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UNIVERSAL GRAPHS 
AT THE SUCCESSOR OF A SINGULAR CARDINAL 

MIRNA DZAMONJA AND SAHARON SHELAH 

Abstract. The paper is concerned with the existence of a universal graph at the successor of a strong 

limit singular pi of cofinality No. Starting from the assumption of the existence of a supercompact cardinal, 

a model is built in which for some such fi there are fi++ graphs on / J + that taken jointly are universal for 

the graphs on / J + , while 2 ' 3> M++ • 

The paper also addresses the general problem of obtaining a framework for consistency results at the 

successor of a singular strong limit starting from the assumption that a supercompact cardinal K exists. The 

result on the existence of universal graphs is obtained as a specific application of a more general method. 

§0. Introduction. The question of the existence of a universal graph of a certain 
cardinality and with certain properties has been the subject of much research in 
mathematics ([FuKo], [Kj], [KoSh 492], [Rd], [Sh 175a], [Sh 500]). By universality 
we mean here that every other graph of the same size embeds into the universal 
graph. In the presence of GCH it follows from the classical results in model theory 
([ChKe]) that such a graph exists at every uncountable cardinality, and it is well 
known that the random graph ([Rd]) is universal for countable graphs (although 
the situation is not so simple when certain requirements on the graphs are imposed, 
see [KoSh 492]). When the assumption of GCH is dropped, it becomes much harder 
to construct universal objects, and it is in fact usually rather easy to obtain negative 
consistency result by adding Cohen subsets to the universe (see [KjSh 409] for a 
discussion of this). For some classes of graphs there are no universal objects as 
soon as GCH fails sufficiently ([Kj], [Sh 500, §2]), while for others there can exist 
consistently a small family of the class that acts jointly as a universal object for the 
class at the given cardinality ([Sh 457], [DjSh 614]). Much of what is known in the 
absence of GCH is known about successors of regular cardinals ([Sh 457], [DjSh 
614]). In [Sh 175a] there is a positive consistency result concerning the existence of 
a universal graph at the successor of singular fi where fi is not a strong limit. In this 
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UNIVERSAL GRAPHS AT THE SUCCESSOR OF A SINGULAR CARDINAL 367 

paper we address the issue of the existence of a universal graph at the successor of a 
singular strong limit and obtain a positive consistency result regarding the existence 
of a small family of such graphs that act jointly as universal for the graphs of the 
same size. 

In addressing this specific problem, the paper also offers a step towards the so­
lution of a more general problem of doing iterated forcing in connection with the 
successor of a singular. This is the case because the result about universal graphs 
is obtained as an application of a more general method. The method relies on 
an iteration of (< /t)-directed-closed 6 > K+-CC forcing, followed by the Prikry 
forcing for a normal ultrafilter 91 built by the iteration. The cardinal K here is 
supercompact in the ground model. The idea is that the Prikry forcing for 3) can 
be controlled by the iteration, as 3 is being built in the process as the union of 
an increasing sequence of normal filters that appear during the iteration. Apart 
from building 3, the iteration also takes care of the particular application it is 
aimed at by predicting the SJ-names of the relevant objects and taking care of 
them (in our application, these objects are graphs on K + ) . The iteration is fol­
lowed by the Prikry forcing for 3, so changing the cofinality of K to No. Before 
doing the iteration we prepare K by rendering its supercompactness indestructible 
by (< «)-directed-closed forcing through the use of Laver's diamond ([La]). Un­
like the most common use of the indestructibility of n where one uses the fact 
that K is indestructible without necessarily refering back to how this indestruc­
tibility is obtained, we must use Laver's diamond itself for the definition of the 
iteration. We note that the result has an unusual feature in which the iteration 
is not constructed directly, but the existence of such an iteration is proved and 
used. 

Some of the ideas connected to the forcing scheme discussed in this paper were 
pursued by A. Mekler and S. Shelah in [MkSh 274], and by M. Gitik and S. Shelah 
in [GiSh 597], both in turn relaying on M. Magidor's independence proof for SCH 
a t 3 m [Ma 1], [Ma 2] and Laver's indestructibility method, [La]. In [MkSh 274, §3] 
the idea of guessing Prikry names of an object after the final collapse is present, 
while [GiSh 597] considers densities of box topologies, and for the particular forcing 
used there presents a scheme similar to the one we use (although the iteration is 
different). The latter paper also reduced the strength of a large cardinal needed for 
the iteration to a hyper-measurable. The difference between [GiSh 597] and our 
results is that the individual forcing used in [GiSh 597] is basically Cohen forcing, 
while our interest here is to give a general axiomatic framework under which the 
scheme can be applied for many types of forcing notions. 

The investigation of the consistent existence of universal objects also has relevance 
in model theory. The idea here is to classify theories in model theory by the size 
of their universality spectrum, and much research has been done to confirm that 
this classification is interesting from the model-theoretic point of view ([GrSh 174], 
[KjSh 409], [Sh 500], [DjSh 614]). The results here sound a word of caution to this 
programme. Our construction builds JU++ graphs on /u+ that are universal for the 
graphs on JU+, while 2M > ju++ and n is a strong limit singular of cofinality No. In 

+ 

this model we naturally obtain club guessing on S^ for order type /u, and this will 
prevent the prototype of a stable unsuperstable theory Th(wa>, E„)„<a from having 
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368 MIRNA DZAMONJA AND SAHARON SHELAH 

a small universal family, see [Sh 457], [KjSh 447]. Hence the universality spectrum 
at such JU+ classifies the prototype of a simple unstable theory (the theory of a 
random graph), as less complicated than the prototype of a stable unsuperstable 
theory, contrary to the expectation. A possible conclusion is that in order to 
obtain a classification into as few as possible nicely defined classes one should 
concentrate the investigation of the universality spectrum as a dividing line for 
unstable theories only on the case X+ with X — X<x, as the case of the successor of 
a singular is too sensitive to the set theory involved. Perhaps just working with X+ 

where X = X^T^ is a reasonable (as this rules out this particular example), or simply 
admitting the possibility of Th(wco,En)n<0} and the theory of the random graph 
being incompatible is a possible approach. 

There are several further questions that this paper brings to mind. From the point 
of view of model theory it would be interesting to determine which other first order 
theories fit the scheme of this paper and from the point of view of graph theory one 
would like to improve the result on the existence of n++ jointly universal graphs 
to having just one universal graph. Set-theoretically, we would like to be able to 
replace /u an unspecified singular strong limit by ju = 3 m , as well as to investigate 
singulars of different cofinality than N0. We did not concentrate here on obtaining 
the right consistency strength for our results, suggesting another question that may 
be addressed in the future work. 

The paper is organised as follows. The major issue is to define the iteration used 
in the second step of the above scheme, which is done in certain generality in § 1. 
We give there a sufficient condition for a one step forcing to fit the general scheme, 
so obtaining an axiomatic version of the method. In §2 we give the application to 
the existence of ju++ universal graphs of size ju+ for fi the successor of a strong limit 
singular of cofinality No. 

Most of our notation is entirely standard, with the possible exception of 

NOTATION 0.1. For a and ordinal and a regular cardinal K < a, we let 

Sa
K^{p< a : c f ( / ? )=«} . 

§1. The general framework for forcing. 

DEFINITION 1.1. Suppose that K is a strongly inaccessible cardinal > No. A func­
tion h: K —> %?{K) is called Layer's diamond on K iff for every x and X, there is an 
elementary embedding j : V -t M with 

(1) crit(/) = K andy(«) > X, 
(2) lM C M, 
(3) ij{h)){K)=x. 

THEOREM 1.2 (Laver, [La]). Suppose that K is a supercompact cardinal. Then 
there is a Laver's diamond on K. 

HYPOTHESIS 1.3. We work in a universe V that satisfies 

(1) K is a supercompact cardinal, 0 = cf (9) > K+ and GCH holds at and above K, 
(2) T0 = T & x = T + and 
(3) h: K -* X ( K ) is a Laver's diamond. 
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REMARK 1.4. (1) It is well known that the consistency of the above hypothesis 
follows from the consistency of the existence of a supercompact cardinal. We in 
fact only use the /-supercompactness of K. 

(2) With minor changes, one may replace x = Y+ by x being strongly inaccessible 

>e. 
DEFINITION 1.5 (Laver, [La]). We define 

R = (R+,Rfi : a<Kj<K), 

an iteration done with Easton supports, and a strictly increasing sequence (Xa : 
a < K) of cardinals, where Ra and Xa are defined by induction on a < K as follows. 

If 

(1) h(a) = (PA), where X and a are cardinals and P is a i?+-name of (< a)-
directed-closed forcing, and 

(2) (Vy3 < a) [Xp < a] , 

we let Ra = P and Xa = X. Otherwise, let Ra = {0} and Xa = s u p ^ Xp. 
The extension in R+ is defined by letting 

p<q <;=> [Dom(/>) C Dom(^r) & (Vi G T>om{q)){q \ i Ih "p{i) < q{i)")], 

(where p denotes the weaker condition). 

REMARK 1.6. The forcing R+ used in this section is Laver's forcing from [La] 
which makes the supercompactness of K indestructible under any (< «;)-directed-
closed forcing. 

CONVENTION 1.7. Definitions 1.9 and 1.12, Claim 1.13 and Observation 1.14take 
place in V\ = VR«. 

OBSERVATION 1.8. «+ < cf(6») = 6 < x = T+, 2" = a+ for a > K and Te = T 
still hold in V\, as Rang(/i) C X(«) , and K is still supercompact. 

DEFINITION 1.9. By induction on /* < x w e define the family Xg* as the family 
of all sequences 

Q = (Pi,QhAi: / < i * = l g ( e ) > 

which satisfy the following inductive definition, and we let JTg = \Jt< = Xl
e. 

(1) Pi C %?{x) (and each P, is a forcing notion, which will follow from the rest of 
the definition), 

(2) each Pi satisfies the #-cc and for i < j the forcing notion P, is completely 
embedded into Pj by the identity function, 

(3) Qi is a Pj-name of a forcing notion (hence a partial order with the least element 
0gf) which is a member of 37(x) (hence of cardinality < |T|), 

(4)Ifcf(i)>K,then/>1- = Uj,<I-/
>;. 

(5) At is a canonical P+i-name of a subset of K, 

(6) Letting G, be /'/-generic over V\, then in Ki[G,], 

(a) we let NUF = \9) : 9! a normal ultrafilter on K}, and 
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370 MIRNA D2AMONJA AND SAHARON SHELAH 

(b) for every 3l e NUF we are given a (< «)-directed-closed forcing notion 
Qg, e X( / ) K l [ G , ] whose minimal element is denoted by 02< , 

(7) With the notation of (6), we have that 2;[G,] is 

{0} U NUF U {{2} y-ffa,: 9S e NUF} , 

(8) The order on Qi[Gt] is given by letting 

x < y iff [x = y or x = 0 or {x = 3> € NUF & y € {x} x ff3) or 

x = (Sr,Jc*),j = (Sr , j* ) forsome^eNUFande^ |= "x* < / " ] , 

(9) We have (we adopt the usual meaning of "canonical" below, see [Sh -f], I. 5.12. 
for the exact definition) 

(i) p is a function with domain C ;' 
(ii) j £ Dom(^) ==> /?(_/) is a canonical Py-name 

^ ' of a member of Qj 

(iii) |SDom(/»)| < K (see below) 

ordered by letting 

p<q ^^ [Dom(/>) C Domfo) & (V/ 6 T>om{q)){q \ i lh /?(/) < ?(/))], 

where 
{Definition 1.9 continues below) 

NOTATION 1.10. (A) For i < i*, and p £ Pi, we let the essential domain of p be 

"/>(;) G {0}U NUF U" 

i>,. d4f l 

S Dom{p) = I j e Dom(/0 : 
^ ^j]Vp> {{2,$QJ): f 6 NUF}" 

(B) For i < i* and p € P, we call p purely full in P, iff: S Dom(^) = 0 and for 
every j < i we have 

p rJ ^PJ UPU) e NUF". 

If / is clear from the context we may say that p is purely full in its domain. 
(C) Suppose that i < i* and p e Pi is purely full in P,, we define 

„ , def / p /> < 9 & for each j < i, "1 
*V/> - | ? t .̂• • q |- y- |h «9(y) i s o f t h e form (grj x ) f o r s o m e x » j . 

with the order inherited from P,. 

{Definition 1.9 continues:) 
(10) For every i < i* and p e P, which is purely full in P, we have that Pi/p satisfies 
0-cc and P , /p e %f{x). 

OBSERVATION 1.11. If Q e 9£e and i < lg(g), then P,+i = P, * 0, . 

DEFINITION 1.12. (1) We define the family Jfg as the family of all sequences 

Q=(Pi,Qi,Ai: i<x) 

such that 

i<X=>Q\i £&e-
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We let/>Z^U<Z **.-•_ 
(2) Suppose that Q £ 3?g and {pt : i < x) with Pi G PQ a r e purely full in P^ 

and increasing in Px, where C, = min{C : Pi £ P(} (so if i < j then pt = pj \ &). 
We define 

Px/ U/<z /»,• = {<? € Px : (Vi < *)[? r h e n,//»/]} . 

with the order inherited from Px. 

CLAIM 1.13. (1) If Q £ 3?e, then for all i < lg(0), we have that P, is (< «)-
directed-closed. 

(2) Similarly for g e J / . 

PROOF OF THE CLAIM. (1) Given a directed family {pa : a < a* < K} of con­
ditions in Pi, we shall define a common extension p of this family. Let us first let 
Dom(/?) = Ua<a* Dom(/?0)- For 7 e Dom(/>), we define /?(y) by induction on j . 
We work in Vx' and assume that {pa \ j : a < a*} C Gpj. 

If j £ UQ<a* ^ Dom(/?a), then notice that there is at most one 9 ^ 0 such that 
for some (possibly more than one) a < a* we have pa \ j lh "pa(j) = ^ " , as the 
family is directed. If there is such Sr, we let /?(y) = 9, otherwise we let p(j) = 0. 

If j € Ua<a* $ Dom(/?a). similarly to the last paragraph, we conclude that there 
is a name 9 such that 

[ a < o ' 4 ; € S D o m ^ ) ] ^ ^ \ j lh «/,„(./) G {9} x g ^ " . 

As Q^ is forced to be (< K)-directed-closed (see (6)(b) of Definition 1.9), we 

can find in V{ ' a condition q such that # > Pj(a) for all a < a* such that 

j £ S Dom(pa). Let p(j) = {9, q) for some such q. 
(2) Follows from (1) as x = cf(#) > K. *i.i3 

OBSERVATION 1.14. Suppose that Q £ 3Tg~, i < j < x a n £l p £ Pi, q £ Pj are 
purely full in their respective domains, while p <q. Then 

(1) Dom(p) = i C j = Dom(q) and a £ Dom(p) =>• />(a) = ^(a) . 

(2) Suppose that r £ Pi/p. Then defining r + q £ Pj by letting Dom(r + q) = 
Dom(^r) and letting for a £ Dom(r) 

, , w s def f r{a) if a £ Dom(/?) 
( r + ^ ) ( a ) = ( q(a), otherwise, 

we obtain a condition in Pj/q. 

(3) For r\,ri £ Pi/p we have that 

(a) r\ and ^ are incompatible in Pt/p iff n + q and r2 + q are incompatible in 

^ • / ? . 
(A) >"i <f t / p

 r2 <^=> ri+q <Pj/g r2 + q. 

(4) Pt/p <o/Pj/q where f(r) = r + q.We also write / = fPiq. 

(5) Suppose that the sequence p = (pi : 1 < / ) satisfies that each pi £ P^ is purely 
full in P^, and the sequence p is increasing in Px, where 

C,=min{C: pt £ Pc} 
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372 MIRNA DZAMONJA AND SAHARON SHELAH 

and {Ct : i < %) is strictly increasing. Then P* = Px/ U,<x />, is isomorphic to the 
limit of a (< K)-supported iteration of (< «)-directed-closed 9-cc forcing. 

(6) For every r £ Px, there is q > r with S Dom(g) = S Dom(r) and p purely full 
in some Pit such that q £ Pi/p. 

CONVENTION 1.15. This Convention applies to Observation 1.14(5) above. 
(a) Justified by Observation 1.14(5), in the case that each Ci = & + 1 in the sequel 

we may abuse the notation and write 

P'«lim<P4(/(/»,-r^).eJto): '•<*>> 

even though this is not literally an iteration of forcing (since the iterands are not 
specified at each coordinate). We do this to emphasize the sequence (Q^,,-. : i < x)< 
whose importance will become clear in the Main Claim 1.18. 

(b) Since fp,q are usually clear form the context we simplify the notation by not 
mentioning these functions explicitly. 

CLAIM 1.16. Suppose that Q £ 3?g and t is a P^-name of an ordinal, while 
p £ Px is purely full in its domain. Then for some j < x and q we have p < q £ Pj, 
and q is purely full in Pj, and above q we have that Ms a Py-name (i.e Ms a 
Py/<7-name). 

PROOF OF THE CLAIM. Given p £ Px purely full in its domain, and suppose that 
the conclusion fails. Let i < x be such that p £ Pt. We shall choose by induction 
on £ < 9 ordinals if and % and conditions p^ and /•{ such that 

(i) it; £ [i, x) and (if : £ < 6) is increasing continuous, 
(ii) />f e i \ is purely full in P,c, with po = p and p^ < p^ for C < £, 

(hi) p^ < r^ with r$ \\-px "t = %", 
(iv) r̂  is incompatible with every r^ for £, < £, 

(v) /»{ = U^p^ for £ a limit, 
(vi) rc £Pk+Jpi+i. 

We now explain how to do this induction. 
Given p^ and if. Since we are assuming that t is not a P,( -name above p^, it must 

be possible to find rj and % as required. Having chosen rj, (by extending rf if nec­
essary), we can choose p^+\ as required in item (vi) above, see Observation 1.14(6). 

This determines if+i. Note that i^+\ < x as Px = \Jj<x Pj-

However, completing the induction we arrive at a contradiction, as letting p* = 
U{<0/?£ we obtain a condition purely full in its domain. Hence P = Ps^i<gijp* 
has 9-cc, but {r^ + p* : ( < 9} forms a set of 9 pairwise incompatible conditions 
in P. *i.i6 

CONVENTION 1.17. Now we go back to V, i.e., the Main Claim 1.18 takes place 
in V. 

MAIN CLAIM 1.18. Suppose 

(a) Q = (Pi, Qt,Ai : i < x) is an P+-name for a member of X^, 
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(/?) j : V -> M is an elementary embedding such that rM C M, crit(j) = K, 
X < )(K) and 

(j(h))to = (Px>x) 
(such a choice is possible by the definition of Laver's diamond). 

Considering \({R+,Ra,Aa : a < K)) in M (as for ft < K we know that 
(R+, Ra, ka : a < 0) e M'(x)), by its definition we see that 

)((R+,Ra,Xa: a<K)) = (R+,Ra,Xa: a < j(/s)> 

and RK = Px while XK = x- Hence \(R^) = Rt * ?% * R* f° r some /?+ * Px-name 
R* E M for a forcing notion, which is forced to be (< /)-directed-closed. 

We also let 

Q' = {P'l,Q't,A'i:i<i(x))=\m,Qi,4i-i<x))-

Then in VR«, the following holds: we can find d = (a, : i < x), P* = (p* '• i < x) 
and#* = (q* = Cqt,2qi) : i < x) such that 

(a) (a, : i < x) is strictly increasing continuous and each a, < / , 

(b) p* £ Pai+\ is purely full in Pa,+\, 

(c) p* is increasing in Px, 

(d) For every i < x, we have q* \ i £ M*«, and in MR* we have 

(P*,lqi,
2

qi)ePx*R**P'i{ai+l), 

while (p*,lqi) e PX*R*, 

(e) In M*" we have that for y < x 

((/>*. V 2 # ) = ' < y) is increasing in PX*R** PsUPi<y j(aj+i), 

(f) In MR", it is forced by (p*+l,
lqi+\) that 2#,+i is an upper bound to 

{i(r) : reG «,+. }, 

(g) If B is an i?+-name of a P?j+i-name of a subset of K, then for some R+ * Px-
name tg for a truth value (i.e., an ordinal 6 {0,1}, 1 standing for "true" and 0 for 
"false"): 

(1) In V we have that (0j?+, p*+1) forces t^ to be a P?i.+1+i//?*+1-name, 

(2) M h [(0^,^+1.?;+!) "• " " e K5) ifft* = l"].* 

(h) In M*-, either 

or /?* Ih^ that 

" there is no q = Og,2#) >/?**/>: q* with 

'<7 II"*. , ,2?(/(a/)) >P\ ,+1 {KO : r e GPa'^
1 } and K € j ( ^ a , ) " ". 

[Note that \{Aai) is a Pi, )+1-name for a subset of j(«).] 
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374 MIRNA DZAMONJA AND SAHARON SHELAH 

(i) If cf(z') > 9, then in VR"*??> we have p*{at) e NUF and specifically 

{ B is a Pa./(p* \ a,)-name for a subset of/«1 
# I G p J : " andt,[G,J = l}-

PROOF OF THE MAIN CLAIM. Consider (Rt, Ri,Xt : K < i < j(«)) over R+ * Px 

in M. By the inductive definition of Rt (see Definition 1.5), which is preserved 
by j , we have that R, is a name for the trivial forcing whenever i is not such that 
(V/? < i)kp < i. Since (j(A))(«) = {Px,x) w e have that for every i satisfying 
K < i < x, Rt is a name for the trivial forcing. For % < i' < j(«), we have that Ri 
is a name for a (< /)-directed-closed forcing in M, so in V as well, as <XM C M. 
Similarly we conclude that P'.,^ names a (< x)-directed-closed forcing notion, for 
all C < X- This observation will be used repeatedly and in particular will enable 
us to use the master condition idea in the induction below. In particular, we can 
conclude that Rx is (< ^)-directed-closed. By the choice of j , 

II-J(,R+) "each P'j/p is (< #)-directed-closed for p e P\ purely full in P\." 

Now we choose (a,-, p*,q*) € MR« by an induction on / carried in V. We start 
with ao = 0, pi 6 Pi any condition purely full in P\, and q$ = 0. 

Choice of p*+l, q*+l and ai+\. 

Given p* and on in VR-. We have (recall Convention 1.15) that 

P*i r «/ I ^ P , " i e ? . K ) l < T & GQ% C /•Q/+iM*." 

Hence in M, letting Xt = {j(r) : r G Qpa*Q% } w e have 

%w>K/>? r «')) "-^0() ' T / Q P'i(ai)+i is directed and](/>*(«,)) lh \Xt\ < T." 

In V\, we have that the forcing Pa.+\/p* is a #-cc forcing notion of size < T, 
hence there are < Te • T = T canonical Paj+\/p*-names for a subset of K. Let us 
enumerate them in a limit order type as (Bl+l : f < £*(/ + 1) < T), with 

(*) # o + 1 = ^ -

This choice for / + 1 helps us to fulfill clause (h) for/. By induction on f < £*(i' + l) 
we choose /?£+1 purely full in its domain, increasing continuous with f, ^ + I = 
{xq[+l,2q[+x) increasing with (, al+x increasing with £ and tB,+i as follows. 

Let pfx d^f pj, a<+> d=f at and q™ d=f q*. 
Coming to £ + 1, let G be a i?+ * P z generic over K such that (0*+,/^+1) £ G. 

In M[G] we ask "the {-question": 
Is it true that there is no q satisfying the following condition (**)?, which means 

(a) q = (xq,2q) >*. . , - {ql+x : £ < Q and 
-J(aJ+l)+l ^ 

(P) x91^. "2<? >xt&Ke \(Bi+lr &2qe P'H+,)+l/(i(p\+1) r JK + 1 ) + D? 

(Here 2q > Xt means that 2q is above every condition in A",-, which then guarantees 
that clause (f) is satisfied). 
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Case 1. If the answer is positive, i.e., for no q do we have that (**)q holds in M, 

we define tB.-+i = 0 (hence a R+ * P^-name for a truth value), and define 

ai+l _ aai+l 2 i + l \ 

9f+i - i. ^ + p q^+i) 

to be any R+ * P^-name for a condition in R* * PL , such that 

VDRi'Ptl ) l h #{+1 >?* "?{ 

for every £ < £, and 

( B ^ , / ^ 1 , 1 ^ ) H-f;(o/+1)+i " 2 ^ i > U { 2 ^ + 1 : £ < Q & 2 *£ i > J , " -

The choice of '^+J is possible by the induction hypothesis and the fact that 

""*«*?* "^* *s (< /)-directed-closed". 

Let us verify that the choice of 2q'r^\ is possible. Working in M we have that 

(0/!+,/>f+1, ' ^ J ) forces Z, t o b e a ( < K)-directed subset of P'., •. of size < x- Hence 

if £ = 0 we can choose 2q'+i to be forced to be above Xi. We can similarly choose 
^ f o r C X ) . 

Case 2. If the answer to the £ question is negative, so there is q satisfying {**)q, 

we let ts.+i = 1 and choose q'^\ = C^+i^^r+i) m M exemplifying the negative 
answer." 

At any rate, tBM is a R+ * P^-name for an ordinal. By Claim 2.19, in VR« there 

is «£+'[ > al+i and a purely full in its domain p'^ > p',+l with p'£\ e Pai+i such 

that tBi+i is a i\,i+i /nli"1, -name. 

For f limit, let a'^+l = sup<?<f a^+1, p'^1 = U <̂f ^ + 1 , and ^ + 1 not defined. 

At the end, we let ai+\ = supj<f»(i+1) ai+J and />*+1 any purely full condition in 

Pai+i+i with />;+1 > Uc<c*(r+i) P(+1< a n d 0*+i s u c h t h a t 

Wx;,Pt+i) II- "?,>! >**»/>;, )+1 {?c+I : < < Z*d + I)}"-
~ Htti + 1)+l ' 

def Choice of p*, </* and a, for / < % limit. We let a, = supy<; a,- and choose pf £ 

Paj+\ purely full so that p* > Uj<iPj, and if cf(/) > 6, then 

def ( B[Gp ] : B is a PaJ(p* \ a,)-name for a subset of K ] 

" * ( a ' ) 3 = \ ' "andt,[G,„] = l J" 

Recall that X>M C M so {(aj,p*,q*) : j < i) £ M. Condition (f) is satisfied by 
the definition of the order in Paj (and \{Pai))- It follows by the construction and 
standard arguments about elementary embeddings and master conditions that 

P*i r«/ll-p„( "/>*(<*,•) e N U F " . 

Then we can choose q* so that (9R+,P*,q*) > (0u+>/>}><?*) for all j < i and 
<7(* > {}(r) : r € Gpa }, which is again possible by the observation at the beginning 
of the proof. • l i s 

Sh:659



376 MIRNA DZAMONJA AND SAHARON SHELAH 

CONCLUSION 1.19. In V\, if Q e Jfjf, (p* : i < x) a n d ("/ : ' < x) a r e a s 

uaranteed t 
1.14(5) that 
guaranteed by Main Claim 1.18, letting 9t = p*{oti), it follows by Observation 

P = (Pal/(p;\<*i),Q%l--
i<x) 

is an iteration (see Convention 1.15(a)) with (< /c)-supports of (< «)-directed-
closed 9-cc forcing. In addition, there is a club C of x with the property that 
in V** 

(2ft : i eC & cf(/) > 9) 

is an increasing sequence of normal filters over K, with 

[ieC & cf(0 >0]=> PaJ{p* \ ««) II- "2>i is an ultrafilter over /c". 

If 8 < x satisfies cf (5) > K then \JiKsp* forces over Pai that |J,.<(5 9>t us an ultrafilter 
over K which is generated by cf (S) sets. 

DEFINITION 1.20. (In VR+*) Given Q = (P,, g , , ^ , : / < / ) e ^ + . We say 
that Q is fitted iff there is a continuous increasing sequence (a, : ;' < x) of ordinals 
< x> a n d a sequence (/>* : i < x) of conditions each purely full in its domain with 

def 

p* £ Pai+\> such that letting 9>i = /?*, >, 

{Pa,+i/(p* \at),Q^i: i<x) 

is an iteration with (< «)-supports of (< «)-directed-closed G-cc forcing, and 

tf(O>0=> \\-Pai+l/lp.M"A,€9rr. 

CRUCIAL CLAIM 1.21. (In VR«) The following is a sufficient condition for Q e 
JT/ to be fitted: 

There is a pair (/?, A) such that: 

(1) R is a function such that for every forcing P with |P| < Yin •#"(#) andaP-name 
9) of a normal ultrafilter on « we have that R[V, 9>] is well defined and is a P-name 
of a forcing notion of cardinality < T, 

(2) for every purely full in its domain p e Px and i £ Dom(p), we have that 

p\i^ilQl
p{i)=R[Pi/{p\i),p{i)T, 

(3) A is a function such that for every forcing P with |P| < T in ^(x) satisfying the 
9-cc and a P-name 9f of a normal ultrafilter on K, A(P, 9>) is well defined and is a 
P-name Apj2r] of a function Ap,^ : /?[P, 9t]-> 9J such that for every purely full in 
its domain (if this makes sense for P) p e Px and / 6 Dom(p) it is forced by p \ i 
that: 

"for every inaccessible K' < K and every (< «')-directed family g of 
conditions in R[Pt/(p \ i), p{i)] of size < K, such that 

r£g^K'eh[Pi/{pUUU)](r), 

there is q > g such that q lh «;' £ /I,-." 
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REMARK 1.22. The condition in Claim 1.21 is sufficient for the present application 
in §2. It may be weakened if needed for some future application. Really, the 
condition to use instead of it is that in item (h) of Main Claim 1.18, for all i of 
cofinality < 0, we are "in the good case", i.e., the first case of item (h). However, 
we wish to have a criterion which can be used without the knowledge of the proof 
of the Main Claim 1.18, and the condition in Claim 1.21 is one such criterion. 

PROOF OF THE CRUCIAL CLAIM. By Conclusion 1.19 it suffices to show that under 
the assumptions of this Claim, in the proof of Main Claim 1.18 we can choose 
(a, : i < x), (p* '• i < x) ar>d (q* '• i < x) s o t n a t for every / with cf(/) > 0, the 
answer to "the Oth question" in the choice of q\+l is negative, i.e., there is q such 
that (**)? holds. The proof is by induction on such i. We use the notation of Main 
Claim 1.18. 

Given / with cf (/) > 0. Hence we have 

•r ^ imr^ •? a ^ . / ( K t a,)-namel def 
Pi(oti) = <B[Gi]: ,(=&''• 

I tor a subset of n and t^ = 1 I 
In M we have 

(0»+,/>;,?;)n-
( {](r)(j(ai)) '• j(/) G Xi] is (< rc)-directed of size < \ 

vj(/t), K is inaccessible and (Vr)[/e e ](ff[P/(p- \ai),P;(at)](r))]J ' 

(The last statement is true by the definition of 3f{ and ts, no matter what 
b[P/P- \ai,P-(Q,)](r) is forced to be.) 

By the assumption (3) and elementarity, applying j we have that the answer to 
the "Oth question" is negative. *i.2i 

DEFINITION 1.23. (In K*«) Given 9 = cf (0) e (K, X). We define 3£% in the same 
way as JTjf', but with a freedom of choice for go- Namely, to obtain the definition 
of X£ from that of ,Xe

+, we 

(A) In item (6) of Definition 1.9, require / > 0, 
(B) We let go be any (< «)-directed-closed cardinal preserving forcing notion in 

Jfix) that also preserves Te = T. 

CLAIM 1.24. (In VR*) Main Claim 1.18, Conclusion 1.19, Definition 1.20 and 
Claim 1.21 hold with ^ + replaced by 3?%. 

PROOF OF THE CLAIM. AS in VRK*9", K is still indestructibly supercompact and 
Te = T. * i . 2 4 

DISCUSSION 1.25. (1) In the present application, we need to make sure that cardi­
nals are not collapsed, so we have 0 = K+ and Qs is chosen to have a strong version 
of K+-CC which is preserved by iterations with (< «)-supports. 

(2) Clearly, Claim 1.21 remains true if we replace the word "inaccessible" by e.g., 
"strongly inaccessible", "weakly compact", "measurable". 

(3) As we shall see in section 2, the point of dealing with a fitted member of !%$ 
is to be able to control the Prikry names in the forcing that will be performed after 
the iteration extracted from ^ e

+ , namely the Prikry forcing over U^S 1 , for some S. 
The point of A-, is to give us a control of this ultrafilter in the appropriate universe. 
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§2. Universal graphs. 

THEOREM 2.1. Assume that it is consistent that there is a supercompact cardinal. 
Then it is consistent to have a singular strong limit cardinal K of cofinality co with 
2K > K++ , on which there are K++ graphs of size K+ which are universal for the 
graphs of size K+. 

PROOF. We start with a universe V in which K, T and % satisfy Hypothesis 1.3, 
with 0 = K+ (in particular K+ < T = T" ). Let R+ be the forcing described in 
Definition 1.5. We work in VR*, which we start calling V from this point on. As 
we shall not use h and i?+ any more, we free the notation h and Ra to be used with 
a different meaning in this section. 

DEFINITION 2.2. Let Q0 be the Cohen forcing which makes 2K+ = T by adding 
T distinct «+-branches {r]a : a < T} to (K >2)v by conditions of size < K, SO no 
cardinal is collapsed and in the resulting universe 

• each rja e K 2, 
• a < fi < T = > rja ^ r\p and 
• (<K+=>\{t]a \£: a<T}\<K+. 

Let 7/ = (rja : a < K+) be fixed for the rest of the section, and let us let Vo = V[GQ0]. 

NOTATION 2.3. If 9S is a normal ultrafilter on a measurable cardinal K, let Pr(Sr) 
denote the Prikry forcing for 9f. 

DISCUSSION 2.4. The idea of the proof is to embed "9!-named graphs" into a 
universal graph. We use an iteration of forcing to achieve this. As we intend to 
perform a Prikry forcing at the end of iteration, we need to control the names of 
graphs that appear after the Prikry forcing, so one worry is that there would be too 
many names to take care of by the bookkeeping. Luckily, we shall not be dealing 
with all such names, but only with those for which we are sure that they will actually 
be used at the end. This is achieved by building the ultrafilter that will serve for the 
Prikry forcing, as the union of filters that appear during the iteration. To this end, 
for every relevant 9/ we also force a set A that will in some sense be a "diagonal 
intersection" of 31, so its membership in the intended ultrafilter will guarantee that 
ultrafilter contains 31 as a subset. 

DEFINITION 2.5. Suppose V D Vo is a universe in which 2K = T, rj is fixed as per 
Definition 2.2, while « is measurable and 9S is a normal ultrafilter over K. Working 
in V, we define a forcing notion Q = Q^ K -, as follows. 

Let M = (Ma = (K+>Ra) '• a < Y) list without repetitions all canonical 
Pr(Sr)-names for graphs on K+. By canonical in this context we mean names of the 
form 

jC |J stux{(M)} 

where each sf^ is a maximal antichain in Pr(Sr). Then j G is a subset of [K+]2 

and we identify it with a graph g = g(z) on K+ by letting {£, £} form an edge iff 

C < £ and for some p e sf^ n G we have (p, (£, £)) e j or f < £ and for some 

p G s/{£ n G we have (p, (£, £)) € I- (Note that if /> e Pr(S0 and a is a Pr(S0-name 
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such that p \\- "a is a graph on K+", then there is a canonical name x as above such 
that p lh q — T.) In the list M we understand that Ma is the model with universe 
K+ where Ra is the graph relation obtained by some graph g(j) as above. For 
definiteness we pick the first such list in the canonical well-order of %"{x)- Elements 
of Q are of the form 

p = (Ap,Bp,upJp = (fp: aeu>)), 

where 

(i) AP £ [K]<K, 

(ii) BP e 3 n 9>{\K \ (SupU'))]) . 
(iii) up £ [T]<K, 
(iv) For a £ up, we have that / £ is a partial one-to-one function from K+ with 

| Dom(/a) | < K, mapping £ G Dom(/„) to an element of {rja |" £} x K, 
(v) For a,fi £ up, for every x', x", if 

/«'(*') = /£(*') ^/£(*") =/£(*"), 
then for every w £ [Ap]<i<0 

{w,Bp) H-Pr(3) "MQ |= J?Q(x',x") iff M/, (= &,(*', *" )" • 

In addition, for every w £ [^4/']<No and every a £ up and x', x" £ Dom( / " ) , 
the condition (w, Bp) decides in the Prikry forcing for 3 if Ma satisfies 
Ra{x',x"). 

We define the order on Q by letting p < q (here q is the stronger condition) iff 

(a) Ap is an initial segment of Aq, 
(b) A<\AP CBp, 
(c) Bp DB«, 
(d) upCu", 
(e) For a e uf , we have faQfi-

CLAIM 2.6. Suppose that 2 = Q®'Kpj is defined as in Definition 2.5. Then in V: 

(1) Q is a separative partial order. 

(2) Suppose that G is Q-generic over V, and let in V'[G] 

A* ^{J{A : (3B,u,f)[(A,B,u,f) £ G]}. 

Then ,4* is an unbounded subset of K and A* C* 2? for every B £ 31. 

(3) For a < T and a £ K+, the set 

X . a = {/> G 2 : « G « ' & « € Dom(/£)} 

is dense open in Q. 

PROOF OF THE CLAIM. (1) Routine checking. 
(2) For a < K, the set 

Sa = {p£Q:(3p>a)[p£Ap]} 

is dense open in V, hence A* is an unbounded subset of K in V'[G]. For B £ 3 
the set 

IB = {peQ- BpcB} 
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is dense open. If p € f% n G, then for any # e G with q > pwe have Aq\Ap C i?^. 
Hence ^* \ 5 C ^ . 

(3) Given/? G g , clearly there is # > /jwitha e uq. Namely, we may let for p e g 
such that a £ up an extension # be denned by Aq = Ap, uq = up U {a}, / « = 0 
and / | = fn for 0 £ up. So without loss of generality a £ up and a ^ Dom(/„) . 
Applying the Prikry Lemma, for every b 6 Dom(/£) and w 6 [AP]<H°, there is 
Bw,b Q Bp with BWtb e ^ and such that 

(w,BWth)\\Pr{3l)"Ma \=bRaa". 

Choose y < K such that (tja \ a,y) ^ U«e«/> Rang(/«)> which is possible as for 
every relevant /? we have | Dom(/£) | < K and \up\ < K. NOW we define q by letting 

A" = Ap, B" = f]{Bw,b : w € L4]<N° &be Dom(/£)} n B", uq = « ' and 

i f / ? / a 
' U {(a, (rja \ a, y))} otherwise. 

To verify that q is a condition we discuss 2.5(v). If /? ^ a and x ' ,x" 6 Dom(/a) 
then (w,Bq) decides in Pr(Sf) if Mp N Rp{x',x") because already {w,Bp) does 
that. If x',x" € Dom(/a) the conclusion follows similarly. If {x',x"} D {a} then 
the conclusion follows by the choice of Bq. 

Suppose that / « (* ' ) = /« (* ' ) ^ / 2 (x" ) = fq
p(x") for some x' ^ x" and 

a ^ /?. If x'.x" e Dom(/£) then 

<io,5*)lhpr ( 0 ) ' 'MQ (=£«(*' ,x") <̂ => MptRp" 

because this is already true of {w, Bp). So suppose without loss of generality that 
x' = a. But y was chosen so that f%{a) = (rja \ a, y) is not in Rang(/g), hence the 
condition 2.5(v) is satisfied. *2.6 

DEFINITION 2.7 (Shelah, [Sh 80]). Let X > No be a cardinal. A forcing notion P 
is said to be stationary X+-cc iff for every (pa : a < X+) in P, there is a club C C X+ 

and a regressive h : X+ -i X+ such that for all a, /? € C, 

[cf (a) = cf (/?) = A & A (a) = M/0] =>• /'a, />/? are compatible. 

THEOREM 2.8 (Shelah, [Sh 80], [Sh 546]). Suppose that X<x = X > N0- Iterations 
with (< A)-support of (< i)-directed-closed stationary A+-cc forcing, are (< X)-
directed-closed and satisfy stationary A+-cc. 

CLAIM 2.9. Suppose that Q is as in Claim 2.6. Then Q is (< «)-directed-closed 
and satisfies stationary K+-CC. 

PROOF OF THE CLAIM. First suppose that/* < «and{/?, : / < /*} is directed. For 

i < i * let Pi = (A1 ,Bl,ul, /'). We define A = U,<,-. A', B = f]M. B',u = U,<,-.«'' 
def 

and for a e w we let / „ = U,<,. / „ . It is easily verified that this defines a common 
upper bound of all pt. 

Hence Q is (< /«)-directed-closed. Now we shall prove that it is «+-stationary-cc. 
Let (pi : i < K+) be given, where each pt — (Ai,Bi,Uj, / ' ) and /,• = (f'a : a e «,-). 
Let U = \J{UJ : i < K + } , hence U C T and | [ / | < « + . Let us fix a one-to-one 
enumeration of U in an order type < K+, SO U — {as : j < s* < n+}. 
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For i < K+ let St = {s : a , E w,} be an increasing enumeration and let 
a, = otp(S,-), hence o-,- < K. For s € 5,- let d\ = Dom(/^v) and for k < <r, let 
a'k = a iff a = as for the A>the element s of S,-. Let y,- < K be given by 

y,- = sup{y + l : ( 3 a € H, )OC 6 Dom( / i ) ) (f'a(0 = (la \ t, ?))}• 

For /I e [K]<K and a < K define a language 

-2^,a = {*„.* : w £ L4]<<u,& < <r} U {<} U {gk : k < a} U {P, Q}, 

where each /?„,,£ is a 2-place relation symbol, as is <, each gk is a 1-place function 
symbol and P, Q are unary predicates. Note that the size of this language is < K. 

For / < K+ define a model JV,- of -2^,,CTl with the universe 

y ,x{0}U \Jd'sx{l} 
sESi 

and the interpretation given by: 

• P({a,b))iSb = 0, 
• Q((a,b))iSb = 1, 
• < is the partial ordering given by letting (a, a) < (/?, ft) iff a = b and a < /? 

as ordinals, 
• (C,a),(£,fc) e / ? ^ iff a = 6 = l a n d £ ,££</ ' , , while 

• £*((£,«)) = (y,&)iffa = 0 = fc,C = y or a = 1,6 = 0 and 

/ L ( 0 = (*7tti re,y). 

For each relevant A, a consider the isomorphism types of models of J?U>CT whose 
universe is a disjoint union of two sets each of size < K. There are < K such types 
(because K<K = K), let us enumerate them as 

{tf°: p<p(A,o)<K}. 

For / < K+ let fii be such that the isomorphism type of TV/ as a model of J?^.^. is 
tAi,<jj 

H, • 
Let F from K X [K]<K X K>([K+]<K) X K X « X [ « + ] < K be a bijection onto K+. Let 

C be a club of j < K+ such that for j £ C with cf (j) = K we have 

F{(j,A, {dk • k < o),fS,y,S) < j •<=>• supJ/t,sup(5') < ;', 
A:<CT 

and such that for all i < j we have sup{.y : a , € w,} < j and 

sup( J{Dom( / ; ) : a £ «,-} < y. 

Such a club exists because «<K = K. 
We define /; : K+ ->• K + by letting A(i) = 0 unless i € C and cf(z') = K, when 

A(i') = F(er,-, 4̂,-, (a", D r : s < ;),/?,-, y,-, S,- n i). Hence /; is regressive. 
Suppose that i < j e C and cf(i') = cf(_/) = K are such that h(i) = h(j), we 

claim that />, and pj are compatible. In order to prove this we proceed with several 
subclaims. 

SUBCLAIM 2.10. At = Aj and <x, = 07. 
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PROOF OF THE SUBCLAIM. This follows from the choice of F and h. *2.10 

Let A = At = Aj, a = at = Oj. 

SUBCLAIM 2.11. Nt and Nj are isomorphic as models of S'A.O• 

PROOF OF THE SUBCLAIM. This follows from Subclaim 2.10 and the fact that /?, = 
Pj- *2.11 

SUBCLAIM 2.12. If a € ut D Uj then a = a'k = ak for the same k and a = as for 
some s < i. 

PROOF OF THE SUBCLAIM. Since a e w, and j e C is of cofinality K, we have that 
a = as for some s < j . Hence s < i by the choice of h and so a = a'k for some k. 
Since Si D i = Sj D j we have that a = a]

k as well. *2.i2 

SUBCLAIM 2.13. If a e w, n w, and C ed^Ddi, then /4(C) = /^(C). 

PROOF OF THE SUBCLAIM. By Subclaim 2.12 there is k such that a = a'k = aJ
k, 

which is as for some s < i. By the choice of j we have sup(c^) < j , so by the choice 
of /; we have £ < i. Since ./V, and Nj are isomorphic, by the definition of < in these 
models we have that (C, 1) is a fixed point of the isomorphism. Hence gk(((, 1)) is 
as well, so there is a unique y such that 

f'a(0 = (ria\£,y) = fi(0. *2.B 

For every iu £ L4]<co and for every a e H; U Uj and £ £' € U/e{; n ae«, ^a w e c a n 

find BaU' such that 

(w,Ba^')Ms)\\"Ma^Ra(C,Cr. 

Let 5 = 5, n .6; n riaeu/Uu c C ed' udi Sa^ . We claim that a common upper bound 
of pi and />; is given by q = (A, B, u = u,• U w,-, / ) where / = (fa : a £ u) and 
/ « = U/G{; /} / a - To prove this it suffices to prove the following two claims: 

SUBCLAIM 2.14. Suppose that a,p € u and C < C are such that 

MO = MO ± MC) = MO-
Then for every w e L4]<co we have 

(w,B)Ms)\h"Ma\=Ra(C,t') <=• Mp\=Rp(U'r. 

PROOF OF THE SUBCLAIM. We have to do a case analysis. 
Case 1. For some / e {i, j} we have that a,fi€ui and £ C £ dl

aC\dl. 
The conclusion follows by the analogous properties of/?/. 

Case 2. a e «,• n uj, {, e dl
a\ dl and £' e J i \ ^ . 

We have [,' £ d'a, hence £' > j by the choice of/;. Hence £ ^ c/» and so C £ di. In 
particular 

/i(f') = /«(C') = A(C') = /i(C). 
Since ( £ rfi \ 4 we have £ e [/, y) and so ( € dn\dl and 

/ i (0 =/«(£) = MO=ffi(0-
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In particular /? £ u,• n Uj. Let £" be such that (£", 1) G Nt is the isomorphic image 
of (£', 1) under an isomorphism between TV} and iV,-. Then 

f U n = fJ
a(c') = fjl(c') = fi

ll(c") 
and so 

/i(c) = /^o^/i(c") = />(f"). 
So for every w £ [A]<w we have 

( ^ y ^ p ^ i h - M ^ *«(£,£") «=» Mp\=R(,(c,(")n-

Let u; G L4]<tu be given. By the choice of the function Rw# for k such that a = a'k 

we have 

(w.B,)^ lh " M a N *„(£,£")' 'iff <u;,;3y)pr(sr) Ih " M a N * a ( C C ' ) " 

and similarly for y? in place of a. Hence 

(w,B)Pl{s)\h"Ma\=Ra(£,£') <=>• MptRpiU'Y 

as required. 

Case 3. R £ ut n «y, £ £ 4 \ rfi a n d £' € ^/ \ 4 " 
Symmetric to Case 2 with a replaced by /?. 

Case 4. a G w,- n wy, £ £ d^ndi and £' £ di\ dl
a. 

As in Case 2, £' ^ J^ so £' > j and so £' $ c^- Hence £' € ^ n di and so 

fait') = / ^ (C) a n d / ^ C ) = / ^ ( O - Since £ G ̂  wehave/ a (£) = fl(£). Since 

£ £ dawe have £ < y so £ < ;'. If £ G rfo we obtain the desired conclusion because 

Pj G Q. But if not, then £ £ dL hence /? G w, n «y and so £ £ d'^ D i = di f) j , a. 

contradiction. 
Case 5. jS G w, n My, £ £d'pr\dJ

p and £' £dJ
p\ dfr. 

Symmetric to Case 4 with a replaced by /?. 
Case 6. a E «, n My and £' G da \ d& while £ G d£\ da. 

This case cannot happen because £ < £'. 
Case 7. Symmetric to Case 6 with a replaced by /?. 

Cannot happen for the same reason as Case 6. 
Case 8. a e «,• n u, and £, ( ' e ^ f l dl. 

If p £ ut n Uj then we are in Case 1. If /? G w, then since £,£' £ dawe have £,£ '<_/ 
and so since a G My we have £, £' < /. Hence £, £' G d'„ and the conclusion follows 

because p,• £ Q. If P £ w, then p £ Uj and £, £' £ dl f) dL hence the conclusion 
follows as pj G Q. 

Case 9. )S € «,- n My and £, £' G ̂  n 4 • 
Symmetric to Case 8. 

Case 10. a € w, \ My and P £ uj\ w,-. 
Hence £, £' G dl

a and so £, £' < j . Let A: be such that P = a{ and let /?' = a[. By 
the choice of h and the fact that JV,- and /Vy are isomorphic, we have that £, £' < i 
and £, £' G dl

fil, while 

<tu, Bi) \VMa) "Mp, \= £Rfi,£'" iS(w,Bj) U-Pt(s) "Mfi 1= £ ^ £ ' " . 

Sh:659



384 MIRNA DZAMONJA AND SAHARON SHELAH 

Moreover fg,{() = /«(£) and similarly for £'. We get the desired conclusion by 
applying this and the fact that /?, G Q. 

Case 11. a £ Uj\ M, and /? G u, • \ Uj. 
Symmetric to Case 10. *2.i4 

SUBCLAIM 2.15. Suppose that a G u and£, £' G Dom( / a ) . Then 

(W)5)||pr(s)"MQ^C«aC". 

PROOF OF THE SUBCLAIM. Follows by the choice of 5 . *2.is 

This finishes the proof of the chain condition. *2.9 

OBSERVATION 2.16. Suppose that 9 is a normal ultrafilter over K and Q is a 
forcing notion such that 

Ihg "3 C 3' and Sf' is a normal ultrafilter over K". 

Then Pr(Sr) <oeQ * Pr(Sr')> where e is the embedding given by 

e((a,A)) = (9Q,(a,A)). 

DEFINITION 2.17. Suppose that Q is as in Claim 2.6, while Q <°P, and 3r' is a 
P-name of a normal ultrafilter over K, extending 9 U {A*}. For a < T we define 
G/f', intended to be a P * Pr(Sr)-name for a graph on {rja \ £ : ( < K + } X K (see 
Claim 2.19 below), defined by letting for / , y" G {rja \ ( : ( < K+} X K, 

y'Ry" iff for some (p, (w, Bp)) £ G with a£up,p £ g and [iu] G L4']<N° 
and some x', x" G Dom(/„) 
we have f£(x') = y' and f£{x") = y", 
AND ( w , ^ ) lhPr(s ) " M a |= ^ a ( x ' , x " ) " . 

NOTATION 2.18. Suppose that Q is as in Claim 2.6. For a < T let 

/ Q
d ^ U { / £ : a G W ' & / > £ G e } . 

CLAIM 2.19. Suppose Q is as in Claim 2.6, while Q <oP, and 9' is a P-name of 
a normal ultrafilter over K, extending 3 U {A*} (equivalently, A* £3'). Then 

(0, (0, ̂ 4*)) H-p*Pr(®<) " / a is an embedding of M a into Gr„ . 

PROOF OF THE CLAIM. Let G be P * Pr(Sr')-generic with (0,(0, .4*)) G G and 
suppose that x', x" are such that Ma f= Ra(x', x") in V[G]. Let (p+ , (iu, A')) be a 
condition in G that forces this. Without loss of generality, we have 

(p+,(w,A'))>{Q,@,A*)). 

In particular, p+ \\-P "w G [A*]<iio". Considering P as Q * P/Q, let us write 
(p+, (w,A')) as {p,p', (w,A')). By extending p+ if necessary, we may assume that 
Ap D w, and then using the density of 3£x>,a and ^X",a, we may also assume 
that a € up and x',x" G Dom(/^) . By extending further, we may assume that 
P+ I!" "4' C S p " . Then (/>+, (iu, ̂ 4'» extends (p, {w, Bp)), hence the latter is in 
G. Since p \\-P "(w,Bp}\\pr{3!]Ra{x',x")", it must be that (w, Bp) H-Pr(sr) "Ma \= 
Ra(x', x")'\ Hence in V[G] we have that 

y'= Mx')Ry" = fa(x"). 
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On the other hand, suppose that in V[G] we have y' = fa(x')Ry" = fa(x") 
and let (p,(w,Bp)) exemplify this. In particular, {w,Bp) forces in Pr(Sr) that 
"MQ 1= Ra(x',x")", and since (p, (w, Bp)) e G, we have that Ra(x', x") holds in 
V[G]. 

As it is easily seen that each / „ is forced to be 1-1 and total, this finishes the 
proof. *2.19 

CLAIM 2.20. Suppose that Q and 9' are as in Claim 2.19, while G is g-generic 
over V. Further suppose tha t / / i s a Pr^O-generic filter over V'[G]with0,A*) £ 
H. Then in F'[G][i/], there is a graph Gr* of size K+ such that for every filter / in 
Pr(Sr) satisfying 

{(9e,p) : P&J} C G*H = {(q,s) : q e G & q\V "s € H"} 

which is Pr(Sr)-generic over V, every graph of size K+ in V'[J] is embedded into 
Gr*. 

PROOF OF THE CLAIM. Define Gr* on Ua<r{r}a \ C '• C < « + } x «» hence \Gr*\ = 
K+, by our assumptions on fj. We let 

Gr*\=u(tia\C,i)R(ria K , ; ) " iff G r f \= M(i7« rC>0*(>7« K J ) " -

Then Gr* is a well defined graph, as follows by the definition of Q. 
Given M a graph on K+ in F ' [ / ] . Let (w,A) € / force in Pr(Sr) that M is a 

graph on K+. By Observation 2.16, (0g, (w,A)) forces in Q * P r ^ ' ) that M is 
a graph on K+, so since (0g, (iy, A)) € G * H we have that for some a it is true 
that M = Ma[G][H]. Since (0e, (0,^*)) G~G * H we have by Claim 2.19 that 
M embeds into Grf' in K'[G][/f], but Grf' embeds into Gr* by the definition of 
Gr*. *2.20 

CLAIM 2.21. Let 91 be a normal ultrafilter over K and 4̂ e 3 r . Suppose that G is 
a Pr(Sf)-generic filter over V. Then there is some G' which is Pr(Sr)-generic over 
K and such that (0, A) € G' while F[G] = F[G']. 

PROOF OF THE CLAIM. Let x = XG = U{s : (3B e Sf)(i, fi) e G}, so 

G = G* = {{s, B) e Pr(Sf) l i C i c C j U B } . 

Now we use the Mathias characterization of Prikry forcing, which says that for an 
infinite subset x of K we have that Gx is Pr(Sr)-generic over V iff xG \ B is finite 
for all B e 91. Hence x \ A is finite. Let y = XG n ^4, so an infinite subset of K 
which clearly satisfies that y \ B is finite for all B e 9>. Let G' = Gy, so G' is 
Pr(Sf)-generic over V and (0,/l) € G'. We have F[G'J C V[G] because y £ G 
and V[G] C V[G'] because x \ y is finite. *2.2i 

CONCLUSION 2.22. Suppose that Q, 9', G and V are as in Claim 2.20 and H 
is a Pr(Sf')-generic filter o v e r V[G]- Then the conclusion of Claim 2.20 holds in 
V'[G][H]. 

PROOF. The conclusion follows by Claim 2.20 and Claim 2.21. *2.22 

CLAIM 2.23. Suppose that Q = (Pt, Qi,A{ : / ' < / ) € JT*+ is given by determin­

ing go as in Definition 2.2 and defining Q's = Q3
 F> (as defined in Definition 2.5) 

and Ai = A*, where A* was defined in Claim 2.6(2). Then Q is fitted. 
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PROOF OF THE CLAIM. We shall take R[F, 9f] = Q^'K,fj if this is well defined (i.e., 
V¥ satisfies the conditions on V in Definition 2.5) and R[W,9>] = {0} otherwise. 
By Claim 1.21, it suffices to give a definition of A satisfying the requirements of that 
Claim. Suppose that P, 9> are such that R[¥, 3f] is non-trivial, working in Vv we 
define 

h = h[pygf]: Qgg = /?pp?< 

def 
by letting h{p) = Bp for p = (Ap, Bp, up', f). We check that this definition is as 
required. So suppose that K' < K is inaccessible andg is a (< /c')-directed family of 
conditions in Qs with the property that for all p e g we have K' 6 Bp. We define r 
by letting 

Ar = |J A" U {«'}, Br = p | B" \ {K'},ur =Upegu
p, 

peg peg 

and for a £ «', we let fr
a = Up e g & a^upfa- It is easy to check that this condition 

is as desired. *2.23 

REMARK 2.24. The inaccessibility of K' was not used in the Proof of Claim 2.23. 

Proof of the Theorem finished. 
To finish the proof of the Theorem, in VQ let Q be as in Claim 2.23. By Claim 2.23 

and the definition of fittedness, we can find sequences (p* : i < / ) and (a, : i < x) 
witnessing that Q is fitted. Let 9s i = /»*(«,-) for i < x- If we force in Vo by 

P*d=\im(Pai/(p* \a,),Q3t: i<X), 

we obtain a universe V* in which {9>i : cf(z') = K+) is an increasing sequence 

of normal filters over K, and 9> = \JieSx 9>i is a normal ultrafilter over «. For, 

in vPai^p^a'\ we have that 91 t is an ultrafilter over K, and cf(#) > K, while the 
iteration is with (< /t)-supports and K<K = K. Hence every subset of K in V* 
appears as an element of Vp-'l{p' M for some i, and so 31 is an ultrafilter. 

Also, for every / e S*+ we have that A* £ 91. Let 9> be a /"'-name for 9> of V*. 
Let 

(Va < <5)(3jS 6 (a,«J))[a^ = p and ' 

<5 < x • 2> n ^ ( K ) ^ is a P ^ / ( ^ f j?)-name 

mdpfi+l(l])=9m&(K)v°f]i 

Hence E is a club of x- Let <5 6 E n >S*++ be larger than K + + + . Force with P* \ 5, 
so obtaining V\ in which 2K > 2K > K+++, as each coordinate of P* \ 8 adds a 
subset of K, and cardinals are preserved. In V\ force with the Prikry forcing for 
9lb = \Ji€S>+ 9>i. Let W = Vi\Pr(9fs)]. For i e SS

K+, let Gr* be a graph obtained 

in W satisfying the conditions of Conclusion 2.22 with 93$ in place of 9i' and 9>i 
in place of 91. Let C be a club of 8 of order type K++, and let g be its increasing 
enumeration. 

We claim that W is as required, and that 

{Gr*(i): i < K
++ & cf(g(0) = «+} 

„ def 
is = 
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are universal for graphs of size K+. Clearly the cofinality of K in W is No and K is a 
strong limit. Suppose that Gr is a graph on K+ in W and let Gr be a Pr (^) -name 
fork. Hence, there is a i < K++ withcf(g(/)) = K+ such that GrisaPr(Sl

g(!))-name 
for a graph on n+ . The conclusion follows by the choice of Gr *. *2.i 
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