theories.

Theorem D. (See Malliaris and Shelah [25], announced in [26].) Any theory with the
model-theoretic tree property SOPy belongs to the maximum class in Keisler’s order.

To explain what is, in general, at stake in questions of saturation of ultrapowers, we
now discuss types in regular ultrapowers. For transparency, in this section, all languages
and thus all theories are countable. (Beginning in §3, we will allow the language to be
uncountable.)

Definition 2.6. Let D be a regular ultrafilter on A, M a model in a countable signature,
p a small partial type over A C N := M*/D. A distribution of p is a map d : [p|<N0 — D
such that:

(a) d is monotonic, i.e. u Cv = d(v) C d(u), and d(0) = A
(b) d refines the L.o§ map f, meaning that d(u) C f(u) for each u € [p|<No
(c) the image of d is a regularizing family, 2.3 above.
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In some sense, the problem of realizing types in ultrapowers is already visible in what
Lo§’ theorem does not guarantee. Although a type is “on average” (in the ultrapower)
consistent, i.e. distributions exist, when we try to realize it by assigning finitely many
formulas of the type to each index model via a distribution 2.6 it becomes apparent that
there is no guarantee that the finite set of formulas {¢;(x, a;[t]) : t € d({¢:})} assigned
to index ¢ has a common realization.

Note that 2.6(a) is not necessary, as it may always be ensured (refining a given map
by induction on the size of u).

Specifically, the following fact explains a basic mechanism controlling saturation of
regular ultrapowers.

Fact 2.7. (See [23] 1.8.) Let D be a regular ultrafilter on A\, M a model in a count-
able signature, p a small partial type over A C N := M*/D. Then the following are
equivalent:

1. p is realized in N.

2. Some distribution d of p has a multiplicative refinement, that is, a map d
[p]<R° — D such that for any u,v, first, d'(u) C d(u), and second, d'(u) Nd'(v) =
d'(uUw).

The property of (monotonic) maps from [A\]<¥0 — D admitting multiplicative refine-
ments is a natural set-theoretic question:

Definition 2.8. (Good ultrafilters, Keisler [15].) The filter D on A is said to be u*-good
if every f : [u]<¥° — D has a multiplicative refinement, where this means that for some
PN S D ue [ = f(u) C f(u), and w0 € (W] = f/(w) N f(v) =
f(uwUw).

Note that we may assume the functions f are monotonic.

D is said to be good if it is AT-good.

Keisler proved that good regular ultrafilters on A always exist assuming GCH [15];
this was proved in ZFC by Kunen [19]. Thus, by Fact 2.7, for any A there exists a regular
ultrafilter on A such that M* /D is AT-saturated for any M in a countable signature. In
the other direction, there exist T able to code failures of goodness, e.g. Th([w]<N¢, C),
so that if M |= T then M*/D is AT-saturated iff D is good (Keisler [17] Theorem 1.4c).
This proves existence of a maximum class in Keisler’s order.

Definition 2.9. Reflecting the saturation properties of good ultrafilters, when D is an
ultrafilter on A we will say that “D is good for T,” or “D is (AT, T)-good,” to mean that
for any M |= T, M*/D is \T-saturated.

We now know that it is also possible for a theory to be Keisler-maximal without
explicitly coding all failures of goodness:
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Theorem E. (See Shelah 1978 [3/] VI.8.9.) Any theory with the strict order property is
mazimal in Keisler’s order, e.g. Th(Q, <).

In fact, SOP5 suffices (Malliaris and Shelah, Theorem D above). The “basis” of func-
tions whose multiplicative refinements ensure that of all others is not yet understood.
We know the only essential complexity is local:

Fact 2.10. (Local saturation suffices, Malliaris [21] Theorem 12.) Suppose D is a reqular
ultrafilter on I and T a countable complete first order theory. Then for any M! /D, the
following are equivalent:

1. MT/D is \*-saturated.
2. M /D realizes all -types over sets of size < X\, for all formulas ¢ in the language
of T.

To understand classes other than the Keisler-maximal class, as in the present paper, it
is therefore necessary to realize some types while omitting others, that is, to understand
how certain model-theoretically meaningful families of functions may have multiplicative
refinements while others do not. A point of leverage on this problem was built in [27]
and applied there to obtain the first ZFC dividing line among the unstable theories. It
translates the problem just described into a problem about patterns in some quotient
Boolean algebra, as we now explain. For 2.11, note that the notion of an A™-excellent filter
is defined in [27]. It is proved in Theorem 12.3 of that paper that a filter is AT-excellent
if and only if it is AT-good and in the present paper, AT-excellent and A*-good are used
interchangeably.”

Definition 2.11. (Regular ultrafilters built from tuples, from [27].) Suppose D is a regular
ultrafilter on I, |I| = A. We say that D is built from (Dy, B, D) when the following hold.
Note that X is given by Dy, and if not mentioned otherwise, we will assume the index
set of D is A.

1. Dy is a regular, |I|"-excellent filter on I

(for the purposes of this paper, it is sufficient to use regular and good)
2. B is a complete Boolean algebra of cardinality 2* and < A*-c.c.
D, is an ultrafilter on B

4. there exists a surjective homomorphism j : P(I) — B such that:

@

4 More precisely, one can define a notion of “excellent for a theory T and likewise of “good for a theory T'.”
What is proved in [27] is that “excellent” i.e. “excellent for all countable T"” coincides with “good” i.e. “good
for all countable T'” i.e. every monotonic function from finite subsets of I into the filter has a multiplicative
refinement. This is the property we need for Theorem F, so the reader may substitute good for excellent
in that theorem. However, it is important to mention that for specific values of T', “excellent for T"” and
“good for T need not coincide. If one wanted to work with more precise versions of Theorem F where Dy
is excellent only for certain theories, the situation might be different.



Sh:1030

M. Malliaris, S. Shelah / Advances in Mathematics 290 (2016) 614—681 625

(a) Do =j""({1s})
(b) D={ACI:j(A)eD,).

We may make j explicit and write “built from (D, B, D, j)”

It was verified in [27] Theorem 8.1 that whenever y < X and B is u*-c.c. there exists a
regular good Dy on A and a surjective homorphism j : P(I) — B such that Dy = j~1(1).
Thus, Definition 2.11 is meaningful, and this opens up many possibilities for ultrafilter
construction.

We now state Theorem F, used throughout the present paper, and then define “moral-
ity” in 2.14.

Theorem F. (Separation of variables, Malliaris and Shelah [27] Theorem 6.13; see Ob-
servation 2.15 below.) Let k < \. Suppose that D is built from (Do,*B,Ds,j), and Dy is
excellent.” Then the following are equivalent:

(A) D, is (k,B,T)-moral, i.e. k-moral for each formula ¢ of T.
(B) For any M =T, M*/D; is k*-saturated.

The practical consequence of Theorem F is that one can construct regular ultrafilters
in a two-step process. First, one constructs a AT-excellent filter Dy admitting the desired
homomorphism j to a specified Boolean algebra . One may ensure the non-saturation
half of the argument at this stage by clever choice of 9B: for example, a key move of
[27] is to show that if 9B has the uT-c.c. for pu < A, then D cannot be good for non-low
or non-simple theories, regardless of the choice of D,. See Section 2.2 below.® See §2.2
below for the present analogue. Second, one builds an appropriate ultrafilter D, on the
Boolean algebra 9, usually focused on the positive (saturation) side of the argument.
Theorem F ensures that D, controls the resulting saturation properties of D. This will
be our strategy below.

We now explain the condition of “morality” on D,.

Definition 2.12. (Possibility patterns, c.f. [27].) Let 2B be a Boolean algebra and @ =
(o : a < A) a sequence of formulas of £. Say that b is a (), B, T, %)-possibility when:
1. b= (b, :u € [\]<N0)

2. u € (A<M implies b, € B+

3. if v C u € [A\]<N¢ then b, C b, (monotonicity) and b, = 1

5 The requirement “Dy is AT-excellent” is assumed in the definition of “built from” but we repeat it here
for emphasis.

6 Informally, there is too little room in the Boolean algebra to account for the “wideness” of theories with
significant forking: see [27] §9, specifically Conclusion 9.10. That proof uses in an essential way that (in our
notation) 6 = N, as will be explained in due course.
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4. if uy € A<M and c € B+ satisfies
(uCur = ((c<by) V (c<1—-by)))

then we can find a model M =T and a, € M for a € u, such that for every u C w,,

M = (3z) /\ Yo (T;5as) iff ¢ < b,.

acu
When the sequence % is constant with each ¢, = ¢, say b is a (A, B, T, )-possibility.

Definition 2.12 ensures that @ could have plausibly arisen as the image under j of the
distribution of a @-type by asking that the Venn diagram of the elements a accurately
reflects the complexity of ¢: that is, whenever some nonzero element b of B8 induces an
ultrafilter on some {a, : v C u}, we can find a set of instances {¢; : ¢ € u} in a monster
model of T" whose pattern of intersection corresponds exactly to that dictated by b.

Example 2.13. Let D be built from (Dy,%, Dy, j). Let p € S(A), A C M*/D; be a small
o-type and, identifying p with A, let f : [\]<¥0 — D; be the L.oé map of p. Let a = (a, :
u € [\]<™) be given by a, = j(f(u)), so a, € BF. Then & is a (A, B, T, p)-possibility.

Then morality, 2.14, is simply the Boolean algebra equivalent to a regular ultrafilter
being good for a theory, see 2.7 and 2.9 above.

Definition 2.14. (Moral ultrafilters on Boolean algebras, [27].) We say that an ultrafilter
D, on the Boolean algebra B is (A, B, T, ¥)-moral when for every (A, B, T, p)-possibility
b = (b, : u € [\]<®) such that b, € D, for each u € [A\]<M, there is a multiplicative
D,-refinement b’ = (b/,, : u € [\|<N0), i.e.

1. ug,us € [)\]<N° - b/ul N bluZ = b/ulLJug
2. ue€ NN = b/, Ch,
3. ue [\ = b/, €D..

We write (A, B,T,A)-moral to mean (A, B,T,p)-moral for all ¢ € A. We write
(A, B, T)-moral to mean (A, B, T, p)-moral for all formulas .

In the last sentence of the definition of “moral”, we could equivalently have said:
we write (A, B, T)-moral to mean (A, B, T, ®)-moral for all sequences ¥ of formulas and
all (A, B, T, p)-possibilities, because our theories T' are countable. (On uncountable T,
see [33].) The equivalence is by Fact 2.10 and Theorem F. Since in the present paper it
is not usually necessary to restrict to ¢-types, we will often use this second formulation.

The statement of [27] Theorem 6.13 was stated just for the case kK = A. For complete-
ness, we justify the use of x < X\ in Theorem F above.
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Observation 2.15. Fiz |I| = X\ and k < X. Then (1) iff (2).

(1) D is a regular ultrafilter on I, built from (Dg,*B, D.), and D, is (k,B,T)-moral for
all formulas ¢ of T.

(2) For any model M = T, and any type p € S(N) where N C M, ||N|| = &, p is
realized in M.

Proof. (1) implies (2): This is the direction we use in the present paper. Recall that
“built from” implies Dy is AT-excellent. By regularity of D, we may choose any model
M of T, in particular we may choose M A*t-saturated. By Fact 2.10, we may assume
p is a ¢-type. Let (p(x,a}) : o < k) be an enumeration of ¢. Fix some lifting of the
parameters so that we may write “a[t]” for a € N and ¢ € I. For each u € [A\]<Y0, define

By, ={tel:(Ex) )\ galx,av,[t])}

acu

Without loss of generality, By = I. Define (A, : u € [A\]<®°) by: A, = Bun.. Let
a, = j(A.) € D, which gives us the sequence a = (a,, : u € [\] "), which is a possibility
pattern, by Lo$’ theorem, c.f. 2.13. By hypothesis (1), there exists a’ = (a, : u € [\]<N0)
such that a’ is a sequence of elements of D, which form a multiplicative refinement of a.
For each u € [A]<¢, choose A/, such that j(A!) = a/. Let A = A! N A,. Then the
sequence (A” :u € [\]<N0) refines (A, : u € [A\]<®¢) and is multiplicative mod Dy.

Now we use the definition of excellent, specifically Claim 4.9(1) of [27], using Dy and
A" here for D and A there. By that Claim, there is a sequence B’ = (B! : u € [\]<®¢) such
that first, B’ refines A” so a fortiori B’ refines A, and second, B’ is actually multiplicative,
not just multiplicative mod Dy. The map f : [x]<¥0 — D given by u + B/, is therefore
a multiplicative map, which means that for each ¢t € I, the set

{o(z,anlt]) -t € f({a})}

is a partial type in M. Since M is AT-saturated, we may choose some b,[t] realizing this
type. Let b, = [[,c; b«[t]/D. Then b, realizes p as desired.

(2) implies (1): This is immediate from Lemma 6.12 of [27] replacing A by x in con-
clusions (A) and (B) of that lemma and in the corresponding proof. 0O

2.2. Why a large cardinal?

The cardinal o is supercompact iff on every set A of cardinality > o there exists a
normal o-complete ultrafilter on [A]<? (see 5.2 below). This implies that o is compact,
i.e. that every o-complete filter can be extended to a o-complete ultrafilter.

Where do complete filters appear, given that all ultrafilters in Keisler’s order are

regular? The idea is that Theorem F allows us to build regular ultrafilters from complete
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ones: D, may be o-complete for some uncountable o, assuming the existence of o > Vg
compact.

Why is this useful? In the main theorem of [27], we proved existence of a ZFC di-
viding line in Keisler’s order among the unstable theories, by separating the minimum
unstable theory, the random graph, from all non-simple and simple non-low theories. The
non-saturation half of that argument proved, in the context of Theorem F, that when
the quotient Boolean algebra is B = %é&u,No and CC(B) = u™ < A, i.e. the maximal
size of an antichain in 98 is p, then the resulting D; was not good for any non-low or
non-simple theory, see also 9.6 below. It is crucial there that B is the completion of a free
Boolean algebra and that the last of the three cardinal subscripts for 8 is Ny, so in our
notation, 0 = 6§ = Rg. [The saturation part of the proof showed that the lack of global
inconsistency in the random graph meant that its types could still be realized when p
was small.] To the extent that the random graph is typical of simple theories, one can
ask whether higher octaves of those arguments would work to separate all simple theo-
ries from all non-simple ones. Our strategy here is, therefore, to continue working with
completions of free Boolean algebras, and to continue to concentrate on the case where
CC(B) = u™ < \. (We will consider other Boolean algebras in the paper [30] in prepa-
ration.) However, the ultrafilter D, we construct is o-complete for some uncountable o,
so in our present notation 6 > o > Wg, in order to have a chance at saturating simple
theories which are non-low. The large cardinal assumption gives us enough room in the
construction to deal with the extra amount of forking in simple non-low theories, while
still allowing us to ensure non-saturation of any non-simple theory. The remarkable fact
is that, after taking care of this one possible problem at lowness, we are able to leverage
a new analysis of amalgamation in simple theories to build ultrafilters which precisely
characterize the dividing line at simplicity.

We consider both ¢ = Ry and also ¢ uncountable and supercompact in our various
ultrafilter existence proofs. We use the second case in this paper to characterize simplicity,
and will use the first [which necessarily does not saturate non-low simple theories, but
is in ZFC] in [29].

2.8. Structure of the paper

The structure of the paper is as follows. We assume throughout that our tuples
(A, 6,0) of cardinals are suitable in the sense of 1.1 above. In §3, we develop the
model-theoretic amalgamation condition called “(\, u, 8, o)-explicitly simple.” In §4, we
characterize simple theories as explicitly simple using u™ = A. As discussed there and
carried further in [29], varying the distance of  and A outlines a new approach to clas-
sifying the simple unstable theories. In §5, we define the new property of ultrafilters on
certain Boolean algebras, called “(\, i, 8, 0)-optimal,” and prove an existence theorem
assuming o is uncountable and supercompact. (Existence in the case 0 = 6 = Ry will
follow from Theorem 9.4 below.) If D is a regular ultrafilter on A built from (Dg, B, D.)
where D, is (A, i, 0, 0)-optimal, we will call D (A, p, 0, 0)-optimized. Assuming p < A,
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we then show how to ensure optimized ultrafilters do not saturate non-simple theories.
§6 proves a technical lemma about arranging presentations to interact well with liftings
in ultrapowers. In §7, assuming ™ = X (as well as o uncountable and supercompact
to quote the ultrafilter existence theorem of §5), we prove that optimized ultrafilters
saturate simple theories. §8 contains the paper’s main theorems, characterizing simple
theories via saturation of ultrapowers. §9 states and proves existence of so-called perfect
ultrafilters on certain Boolean algebras, which will be useful for o = Xy in future papers.
§10 contains a list of open problems.

2.4. Basic definitions

For history on simple unstable theories, and for statements of theorems from the
literature, we refer to the survey article [11]. We will use:

Definition 2.16 (Simple theories). Given a background theory T,

1. A formula ¢ = ¢(x, y) has the k-tree property, for k < w, when there exist parameters
{an :n € “Zw}, L ay) = £(y), so that:
(a) for each n € “~w, the set {¢(z,a,~;) : i <w} is k-inconsistent
(b) for each n € “w, the set {¢(x, ay,) : n < w} is consistent.

2. A formula ¢ is simple if it does not have the tree property, i.e. it does not have the

k-tree property for any k.
A theory is called simple if all of its formulas are.
Definition 2.17 (D-rank, lowness). Again fix T'.

1. For each formula ©(Z,7), an integer k& < w, and a formula 0(Z), all possibly with
parameters, we define D (0, ¢, k) to be > 0 if () is consistent, and > « + 1 if there
exists a, which forks over the parameters of  such that D(6(Z) Ap(z, aq), ¢, k) > a.
Equivalently, T is simple if and only if for all formulas ¢ and 6 and all £ < w, the
rank D(6, o, k) is finite.

2. We say T is low if for each formula ¢(z;y) there is k < w such that for any indis-
cernible sequence (a, : n < w), with £(a,) = £(y), we have that {¢(Z;a,) : n < w}
is consistent iff it is k-consistent.

Theorem G. (Independence theorem, version of [11] Theorem 2.11.) Let T be simple and
M =T. Let A, B be sets such that tp(A/M B) does not fork over M. Let p € S(M).
Let g be a nonforking extension of p over MA and r be a nonforking extension of p

over MB. Then qUr is consistent, moreover ¢ U r is a nonforking extension of p over
MAB.
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Definition 2.18 (Partitions).
1. A partition of a Boolean algebra is a maximal set of pairwise disjoint nonzero ele-
ments. We may also apply this to sequences with no repetitions.
2. CCO(B) = sup{p* : B has a partition of size pu}.
3. When a € B and ¢ = (c. : € < p) is a partition of B, we say that ¢ supports a when
e<p = (c.<a)V(c.<1l—a) (in B).
4. When € = (c¢ : ¢ < p), d = (d, : € < p) are partitions of 9B, say that d refines ¢ if
for each € < p, there is ( < p such that de < c¢.

We focus on completions of free Boolean algebras, mainly 8 = ‘Bé A the completion

1,07
of the Boolean algebra generated freely by 2* independent partitions of size p, where
intersections of fewer than 6 nonzero elements are nonzero precisely when no two are

from the same partition. It will be convenient to describe such objects as follows.

Definition 2.19 (Boolean algebra notation” ). Let a be an ordinal, p > 6 cardinals; the
existence statement is 2.21.

1. Let

FI, ¢(o) = {h : h is a function, Dom(k) C «, |Dom(h)| < 6 and Range(h) C u}

2. B0 = EBZ’WQ is the Boolean algebra generated by:
{xy: f € FI, p(v)} freely subject to the conditions that
(a) xf, <xy, when f; C fo € FI, g(a).
(b) xs Nxp = 0if f, f’ are incompatible functions.”

3. %(11%9 is the completion of %2%9.
In 1, 2, 3 when 6 = Xy we may omit it.

Convention 2.20. We will assume that giving B determines a set of generators (xs : f €
FI, 0(cw)), so also oy, p, 6.

Fact 2.21. Assuming A = \<Y, %gA“u.,G and thus its completion exists.

Proof. See Engelking and Karlowicz [7], Fichtenholz and Kantorovich [9], Hausdorff [12],
or Shelah [34] Appendix, Theorem 1.5. O

Convention 2.22 (Conventions on notation). Some effort has been made to standardize
notation as follows (these objects will be defined below, and will be subject to further

7 Following [34] VI §3 or [24]. “FI” recalls the simplest case § = R, i.e. “finite intersection.”
8 Note that ‘iff’ follows. It also follows that when j < 6, g = Ui<j fi implies x4, = ) Xy, in B9 and
in B,

i<j
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hypotheses). The reader can quickly scan the following list at this point, and refer back
to it later on as needed.

e The letters D, E always indicate a filter.

o When occurring together, the symbols D, Dy, Ds,j, I are used in compliance with
Theorem F, p. 625.

e B is a Boolean algebra; in the proofs, it is always a completion of a free Boolean
algebra, so of the form ‘B%A%g, as defined in 2.19.

o BT is B\ {0}.

o When D is a filter on B, DT ={a € B :a # 0 mod D}.

e A > pu>0> 0 are suitable infinite cardinals (1.1), where:

— )\ is the size of the index set for our background regular ultrafilter Dy, thus, we are
interested in realizing types in simple theories over sets of cardinality < .

— 1 < A, in the interesting case p < A: this is the range of the coloring function
we build on fragments of types in simple theories, and also the size of a mazximal
antichain in our Boolean algebra 5.

— 0 (note 0 < 6 < u) is the last parameter for the underlying Boolean algebra
B = %%%,#,97 see 2.19.

— if o is an uncountable supercompact cardinal then we build D, to be o-complete.

We have kept 0 and o separate due to their different roles and requirements, but the

casual reader will not lose much by assuming they are equal.

e Boldface letters c,x,b ... are elements of B.

o Fraktur letters are gemerally used for objects of interest having multiple parts, e.g.
m for presentations, v for elements of the set of type fragments Ry, associated to a
presentation m.

o f.f1,f2... are elements of F1, g(a), noting that x5 € B is an element correspond-
ing to the function f as in 2.19.

o Q C [N<9 is stationary, which means cofinal if o = V.

o w,v,w are subsets of \; generally u € Q, so |u| < o, whereas w, v may be larger.

e ¢,(, € are elements of u, i.e. ordinals < p.

o O is an ordinal < |T|, usually clp(0) in the context of a presentation m.

3. Definition of “explicitly simple”

In this section and the next we develop a new perspective on simplicity.

This section gives the first main definition of the paper: “the theory T is (A, u,
0, o)-explicitly simple.” The definition makes sense for any suitable four-tuple of infinite
cardinals A > > 6 > o > |T| in the sense of 1.1, and so varying these cardinals will give
information about the theory. The parameter we are mainly interested in varying is p.
As mentioned, it will follow from the definitions in this section that (A, i, 8, o)-explicitly
simple becomes weaker as p increases, and that every (A, p, 0, 0)-explicitly simple theory
is simple, even when p = A.
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Recall from 2.6 that when analyzing saturation of ultrapowers, L.o§’ theorem guaran-
tees that while projections of finite pieces of a type to a given index model may each
be consistent, their ‘relative position’ is a priori not preserved, so there is no guarantee
that the union of these pieces is consistent.

An informal model-theoretic description of this problem is the following. Suppose,
for clarity, that T is a theory whose only forking comes from equality, and p is a type
over a set of size A\. Suppose that finitely many finite pieces of the type are moved
by piecewise automorphisms of the monster model agreeing on common intersections
and introducing no new forking. Is the union of these automorphic images consistent?
Not necessarily: consider the effect of piecewise automorphisms f, g, h on three formulas
{R(z,a,b)}, {R(z,b,¢)}, {R(x,a,c)} in the generic tetrahedron-free three-hypergraph
where despite f(a) = h(a), f(b) = g(b),g(c) = h(c) we may have R(f(a),g(b),h(c)).
So instead we may try to gauge the complexity of the ‘amalgamation problems’ arising
under such partial automorphisms by asking: can we color the pieces [p]<*° with no more
than p colors in such a way that within each color class, after piecewise automorphism,
the union is always consistent? Note that when p = X there is trivially a coloring, as
each piece gets its own color. To make the question precise, one will want to add some
clarifying hypotheses, such as closure conditions on the finite pieces, and in the general
case, some natural conditions on forking. After doing so, however, the question is whether
a non-trivial coloring exists (pu < \).

Our picture is that all simple theories are in some sense close to what we see in these
generic hypergraphs: the noise arising from forking may be muted so that the basic
amalgamation problems controlling consistency rise to the surface. Enumerating each p in
such a way that an algebra defined on its indices captures this additional noise, a precise
general formulation of this partial-automorphism condition “T" is (A, p, 6, o)-explicitly
simple” may be given. The first main theorem of the paper, which we prepare for here
and prove in the next section, will prove that we may essentially always find such a
coloring when T is simple and g™ = X (so using the first nontrivial number of colors),
and moreover that this characterizes simplicity of T'.

Context 3.1. In this section we make the following assumptions. However, many of the
definitions make sense under weaker hypothesis.

1. Ng < 0 <6 < u < X are suitable in the sense of 1.1. Note that the definitions in
this section will also make sense in the case where p = A. The reader may wish to
assume o = 0.

2. T is a complete first order theory, with infinite models, and |T'| < o. The definition
of ‘explicitly simple’ will entail that T is simple, i.e. k(T) exists, see Fact 3.8.

3. € = Cp is the monster model for T', of cardinality > A.

4. For transparency, T eliminates imaginaries, i.e. T = Ty for some complete the-
ory Ty. In particular, we assume that whenever M = T, every finite sequence of
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elements of M is coded by some a € Dom(M). Otherwise, write T and M
throughout.’
5. “Independent” means nonforking and “dnf” means does not fork.

We begin by stating the organizing definition. We will define the key items “m is

bREN14 )

a presentation,” “n refines m,” the set of type fragments “R.,” associated to m, and
“G : Rm — p is an intrinsic coloring” over the course of the section, in 3.3, 3.6, 3.9, 3.11

respectively.

Definition 3.2 (Explicitly simple). Assume (A, p,0,0) are suitable. We say T is
(A, w1, 0, 0)-explicitly simple if T is simple and for every N = T, ||[N|| = A, p € S(N)
nonalgebraic,

(a) there exists a presentation m of p.
(b) for every presentation m of p, there is a presentation n of p refining m and a function
G : Rn — p such that G is an intrinsic coloring of R,.

Note that Definition 3.2 makes sense because we will prove the existence of presenta-
tions m for all simple theories in Section 4. Why is simplicity of T assumed in 3.27 See
Discussion 3.12 below.

Next we define a presentation of a type. This will essentially be the data of a certain
enumeration of that type along with an algebra to capture nonforking and amalgamation
bases. By ‘algebra’ on A we mean a first order structure with functions and no relations
whose domain is A. The closure of a set u C A in such an algebra M, denoted clp(u),
is the substructure generated by u, so u C clay(u) = cly(clp(u)). We also give a value
to cla(0).

Definition 3.3. Suppose we are given N =T, ||N|| = A, and p € S(N). A (\,0,0)-pre-
sentation for p is the data of an enumeration and an algebra,

m = ({(pa(z,a’) : a <Ay, M)
where these objects satisfy:

* .

1. p = {pa(z;ak) : @ < A) is an enumeration of p, which induces an enumeration (a}, :

a < A) of Dom(N), possibly with repetitions, and with the a} possibly imaginary.
2. M is an algebra on A with < 6 functions.

9 For general T this assumption indeed makes things clearer, although for certain specific T' it may be more
transparent to stick to elements. The use of imaginaries poses no problems in ultrapowers, since ultrapowers
commute with reducts, so there is no issue in passing to a larger theory and proving realization of types
there. We use imaginaries below in the definition of the algebra, as (a}, : & < \) is allowed to be a sequence
of imaginaries. However, by use of a more complex indexing scheme and algebra, this assumption could
straightforwardly be avoided, as is done for the notationally simpler case of certain hypergraphs in [29].
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3. For any finite u C A, | clapq(u)| < 0. Thus, for any u C A, if |u| < o then | clpm(u)| < o,
and if |u| < 0 then |cla(u)] < 6.

4. clp() is an infinite cardinal < |T|, so an initial segment of A.

M, =N 1 {al : a < clyq(0)} is a distinguished elementary submodel of N, and we
require that p does not fork over M,.

5. Moreover, for each v € [\]<?, N, := N | {af : a € cly(u)} is an elementary
submodel of N, and {yqa(x,a)) : o € clp(u)} is a complete type over this submodel
which dnf over M,. (In particular, {pq(z,a%) : a € clp(0)} is a complete type
over M,.)

6. If a € clm(u), B < a, writing Ag = {aX : v < B}, we have that
tp(ay,, Ag U M,) does not fork over {aZ : v € clp(u) N G} U M..

In a context where (), 6, 0) are given, “presentation” means “(, 8, o)-presentation.”

Remark 3.4. From a presentation m, the following were unambiguously defined: M, in
item 4, clp(0) in item 4, N, in item 5 for any u C A, A, in item 6 for any o < \.'°

Although we don’t pursue this approach in the present paper, it is worth noting that
in Definition 3.3, for certain less complicated theories (e.g. 7' with no function symbols
and trivial forking, as is the case in [29]) we might prefer to allow claq(u) to be a set,
rather than requiring it to be a submodel, and in particular to only require of cla(0)
that the following observation holds.

Observation 3.5. (Independence theorem over cla (D), see [11] 2.18, p. 17.) By the
definition of presentation and the simplicity of T, the following will be true for any
presentation m. If £ = 1,2 are such that:

clm(0) Cup €A

ug = clag(ug), thus ug Nug = cly(ug Nug)

Ap={a} : a € ug} and Ay is independent from Ay over A; N A
pe € S(Ap) dnf over {a, : o € clp(0)} and pe D p | {al : @ € A}

Ll

then p1 U pa is a consistent type which does not fork over {a}, : a € clap(0)}.

Definition 3.6 (Refinements of presentations). Suppose we are given N =T, ||N|| = ),
and p € S(N). Let m = (@, Muy), n = (¢n, My) be presentations of p. We say that n
refines m when:

10 Although it is already a global assumption for the section, note that together items 3, 4, and 5 and the
fact that o is strongly inaccessible imply that |T'| < o essentially, i.e. identifying two non-logical symbols
under the relation of equivalence modulo 7. That is, if 7" is a complete first order theory, T" has a model
M = M, of cardinality § < o, and E is the equivalence relation on 7(7") which identifies functions, resp.
predicates, iff they have the same interpretation in M, then we may conclude E has < 2% < o classes.
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(a) Pm = Pn.
(b) Cle (@) = Can (®)~
(¢) Mm € My, ie. the algebra of n extends that of m.

Since we allow the sequence (a’, : & < A) to contain repetitions, some care was needed
in the definition of the models N,: the set {« : aq € |Ny|} could have size A, although
Dom(N,,) has cardinality < 6. Note also that the cardinal 6 has two roles: first, the size
of clp(u) thus [|Ny|| is < 6, call this 6;, and second, in FI, g(a,) in §7, call this 65.
We don’t separate them here, but what we use is 1 < 6, and we could have used
o =01 <0,

Let us emphasize that we have included simplicity of T in definition of explicitly
simple, to avoid trivial satisfaction of the hypotheses (see also Discussion 3.12 below).

Observation 3.7. Let T be a theory and let (A, u,0,0) be suitable infinite cardinals.
Suppose that for every N | T of size A every nonalgebraic type p € S(N) has a
(N, 8, 0)-presentation. Then T is simple.

A fortiori, if T is (\, u,0,0)-explicitly simple, then T is simple.

Proof. By the definition. O

Nonetheless, the assumption of simplicity is natural because we assume that p does
not fork over a small set. Recall that:

Fact 3.8. Let T be a complete theory. Then T is simple iff k(T) exists iff x(T) < |T|*,
where

K(T) =min{k: if AC € q e S(A) then q dnf over some B C A,|B| < k}.
Proof. See Theorems 3.4 and 3.6 of [11]. O

We now arrive to the right general analogue of a ‘fragment of a type. Its ingredients
are a set of indices u, a closed set w 2O wu (containing e.g. forking of u), the type of a
model in the variables Z,,, and a type over that model in the variables x, Z,,, satisfying
some additional conditions suitable to automorphic images of pieces of p.

Definition 3.9 (The set of quadruples Ry, ). Let m be a presentation of a given type
p = pm. Then R = Ry, is the set of v = (u,w, ¢, r) such that:

Lou € [N<7, we A< and w = clp(w).

2. u Cclpm(u) Cw.

3. ¢ = q(Ty) is a complete type in the variables Z,, such that:
(a) for any finite v C cla(0), if M, = (@) then ¢ (Z,) € q.
(b) for any finite {ao,...,an} Cu, Iz A, ., ¢alz,al) € q.
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4. r =r(x,Ty) is a complete type in the variables z,Z,,, extending
q(§w> U {(pa(l‘axa) T U}

5. if b, realizes q(T,,) in Cr and a < cly(0) = b = a, then
(a) r(z,b,) is a type which does not fork over M, and extends p | M,.
(b) if w' C w is M-closed, €7 | {b}, : @ € w'} < €p and r(z,b,,) | b, is a complete
type over this elementary submodel.
(c) if w" C w is M-closed and @ € w’ then tp(b,{bj : B € wNa}) dof over
{b: B ew Naj.

Note that for tuples in R, the type 7 is like p in the sense of being a nonforking
extension of p [ M, to a set including the domain of N,, however this type is not
guaranteed to be “correct” on all of w. Since the definition R, is fairly unconstrained,
in comparing elements of this set we will be most interested in cases which avoid trivial
inconsistency.

Definition 3.10. Suppose we are given T = (t; = (ug, Wy, G, 7¢) : t < ty < o) from Rpy,. Say
that b = (b, : a € U; we), with each b}, € € (possibly imaginary), is a good instantiation
of T when the following conditions hold.

1. aecdm(l) = b, =al.
2. For cach t < t,, b |, realizes q;(Ty, ).
3. For each t <t < t,,if v C w; Nwy is finite, then:
(a) for each formula ¢ (%,), ¥(b,) € ¢ < ¥(b,) € qv.
(b) for each formula ¥(z,T,), ¢¥(x,b,) € ry <= (x,b,) € ry.
4. If B € wy for some t < t, then

tp(bj, {05 : v € U ws and v < B}) dnf over {b : v € w; N B}.
s<t

5. For each t < t,, if w' C w and cly(w') = w' then €7 [ {b% : @ € w'} < € and
ri(x, EZ,) is a complete type over this elementary submodel which does not fork over
M, (noting that the domain of M, is {b% : @ € clp(0)} by the first item).

Now we arrive at the key point, coloring R, with few (z < A) colors to capture
consistency.

Definition 3.11. Let m be a (A, 0, 0)-presentation and R = R, be from 3.9. Call G :
R — i an intrinsic coloring of Ry if: whenever

t=(v; = (ug, We, Gty 1t) 1t <ty < 0)

is a sequence of elements of Ry, and b = (b% : a € U, <s. wt) is a good instantiation of T,
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if G| {v;:t <t} is constant,
then the set of formulas

{Pa(z,b): @ € upy, o €1, t < ti}
is a consistent partial type which does not fork over M,.

Note that in 3.11, we ask for (b}, : a € |J, w) when we only aim for consistency of
{palz,bL): a € uy, o €14, t < t.}, however meeting the requirements of the larger
type will affect the choice of b* thus of b* | U, ue.

We have now defined all terms necessary for ‘explicitly simple,’ so the reader may wish
to re-read Definition 3.2. In the next section, we will use this definition to characterize
simplicity.'!

Discussion 3.12. Why is simplicity of T assumed in 3.27 Suppose we were to drop the
assumption “|T| < o¢” from 3.1 and also to drop the assumption “T is simple” from
Definition 3.2; call this modified Definition 3.2, It would continue to make sense to ask
whether 3.2" holds for a given T and a given tuple of cardinals (X, i, 0, ). If e.g. |T| > )\,
then it may be that there are no models of T' of size A and so the hypotheses of 3.2 are
trivially satisfied, even when T is not simple. However, under our present hypotheses,
existence of presentations for every nonalgebraic type over every model N of T of size A
necessarily implies T is simple:

Observation 3.13. When A > 0 > o > |T| and 6 is reqular (as holds by our Hypotheses 5.1
and 1.1), the statement that “for every N =T, ||N|| = A, p € S(N) nonalgebraic, there
exists a presentation m of p” implies “T" is simple.”

1 Our proof in the next section will also work for the following slightly different definition, by 4.2.2, which
we include for interest. Note it entails that any reasonable enumeration may be extended to a presentation,
making explicit what is proved in 4.2, but does not say that every presentation may be refined to one which
works.

Definition 3.2A. Assume (A, pu,0,0) are suitable. We might alternatively have said that T is
(A, p, 0, 0)-explicitly simple if T is simple and whenever we are given:

(i) N =T, |IN]| = A, p € S(N) nonalgebraic,

(ii) an enumeration (@ (xz,al) : o < A) of p, where each a, is a singleton, possibly imaginary, {a, : o <
A} = Dom(N), and

(iii) for some cardinal §m < |T|, {a}, : & < dm} is the domain of an elementary submodel of N over which
p does not fork, and {¢a(z,al) : @ < dn} is a complete type over this submodel

(iv) S is an algebra on A with < o functions, with {a : @ < d } closed under S,

there exist

(a) an algebra M D S of functions on X such that clp(0) = cls(?) and ((pa : a < A), M) form a
(A, 0, 0)-presentation m of p (thus the set of type fragments Ry, associated to m is well defined)
(b) and a function G : Ry — p

such that G is an intrinsic coloring of Ry, .
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Proof. This is because the definition of presentation, 3.3, requires that the type p not
fork over some N’ < N of size < ¢ < A. As any theory which is not simple has a formula
with the 2-tree property, Definition 2.16, we may build a model N =T of size \ as the
union of an increasing continuous elementary chain (M, : a < 6) and a nonalgebraic type
p € S(N) such that p forks over M, for any « < . Since 0 is regular and 6 > o > |T,
if A C N is any set of size < o, and in particular if A is an elementary submodel of N
of size < o, then A must be contained in some M, and so p will fork over A. O

Thus, to conclude Discussion 3.12, our current assumption “|7| < ¢” implies that
the hypothesis “T" is simple” in Definition 3.2 is redundant. However, since the defini-
tion makes sense without the global hypothesis on o, we prefer to leave this hypothesis
to emphasize that Definition 3.2 is meant to be a strengthening of simplicity, even in
contexts beyond that of this section.

Discussion 3.14 (A classification program). In the case of the random graph, any function
G will work. In the case of an arbitrary simple theory, it will be shown in the next
section that a suitable algebra and coloring can always be found assuming p+ = A. This
outlines a program of stratifying the simple theories by determining which intermediate
classes exist: that is, determine model-theoretic conditions which will characterize explicit
simplicity for arbitrary u, or just e.g. = Rg or u* < A. This work begins in [29].

4. Proof that simple theories are explicitly simple

Theorem 4.10 in this section will prove that all simple theories T with |T| < o
are explicitly simple for suitable (A, u,0,0), when A = u*, by judicious use of Skolem
functions, x(T'), and the independence theorem. Recall that the a may be imaginaries.
In cases where we have more information about the theory T, it is to be expected that
more direct arguments may be given. Is there a simple theory for which p* = X is
necessary? See Section 10.

Context 4.1. In this section we assume:

. T is a simple theory with infinite models, T' = T, in the signature T.
. (A, 0,0) are suitable in the sense of 1.1.

T < o <8, soin particular Ry < o.

ut =

. NET,|N|=\

. p € S(N) is nonalgebraic, and p = p(x).

o U A W N

The main ingredient in the proof that every simple theory is explicitly simple is the
next Lemma 4.2. By essentially the same proof, we will show that under our present
hypotheses: presentations exist, moreover any reasonable enumeration of a type given
with some basic algebra may be extended to a presentation, and moreover that any
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presentation may be extended to one whose set of type fragments admits an intrinsic
coloring.

Lemma 4.2. Let (\, p,0,0), T, N, p be as in /.1, so p* = X and T is simple.

1. Whenever ¢ = (pq(x,al) : a < A) is an enumeration of p satisfying

(a) each a?, is a singleton, possibly imaginary;

(b) {a} : @ < A} = Dom(N);

(c) for some cardinal & < |T, {a% : o < 0} is the domain of an elementary submodel
M, of N over which p does not fork, and {¢qs(x,ak) : a < 8} is a complete type
over this submodel.

there exist an algebra M on A and a function G such that m = (¢, M) is a presen-

tation, and G : Ry — 1 is an intrinsic coloring.

2. Suppose that in addition to ¢ from (1) we are given an algebra S on \ with < 0
functions, such that {a : « < &} is closed under the functions of S and u € [A\]<°
implies cls(u) € [A\]<?. Then there exist an algebra M 2 S on X and a function G
such that m = (p, M) is a presentation, clp(0) = 8, and G : Ry — p is an intrinsic
coloring.

3. Suppose that in addition to ¢ from (1) we are given an algebra S on \ such that
(p,8) is a (N 6,0)-presentation, and 6 = cls(0). Then there exist an algebra M D S
on X\ and a function G such that m = (¢, M) is a presentation, clp(0) = cls(0) = 4,
and G : Ry — 1 is an intrinsic coloring.

Proof. It will suffice to prove (2). Since T is simple, recall that x(7T') exists and
k(T) < |T|*, Fact 3.8. For clarity, rename § as d, for the entirety of this proof. (Our
construction will ensure that cla () = § = 0p.)

The construction will take several steps and include some intermediate definitions and
claims. First, we build a presentation by specifying an algebra M. Let

Xo={6 <A : 6> 0nand N [{4:.0c5)= N}. (4.1)

As Misregular, X is a club of \. We will construct M to satisfy the following additional
properties:

1ocdpm(@) ={a:a < cdm@)} = {a: @ < dn}, so in particular cla (@) is a cardinal
<7

2. if u € [A]<N0 then | clpy(u)| < o, and if u € [\]<¢ then also | cly(u)| < 0.

3. for each v € [A\]<?, cly(v) € Yy where

Yo={w C A : |w<b,{a:a<cdm®} Cw,
(V(S € XO) (N r{a;; : aEwﬂé}j N)a

(e € w) = tp(a;,{ajs: B < a},N) dnfover {aj: € wnNal}.
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4. if w € [A]<? and w = clp(w) then, writing Zy = {a : @ < clp(0)} U Xo:

(i) aew <= a+lecw

(i) a € w = min(Zp \ @) e wAsup(ZpN (a+1)) € w
(iii) a e w = anNw Ccpm({atU(wnpu))

(iv) if v € [w]<N° then (3o € w)({ah : B € v} C af).

5. M contains functions F; : A X A = A, i = 1, 2 such that:

i) if @ > p then (Fi(o,B) : B < «) lists p without repetition; otherwise, it lists
|au].
(ii) (Fa(a, B) : B < |a] < p) lists {7y : v < a} without repetition.
(iii) f<a = Fi(a, Fi(a,B)) = B.

6. M2DS.

In our construction of such an M we will do a little more than is necessary. The first

collection of functions we add to the algebra are:

(A)

Let 0m = ¢ be as in (1)(c) of the Lemma. For each € < 0, let F. : A — X be the
constant function equal to €. This will ensure that'? {a: a < 6m} C claqg(0).
Recalling x(T) < |T|*, for each ¢ < |T| add functions F° : A — X such that
FY(a) < a and tp(af, A,) dnf over {a}?(a) ce<|T|}.

For each € < |T| choose functions F! : A\ — X such that (F!(a) : € < |T|) enumerates
the elements of acl®(a?), possibly with repetition.

We include all functions from S, which, without loss of generality, are denoted by
symbols distinct from all other functions we add to M.

It will be useful to add a family of Skolem functions which are guaranteed to choose
the minimum witness with respect to our given enumeration (a¥ : @ < A). Fix some
enumeration (p. : € < |T]) of the L-formulas. For each ¢ < |T| choose functions
F? : X — X such that F2(a) is the minimal 3 such that aj is a witness to e (, ay,),
if this is well defined and nonempty, and 0 otherwise. (Alternately, we could consider
F? as a k-place function, but this is not necessary as we have coded finite sets in
condition 4.(iv).)

For each ¢ < |T|, define F3 : A\ — X so that F3(a) = B if ¢. = ¢(z,y,a},) is an
equivalence relation with finitely many classes and ¢(, a3, ay,) € p, and F3(a)=0
otherwise.

We'd like to ensure that the type restricted to closed sets is complete.'® For each
formula 9 (x,y) in the signature 7, let Gy be a new function of arity ¢(y) defined
so that: Gy (i, ...,q;,_,) = B if B < X is the least ordinal such that ¢g(z,aj) is
equivalent mod T to either ¢ (x, azio, ce,an ) or its negation. Since N is a model

Py
and p is complete, this is well defined.

12 The reader may prefer to also add a single constant, 0.

13 Up to this point, if a € w, our restricted type will include ¢q(z,al,) but won’t necessarily decide the
value of some other formula 1 (z, a’,) with the same parameter unless there is 8 € w such that g = 9 or
-y and aj = a,.
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Next we add some families of functions which will help in partitioning our eventual R,
into equivalence classes which are sufficiently tree-like to allow inductive amalgamation,
since we have made no particular assumptions about the theory (beyond simplicity)
which would otherwise guarantee such a coherence of patterns. The functions in family
(I) use A = p* in an essential way.

(H) J;: A= A, i =1,2,3 where Ji(a) = a+ 1 and Jo(a) = min(Zp \ ) and J3(a) =
sup(Zo N (o + 1)).

(I) (Recalling A = u™) F; : A x A, i = 1,2 such that:
1. if @ > p then (Fi(a, B) : 8 < &) lists p without repetition; otherwise, let it list

||

2. (Fy(a,B) : B < |a] < ) lists {7 : v < a} without repetition.
3. f<a = Fya,Fi(a,p))=p.
So for each w € [A]<Y, a € w and 8 € a Nw implies Fy(a,3) € w N pu and
B = Fy(a, Fi(a, B)).

Note that (Fi(a, ) : f < a) maps « into u, whereas (Fa(a, 5) : f < a) maps a subset
of u to «, so the third condition is natural. Note also that by choice of Ji, J3 and unions
of elementary chains we have that w € Yy implies sup(w) € Xj.

Let M be the algebra including the functions from (A) through (I) above. Let us
check that the numbered conditions of the claim are satisfied:

1. We ensured with family (A) that {a: @ < dm} C cla (D). Let us check that equality
holds by examining the functions of M. The functions in family (B) are nonincreasing
so will not change an initial segment. The functions in families (C) and (F) will map
tuples from {a : @ < dn } back to this set as M, = N and T = 7. As for family (D),
we required that {o : @ < dn} be closed under the functions of S. The new Skolem
functions in (E) were chosen to give the least witness in the ordering inherited from
the enumeration, and M, < N. As for the functions of (G), we assumed to begin
with that p [ M, is complete. Recalling the definition of Zj in item (2) of the claim,
the functions J; and J; are equal on cly () and act by « + a+ 1. Since clp (@) is a
limit ordinal, indeed a cardinal this poses no problem. Finally, as | clp(0)| < o < p,
the functions F; on clpy(B) x clag(@) will just list ordinals less than cla(@). This
proves that cly(0) = 6.

2. Immediate, as u € [A]<? implies clg(u) € [A\]<7 and IM\ S| < |T| < 0.

3. Given v € [A\]<?, we need to check that w = cly(v) € Yy. We know |w| < 6, and
{a 1 a < cpm(P)} € w by the addition of constant functions in item (A). The
nonforking condition

(a € w) = tp(ag,{az: B <a},N) dnfover {aj: € wna}

is guaranteed by the functions in item (B). Finally, why should
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e Xy = (Nr{a;:aewmé}jN) ?

Suppose we don’t get an elementary submodel, i.e. there is a formula with parameters
in {a} : o € wnd} which has a solution in N but not in this submodel. However,
we chose the Skolem functions in (E) to select the minimum possible witness. Since
6 € Xp, the minimal witness must be of index 8 < §, contradiction.

4. Conditions (i)—(ii) are ensured by the functions in family (H). For item (iii), recall
from family (I) that for each w € [\]<?, & € w and 8 € aNw implies Fy (o, ) € wNp
and 8 = Fy(a, Fi(a, 8)). For (iv) remember that we assumed that T eliminates
imaginaries; in fact, in item (F) we have coded all finite sets.

5. Ensured by the functions of family (I).

6. We assumed M DO S.

Let us check that (¢, M) is a presentation, by checking the requirements of Defini-
tion 3.3. 3.3.1 was assumed in the Claim. 3.3.2-3 were just verified in item 2. For 3.3.4,
the first line was verified in item 1. M, follows by the hypothesis 1(c¢) of the Lemma
and the fact that cla (@) = om. 3.3.5 was ensured by the functions of families (E), (G)
respectively. Finally, 3.3.6 follows by the functions in (B). This shows that m = (¢, M)
is indeed a presentation.

Fix this presentation m for the remainder of the proof. (4.2)
Let Ry be the associated set of quadruples given by 3.9. We now work towards the
definition of the coloring . In particular, we look for underlying trees. This will require
several definitions. Since we are assuming |T'| < o < 0, we have 6 > X; always. We could

avoid referencing the order topology by assuming 6 > R;.

Definition 4.3. For « an ordinal and w C «, write w for its topological closure, i.e. closure
with respect to the order topology.

Definition 4.4. Recalling Y; from condition 1. on the algebra above'* define YT; C Yj to
be the set

{we [N : w=cly(w) and if v € [w]<N° then (Ja € w)({aj : B € v} Cay)}.

By regularity of A > Ny, T; is cofinal in the natural partial order, and moreover is
stationary. Since we constructed M so that the closure of a set cla(u) € Yy, and in
addition we have coding of finite sets, cly(u) € T for each u € Q.

Definition 4.5. Define an equivalence relation E on Y7 by w; E ws when:

4 and the fact that the a, may be imaginary, so code finite sets.
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{wy, w2} €Ty

otp(w1) = otp(wz) and otp(w1) = otp(wz).

w1 N = ws N .

(a) if h: wy; — ws is order preserving onto then the map a} — az( @) is elementary.

Ll

(b) if h : Wy — Wa is order preserving onto then the map a, — a;‘L( @) is elementary.
5. If a € wy \ ppand S € Wy N p then Fy(a, B) = Fi(h(a), h(B)).

Observation 4.6. E is an equivalence relation with p classes.

Proof. There are < 6 < pu choices of order type in both clauses of (2). For (3), recall
by 1.1(b) that u<% = u. Then for (4), let p = |w| or = |w|, so p < @ since @ is regular.
Let v be otp(w) and fix an order preserving bijection 7 : v — w. As an upper bound,
we count the v-indexed sequences of types (p; : i € v) where p; = pi(vr(),{a} : j €
wN7(i)}). For each i € v (without loss of generality i > |T|), suitability 1.1(c) implies
that i < = 2!l <, so there are < y choices for p; thus no more than 8-y < p such
sequences. The case where v = otp(w) is analogous. Finally, for (5): if & € w; \ p then
(F1(a, B) : B < «) lists p without repetition. So for each @ € wy (of which there are < 6)
and each 5 € Wy Ny (of which there are < ) we need to know the value of Fy(a, ) € p.
Since u< = p, (5) requires no more than p classes. This completes the proof. O

Claim 4.7 (“Treeness”). Whenever wEv (so w,v are clpq-closed), we have:

1. wNw is clyg-closed.
2. (“treeness”) wNv Qw (and wNov Jv).

Proof. By definition of E, wNu = vNpu. Suppose we have p < 8 < a with a € wNv and
B € w. Recalling the functions from family (I), 8’ := Fy(«, 8) € wNu and so 8 € v since
w and v agree on u. As v = clpy(v), Fa(a, 8') € v and Fy(a, ') = Fo(a, Fi(a, 8)) = 8
by definition of Fy, Fp. This shows (2.): w Nv < w, and < v. Finally, closure (1.) is
immediate because the algebra consists of functions and so the nonempty intersection of
two claq-closed sets will be closed under these functions. O

We will refer to 4.7(2) as “by treeness” in the rest of the proof. We now define the
coloring G : Ry — p.

Claim 4.8. There is G : Ry — p so that G(u,w, q,r) = G(u',w’, ¢, r') implies:

(i) w/E =w'/E, where E is the equivalence relation from 4.5.

(ii) fewnw = otp(BNw) = otp(fNw).

(iii) if h: w — w’ is order preserving onto then h maps u to u'.

(iv) if h: w — w' is order preserving onto then h maps q to ¢’ and r to v’ in the obvious
way.

(v) Range(G) C .
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Proof. For (i), recall that E has u equivalence classes. Now (ii) will follow by the “tree-
ness” condition 4.7. Recall = <% by 1.1(b). So for (iii), there are indeed no more than
1 ways to choose a sequence of ordinal length o < o < 6 from a sequence of length < 6.
For (iv), as in 4.6, there are likewise (relatively) few equivalence classes of types recalling
a < = 2ol < by 1.1(c). (Note that ¢ need not be the type of {a’ : a € w}.) So
each condition requires no more than p classes, and then (v) follows. O

For the rest of the proof, fix G satisfying 4.8. Fix t = (v; = (ug, we,pr, 1) : t <
t. < o) from Ry. Let w = |J,w;. Suppose that G | t is constant and that b is
a good instantiation of t in the sense of 3.10. Recall that this definition ensures that
{b% : a < clpm(0)} = Dom(M,), and that if 8 € wy then

tp(b3, {ag : B € Ug we Nv}) duf over {bj : B € we Ny} (4.3)

Prior to the main amalgamation, let us record a case of good behavior.

Claim 4.9. Suppose v € ﬂt<t* ug. Then the set

{o(2,b,) : there ist < t, s.t. v € [we N BN and p(x,Ty) € re(z, Tw,)}
is a partial type which does not fork over M,.
Proof. This is simply because the treeness condition 4.7 along with conditions (i)—(iv)
from the definition of G in 4.8 guarantee that for any ¢ < t’ < t,, there is an order
preserving map h : w; — wy, and this map is constant on the common initial segment
of the w;’s. Thus for some, equivalently every, ¢t < t, the type in the statement of the
claim is simply the partial type
{p(@,b,): v € [wen B and (2, T,) € ri(,Tu,)}

which is consistent and does not fork over M, by definition of R. 0O

It remains to show that the set of formulas

{@a(z,by) :t < ti,o € us} (4.4)

is consistent. Let u = |J, uy and recall w = [J, w, so {a : a < clap(0)} € w. For each
v < A, define:

= {o(z,b,) : thereis t < t, s.t. v € [w, NN and (2, T,) € ry(x,Tw,)}  (4.5)
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We prove by induction on v < A that 77 is a consistent partial type which does not fork
over {a}, : a < clpm(0)} = {0 : @ < clpm(0)}. Clearly this will imply that equation (4.4)
is consistent.'”

~v = 0: Trivial.

~ limit: Consistency is by compactness, and nonforking is by the finite character of

nonforking in simple theories.

v =B+ 1:1f B ¢ J, wy, there is nothing to show.

Suppose then that 5 € w; for at least one t. We can write t, as the disjoint union of
two sets

Zoy ={t<ti:Bew},Z1:={t<te:B€w}
where, by assumption, Z; is nonempty. For i € {0,1} we define:
ri .= {o(z,b,) : thereist € Z; s.t. v € [w NN and ¢(z,T,) € re(2, Tu, )}

Now both 1"2, ri are consistent partial types which moreover do not fork over M,: the
case of 7‘9/ is by inductive hypothesis (it is contained in 75 by definition of Zy), and the
case of r}/ is 4.9. If Zy is empty, there is nothing to amalgamate, so we are finished. If

not, define W C S to be:
W =Wy NW; where Wy := U{wt it € Zop Ny, Wyi= U{wt (teZipna.
Let us show that
Cr{py:yewWp=e (4.6)
By 3.10.5, to prove equation (4.6) it will suffice to prove
W = clp(W). (4.7

Suppose equation (4.7) did not hold. Then for some finite tuple of elements Sy, ..., 5, €
W (of an appropriate length) and one of the functions of the algebra, call it X,
X(Boy-.-yfPn) = B ¢ W. Ast <t = w = clp(we), Be € wy for each t < t,.
Now for any ws, w; with s € Zg # (0, t € Z; # 0, we have that 3, € w, N w; while by
assumption, 5 € w; and 8 ¢ wsNwy. If B > S, this contradicts treeness, 4.7. However, if
B« < B and B, € Ut<t* wy then necessarily 5, € W, also a contradiction. This completes
the verification of equation (4.7) and so also of equation (4.6).

We now check nonforking. By 4.7, W; = w,; Ny for some, equivalently every, t € Z; # ().
So by equation (4.3), By = {b}, : « € W1} is independent from By = {b% : « € Wy} over
B = {b; : « € W}. B is the domain of an elementary submodel of € by equation (4.6).

15 We are actually proving something stronger than explicit simplicity as we will have consistency over all
the w’s, not just the u’s.
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Let 6 = sup(W). From equations (4.7) and (4.6) and Definition 3.10(5), p, =15 | B
is a complete type over a model, which does not fork over M,. By inductive hypoth-
0 d 1
- and 73
fork over M,. If necessary, we can complete Tg,r}y. Apply the independence theorem

esis, r are consistent extensions of p, to By, Bj respectively, which do not
(Theorem G, p. 629) to complete the induction.
This proves that m, G satisfy 3.11 and completes the proof of Lemma 4.2. 0O

We arrive at the first main theorem of the paper:

Theorem 4.10 (Simple is explicitly simple). Suppose that T is a complete first order
theory. Suppose that (\, 1,0, 0) are suitable cardinals in the sense of 1.1 and in addition:

(a) IT| <o
(b) ur=A

Then T is simple if and only if T is (A, u, 0, 0)-explicitly simple.

Proof. If T is simple, apply Lemma 4.2. In the other direction, by Observation 3.13 and
hypothesis (a), if T is (A, u, 8, 0)-explicitly simple then it is simple. O

Note that by the remarks after Definition 1.1, this gives a characterization of simplicity
in ZFC:

Corollary 4.11. T is simple iff T is (A, pu, 0, 0)-explicitly simple for some (every) suitable
tuple (A, 1, 0, 0) satisfying |T| < o and p* = \.

Proof. The existence of such suitable tuples is provable in ZFC, consider e.g. ¢ = 0
regular and > |T|, = (2°)*, and ut =\. O

What did we use in the characterization of Theorem 4.107

First, note that to apply the independence theorem in the inductive step in Lemma 4.2
we needed that € | {b, : v € X} < €; the addition of clp ensured that this would
happen. More precisely, we used that given {v; : ¢t <t. <oc}and S+ 1=v <A\,

1. for each vy = (ug, wy, qi, 1), Wy = clpg(wy).
2. for each f < A, really 8 € |J, ws, € [ {by : v € W} < € where W is the intersection
of Wo = H{wy 1t <te, B¢ wit Ny, Wyi=U{w: t <ts,8 €w}Nn.

For some theories no problem would arise, e.g. when every type is stationary, so no
algebra would be necessary.

Second, it is natural to ask about Theorem 4.10 when the hypothesis (a) u™ = X\ is
replaced by = A If |T| < o, one can satisfy the definition of presentation by simply
choosing the algebra to contain Skolem functions and functions to cover nonforking (a
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small part of what was done in the argument above). Provided the cardinals A, u, 0, 0
are such that the corresponding R, has cardinality A, the existence of the required G
with range A = p may then be trivially satisfied by assigning each element of R its own
color. Thus Theorem 4.10 remains true when “u+ = \” is replaced by u = X and Ry,
has cardinality .

The choices for how to present the parameters (a¥ : o < A) have different advantages.
Listing imaginaries, as we currently do, makes the presentation of formulas much more
compact but introduces a lot of redundancy: each singleton ¢ € Dom(N) appears in
cofinally many tuples. This doesn’t interfere with the nonforking condition in 3.11, as
we assumed pT = A. To show (A, p, 6, 0)-explicitly simple for u* < A, however, would
require addressing this, perhaps by listing the domain of N in terms of actual singletons.

Discussion 4.12. We have stated Theorem 4.10 as “T simple iff T" explicitly simple,” not

i

“T simple iff T explicitly simple,” reflecting our claim that using imaginary elements
is purely presentational. To see this, notice that throughout the entire proof of this
theorem we could have considered each a¥, (or b}) as a finite set with respect to some fixed
background enumeration of the singletons of Dom(N), and considered the corresponding
variable x, as the corresponding finite sequence of variables. In this setup the only
essential addition would be an additional coding function, i.e. an enumeration, translating
between the finite set coded by index « and vice versa, so as to be able to define and apply
the functions of the algebra M. Such a coding function could alternately be subsumed

into the basic algebra S, much as we subsume Skolem functions in 6.1.

Finally, as this discussion reflects, Theorem 4.10 raises the question of the nature of
an intrinsic coloring in certain examples, since we have given only a proof of its existence.
One central example, the generic k-ary hypergraphs omitting complete sub-hypergraphs
on n vertices [13], will be developed in our paper [29].

5. Existence of optimal ultrafilters
Convention 5.1. In this section we assume:

e A\ u,0,0 are suitable cardinals.

e B = %éx%e.

e 0 is Ng or is uncountable and supercompact, see 5.2.

o All ultrafilters D, on B mentioned in this section are o-complete; we may repeat this
for emphasis.

o When V C 2, we write B | V to mean the subalgebra generated by {xy: f €
FL,.o(V)}.

Readers familiar with normal ultrafilters may wish to skip 5.2, 5.3 and 5.4, starting
again with 5.5.
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Definition 5.2. (See e.g. Jech, p. 137.)

1. Call the uncountable cardinal o supercompact if for any A, |A| > o there exists an
ultrafilter £ on I = [A]<° which is:
(a) o-complete.
(b) fine, meaning that in addition for any a € A, {X €I :a € X} € €.
(¢) normal, meaning that in addition £ is closed under diagonal intersections: if

{Xa:ac A CEthen {X €l: X c(),cx Xa} €E.

2. Ifin 1. A = ¢ and £ is normal on I = [0]<?, the set {X € I : X is an ordinal

< o} €&, so we may say “£ is an ultrafilter on .

Fact 5.3. If £ is a normal ultrafilter on k, then € contains every closed unbounded subset
of k. Moreover any f : kK — Kk which is regressive on a set in & must be constant on a
set in E.

Observation 5.4. Let x be large enough. Fiz A = (H(x),€) and let A = H(x). Let J
be the set [A]<7 and let € be a normal ultrafilter on J. Then the set I == {X € J :

X is an elementary submodel of A} € €.

Proof. Let {(an : @ < k) be an enumeration of A and expand 2 to 2A* by Skolem functions
which choose the least witness according to this enumeration. Th(2*) eliminates imag-
inaries and has Skolem functions. For each of the countably many Skolem functions g,
define f, : A — A by: f,(X) is the least § such that bg € X but g(bg) ¢ X, if this
exists, and otherwise f,(X) = X. If f;(X) # X on an &-large set, then it is regressive
on an £-large set, and so by normality constant and equal to some b € A on an £-large
set, contradicting the fact that £ is fine. So it must be that fo(X) = X on an &-large
set Y, for each of the countably many Skolem functions g, and since £ is o-complete,
N, Yy € € is the desired set of elementary submodels. O

Definition 5.5 (Continuous sequence). Let b = (b, : u € [\]<?) be a sequence of elements
of BT. We call b continuous when it is monotonic, meaning v C v implies b,, > b,, and
in addition for all infinite u € [\]<7,

b, = ﬂ{b,, s Cu, v < No}.
So if 0 = Ny then “continuous” is just “monotonic.”

Definition 5.6 (Support of a sequence). Let b = (b, : u € [\<?) be a sequence of
elements of B = %%Mtﬁ'
1. We say X is a support of b in B when X C {x; : f € FI,4(a)} and for each
u € [A\]<N0 there is a maximal antichain of B consisting of elements of X all of which
are either < b, or <1 — b,,. Though there is no canonical choice of support we will

write supp(b) to mean some support.
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2. When a support supp(b) is given, write

+

+
supp(B) 1.0 to mean %a*,

w0

where o, < 2% is minimal such that J{Dom(f) : x; € supp(b)} C av.
3. When V C 2*, we say “b is supported by B | V” to mean that there is a support for
b contained in B [ V, recalling the notation from 5.1.

We emphasize that the support need not be unique. In the next definition, A, u, 6
come from the Boolean algebra % and ¢ comes from the sequence b.

Definition 5.7 (Key Property). Let (X, 4,0, 0) be suitable, and B = B3, o- Let b= (b,:
u € [A\]<7) be a continuous sequence of elements of B+. We say b has the (\, 1, 0, 0)-Key
Property when there exist

(a) V C 2%, |V| < A, such that a support of b is contained in B [ V
(b) a closed unbounded Q. C [A\]<°

such that for every a < 2* with V C «, there is a sequence

of elements of B which generates a multiplicative refinement (b/, , : u € [\|<?) of b
such that for each f € FIML)(a), and each u € €, if x; < b, then we may extend
f C f €FI,0(2") so that xp < bl,.

Definition 5.8. Assume A, u, 0, 0 are suitable. D, is (A, u, 8, 0)-optimal if:

1
22 11,07

o« whenever b = (b, : u € [\]<?) is a continuous sequence of elements of D, with the

e D, is a o-complete ultrafilter on B =B and

(A, i, 0, 0)-Key Property there is a multiplicative sequence b’ = (b, : u € [A\]<7) of
elements of D, which refines b.

Theorem 5.9. Suppose (A, u, 0, 0) are suitable, o > Vg is supercompact, and B = %é; E
1. There exists a (A, p, 0, 0)-optimal ultrafilter Dy on B.
2. Let D be a o-complete filter on B generated by < 2* sets, or'® just generated by a

set supported by B [V, V C 22, |V| < 2*. Then there exists a (A, u,0,c)-optimal
ultrafilter Dy on B which extends D .

16 Note that if 4 < A then ut < 2*, a case we will use.



Sh:1030

650 M. Malliaris, S. Shelah / Advances in Mathematics 290 (2016) 614—681

Proof. Clearly it suffices to prove the second. Let Dj be given. Fix a set X, C Dj of
generators for this filter, with |X,| < 2*. Choose V. C 2*, |V.| < 2* which contains
a support for X,. Without loss of generality, V. = a, < 2* (i.e. if necessary, use a
permutation of 2* mapping the relevant support into an ordinal < 2*). We will use X,,
o in our inductive construction. If no Dj is given, let X, = @ and let o, = 0.

There are at most 2* = |*B| sequences b with the Key Property. For each such b, fix
V € [2]=* and Q. C [\]<7 satisfying 5.7(a)—(b). Choose an enumeration of these tuples

5= ((bs,Vs5,Q):6 € S)

which satisfies

e SC{5<2":8> a, and § is divisible by A\}.
. V§g5f0r665

For each § € S, let Bg be a multiplicative refinement of bs as guaranteed by Definition 5.7
in the case where a of 5.7 is replaced by 6. Without loss of generality'” Bg is supported
by B | (6 + ).

Let A, Iy, £ be given by 5.4, so each N € I is an elementary submodel of 2 of size < o.
Since £ is fine, we may assume that on an £-large set I C I the elements \, i, 6,0,B,s
belong to N. When N € I and A, 0,6, € N, N E “Qs is closed and unbounded
in [A]<?7, so from our external point of view, N € I and § € SN N implies A\N N € Q.

Since each N is small it will (from an external point of view) only contain a small part
of each of these objects. Both AN N and SN N are of size < ¢. Given N and § € SN N,
bsann is (from an external point of view) an element of (bs, : u € [A]<7), which we
may call the “canonical element” for the sequence by as seen by N.

Fix for awhile N € I. Let dy = N{d : d € NN X.}, so dy € D is supported
by B | a..

Enumerate SN N = (4, : € < ex) in increasing order, for some limit ordinal ex < o.
Working in the large background model, by induction on € < en we will build an in-
creasing continuous sequence (f. = fns. : € < en) such that:

(a) each f. € FI, ¢(d.), so necessarily x;. € B+.

(b) if v < € < en then f, C f., and if € < ey is a nonzero limit ordinal, then f. =
U{fy : 7 < €}, i.e. the sequence is continuous and increasing.

(c) if e=7 41 < ey then either

xf. < bs, ann

or else xy, is disjoint to some by, where v € [A N N]<Ro.

17 We may always appeal to an automorphism of B8 which is the identity on B | § to find a sequence of
appropriate support, as e.g. in Observation 9.2 below.
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(d) ife=7+1 < en and x5, < bs_ xnn, then in addition x;, < b’émmz\,.
(¢) x7, < dy.

If € = 0, choose fp to satisfy (a) and (e), recalling that all elements of S are > a.
Otherwise, arriving to €, let g = U'y<e fe- If € = ey or a nonzero limit ordinal, this suffices,
so let fo = g. Otherwise, suppose e = v+ 1, so g = f, € FI, ¢(6,) by hypothesis (b).
As observed above, working in 9B we see that the canonical object for the sequence by
in N, bs, xnn, is an element ¢ of B which is, by choice of S, supported by B | .. So we
may extend g to ¢’ € FI,, 4(d,) such that either x,» < c or x;,Nc = 0. (Either x,Nc =0
already, or not, and if not we can find ¢’ so that x,; < c using the fact that 557 is
continuous; so clause (¢) holds.) Since we had chosen ng to satisfy the Key Property
and to be supported by B [ (dy + A), and 6, + A < dc by choice of S, the Key Property
ensures that if x;s < ¢ = bs_ xnn, then we may extend ¢’ to ¢” € FI,, 9(dc) so that

/
Xg < b5 _an-

Let fe = ¢”. This completes the inductive successor step and therefore the construction.
Let fn = fex-

Having constructed fy for each N € I, we now consider the Boolean algebra 9. Each
fn corresponds to the nonzero element x7, € B*. Observe that for each N € I we may
choose a o-complete ultrafilter Dy on B which contains x ¢, . Moreover for each N, the
choice of xy, in condition (e) above ensures that Dy contains {d : d € N N X,}.

In the remainder of the proof, we will build the optimal ultrafilter D on B by averaging
these ultrafilters. Recalling Fact 5.2, let £ be an ultrafilter on I which is o-complete and
normal. Define

D.,=Avg((Dy:Nel))={aeB:{Nel:acDy}el} (5.1)

Let us verify that D, is o-complete. Given a sequence (a; : i < i, < o) of elements
of D,, by definition, for each i the set X; := {N € I : a;, € Dy} € &. Since & is
o-complete, X := ([{X; :4i < i.} € £&. N € X means that {a; : i < i.} C Dy, so by
the o-completeness of Dy we have that a := (({a; : i < i} € Dy. Then {N €I :a €
Dy} D X € &, 50 a € D, by definition of D,. Clearly D, D D because d € X, implies
that {N € I : d € N} € £ which implies that {N € I : dy < d} € £ which implies
that {N : xs, < d} € X, which implies that d € D,. This suffices recalling that X,
generates Dj.

Now suppose b has the (), u, 0, o)-Key Property. Let § € S be such that b = bs in
the enumeration above. Let b’ be its canonical multiplicative refinement Bg, chosen at
the beginning of the proof. It will suffice to show that if b, € D, for each u € [A\]<N,
then for each i < A,

iy € Da.
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Fix for awhile such an i. Consider any u € [A]<?. By our present assumptions, b,, € D,.
By definition of D,, this means that

{Nel:b,eDyn}e€&

and moreover that b, occurs £-a.a. in models N such that {J,i} C N, i.e. models which
consider b, to be part of the correct problem and contain the index i:

{Nel:{5i}€Nandifue([\]*7)NN then b, € Dy} € £.

For any N in this set, 6 € SN N and so by construction (see clause (d))

Xins <[ {bu:ue N NN}

So by clause (d) above, xs, < bl;,. This shows that b, € D, and as i < A was
arbitrary, this completes the proof. O

Remark 5.10. Regarding the case 0 = Ny, we will prove existence of a (A, u, Rg, Rg)-op-
timal ultrafilter in Corollary 9.7 below.

Our next task is to build a useful choice for D§ mentioned in the proof of Theorem 5.9,
with the aim that any D built from (D, B, D) where Dy is regular and excellent and
D, is from Theorem 5.9 and this given D will not saturate any non-simple theory. The
following fact is well known; we include a proof for completeness.

Fact 5.11. Assume u = p~°. Then there is (u® : € < p,a < u*) such that:

1. u® € [a]<°
2. Beud = uf =udnp
3. if u € [ut]<7 then for some € < p we have that (¥ € u)(uN B C u?).

Proof. To begin, fix a sequence (f, : a < pu*) where each f, : a — p is injective
and in addition is surjective whenever |a| > u. Define a symmetric binary relation F
on up,uz € [pwt]<? by: E(uy,us) if (a) otp(u1) = otp(uz), and (b) if h : uy — us is
order-preserving and onto, and < « are from wuy, then fo(8) = fr(a)(h(B)). Then E
is an equivalence relation with < p classes. [To see this, note the number of its classes
is bounded by the following count: for each set u, we first choose an order type (< o
options), and then for each o € u (of which there are < o), there are < p<? possible
choices for the values of f, on u N a. As we assumed p<° = pu, E is therefore an

<o

equivalence relation with o - (u<?)<? = 1 equivalence classes.] Let (E, : € < p) list these

classes.
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Now for each u € [a]<7, let u® = u iff for some w € E, and v € w
(wn(y+1)E(uu{a})

Otherwise, u% is empty. This sequence will satisfy (1) by construction. To see that (2)
is satisfied, suppose we are given u = u, w, « satisfying the previous equation, and
B € u&. Then letting w’ = u® N B and 7/ = h~1(3) suffices. Finally, condition (3) follows
from condition (2) and the fact that for each a and at least one €, u® is well defined

(non-empty). O

Claim 5.12. Let (\, u1,0,0) be suitable, u = p<?, o uncountable and compact.'® There
exists a o-complete filter D§ on %%A 10 generated by put sets such that:

if D is a regular ultrafilter on X\ built from (Do,B,Dy,j) where B = B, o ond
D. is a o-complete ultrafilter on B extending D, then D is not p**-good for any
non-simple theory.

€

antichain of B. Define

Proof. Let (u% : e < p,a0 < ) be given by Fact 5.11. Let (¢, : v < p) be a maximal

Dy = { U c, @ for some u € [ut]<7, AD {e: (Va € u)(una Cu)}}.
YEA

Dj is a o-complete filter on p by Fact 5.11. It is supported by B [ V when it supports
all the c,’s, and so satisfies the requirement in 5.9.2.

Let C be the monster model of a non-simple theory. We now look for an omitted type
in C'/D. Let ¢(z;7) have the tree property in € (so without loss of generality it will
have TP; or TPs; we observe this distinction, but ultimately don’t really use it). We
choose @, € ‘D¢ for n € °>ut so that:

L. if n € 7(p*) then {@(z;ay,,,) i < o} is a 1-type.
2. if ¢ has TP; then for 5, v incomparable elements of > (1), the set

{e(z;ay), (x;a,)}

is inconsistent,
3. if ¢ has TPy then for i € ¢ and 7,v incomparable (or equivalently, not equal)
elements of “(u™), the set {¢(z;ay), ¢(z;a@,)} is inconsistent.

Now we use 5.11 to pick a proposed path through the tree. For € < p, a < pu™ let 7e o
list u U {a} in increasing order, so 7 o € 7~ p™. Fix a partition (C, : v < p) of I such

18 The assumption that “o is compact” is just used to ensure that there exists some o-complete ultrafilter
D, extending D( is nonempty, so that a D as described by the Claim actually exists.
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that j(C,) = c, for each v < p. For each o < A, define the function f, from I to e
by: if t € Cc then f,(t) = @y, ..

Let p = {p(z, fo/D) : @ < pT}. Then p is a set of formulas of the language of T
with parameters from ¢!/D. Let us check that p is a consistent partial 1-type. Since
consistency depends on comparability in the partial ordering, it suffices to check all
pairs. If B < a < pu™, let Ay = {e < p: B € u2}. By construction, U, ea, ¢y € D§, so
we may choose X7 € D in the j-preimage of this set. Unraveling the construction, this
shows that p is indeed a consistent partial ¢-type.

Assume for a contradiction that we have f € {€ such that f/D realizes p in €!/D.
For each o < pt, let

Ao ={tel:Cp(ft), fa(t))} €D

Let a, = A, /D be the corresponding member of 2B.

As (cy : v < p) is an antichain of 9B, for each o < p* there is y(a) < p such that
by =ay Ncy ) € BT, By the pigeonhole principle, there is ¢ < p such that |t | = pu™,
where

U = {a < pt :y(0) = ()

As {otp(ua) : @ € Uy} has cardinality < o < u™, there is p < o such that |Us| = u™,
where

Uz = {a €Uy : otp(us) = p}

However, B has the p*-c.c. So for some a # 8 € Us, we have that b := b, Nbg is
positive. Let B C I be such that j(B) = b, so B # () mod Dy. Since B is contained in
each of A, Ag, and C¢ mod Dy, we may choose t € BN (A, N AgNCe).

Recall that neo lists u® U {a} in increasing order, and A, = {t € I : €
o(f(t), fa(t))}. Thus by our choice of t and (, f(¢) realizes

{o(z, fa(®), o(x, f5(0))} = {p(x, T ), p(2,an 5)}

But 7¢,q, ¢, are distinct members of 7~ (u) of the same length. Thus by our choice of
parameters in the tree, the set {¢(z,ay, ), ©(, @, )} is inconsistent. [Note that this
does not depend on whether we are in the case of TPy or of TP5.] This contradiction
shows that p is not realized, and so completes the proof. O

Conclusion 5.13. Let (A, p,0,0) be suitable, u < A, and suppose o is uncountable and
supercompact. Let B = %%A L Then there is an ultrafilter Dy on B such that:

(a) Dy is (A, u, 0, 0)-optimal.
(b) whenever D is a reqular ultrafilter built from (Do, B, D.) then D is not u**-good for
any non-simple theory, thus not ut+-good.
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Proof. Use the filter D from Claim 5.12 in Theorem 5.9(2). O

Definition 5.14. Let (A, u,0,0) be suitable and suppose that o is uncountable and
that a (A, u,0,0)-optimal ultrafilter exists. We say the ultrafilter D on I, |I| = A
is (A, u,0,0)-optimized when there exists a regular excellent filter Dy on I and a
(A, i, 6, 0)-optimal ultrafilter D, on %é*,u,e such that D is built from (Dg, B, D.). Note
that any such D will be regular.

We now record the following connection. On the relevance of this property, see sec-
tion 2.2, “Why a large cardinal?”

Definition 5.15. (Flexible filters, Malliaris [22].) We say that the filter D on a set I is
Mflexible if for any f € N withn € N = n <p f, we can find X, € D for a < A
such that for all t €

f(t) = {a:te Xa}
Informally, we can find a A-regularizing family below any given nonstandard integer.

Observation 5.16. Let (A, u,0,0) be suitable and o > Wy supercompact. Let D be a
(A, p, 0, 0)-optimized ultrafilter. Then D is flexible.

Proof. It was proved in [22] Section 8 that any regular ultrafilter which is good for
some non-low simple theory must be flexible. So this Observation will be an immediate
corollary of the theorem, proved in the next section, that any such optimized ultrafilter
is good for any countable simple theory.

One can also give a direct proof, which we only sketch as it is not central for our
arguments. We know D is built from some (Dy, B, D.) where Dy is excellent (therefore
good, therefore flexible) and D, is o-complete for o > Ny. Then the argument is exactly
that worked out in Malliaris and Shelah [24] Claim 7.8. In particular, nothing about
optimality of D, is used, only its o-completeness on a completion of a free Boolean
algebra. 0O

This gives a new solution to an old question of Dow [6], which we had also answered in
an earlier paper [23] assuming a measurable cardinal. In our present terminology, using
‘flexible’ for ‘ok,” the question is:

Question 5.17. (Dow 1985, in our terminology) Does there exist a regular ultrafilter which
is kT -flewible and not kt-good?

Conclusion 5.18. Let (A, p, 6, 0) be suitable and o > Ry supercompact. Then there is a
reqular ultrafilter D on \ which is A-flexible and not ™ -good.



Sh:1030

656 M. Malliaris, S. Shelah / Advances in Mathematics 290 (2016) 614—681

Proof. An optimized ultrafilter will fit the bill by 5.13 and 5.16. O
Our final claim shows that “not p*-good” in 5.13(b) is best possible.

Claim 5.19. Let (A, u, 0,0) be suitable. If Dy is a (A, p, 0, 0)-optimal ultrafilter on B =

%%A 10 then:

1. D, is uT-good.

2. if D is a (A, u,0,0)-optimized ultrafilter built from some regular excellent Dy along
with D, and B, then D is ut-good.

Proof. For (1) it will suffice to show that if (b} : u € Q = [u]<?) is a continuous sequence
of elements of D then it has a multiplicative refinement. Define b? = (b2 : u € [\]<7)
by: b2 = bl .- 1t suffices to show that b? has the Key Property 5.7, and therefore has a
multiplicative refinement by optimality. Choose V C 2*, |V| < pasin 5.7(a). Let v < 2*
be any ordinal such that o 2 V. Define a new maximal antichain of B by (c. : € < p)
where ¢ = xy, and fc is the function with domain {a} and range e. Let (uc : € < p)
list Q = [u]<°. Define b’{i} for i < A by: if ¢ > pu, then bf{i} = lg, and if i < p then
by = N{b2 Nc. : i € uc}. Let (b, : u € [A]<7) be the multiplicative sequence generated
by <bf{i} 4 < A). It remains to check that 5.7(b) holds. Fix u € [A\]<° and let €, be such
that u N = ue . If x; < b3, then x; Nee, Nb3 >0, and ¢, NbE < b, for each
i € u=u.Soasb is multiplicative, xsMNce, N bi* < b!, as desired. This completes
the proof that b? has the Key Property, and so the proof of (1).
(2) follows from (1) by Theorem F, p. 625. O

In Claim 5.19, it would be natural to consider adding a monotonicity clause of the
form “D, is (A, p, 0, 0)-optimal and X € [u, \) implies D, is (N, u, 0, 0)-optimal.” This
would require a slight change in the definition, since we have tied A to the size of the
underlying Boolean algebra 2*, so we omit it. If we were to add an additional parameter
so as to separate these two uses of A, the size of the Boolean algebra and the length of
the sequence b, then we have monotonicity in the second.

6. Presentations in ultrapowers

In this section we prove a lemma saying that presentations for types in ultrapowers
can be arranged to interact with a choice of lifting of the parameters in a nice way. This
lemma will proceed by building an algebra & which is the optional input to Lemma 4.2.2
above.

Lemma 6.1. Suppose (A, u,0,0) are suitable, T is (A, u, 8, 0)-explicitly simple, T elimi-
nates imaginaries, T is complete and simple with infinite models, and |T| < o. Suppose
we are given:
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1. D a regular ultrafilter on I, |I| = A.

2. M E T is AT -saturated, and admits an expansion M T by new Skolem functions for
formulas of T. Let Tt = Th(M™).

3. N X MY/D, ||N|| = X\, N admits an expansion to N* = TT such that N* C
(M)/D, and p € S(N).

Then there exist

o a (N 6,0)-presentation m = ((pa(z,al) 1 a < A),M) of p
e an intrinsic coloring G : Ry — p, which we may assume has range = p
o and a choice of lifting {a’, : « < \} — M!

such that identifying each a} with its image under this lifting, we have that for any
w = clp(w) C A,

(a) for everytel,
Cr [ {alt] :a € w} < €,

(b) for each finite sequence (g, ..., i, ) of elements of w, and each formula ¢(zx,y)
of T with £(y) = k, there is f € w such that for all t € I,

M E Ga)p(a,al, [ al_ ) = elaltl, b, [f.....a%_,[£).
Before proving Lemma 6.1, we record that such types are enough.

Observation 6.2. Let T', D be as in Lemma 6.1. To prove that D is good for T it would
suffice to show that every p arising in the form 6.1.3 is realized.

Proof. Since the ultrafilter D is regular, we are free to choose any infinite model M =T
as the index model, in particular we may choose it to be sufficiently saturated. Fix any
AC MI/D, |A| < ), and pg a type over A. Let M+ be any expansion of M by Skolem
functions and let 7" = Th(M). We may assume |TF| = |T| < o. Since ultrapowers
commute with reducts, there is an expansion of the ultrapower M’ /D to a model of T.
In particular there is an elementary submodel Nt of the ultrapower (in the expanded
language) such that A C Dom(N™*) and |[NT|| = A. Let N be the reduct of Nt to 7(T)
and let p € S(N) be any type extending pg. Clearly to realize py it suffices to realize
p. Finally, regarding the range of the function G: if G is an intrinsic coloring of some
presentation m, let Eg be the equivalence relation on elements of Ry, given by Eg(t,t’)
iff G(v) = G(v'). Then any function G’ : Ry, — p such that Eg refines Eg will also be
an intrinsic coloring of Ry, so we may assume the range of G is exactly p.
This completes the proof. O
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Proof of Lemma 6.1. Let 7+ denote the signature of Nt and 7 that of N, and let €
denote €7, the monster model for T'. Let £ C X\ denote the set of even ordinals less than
A. To begin, let

(palz,al):a € E) (6.1)
be an enumeration of p which satisfies:

(a) each aj is a singleton, possibly imaginary;

(b) {aj:a € E} =Dom(N);

(c) {aj : a € |T|N E} is the domain of an elementary submodel M, of N over which p
does not fork, and {pa(z,a}) : a € [T| N E} is a complete type over this submodel.

For each a € E, choose g, € ' M such that first, a¥ = go/D, and second, if a,o’ € F
and a}, = a},, then go = go’-

Let Terms be the set of all terms built up inductively from function symbols of 7
and the free variables {z, : & € E}. Choose a map p : Terms — A such that:

(i) p is one-to-one and onto.
(ii) foreach v € E, 2o — a € E.
(iii) p~ ({a : @ < |T'|} consists precisely of the elements of Terms whose free variables
are among {z, : o < |T'|}.

Now we define functions {g, : &« € A\ E} C M, i.e. we need to define the value of g,
when « is odd. Fix for awhile « € A\ E. Then p~!(«) is a term, say t = t(x;,, ..., 2i,_,) €
Terms, where k is finite and depends on t and this notation means that the free variables
of t are precisely z;,, ..., 2;, _, (in particular t is not necessarily a term arising as a single
function applied to a series of variables). Fix t € I. Since M =TT, there is a unique
a € Dom(M™) such that

Mt |: “a = t[gio (t)’ T ’gik—l(t)]”

where the expression in quotations means that the term t evaluates in M ™, on the given
sequence of values, to a. Assign g,(t) = a. As a € A\ E and ¢ € I were arbitrary, this
completes the definition of {g, : @ < A\ E}. Note that this definition applied to g, for
a even would just return g,.

Before continuing, let us prove that if N and {a}, : a < |T'|} are closed under the
functions of (M*)!/D then {go/D:a € X} = {ga/D:a € ENX} = X where X €
{|T|, A} In other words, we have not actually added new elements to either Dom (M)
or Dom(NN), but have simply repeated existing elements in a larger enumeration. Note
that the second equality was ensured by (b)—(c) above and the right to left inclusions
are obvious. We prove the remaining inclusion, {go/D:a € X} C{go/D:a € ENX},
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by induction on the complexity of the term p~!(a). If p~!() is a single variable x5 with
8 € X, then by our construction we know that 25 = o and so a € EN X. Suppose then
that p~!(«) is a term of the form f,(t;,,...,t;, ,), where in slight abuse of notation, we
write this to mean that f, is an ¢-place function symbol from 7+ \ 7 applied to the terms
tiy, - - -, ti,_, . By inductive hypothesis, for each j < £ there is a; € £ N X such that

gﬁ(fz'j)/’D = Yo, /D.

Then as both M, and N were expanded to models of T+, writing “¢* | X” for the
appropriate expansion, there is some 8 € F N X such that

¢TI X ):f(gaiO/D7"'7gai(_1/D) =gp/D

and then unraveling the definition of g, in the previous paragraph, clearly go/D = gg/D.

For @« € A\ E, let ¢, be the formula “z # y”, recalling that p is nonalgebraic (of
course even simpler formulas would work e.g. “x = 2”). For each oo < A, let a}, = go/D.
Then the enumeration

¢ = (palw,a0) s < A)

will satisfy the hypotheses of Lemma 4.2. So we have our enumeration and our lifting
a’, — go (for a < A), and it remains to translate these Skolem functions in the natural
way into an algebra & on A and to prove this algebra has the desired properties.

For each function symbol f, € 77\ 7, of arity k = k,, add a function F, of the
same arity to the algebra defined as follows. Although similar to the argument just
given, this definition will have an important additional uniqueness property. For each
(Qigy -y a4, ) € *A, in slight abuse of notation, define

Ftp<aioa ceey aik—l) = P( “f#,(p_l(aio), t 7p_1(a7;k—1))” )

where the expression in quotation denotes the element of Terms formed by applying
the k-place function symbol f, to the sequence of terms p~'(a;,), -+, p~ (i, ). As
p was a bijection, this value is unique and well defined. Let S be the algebra given by
the functions {F, : f, € 77 \ 7}, so clearly |S| = |77 \ 7| < |T| < 0. We now make
several observations about how the algebra S interacts with the enumeration ¢ and the
functions of 71 \ 7. First, our construction has guaranteed that:

(1) For each Skolem function f, € 77\ 7, say of arity k, and every distinct o,y , ..., o, ,
from A, there exists § < A such that for allt € I, M* |=“f,(a*[t]a,,, - -- PO, [t]) =
aglt].”

This is more than would be guaranteed a priori by Y.0§’ theorem: .0 would say that if we
fix an enumeration and a lifting, then for any such sequence of a’s we may find a 8 which
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works almost everywhere. Here we have a single §, namely the value of Fi, (), ..., o, ),

which works everywhere.'?

(2) For each k < w and each f, € 77 \ 7 of arity k, there is a function F, € S of arity
k such that whenever a;,,...,q;, _,, B satisfy condition (a),

Fg(aio,... ,Oéikil) = 6

This says that the F, translate the action of the Skolem functions in the natural way.
Finally, let us prove that:

(3) For any nonempty w =cls(w) CAandt €I, € [ {al[t] : « € w} < €.

Since we have fixed a lifting, X [t] = ga(t), so we will use these interchangeably. Fix some
such w = clg(w) C X and some ¢ € I. Since this set is a subset of the index model M,
it will suffice to prove that M | {g.(t) : @« € w} < M. Suppose for a contradiction that
{9a(t) : a € w} = {al[t] : @ € w} is not the domain of an elementary submodel of M.

Then there are a formula ¢ = ¢(z,y) and oy, . . € w such that

: ’aif(ﬂ)*l
M ': (Elac)go(:c, aaio [t]v R ail(g),l m)

but there does not exist v € w such that

M = plasftlal, [, )

Let f, € 7% be the function symbol whose interpretation in Tt corresponds to the
Skolem function for ¢. Then

M™T = @x)e(z,a’, [t],...,a [t]) =

g (g -1
o(fola, [, val, [).ad, [0 .al, [H]):

Moreover, by observation (1), there is 8 < A such that for all elements of I, and in
particular for the ¢ we have chosen,

M* = Jola™[tay, - - .,a;ik_l [t]) = aj[t].
By observation (2), w = cls(w) means that necessarily § € w. This contradiction com-
pletes the proof of (3).

Notice that if M D S is any larger algebra and w = clp(w) C A, then a fortiori
w = clg(w) so (3) remains true.

19 Note that we accomplished this by “padding” our original enumeration so that (al : o < A) may contain
many repetitions.
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Then the enumeration ¢ and the algebra S satisfy the hypotheses of Definition 3.2. As
we have assumed that T is (\, u, 6, 0)-explicitly simple, we may apply that Definition to
obtain a presentation m = (g, M) and an intrinsic coloring G : Ry — p, with M D S.
This presentation m, the coloring G, and the lifting (g, : @ < A) are as desired. Note that
by definition of presentation, any cla-closed set is nonempty, so we no longer need the
proviso “nonempty” when applying (3) in the context of a presentation, Definition 3.3.

This completes the proof of the claim. O

7. Ultrapower types in simple theories

In this section we assume the following;:

e (A, 1, 0,0) are suitable.

e 0 > N is strongly inaccessible.?"
_ el

« b= %2A7u,9'

o T is complete, countable, first-order, and (\, p, 8, o)-explicitly simple.

In the next Theorem, we have assumed existence of an optimal ultrafilter rather than
“o is uncountable and supercompact”. This is because supercompactness was used for
expediency to construct an optimal ultrafilter but nothing about the definition of optimal
or optimized (Definition 5.14) seems to suggest its necessity, and supercompactness is

not otherwise used in the proof.

Theorem 7.3. Suppose (\, u,0,0) are suitable. Suppose a (A, p,0,0)-optimal ultrafilter
exists. Let T be a complete, countable theory which is (A, p,0,0)-explicitly simple, let
M =T, and let D be a (A, u,0,0)-optimized ultrafilter on I, |I| = \. Then M!/D is
AT -saturated.

Proof. As ultraproducts commute with reducts, we may assume 7' eliminates imaginaries
(if not, work in 7°°? throughout). To begin, quoting Lemma 6.1 and Observation 6.2, let
us fix:

1. Dy, D, j witnessing that D is optimized.

2. N < M!1/D, ||N|| = )\, and p € S(N) nonalgebraic, for which there exist:
(a) a (A, 0,0)-presentation m = ({pq(x,ar) : a < A), M) of p
(b) an intrinsic coloring G : Ry, — u, with range exactly u
(c) and a choice of lifting {af, : « < A} — MT

20 What we use in this section is first, that there is an optimal, thus o-complete, ultrafilter on 9B, and
second, we use that o is strongly inaccessible in Claim 7.6. As o will be strongly inaccessible in our cases of
interest (e.g. o compact or strongly compact) there is no present cost to using this in Claim 7.6; however,
that Claim could likely be circumvented.
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i.e. let F': M?/D — MY be a choice function, meaning that F(a/D) € a/D, and
in the rest of the proof we allow ourselves to write a7, instead of F'(a}) when this
is clear from the context, so for a < A and ¢ € I the value “a’ [t]” is well defined]
we have that for any w = cly(w) C A,
(d) for any t € I,

Cr [ {aljt] :a e w} 2 €,

(e) for each finite sequence (w,, ..., ®;,_,) of elements of w and formula ¢(z,y) of
T with {(y) = k, there is 8 € w s.t. for all t € I,

M E (Go)p(e,at, [0, 1) = (a3l ab, [f,....a5, [

3. Recall that the properties ensured by the presentation m include:

(a) (a¥ : o < A) is an enumeration of N = N° (note that the next few conditions
put some restrictions on this enumeration). We write A, for the set {as : 8 < a}.

(b) @ = {palz,al) : a < A), corresponding enumeration of the type p.

(¢) M is an algebra on A with < 6 functions such that for each u € A, if |u| < 6
then | clag(u)] < 6, and if |u| < o then |clp(u)] < o.

(d) {a:a€cm(d)} is a cardinal < |T|.

(e) N |{a:aeclm(®} =M, =N, where || M,|| <|T| < o and p does not fork
over M,.

(f) for each uw € [A]<9, N | {a} : a € clpm(u)} is the domain of an elemen-
tary submodel N,, < N, and if in addition u = cly(u) then the partial type
{¢va(z,a?) : o € u} implies the elementary diagram of N,, (and is an element
of S(N,) which does not fork over M,).

(g) for each u € [A]<7 and § < « € clp(u), we have that tp(a’, Ag U M,) does not
fork over {a : v € clpm(u) N B} U M..

4. Q= [N\<°.

With the stage set, our first task is to build a continuous sequence (b, : u € Q) of
elements of B which form a possibility pattern corresponding to the type p. Towards
this, we shall describe N by a type in A variables in the natural way. Let (x4 : @ < A)
be a sequence of singleton variables (possibly they will be filled by imaginaries) and as
before, for v a sequence of elements of A, let Z, denote (z, : @ € v). [If v was defined
to be a set, interpret z, by considering v as a sequence listing its elements in increasing
order. The main set I'y of formulas, in the language £ of T', is closed under permuting
the variables.] Define

Iy = {¥(Z,) : v € ¥\, ¢ an L-formula in |v| free variables }. (7.1)

For each finite u C )\, define
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Pu = Pu(T,Tu) = /\ Pa(T; Ta). (7.2)
acy

These are collected in the set
Dy = {@y :u e [A\<N}. (7.3)

Note that since p € S(N), (Iz)py(x,Z,) € T for each ¢, € T's. Now we invoke Lo§’
map. For each ¢(Z,) € I'1, define

ay(z,) = J(Ay(z,)) where Ay, ={t € I : M = [a,[t]]}. (7.4)

It will be useful to name the element of 96 recording that “M, appears correctly”:

aci(0) = [ Haw@,) v € [lm@)] A ¢(@,) el A Efaly €D (7.5)

Note that in equation (7.5) we make essential use of o > |T'|. Likewise, for each ¢,, € I's,
define

b,, =j(B,,) where B, = {t e l: M = (3z)pu(x,a,lt])}. (7.6)

By Los’ theorem, each by, (, z,) belongs to D, and a fortiori to SBF. As D, is o-complete,
we may define b, for all u € Q by setting b, = by, (+,z,) When u is finite and b, =
N{b, : v € [u]<¥0} when u is infinite. Then

b=(by:ueQ) (7.7)

is a continuous sequence of elements of D, in the sense of 5.5 above, and is a possibility
pattern 2.12 (for the formulas in the sequence ¢) by Lo§’ theorem. So by Theorem F,
showing b has a multiplicative refinement (b/, : v € [A]<?) in D, will suffice to realize

the type p.
Notice at this point that for any u C A,

bl (u) < Aclu(0)- (7.8)

This follows from condition 3.(f) from the beginning of the proof: “for each u € [\]<7,
N | {a} : a € clpm(u)} is the domain of an elementary submodel N,, < N, and if in
addition u = cly((u) then the partial type {pq(z,a’) : @ € u} implies the elementary
diagram of N,,.”

Our next task is to define a family of supporting sequences for b, recalling Defini-

tion 5.6. We will set the stage by defining several progressively more refined families
F CFIL,0(2%) x [N<°.

In each case, <r is the natural partial order on elements of F given by
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(f?w) <r (f/vwl) when f c f/vw - w'

where recall f C f’ implies x» < Xy, as befits having more information. In each case,
the family F will be defined as [ J{F, : u € Q}.
For each u € 2, we define F0 to be the set of pairs (f, w) such that

(i) feFL,0(2Y), we N
(if) v C w = clp(w), so w is closed and contains the closure of w.

For each u € Q we define F} C F9 to be the set of pairs (f,w) which are, in addition,
decisive “on w”:

(iii) x5 < by, (23,) or Xy <1 —=by, (z7,) When v € [w]<¥ and ¢, € Ty.
(iv) x5 < ay(z,) or xy < 1—ayg,) when v € [w]<N and ¥(z,) € I'y.

The family F. is dense in F0, that is, for any (f,w) € Fo there is (f',w') € F}
with (f,w) <zo (f’,w’). This is because the generators (x; : f € FI,0(2")) are dense
in B. Notice also that both families are closed under limits which are not too large, i.e.
if & < 0 is a limit ordinal and ((fg,wg) : B < «) is a strictly increasing sequence of
elements of F}, then (Us.,, f5,Ug<q wp) € Fyy. To prove this we need to check that the
limit | g<q Wp remains closed, which is true because each wg is closed.

Following an idea from [28], we now settle collisions. For «, § € A, write

Avg=as ={t €1 : M | an[t] = ag[t]} and ag,—a; = j(Aan=as)- (7.9)

Clearly for any f € FI, 4(2*) and o < \, x5 < a,_—q,. For each u € Q, let F2 C F. be
the set of pairs (f,w) such that, in addition,

(v) for each o € w, f decides equality for «, meaning that there is 8 < a, 8 € w such
that: xy < a,,—q, and forno f' O f and v < § (not necessarily from w) do we have

X < Aa,=a. -

To prove that F2 is dense in F, it suffices to show that for each (f,w) € F} and a € w
there is (fa,wa) With (f,w) <z1 (fa,ws) in which this condition is met for o.. Suppose
we are given (f,w) € F! and a € w. Let By = «, fo = f. Arriving to i, Xf < Qgu=ap,
and if in addition xy Na,, =., = 0 for all 3 < 3;, then the condition is satisfied for a.
Otherwise, let 8,11 < f; be a counterexample and as the generators are dense, we may
choose fiy1 2 f; so that xp,,, < Aan=agp,,, " Since the ordinals are well ordered, this
process stops at some finite stage n = n(«a). Let w, be the closure of w U {8,}. Fix
(fa,wa) € FL such that (f,,w,) <F1 (farwa). Then (fo,ws) is as required. As Flis
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closed under limits of cofinality less than 6, we may build the desired (f.,w.) € F2 as a
limit of the elements (f,,w,), indexing suitably to handle the new Ss added along the
way.

Note that whenever (f,w) € F2 and o € w we may define

pa(f) =min{f < a: x5y <ag,—q, and for all v < § xy Na,,—a, = 0}. (7.10)

Moreover, po(f) € w and also pa(f') = pa(f) for any f C f' € FI, 4(2*), so this value
is robustly defined.?!

We now record how elements of F2 naturally induce types. The key families F_,
F2 C F2 will be defined in terms of conditions on these types. In what follows ¢(...) is
a type of parameters, and r(z,...) may or may not correspond to a fragment of p; the

notation is meant to invoke 3.9. For each u € Q and each (f,w) € F2,
define gy ., to be the type in the variables z,, given by:
f0(Tw) = {$(T0) : Xp < Ay,), P(T0) €1}
U{-0(Z) s xp < 1—ay,), ¥(@,) €T} (7.11)

Notice that if x; < a.j,,(g), then the restriction of gy ., to the variables z.,,(9) = Zs,, is
realized by (a¥, : @ < ). Next, for each u € Q and each (f,w) € F2,

choose 1y = 1f.u(%, Tw) 2 ¢fw to be a complete type such that: (7.12)

(a) if by, realizes ¢ in € then 7(z,b,,) dnf over {b, : @ < clpg(0)}.
(b) if consistent, choose r so that in addition
r D {a(r,24) : @ € u U{pa(x,24) : a € clpg(0)}.

The choice of each r¢,, will be fixed for the rest of the proof. Note in particular that if
by satisfies a < clp(0) = by = af, then 7(z,by,) dnf over M,.
Let F2 C F2 be the set of (f,w) such that in addition:

(vi) whenever b, is a sequence of elements of the monster model realizing g ,,, then for
any v C w, v = cly(v) we have that {b, : o € v} is the domain of an elementary
submodel.

Let us prove that F2 = F2 for all u € €. Suppose for a contradiction that (vi) fails for
some ¢y, and b,,. Then there is a finite v C w and a formula ¢(z,y) of T with £() = |v|
witnessing the failure, i.e. € = Jxp(x,b,) but there does not exist v € w such that

21 In some sense we have found a small region where the elements an,a, (r) move ‘in lockstep’ Note that
we are simply tying them to each other, not to any particular values in the monster model.
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€ = (by,by). Since gy, is a complete type, ¥(Z,) = Jrp(x,b,) € qf.. By definition
of ¢f.v, it must be that

Xf < Ay(z,) i.e. Xf Sj(Aw(iv) = {t el: M ': Elxgo(x,&z[t])})

By assumption (2)(e) at the beginning of the proof, there exists 5 € w such that for all
tel,

M = (Bx)p(z,a,[t) = lazlt], a,[t]). (7.13)

We will show x < ay,,2,)- If n0t, ayz,) N (1 —ay(es,z,)) > Xp > 0, thus

Aw(fu) \Aso(mﬁviv) # @

Let ¢ be any element of this supposedly nonempty set. Then M | (3z)p(x, aX[t]) but it
is not the case that M [ p(aj[t], ay[t]), contradicting (7.13). This contradiction proves
that xy < a,(z4,z,)- S0 by the definition of gf ., it must be that 0(x8,Ty) € qfaw-
This contradiction proves that (vi) will always hold, i.e. Lemma 6.1 has arranged that
F2 = F2 for each u € Q.

There is one more family to define, F}. First, let us record that the “if consistent”
clause in the definition of r/,,, (7.12)(b), is often activated.

Observation 7.4. Suppose u € Q, (f,w) € F2, and xy < bery (). Then vy will always
contain {pa(z,zq) : o € u} U{pa (2, 24) : @ € clpg(0)}.

Proof. In other words, we will show the “if consistent” from the definition of rf,, is
consistent. Denote by N, the elementary submodel € [ {a, : & € clpq(u)}. (By our condi-
tions on the algebra this is an elementary submodel, which includes M.,.) The hypothesis
on Xy means that q [ T, () is realized by N,, under an appropriate enumeration. Since
nonforking is invariant under automorphism and all the types in question are complete,
suppose without loss of generality that we are given b,, realizing qf,w such that bl ()
enumerates Dom(M), and o < cla (@) implies b, = a . By the definition of presentation,
p | Ny is a type which includes {¢q(z,a) : @ € u} U{pa(z,ak) : a < clpg(0)} and does
not fork over M,. We may choose 7. (z,b,) to be any nonforking extension of p | N,
to the elementary submodel € | b,,. Let r(x,Z,) be the translation of r, to a type over
the empty set in the variables x, x,,. This shows that “if consistent” indeed is, so we
may assume 7¢,, has the stated properties, though it need not have arisen in this way.

Observation 7./ 0O

To motivate our remaining step in the construction of a support, consider for a moment
a sequence of four-tuples induced by the same f, say
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<(/Ut7wt7th,wt7rft,wt) <t < U>

where (vg, W, Gf, w,, T f, w,) arises from (fi, w;) € ]-'i and v; C ug, and there is a single f
with f; C f for all . A priori, this four-tuple need not be from Ry, (e.g. if xyNag, 9y = 0)
nonetheless we may begin to analyze its properties. By definition of gy ., existence of
such an f means the union (J,_, ¢y, w, will always be a partial type in the variables 7,
where w = [J{w; : t < t.}. Let b}, be any sequence realizing this type. Then the types
T w; (:c,l;:}t) may be explicitly contradictory as their definition allowed for arbitrary
choices. Going forwards, our strategy will be to handle the issue of explicit inconsistency
in the r’s with the construction of b’; before that, we ensure the necessary nonforking
with the following definition.

Recall D-rank from 2.17 above. In the following, we do not require that D-rank is
definable, only that the value is constant in the sense described.

Let Fi be the set of pairs (f,w) € F2 such that in addition:

(vii) for every (f/,w') € F3 with (f,w) <zo (f’,w’), and every sequence (b, : o € w')
of elements of the monster model which realizes g¢ (T, ), and every o € w,
o tp(ba,{by: v € w' Na}) dof over {b,:y € wNa}.
o for any formula ¢ and k < w,

D(tp(ba,{by : v €w' Na}),p, k) = D(tp(ba, {by : v €wNal}), ¢, k).
Claim 7.5. As T is simple and 0 is reqular, F2 is <ro-dense in (FL, <rF1).

Proof. It suffices to prove it is dense in F.. Suppose for a contradiction that F2 is not
dense. By induction on @ < 0 we choose by, Gu, fo, Wa such that:

o (farwa) € Fy

o B <aimplies (f,w) <z (fs,wp) <F1 (fa,Wa)

o if v is a limit then (fq,wqs) = (U,@<a fsa, U,B<o¢ wg)

o qoé:qfa,waasoﬁ<a - Qﬂg(h

o (bg: [ < a) realizes qo [ {2y 17 € wa Na}

o if & = 8+ 1 then for some i € wy
() tp(bi, {by : v € w, Ni}) forks over {b, : v € wg Ni}
(8) for some ¢ € L(7r) and finite k,

D(tp(bi; {by 17 € wa Ni}), ¢, k) < D(tp(bs, {by 1 7 € wg Ni}), ¢, k).

As 0 = cof(0) > |T|, by Fodor’s lemma this contradicts the assumption that T is a simple
theory. Claim 7.5 0O

We are ready to choose partitions supporting each b,,, u € 2. The next claim states
our requirements, and adds a coherence condition.
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Claim 7.6. There exists

f=Fuue @)= {{(fucwue): C<p) : ue)
which is a good choice of partitions for b, where this means

L. for each u € Q, fu = ((fuc,wauc): ¢ < p) is a sequence of elements of F such that
(Xf,. : ¢ < ) is a mavimal antichain of B and for each ¢ < u, either xy, . < by,
orxs, . <1—by.

2. (Coherence) writing V = [J{Dom(fu,c) : v € Q,( < p},
if vo € [V]<Y and uy € 2, then for some u, we have: u; C u, € Q and ¢ < p =
vo € Dom(fy, ¢) and f,. refines fu,.

Proof. B satisfies the put-c.c. and has maximal antichains of cardinality u, so for any
u € Q we may choose fr = {(fu.e,Wae) 1 € < u} C F1 such that:

(Xf,.. ¢ < p)is a maximal antichain of B, so € # ( < pu = fu e # fuc-

[We build such a partition by induction on ¢, using the density of F+. In doing so we may
assume, without loss of generality, that 0 € Dom(f) for each f used in this partition;
then the partition will have size at least i, and since 98 has the u™-c.c., the construction
will stop at some ordinal < p*. Renumbering, we may assume the sequence is indexed
by ¢ <p] B

Say that f,. refines fuj if for each € < p, fu,, extends f,, ¢ for some ¢ < p. To

<0

ensure coherence across the family, 1.1 ensures that we may enumerate Q x [A\]<? as

((ui,v;) 1 i < A). Build f, by induction on i < A as follows. Arriving to 1,

then let j(¢) be the least such j and let 7u be a common refinement of 72 and 7u],.

(a) if (35 < i) ((us Cuj) A (( < p = v; € Dom(fy,)))

(b) If there is no such j, choose 7u such that it refines fi and fuk whenever k < ¢
and ur C u; and ¢ < p = Dom(fy, ¢) 2 vi. We can do this because there are
< 2l%il < @ such k, recalling that o < @ and o is (by our hypotheses in this section)

compact, thus strongly inaccessible.

For each u € Q, let f,, = ((fu.c, w, ¢) + ¢ < p) be the resulting family. This completes the
construction. Claim 7.6 O

For the remainder of the proof, fix the support just built as well as

V C 2} |V| = A such that U{Dom(fmc) ueQ,<urCV. (7.14)
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Having built a support for the sequence b, our next task is to define the proposed
multiplicative refinement b’. Towards this, let us take stock. For each u € Q and ¢ < p,
we may henceforth unambiguously write

Qu,¢ fOr qp, cwuer Tuc TOU Tr, o (7.15)

Claim 7.7. For each u € Q2 and ¢ < p,

if Xf, . <Dl () then (U, Wa¢, Qu,cs Tuc) € Run-

Proof. We check Definition 3.9. For 3.9.1-2, u € [A\]<?, w € [A]<?, and u C clpy(u) C
w = cly(w) by the definition of F°. Towards 3.9.3, qfw is always a complete type in the
variables 7,,, and if xy < bqy,, () then xy < a., (@) by equation (7.8). So 3.9.3(a), holds
by definition of g, (really, of I'1) and 3.9.3(b) holds by the remark after equation (7.3).
3.9.44-5(a) follow from Observation 7.4. 3.9.5(b) is because ¢, is a complete type (notice
that the condition “if w’ C w is M-closed then €7 [ {0}, : o € w'} <X € and 744, (z,b.,)
is a complete type over this elementary submodel” does not ask for a given enumeration
to have any closure properties, but simply that all formulas are decided). Finally 3.9.5(c)
is by the fact that (f,w) € F2. Claim 7.7 0O

The four-tuple from the statement of Claim 7.7 is therefore in the domain of the
function G giving the intrinsic coloring for m, which was fixed as part of the presentation
at the beginning of the proof. (We may trivially extend G to all four-tuples arising from
some (fu. ¢, wy,c) by setting G to be oo if it is not otherwise defined.) We will want to
amalgamate certain such tuples later in the proof, but first we take advantage of the
ultrapower setup to eliminate some extraneous noise. Define E to be the equivalence
relation on pairs (u, () € Q x u given by:

(u1,C1)E(uz, ¢2) iff (7.16)

1. (u1,wy, ¢) and (ug, Wy, ¢) satisfy:
(i) otp(u1) = otp(uz), otp(w:) = otp(wz)
(ii) if v € w1 Nwsg then otp(y Nw;) = otp(y Nws)
(iii) if v € wy Nwg then v € uy iff v € ug
(iv) the order preserving map from w; to wy carries uy to us.
2. There is an order preserving function h from Dom(f1) onto Dom(fs), s.t.:
(i) (implied) otp(Dom(f1)) = otp(Dom(f2))
(i) 7 € Dom(f1) = falh(1)) = f1(7)
(iii) v € Dom(f1) NDom(f2) = h(y) =7.
3. ¢1=C.
4. G(u1, Wuy ¢y Qui,cis Tuscn) = G(U2, Wuy ¢ Qua,cas Tus,Ca)s 1-€ the values are both de-
fined and equal or both oc.
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Claim 7.8. E from (7.16) is an equivalence relation with u classes, which we will list as
(Be e < ).

Proof. For counting purposes we may assume ( < p is fixed.

For the first condition, the equivalence class of (u,w, ) is fixed if we determine the
ordinals v = otp(wy,¢), § = otp(u), and determine which function from § into «y gives .
There are < 6 < u choices of 7, < ¢ < u choices of §, and for any given v < 4, § < o, we
have by 1.1(c) that |°y| < 6 < . So by 1.1(b), the total count is bounded by - -t = p.

For the second condition, the equivalence class of f, ¢ is fixed if we first determine
the ordinal otp(Dom(f,)), call it 3, and then determine which function from f into
(o determines the values of the function. Since otp(Dom(f, ¢)) is an ordinal < 6, the
number of possible results is bounded by 6 - u<? =6 - u = p.

This shows the number of equivalence classes is < u-u = u, and by our choice of G it
is exactly p. Claim 7.8 O

Given (FE. : € < p) from Claim 7.8, fix also a choice of representatives by specifying
some function

hip—Qx A< xpuxp (7.17)
We ask that h(e) = (un(e), Whe)s Ch(e), Ene)) satisfies: for some (u,() € Ee, u = up(e),
¢ = Ch(e)s Whie) = Wu,¢, and &pe) = G (U, W, Gu ¢, Tu,c) OF 00.
The crucial set for each oo < A, € < p will be
Up,e = {u:u € Qand (u, () € Ec and Xfutp < bel g u) }- (7.18)
Recall V from (7.14) above. Let
o < 2* be such that U C a,. (7.19)
Let Codey denote some fixed coding function from “~ A to A, and let Code,, denote some
fixed coding function from “~y to p. Let (Xo, ..., X5) be a partition of A into six sets
of cardinality A. For v < A and n < 6, let p(vy, X,,) denote the image of v under a fixed
one-to-one map of A into X,,. Let tv denote the truth value of an expression (either 0
or 1).
For each u € 2, ( < i define f* = f - as follows. (7.20)

1. Dom(f*) C o+ A is of cardinality < 6, Range(f*) C u, and f* is determined by the

remaining conditions.
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2. If v € Dom(fy,¢) then
f*(a+ p(v, Xo0)) = Coden( (fuc(v),0tp(y N Dom(fuc))) ).

3. If v € wy,¢, then

f*(a+ p(y, X1)) = Codey (tv(7 € ), otp(y N u), otp(y Nwu.c))-
4. If B # o are from w, ¢ then

[t p(v, X2)) = tv( palfuc) = ps(fuc) )-
5. If v C u, v is this set listed in increasing order, and Codey( © ) =+, then
frla+ply, Xs)) = tv( %y, . <by ).

6. If v € ¥ (wy,c), ¢ is the k-th L-formula in |v| free variables under some enumeration
fixed in advance, and v = Codey( (v, k) ), then

f*(a + p(’Y?Xﬁl)) = tv(xfu,g < aga(iv) = tV( 90(3_71)) € Qu,¢ )

7. If v € “7(wy,), ¢ is the k-th L-formula in 1+ |v| free variables under some enumer-
ation fixed in advance, and v = Codex( (v, k) ), then

f*(Oé + p(77X5)) = tV( 90(337 i‘v) € Tu¢ )
This completes the definition (7.20). Fix also a new maximal antichain:
let € = (c. : € < ) be given by cc = X{(atr,01}- (7.21)

We arrive at the definition of b’. For each a < )\, let

f{a} = (U{Ce N Xf;vch,(e) N Xf“vCh(e) e, u€ Z/{a,e}) N bclM({a})~ (7.22)
Why is (7.22) nonzero? For each € < p such that U, . # 0, and each u € U,

c.MNxy ﬂxfu,chm ﬁbclM(u) > 0.

wsCh(e)

since the domains of the functions corresponding to x, ey ? Ce and x s~ tnce are mutually
’ € UG h(e

disjoint, and adding b

b

el (u) 18 allowed by the definition of U,  in (7.18). By monotonicity,
el (w) < Pely(fay) for any u € Uy, . This verifies that (7.22) is nonzero.

For each u € Q\ 0, define

b, = {bla) 1 @ € u}. (7.23)
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Let by = 1. This completes the definition of the sequence b’:
b’ = (bl :u € Q). (7.24)

By construction, b’ is multiplicative, and if |u| = 1 then b/, < b,.
An immediate consequence (as (c. : € < p) is a maximal antichain) of this definition
is that whenever ¢ € B} and 0 <c <c.N b’{a},

U{C N Xf;’fh,(e) N Xfu’gh(e) RS Z/{a7g} #0 (725)
so in particular there is u € U, . such that

CMNXyx

tnce OXfyenn = 0 thus cNXs, e N bl (u) >0 (7.26)

where again the conjunct “N by, ()" is by the definition of U, in equation (7.18). We
now work towards proving that:

Claim 7.9. b’ is a multiplicative refinement of b.

Proof. Suppose for a contradiction that there is some u, € 2 such that

0<c< () bl \bu.. (7.27)

AEUL

By continuity of b, we may assume that u, is finite. Let f € FI,0(2") be such that

xy < c, and as (ce : € < p) is a maximal antichain, without loss of generality there is

some € < p such that xy < c.. Since x5 < b’{a} by construction, necessarily Uy . # 0

for each « € u,. Enumerate u, as (o : t < t,). By induction on t < t,, we will choose

functions f; € FI, (2*) and sets u; € Uy, . such that for each t:

(i) fe 2 f, thus for each t, x5, < [{bl,, :a €u.}Nee

(ii) ' <t = fv C i

(i) f; 2 f“tafh( y U fUt,Ch(e)

(iv) x5, < bClM(Ut)'

Let f_1 = f so that fy is the case “—1+ 1. Arriving to ¢t + 1, condition (i) implies that
, < b’{ M So adding the latter two onto a conjunction will not affect whether or

not we get 0. Apply (7.25)(7.26) to choose u; € Uy, e such that

(w) > 0.

Xp N Xy e X5 b,

”t»(h,(e)

Let fivr = fi U fu,cunioy U i, ¢, This completes the induction. Note that (iv) will be
satisfied by the definition (7.18).
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Let f. = fi, be the function so constructed.

Recalling the definition of F, in 7.16, since € is fixed all the (4()’s are the same, so
going forward we will write ¢ for (j,(c). Then by Claim 7.7 and the fact that xy, < bey,, (u,)
for each oy € u,, we have that for each t < t,,

T = (ut7wu1,C7qt = qUt,C7Tt = rut,c) S Rm_ (728)

Let t = (v; : t < t.). Moreover, the pairs (u, () all belong to the E. class of our
equivalence relation from (7.16). So equation (7.28) ensures that each t; is in the domain
of G and item 4 of the definition of FE ensures that the value of G is fixed. That is,

G | (v : t < t,) is constant. (7.29)
Thanks to the f; . from (7.20), we may now find a good instantiation of t:

Subclaim 7.10. Let w = |J, w;. We can find (b, : a € w) realizing | J, q: such that b s
a good instantiation for t and

¢ = —(3x) /\ Oz, b%). (7.30)

aCUx

Proof. As the g; are all induced by the same f, = f;, the set ¢ =J,_, ¢: is consistent.
First we will show it is consistent with —¢,,, , recalling (7.2). Suppose not, so let ¥y =
{00(Zvg)s 0k (Zo,)} C g be finite such that ¥ = 3¢ U {—y,, } is inconsistent. Let
v=1v9U---Uuvg. Let 6 be an arbitrary finite conjunction of formulas from ¢ [ Z,,(9)-
Recalling notation (7.4), xy, witnesses that the set

Ap N Atpo(fuo) n---N Atpk(f%) \ B,, > 0.

Let ¢ be any element of this set. Then {a%[t] : o € v} realizes X, contradiction. This
proves we may find some sequence b¥, of elements of €, possibly imaginary, realizing q
such that b}, = a}, for a € cly(0) and = —(3z) A .. Pa(z,by). Finally, let us check
that this sequence is a good instantiation, 3.10. Conditions (1)—(2) of that definition
we've just checked. (3) is ensured by the fact that

Xy < Xy

tx ut,C

for each uy, recalling (7.20)6+7. (4) was ensured by F*. (5) was ensured by F3, and
already checked by membership in Ry, 3.9(5). Subclatm 7.10 O

Let b be given by Subclaim 7.10. By equation (7.29), we may apply Defini-
tion 3.11, “G is an intrinsic coloring of Ry”, to conclude that {pq,(z, b5 ) : t <

Yy
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t.} = {@a(x,b%) : @ € u,} is consistent. This contradicts the choice of b*, specif-
ically equation (7.30). This contradiction shows that c¢ from equation (7.27) can-
not exist, i.e. b’ must be a multiplicative refinement of b. This proves the Claim.

Claim 7.9 O

The last part of the argument is to verify that b has the Key Property 5.7 using V
from (7.14), a, from (7.19), Q. = {u € [\]<7 : u = clp(u)}, and b’. Suppose u € Q.
and f € FI, g(ay) are such that xy <b,. We hope to show

x;Nbl, > 0. (7.31)
As xy < by, by choice of u € Q,,

Xy < el (u)- (7.32)
Since f,, is a partition, after possibly extending f we have

xy < xj, ., for some (. < p. (7.33)

Choose € < p such that (u,(s) € E.. Then h(e) = (u, wh(e), Ch(e) = CxsEn(e))- For each
a € u, checking the definition (7.18) we have that

U € Upe- (7.34)

As b’ is a multiplicative sequence, b, = (., bl - So to show (7.31) it would suffice
to show that

X7 0 () blay- (7.35)

acu

Recalling the definitions (7.22), and equation (7.34), the expression

c.N Xf';,Ch(E) N X furtnie) (7.36)
appears as a disjunct for each bf{a}, and by (7.18) has nonzero intersection with b

so to show (7.35) it would suffice to show that

clag(u)s

CeMXyx

u’Ch(e) n Xfu’ch,(e) N bCIM(u) n Xf > O

This is true because on one hand, xy < X fucnior N bl (u) by our above argument, and
on the other hand, the support of xy, ¢, and x- e are pairwise disjoint and thus

cannot cause inconsistency. This completes the proof that xy N'b), > 0.

As b has the (), u,0,0)-Key Property, in our optimal ultrafilter D, it has a multi-
plicative refinement. Thus by Theorem F| the original type p is realized in the ultrapower
M /D. This completes the proof of Theorem 7.3. O
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8. The ultrapower characterization of simple theories

We state our main result in two different ways, the first to underline the structure of
the proof.

Theorem 8.1. Assume (A, pu,0,0) are suitable and o is an uncountable supercompact
cardinal. There exists a reqular ultrafilter D over X such that for every model M in a
countable signature, M* /D is \* -saturated if Th(M) is (A, u, 0, o)-explicitly simple, and
M?*/D is not ut+-saturated if Th(M) is not simple.

Proof. As o is uncountable and supercompact, Theorem 5.9 and Conclusion 5.13 prove
existence of a regular ultrafilter D on I such that: D is built from (Dy, B, D.) where Dy
is regular and excellent on B = %;A,u,e and D, is (A, p, 0, 0)-optimal, and moreover D
is not u*"-good for any non-simple theory. By Theorem 7.3, any such D is good for any
(A, i, 6, 0)-explicitly simple theory. O

Theorem 8.2 (The ultrapower characterization of simple theories). Assume (A, u,0,0)
are suitable, p* = X and o is an uncountable supercompact cardinal. Then there is a
regular ultrafilter D on \ such that for any model M in a countable signature, M*/D
is A\t -saturated whenever Th(M) is simple, and M*/D is not A*-saturated whenever
Th(M) is not simple.

Proof. Apply Theorem 8.1 assuming in addition that g™ = A. Then every countable
simple theory is (\, p, 6, 0)-explicitly simple by Theorem 4.10. O

Remark 8.3. In Theorem 8.2, ‘countable signature’ may clearly be weakened to ‘signature
of size < g’

Assuming existence of an uncountable supercompact cardinal, Theorem 8.2 has the
following immediate consequence for the structure of Keisler’s order. Thanks to the
referee for suggesting the formulation.

Conclusion 8.4. Assume there exists an uncountable supercompact cardinal. If T, T' are
countable theories, T is simple, and T T, then T' is simple.

9. Perfect ultrafilters

In this section we shall give a natural set-theoretic condition on ultrafilters, called
‘perfect’, which essentially says that they solve as many problems as possible modulo
the cardinal constraints. We will use perfect ultrafilters in [29] in the case 0 = Ny in
applying the analysis of this paper to theories with trivial forking. Recall the definition
of support, 5.6 above.
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Definition 9.1 (Perfect ultrafilters for the case o = 6 = Xg). Let (A, p, Ng, Xg) be suitable.
We say that an ultrafilter D, on B = B1, .. 18 (A, p)-perfect when (A) implies (B):

(A) (b, :u € [\<N) is a monotonic sequence of elements of D,
and supp(B) is a support for b of cardinality < \, see 5.6, such that for every a < 2*
with J{Dom(f) : x; € supp(b)} C a, there exists a multiplicative sequence

(bl, s u € [N]<)

of elements of BT such that
(a) b, <b, for all u € [\]<No,
(b) for every ¢ € %g, N Dy, no intersection of finitely many members of {b'{ Y
(1 =by;y) 24 < A} is disjoint to c.
(B) there is a multiplicative sequence b’ = (b/, : u € [A\]<®0) of elements of D, which
refines b.

Observation 9.2. Suppose o < 2* is fized, D, is an ultrafilter on ‘BL# CPB = %%A W
and (b, : u € [A<N) is a sequence of elements of D.. Suppose that there exists a

multiplicative sequence (bl : u € [N\|<®0) of elements of BT such that

(a) b, < b, for allu € [N]<No,
(b) for every c € %;u N Dy, no intersection of finitely many members of {bf{i} u((l-—
bgy) 14 < A} is disjoint to c.

Then there is a multiplicative sequence (b! :u € [\]<¥) such that (a), (b) hold with b,
bf{i} replaced by b/, bf{’i} respectively, and such that some support of b is contained in

1
B

Remark 9.3. Note that in 9.2(b), omitting “1 — by;;” gives an equivalent condition.

Proof of Observation 9.2. Without loss of generality there is I of cardinality A such that
some support of b’ is contained in {x; : f € FI,(U)}. Let 7 be a permutation of 2*
which is the identity on « and takes U into a + A. This induces an automorphism p of
B which is the identity on ‘B}L u» SO In particular is the identity on D, and thus on b.

For each u € [\]<¥0, let b” = p(b!)). Then clearly b” fits the bill. O

Theorem 9.4 (Existence of perfect ultrafilters). Let (X, u,Ro,Ro) be suitable. Let B =
B, .- Then there exists a (N, p)-perfect ultrafilter on B.

Proof. Begin by letting (bs; = (bs, : u € [\]<¥0) : § < 2*) be an enumeration of the
monotonic sequences of elements of B+, each occurring cofinally often. Let z : 2* — 2* be
an increasing continuous function which satisfies: z(0) > 0 and for all 8 < 2*, z(8)+\ =
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z(B+1). By induction on § < 2* we will construct (Ds : § < 2*), an increasing continuous
sequence of filters with each Ds an ultrafilter on B s) ., to satisfy:

(*) if 6 = B+ 1, if it is the case that

(bgy = u € [A]<N0) is a monotonic sequence of elements of D and there exists

a choice of supp(b) with J{Dom(f) : x; € supp(b)} C B and there exists a
multiplicative sequence

(b, :uwe A]<)

of elements of B such that

(a) b, <bg, for all u € [\]<No,

(b) for every c € %j(ﬁ),” NDg, no intersection of finitely many members of {bf{i} U
(1 =bg () : 1 < A} is disjoint to c.

then there is a sequence b” = (b!" : u € [\]<Y°) of elements of B+ such that:
(i) b” < bg,, for all u € [A\|<No,
(ii) for every c € %j(ﬁ),u NDg, no intersection of finitely many members of {bf{’i} U
(1 =bg ) =i < A} is disjoint to c.
(iii) some support of b” is contained in B (5),u> and
(iiv) Dj is an ultrafilter on %B,(s), which extends Dg U {b{, : u € [\]<%°}.

The induction may be carried out at limit stages because all of the Ds are ultrafilters.
Suppose § = 3+ 1. If b satisfies the quoted condition, then let b” be given by Observa-
tion 9.2, using z(f) here for « there. Then (i), (ii), (iii) are satisfied, so we need to prove
that

Ds U bl :u e NN}

has the finite intersection property. As Dy is an ultrafilter on B, gy ,, and b’ is a mul-
tiplicative sequence, it suffices to prove that for any ¢ € Dg and any finite u C A,

cﬂﬂ{bgi}:i€u}>0.

As by;y € Dg for each i € u, we may assume that ¢ (1 —by;;) = 0 for each ¢ € u. Then
we are finished by assumption (ii). This completes the induction. Let D, = (Js_or Ds.

Let us check that D, is indeed a perfect ultrafilter. If b satisfies condition 9.1(A), let ¢/
be as there, and let § = 3+ 1 be an ordinal < 2* such that bs = b and & C B4 ,,, which
is possible as we listed each sequence cofinally often. Then since Dg was an ultrafilter,
D.. | Bp, = Dg so at stage ¢ condition (*) of the inductive hypothesis will be activated
and we will have ensured that b has a multiplicative refinement in D,. 0O
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Corollary 9.5. Suppose (A, i, R, Rg) are suitable. and let D, be an ultrafilter on ‘B; u
If D, is (A, u)-perfect, then it is (A, u, Ro, No)-optimal.

Proof. We need to show that any sequence with the so-called Key Property 5.7 has
a multiplicative refinement. Suppose then that b = (b, : u € [A\]<®0) is a monotonic
sequence of elements of D, with the Key Property, and fix a support supp(B) as given by
that property. Let « be an ordinal < 2* such that {b, : u € [\|<*} C D, := D, | B},
and (J{Dom(f) : x5 € supp(b)} C a. Write B, for B, , for the remainder of this proof.
The Key Property guarantees the existence of a cofinal Q C [A\]<Y and a sequence
b = (b, © i < A) of elements of B+ which generates a multiplicative refinement
(b!, 1 u € [\]<N0) of b such that for each f € FI,, »,(c), and each u € Q, if x; < b,, then
we may extend f C f' € FI, x,(2}) so that x; < bl,.

In order to guarantee that our perfect ultrafilter will have given b a multiplicative
refinement, it will suffice to show that for every ¢ € B N D,, no intersection of finitely
many members of {b%;, U (1 —by;) : i < A} is disjoint to c. Let such an c be given,
let v € [A]<® and choose any u with v C u € Q. As ¢ € D, and b, € D,, without
loss of generality ¢ < b,,. As the generators are dense in the completion, we may choose
xy with 0 < x5 < c and f € FI,x,(a). Then x; < b, so by the Key Property, we
may extend f C f” so that xp» < bj,. This proves that x; N ({b{;, : i € u} > 0, as
desired.

Then b contains a multiplicative refinement by the definition of ‘perfect,” which proves
that the ultrafilter is indeed optimal. O

Conclusion 9.6. Let (A, i, Rg, Rg) be suitable. Let B = %; u Then there is an ultrafilter
D, on B such that:

(a) D is (A, p)-perfect, and indeed (A, i, Rg, Ro)-optimal.
(b) if D is any reqular ultrafilter built from (Do, B, D,) where Dy is a reqular A\t -excellent
filter on A, we have that D is not good for any non-low or non-simple theory.

Proof. It remains to justify clause (b) by quoting known results. Ref. [34] V1.3.23, p. 364
proves that any ultrafilter constructed by means of such an independent family of func-
tions where u < A will not be u*-good, however the proof shows more: that it will not
be pT-flexible. An alternate discussion is given in [27] Section 9.

The fact that an ultrafilter which is not flexible is not good for any non-low or non-
simple theory was proved by [22] and [25]. More precisely, in [22] Section 8 it was proved
that any regular ultrafilter which is good for a theory which has TP, or is simple and
non-low, must be flexible. In [25] it was proved that any regular ultrafilter which is good
for a theory with SOP5 is good, therefore a fortiori flexible. Since any non-simple theory
has either TPy or SOP5, this completes the proof. O
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Corollary 9.7. Let (X, u,Ro,R0) be suitable and let B = %%A u Then there exists a
(A, i, R, Ro)-optimal ultrafilter on B, and moreover we may arrange that the non-
saturation condition 9.6 holds.

10. Some further questions

The theorems in this paper suggest a broad classification program for simple theories
according to their “explicit simplicity”. We believe the most urgent questions have to do
with determining the identity of the equivalence classes of simple theories in Keisler’s
order. The following specific natural questions also arise. Assume (A, u, 8, o) are suitable.

For the first question, recall that from the point of view of explicit simplicity, u bounds
the range of the coloring function G on R.,. However, because we have asked in 1.1 that
u >0 > o, the value of yu may be larger than the actual number of colors needed. The
first question essentially asks if we can build a simple theory where the range of this
coloring function is truly uncountable but does not depend on A. (Without the negative
condition, the random graph would be a trivial example.)

Question 10.1. Let 0 = 0 = Ny, u = (2°)**+. Then whenever A = \<% > u, (A, u1,0,0)
is suitable and also (\, k,0,0) is suitable, where k™ = u. Does there exist a countable
simple theory T such that for all X = AX<% > u, T is (X, i, 0, 0)-explicitly simple but not
(\, K, 0, 0)-explicitly simple? What about other uncountable constant values of u?

Recall that by our arguments above the random graph requires only one color, and it is
not difficult to produce examples of essentially the same complexity requiring finitely or
countably many colors. We have just asked for a simple theory requiring an uncountable
(i.e. > |T|) but constant number of colors. The case where ™ = X, for n finite and
greater than 1, is studied in the forthcoming paper [29]. The next question asks about
n=1:

Question 10.2 (A mazimal simple theory). Suppose o is uncountable. Is there a countable
simple theory which is (\, u, 0, 0)-explicitly simple if and only if p* = \?

Recall that in his paper [17] Keisler had developed the notion of a “versatile” formula
to describe when theories T were saturated precisely by good regular ultrafilters. The
next question asks whether something analogous can be done inside simplicity.

Question 10.3. For which, if any, values of (A, u,8,0) does there exist a simple theory T
which is saturated by a regular ultrafilter D on X\ iff D is (A, u, 0, 0)-optimized, or iff D
is (X, u)-perfected in the sense of 9.1 above?

The ultrapower characterization of stable theories from [34] Chapter VI proceeded by
proving that a model of a stable theory is AT-saturated if and only if it is x(T) saturated
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and every maximal indiscernible sequence has cardinality at least A*. It would be inter-
esting to develop, perhaps from the arguments above, an analogous characterization of
saturation in simple theories.

Question 10.4. Give an analogous characterization of the saturated models of simple
theories.

Finally, we record the fundamental question of the minimum unstable Keisler class.
The regular ultrafilters which saturate this class are known; see, for example, [23] Sec-
tion 4.

Question 10.5. Give an internal model-theoretic characterization of the equivalence class
of the random graph in Keisler’s order.
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