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INTRODUCTION

Complete Boolean algebras proved to be an important tool in topology
and set theory. Two of the most prominent examples are B(}), the algebra
of Borel sets modulo measure zero ideal in the generalized Cantor space
[0, 1]} equipped with product measure, and C(}), the algebra of regular
open sets in the space [0, 1]}, for } an infinite cardinal. C(}) is much
easier to analyse than B(}): C(}) has a dense subset of size }, while the
density of B(}) depends on the cardinal characteristics of the real line, and
the definition of C(}) is simpler. Indeed, C(}) seems to have the simplest
definition among all algebras of its size. In the Main Theorem of this paper
we show that in a certain precise sense, C(+1) has the simplest structure
among all algebras of its size, too.

Main Theorem. If ZFC is consistent then so is ZFC+2+ 0=+2+``every
complete Boolean algebra B of uniform density +1 has a complete subalgebra
isomorphic to C(+1).''

There is another interpretation of the result. Let (BA(}), <}) denote the
class of complete Boolean algebras of uniform density } quasi-ordered by
complete embeddability. This quasi-order can be understood as a rough
measure of complexity of the algebras concerned. Now BA(+0) has just one
element up to isomorphism; it is C(+0). The class BA(+1) can already be
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immensely rich, permitting of no simple classification; this is the case say
under the continuum hypothesis. The Main Theorem shows that the class
BA(+1) can have a smallest element. Note that this smallest element must
then be C(+1), since by [5, Proposition 7] C(+1) is minimal in BA(+1).

The techniques introduced in this paper provide us with much more
information. Most notably we get

Corollary 14. Under MA+ 1
C(+1) embeds into every complete c.c.c.

Boolean algebra of uniform density +1 .

Corollary 37. Under PFA C(+1) embeds into every complete Boolean
algebra of uniform density +1 .

The search for complex objects which have to be embedded into com-
plete Boolean algebras of small size has been going on for some time. It has
been proved that every algebra in the class BA(+1) may have to add a real
[8], indeed a Cohen real [13]. Every uncountable Boolean algebra may
have to have an uncountable independent subset [10].

The proof of the Main Theorem is an iteration argument. The heart of
the matter lies in introducing a regular embedding of C(+1) to a given
algebra B of uniform density +1 by a sufficiently mild forcing. This
problem is solved in the first three sections. Section 1 introduces the crucial
auxiliary notion of an avoidable subset of the algebra B, Section 2 deal
with productively c.c.c. B as an easier special case, proving Corollary 14
and setting the stage for the attack at the general case in Section 3. At the
end of Section 3 we are able to demonstrate the Main Theorem. Section 4
is devoted to a couple of relevant ZFC examples of algebras of bigger
density. Finally, Section 5 suggests several open problems.

The arguments in the paper are given a nested structure, in the priority
order Theorem, Lemma, Claim. It is advisable, for example, upon the first
reading of the proof of Theorem X to leave out the arguments for the
lemmas. Our notation follows the set-theoretic standard as set forth in [4].
Throughout the paper we work with separative partially ordered sets
representing dense subsets of the Boolean algebras in question rather than
with the algebras themselves. ``Algebra'' stands for ``complete Boolean
algebra'' and ``embedding'', ``embeds'' stand for ``complete embedding'',
``completely embeds'' respectively. In a forcing notion we write p�q to mean
that q is more informative than p (i.e., the Western way); and p = q to
mean that p and q are incompatible, that is, no r is less than both p and q.
All partial orders in this paper will have a maximal element by default,
denoted by 1. A poset P is separative if for p�3 q there is r�p, r = q. We
say that P has uniform density } if |P|=} and for no p # P, R # [P]<} R
is dense below p. An algebra has uniform density } if it has a dense subset
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of uniform density }. If p # P then P � p stands for [r # P: r�p]. We write
P<} Q (P embeds into Q) if there is H4 , a Q-name such that Q && ``H4 /P8 is
generic over V ''. Thus P<} Q iff RO(P) embeds into RO(Q) and we can
reasonably use <} for embedding of algebras. C(}) is construed as RO(C}),
where C}=[h: h is a function and dom(h) # [}]< + 0, rng(h)/2] ordered
by reverse inclusion. For an ordinal : and a set X of ordinals we write :*X

for min(X":+1). H} is the collection of all sets hereditarily of size <}.
For two models M, N, MON means that M is an elementary submodel of
N and the special predicates will be often understood from the context.
KC105 marks the end of the proof of Claim 105, KT61 marks the end of the
proof of Theorem 61, etc.

The results in this paper were obtained during the meeting of the two
authors at Rutgers University in September 1994 and the week following it.
The second author thanks Rutgers University for its hospitality during this
time. Theorem 8, Definition 20, and Lemma 21 are due to the first author,
Lemma 42 is due to both authors independently, and the other results are
due to the second author. The results of this paper appeared in Chap. 2 of
the second author's Ph.D. thesis [14].

1. THE OVERALL STRATEGY

Of course, the proof of the Main Theorem is by a forcing iteration argu-
ment. The basic challenge is, given a poset P of uniform density +1 , to find
a sufficiently mild forcing Q such that Q && ``C+ 1

<} P''. Then we can hope
to iterate the procedure to obtain a model for the desired statement.

The following notion plays a very important role in our argument.

Definition 1. Let P be an arbitrary poset. A set D/P is called almost
avoidable if for every p # P there is a finite set tr( p)/D, called a trace of
p in D, such that for any b # [D] < + 0 with b & tr( p)=0 there is p$�p
which is incompatible with every element of b.

For example, any finite set D/P is almost avoidable (set tr( p)=D for
every p # P) and any antichain D/P is almost avoidable (set tr( p)=[r],
where r # D is some element of D compatible with p, for every p # P).
However, we shall be interested in finding a dense almost avoidable set
D/P. Here is a canonical example of such a situation. Let P be the Cohen
poset <|| ordered by reverse extension. Then P, as a subset of itself, is
almost avoidable; just set tr(s)=[t # P: t/s]. If b is a finite set in <||
with b & tr(s)=0 then there is a one-step extension of the sequence s
avoiding every element of b.
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The relevance of Definition 1 to our problem is explained in the follow-
ing two lemmas. They show that the statement ``a poset P has a dense
almost avoidable subset'' is a good approximation of ``C+ 1

<} P''.

Lemma 2. Let P be a poset of size } such that C}<} P. Then P has a
dense almost avoidable subset.

Proof. Let P be an arbitrary poset of size }, P=[ p: : : # }], and sup-
pose that C}<} P. Choose a P-name c* such that P && ``c* : } � 2 is
C}-generic'' and fix the induced embedding e of C(}) to RO(P). We define
the set D/P as follows: for each : # }, we choose a condition p$:�p: and
a bit i(:) # 2 such that p$: && ``c* (:)=i(:)''; we set D=[ p$: : : # }].

Now obviously the set D is dense in P. We must show that D is almost
avoidable. To this aim, fix a condition p # P. Definition 1 calls for a trace
of p in the set D. We choose a finite function h # C} with h�projC(})( p)
and set tr( p)=[ p$: : : # dom(h)].

To see that the set tr( p) has the required properties, let b/D be a finite
set disjoint from tr( p). So necessarily there is a finite set d/} disjoint
from dom(h) such that b=[ p$: : : # d]. Let k # C} be the function with
dom(k)=dom(h) _ d and k(:)=h(:) for : # dom(h) and k(:)=1&i(:) for
: # d. Since k�h�projC(})( p), in the poset P there must be a lower bound
p$ of the conditions p and e(k). By the choice of the function k, necessarily
p$ = p$: for : # d, and so p$�p witnesses the statement of Definition 1 for
p, tr( p), and b. K

Lemma 3. Let P be a poset of uniform density } with a dense almost
avoidable subset. Then C} && ``C}<} P8 ''.

Remark. This is somewhat weaker than the straightforward converse of
Lemma 2. Indeed, a complicated h-construction gives an example in L of
a poset P of uniform density +1 with a dense almost avoidable subset such
that P does not add even one Cohen real. Thus the converse of Lemma 2
is not provable in ZFC even in the case }=+1 .

Proof. Let P be a poset of uniform density } with a dense almost
avoidable subset D. First, using the uniform density of P we extract a
system of } many disjoint maximal antichains of the set D.

Claim 4. There is a system (A# : # # }) of pairwise disjoint maximal
antichains of the set D.

Proof. We fix a bookkeeping device, a bijection e: P_} � }. By induc-
tion on : # }, we construct a sequence ( p: : : # }) of pairwise distinct con-
ditions in D as follows. Given : # }, :=e( p, #), and the sequence
( p; : ; # :) , the condition p: is any condition in the set D which is less
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than p and does not appear on the sequence ( p; : ; # :). It is possible to
choose such a condition since the set D, unlike the set [ p; : ; # :], is dense
below the condition p.

By the construction, for # # } the sets D#=[ p: : : # e"P_[#]]/D are
pairwise disjoint dense in P. The claim follows by choosing a maximal
antichain A#/D# for each # # }. KC4

Fix a system (A# : # # }) of antichains as in Claim 4. Thus each A#/D
is a maximal antichain of the poset P by the density of D.

Definition 5. A forcing Z is defined by Z=[z: z is a function with
dom(z) # [�# # } A#]

< + 0, rng(z)/2]; order is by reverse extension.

Explanation. Essentially, we force a P-name for a C}-generic sequence
(c* # : # # }) by finite conditions. Given # # }, the name c* # will be a function
from A# to 2; for a condition z # Z, the function z � A# is a finite piece of
the future c* # .

Obviously, the forcing Z is isomorphic to C} . Thus we will have proven
the lemma once we show that Z && ``C}<} P''. If H/Z is a generic filter
and # # } then c* #=� H � A# is a P-name for an element of 2. We show that
Z &&P && ``(c* # : # # }) is C}-generic''. To this end, fix z0 # Z, z0 && ``E4 /C}

is open dense'' and p0 # P. We find z1�z0 , p1�p0 so that z1 &&Z p1 &&P

``(c* # : # # }) meets E4 '', proving the lemma. Choose a trace tr( p0) of p0 in
the dense set D/P and let d=[# # }: A# & tr( p0){0]; thus the set d is
finite. For the rest of the proof we adopt the following piece of notation:
for two functions h, k the symbol h_� k stands for the unique function with
domain dom(h) _ dom(k) which is equal to k on dom(k) and equal to h on
dom(h)"dom(k).

Claim 6. There are a condition z1�2�z0 in Z and h # C} such that for
any function k: d � 2 we have z1�2 && ``h8 _� k8 # E4 ''.

Proof. Let n=|d | and (kj : j # 2n) enumerate d2. By induction on
j # 2n+1 we construct wj # Z, hj # C} so that

(1) w0=z0 , h0=0

(2) wj's are decreasing in Z, hj's are decreasing in C}

(3) for j # 2n we have wj &&Z ``h8 j+1_� k8 # E4 ''.

There is no problem in the induction. z1�2=w2 n , h=h2n witness the state-
ment of the claim. KC6

Pick z1�2�z0 , h # C} as in the claim. By properties of the trace we can
find p1�2�p so that for every r # dom(z1�2)"tr( p0) we have r = p1�2 . We
strengthen p1�2 to p1 such that for every # # dom(h) there is an element of
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the antichain A# above p1; denote this unique element by p#. Define a con-
dition w # Z by dom(w)=[ p# : # # dom(h)], w( p#)=h(#) and set
z1=w _� z1�2 . Thus z1 # Z and moreover z1�z1�2�z0 . The following claim
completes the proof of the lemma:

Claim 7. z1 &&Z p1 &&P ``the function # [ c* # , # # dom(h) is in E4 ''.

Proof. Comparing the function # [ c* # , # # dom(h) to h, we find that
z1 &&Z p1 &&P ``c* #{h(#) implies p# # dom(z1�2)''. By construction of p1�2 ,
[# # |1 : p# # dom(z1�2)]/d. Therefore z1 &&Z p1 &&P ``c* #=h(#) for all
# # dom(h)"d ''. By our choice of h and z1�2 we have z1 &&Z p1 &&P ``the func-
tion # [ c* # , # # dom(h) is in E4 '', i.e., the statement of the claim. KC7,L3

This brings us back to our original task. Fix a poset P of uniform den-
sity +1 . We construct a two-step iteration Q=Q0 V C+ 1

=Q0_C+ 1
. The

forcing Q0 serves to introduce a dense almost avoidable subset to P. By
Lemma 3, we then have Q && ``C+ 1

<} P8 ''. In the next section we show that
in the special case of a productively c.c.c. poset P, the most optimistic
variation of the above scenario works. In Section 3, we work on the general
case, which is somewhat harder and technically more requiring. At the end
of Section 3 we are finally in the position to prove the Main Theorem.

2. PRODUCTIVELY c.c.c. POSETS

Theorem 8. Let P be a separative productively c.c.c. poset with uniform
density +1 . Then there is a c.c.c. forcing Q such that Q && ``C+ 1

<} P''.

Proof. Fix a productively c.c.c. separative poset P of uniform density
+1 . As we have seen in the previous section, we have to introduce a dense
avoidable subset to P. To begin with, we stratify the poset a little. We fix
a sequence (r: : : # |1) so that

(1) [r: : : # |1]/P is dense

(2) \; # : # |1r;�3 r:

together with a closed unbounded set C/|1 with all : # C satisfying

([r; : ; # :*C ], [r; : ; # :], �) O([r; : ; # |1], [r; : ; # :], �) . (P1)

This is quite easy after iterating some Skolem hull arguments. Let us
remind the reader that for an ordinal & and a set X of ordinals, we use the
notation &*X=min(X"(&+1)). The desired forcing Q will be defined as an
iteration Q0 V C4 + 1

of two c.c.c. forcings.
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Definition 9. Q0 is the set of all functions q satisfying the following:

(D9.1) dom(q) # [C]<+ 0, \: # dom(q) q(:)=( pq
: , gq

:); if no confu-
sion is possible we drop the superscript q

(D9.2) \: # dom(q) p: # [r; : :�;<:*C], g:/dom(q) & :
(D9.3) \: # dom(q) _p$:�p: \; # (: & dom(q))" g: p$: = p; .

Order is by reverse extension. We set q� =[ p # P : _: # dom(q) p=p:].

Explanation. So this is a rather straightforward try at forcing a dense
almost avoidable subset D/P with finite conditions. For q # Q0 , the set q�
is a finite piece of the future set D. In the generic extension, we will need
to produce a trace of pq

: in D. This is the role of gq
: : we shall set tr( pq

:)=
[ pq

:] _ [ pq
; : ; # gq

:]. Note that it is enough to produce traces for a dense
set of conditions in P.

Lemma 10. Q0 is c.c.c.

Proof. Assume for contradiction that [q! : ! # |1] is an antichain in Q0 ;
without loss of generality |q! |=n for all ! # |1 for some fixed n # |.
Applying 2-system argument to [dom(q!): ! # |1] and using the pigeon-
hole principle repeatedly we can obtain a # [|1] < + 0, q # Q0 , dom(q)=a
and a set A/|1 of full cardinality so that for every !<& in A we have
q! & q&=q and max(dom(q!))<min(dom(q&)"a). Note that now no confu-
sion is possible with the notation p:=pq=

: if : # dom(q!)"a for some ! # A,
since this ! is unique.

Claim 11. For each ! # A and each : # dom(q!)"a, there is a condition
p$:�p: with the following properties:

(C11.1) p$:�p: witnesses (D9.3) for : and q!

(C11.2) for each $ # dom(q!*A)"a we have p$: = p$ .

Proof. Fix ! # A and : # dom(q!)"a as required in the Claim. First we
choose a condition p:$

0�p: witnessing (D9.3) for q! and :. By the elemen-
tarity properties of C (P1) we can require that p:$

0 # [r; : ; # :*C]. Now let
$0<$1< } } } <$i< } } } , i<n&|a| , be a list of all ordinals in dom(q!*A)"a.
By induction on i�n&|a| we build p$i # P so that

(1) p$0�p$1� } } }

(2) p$i # [r; : ; # $i*
C]

(3) p$i+1 = p$i+1
for i<n.

p$0=p:$
0 already satisfies all of (1)�(3). Given p$ i, i<n&|a|, we can choose

p$i+1�p$i as required since by (2) and the choice of (r; : ; # |1) we have
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p$i�3 p$i+1
. Note that p$ i+1

# [r; : $i+1�;<$*C
i+1]. To make (2) hold for

i+1 we use (P3) again and find p$i+1 # [r; : $i+1�;<$*C
i+1].

We set p$:=p$n&|a|. Thus p$:�p:$
0 is still a witness of (D9.3) for q! and

: and moreover p$: = p$ for all $ # dom(q!*A)"a. KC11

Fix a sequence of p$:'s for : # dom(q!)"a, ! # A as in the claim. Let B/A
be a set of cardinality +1 such that for all ! # B we have !*B>!*A. For
each ordinal ! # B, let (:i, ! : i<n&|a|) be an increasing list of all ordinals
in dom(q:)"a. The collection [( p$:i, ! : i<n&|a|): ! # B] is not an anti-
chain in Pn&|a| since the poset P is productively c.c.c. and the collection in
question is indexed by the uncountable set B. Thus we may pick ordinals
!<& in B so that p$:i, ! is compatible with p$:i, & for all i<n&|a|.

Claim 12. The conditions q!*A , q& are compatible in Q0.

Proof. Set +=!*A and q=q+ _ q& . We need to verify that q # Q0 ; then
q is the needed lower bound of q+ , q& , providing the claim. The only dif-
ficulty here is checking (D9.3) for q. We split into two cases: : # dom(q+)
and : # dom(q&)"a. In the former case, p$: witnessing (D9.3) for g+ and :
will do, since the only new values for q as compared to q+ are above :. In
the latter case, we find i<n&|a| with :=:i, & and set p": to be a common
lower bound of p$:i, ! and p$:i, & , which exists by the choice of !<&. We claim
that p":�p: witnesses (D9.3) for q and ::

(1) Let ; # (dom(q&) & :)"gq&
: . Then p; = p$: and as p": �p$: we have

p; = p": as well.

(2) Let ; # (dom(q&)"a. Then by construction of p$:i, ! (Claim 2.8) we
have p; = p$: i, ! and as p":�p$:i, ! we conclude that p; = p": again.

All relevant ;'s from the second universal quantifier in (D9.3) for q and
: have been checked. The claim follows. KC12

By the choice of B we have that !*A<& and so Claim 12 stands in direct
contradiction with our assumption of [q! : ! # |1] being an antichain. KL10

The forcing Q0 as above is actually even productively c.c.c. since its
definition from (r: : : # |1) and C is absolute, and ``productive c.c.c.'' of
the poset P is preserved under c.c.c. forcings.

Fix a generic filter G/P and work in V[G]. We define a set D/P by
D=�[q� : q # G].

Lemma 13. The set D/P is dense almost avoidable in P.

Proof. As for the density of D, work in V for a moment. Let q0 # Q0

and p # P. Choose $ # C, $>max(dom(q0)) so that there is : # $ with
r:�p. By elementarity properties of C (P1) there is ;, $�;<$*C with
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r;�r: . We set q1=q0 _ [($, (r; , dom(q0)))]. We have that q1 # Q0 ,
q1�q0 and q1 && ``there is an element of D4 below p� ''. The density of the set
D/P follows by a genericity argument.

As for the almost avoidability, let p # P. We shall produce a trace of p in
the set D with the required properties. There is q0 # G and : # dom(q0) such
that pq0

: �p. We claim that the trace tr( p)=[ pq 0
: ] _ [ pq0

! : ! # gq0
: ] does the

trick. To see this, choose b # [D]< + 0 disjoint from tr( p). One can find
q1�q0 , q1 # G with b/q1 . Notice that pq 0

: =pq 1
: and gq 0

: =gq 1
: . Choose

p$�p: witnessing (D9.3) for q1 , :. By elementarity properties of the set C
(P1) there is such p$ in [r; : ; # :*C ]. Now we repeat the process from
Claim 11 to get p"�p$ which is incompatible with all pq1

$ , for $ # dom(q1)"
(:+1); such p" will be incompatible with all elements of q� 1 except those in
tr( p). It follows that p�pq0

: �p" = r for all r in b. Therefore p" witnesses
the desired property of tr( p) with respect to b. KL13

Note that in V[G], the poset P still has uniform density +1 . The reason
is that this is expressible by the first-order statement ``for no ordinals
:, ;<|1 the set [r! : !<:] is dense below r;'', whose truth value is
absolute between V and V[G]. So we can use Lemma 3, finishing the
proof of Theorem 8. The forcing we have been looking for is Q0 V C4 + 1

=
Q0_C+ 1

. KT8

Corollary 14. Under MA+ 1
the algebra C(+1) embeds into all c.c.c.

algebras of uniform density +1 .

Proof. Assume MA+ 1
and choose a separative c.c.c. poset P of uniform

density +1 . Without loss of generality the underlying set of P is |1 . By
[12] the poset P is _-centered and so by Theorem 3 there is a c.c.c. Q
with Q && ``C+ 1

<} P8 ''. Choose a large regular cardinal } and a model
MO(H} , # , P, Q) with |1/M, |M|=+1 . The poset Q & M is c.c.c. and
so we can use MA to get a filter G/Q & M which meets all sets in
[D & M: D # M, D/Q dense], since by elementarity all of these sets are
dense in Q & M. Let i: M � M� be the transitive collapse of M, G� =i"G.
Then i � (P _ C+ 1

)=id and G� /i(Q) is M� -generic. By our choice of Q and
the elementarity of M we have M� [G� ] < ``i(C+ 1

)=C+ 1
<} i(P)=P ''. The

following claim completes the proof of the corollary.

Claim 15. The statement C+ 1
<} P is upwards absolute; that is, if M/N

are two transitive models of rich fragments of set theory, +M
1 =+N

1 , P # M,
and M < ``C+ 1

<} P '' then N models the same statement.

Proof. We use an alternative characterization of regular embedding:
C+ 1

<} P if there is a function e: C+ 1
� RO(P)+ preserving incompatibility

such that for every p # P there is h # C+ 1
such that for any k # C+ 1

with
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k�h the value e(k) is compatible with p in RO(P). So we have such e
in M. Now CM

+1
=CN

+ 1
and RO(P)M/RO(P)N is dense; thus properties of

e survive in N, showing that N < C+ 1
<} P. KC15, Co14

3. THE GENERAL CASE

In the case of a general poset P, we cannot succeed with the scenario
outlined in the previous section. The forcing Q defined there has a dense
subset of size +1 , and that is just too simple to work:

Lemma 16. Let P be a _-closed poset and let Q be a forcing of size +1

preserving +1 . Then Q && ``P is +0-distributive''.

Proof. Let the posets P, Q be as in the assumption of the lemma. Let
Q && ``(D4 i : i<|) is a system of open dense subsets of P ''. We fix a
bookkeeping device, a bijection e: Q_| � |1 and construct a descending
sequence ( p: : : # |1) of conditions in P by induction as follows:

(1) p0=1P

(2) for :=;+1, where ;=e(q, i ), we find a condition q$�q in Q
and a condition p�p; in P such that q$ && ``p� # D4 i''. We set p:=p.

(3) for : limit we set p: # P to be any lower bound of the chain
( p; : ;<:).

By the construction, Q && ``\i<| _: # |1 p� : # D4 i''. Since the forcing Q
preserves +1 , we have that Q forces that ``for every i<|, let :i # |1 be the
least ordinal such that p: i # D4 i . Then :* =sup i<| :i is less than |1 . There-
fore p:* # � i<| D4 i and �i<| D4 i{0.''

The previous argument relativized to any Q � q and P � p, where q # Q
and p # P, gives the lemma. KL16

Under the Continuum Hypothesis there exists a _-closed poset P of size
+1 , and, as shown in Lemma 16, the forcing Q as defined in the previous
section cannot force C+ 1

<} P. Tracing the problem, we conclude that Q0 ,
the first component of the forcing Q, collapses +1 . However, we are still
able to modify the forcing Q0 so that we get

Theorem 17. For any separative partial order P of uniform density +1

there is a proper, |2-p.i.c. forcing Q such that Q && ``C+ 1
<} P8 ''. Moreover, if

GCH holds then we can find such Q of size +2 .

Here, |2-p.i.c. is one of the strong forms of +2-c.c. introduced by the first
author [8]. It will be instrumental for iteration purposes later.
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The proof strategy will be the same as for Theorem 8. Given the poset
P, we construct a mild forcing Q0 which introduces a dense almost
avoidable set D/P. Then by Lemma 3, the forcing Q=Q0_C+ 1

will be
as desired. Now our Q0 will be almost the same as in the previous section,
only modified by side conditions in the spirit of [11]. Now every side con-
ditions argument consists of three ingredients: a finite conditions construc-
tion, here supplied by the poset Q0 from the previous section; matrices of
models as in Definitions 18, 19; and a certain notion of transcendence as
in Definition 20. We start with disclosing the matrices of models.

Let } be an uncountable regular cardinal and fix <<, a well-ordering of
H} . Also, choose one distinguished element 2 of H} .

Definition 18. We say that m is a matrix of models if the following
conditions are satisfied:

(D18.1) m is a function, dom(m) # [|1] < + 0 and for each : # dom(m)
the value m(:) is a finite set of isomorphic countable submodels of
(H} , # , <<, 2)

(D18.2) for each :<;, both in dom(m), we have \N # m(:) _M # m(;)
N # M

(D18.3) for each :<;, both in dom(m), we have \M # m(;) _N # m(:)
N # M.

We consider the set M of all matrices of models to be ordered by �, the
reverse coordinatewise extension. That is, n�m if dom(n)/dom(m) and
for each : # dom(n) we have n(:)/m(:).

The poset M is a subset of H} and it is not necessarily separative. Its
definition has three parameters: the cardinal }, the well-ordering <<, and
the distinguished element 2. The following definition is motivated by some
technical considerations. For a detailed treatment, see [14].

Definition 19. Let MO(H} , # , <<, 2) be a countable model and
let m # M be such that M # m(M & |1). Then we define the following
notions:

(D19.1) prM(m), the projection of m into M & M. This is the function
defined by dom(n)=dom(m) & M and N # n(:) iff there are models N=
N0 # N1 # } } } # Nk=M such that Ni # m(:i ), where :=:0<:1< } } } <:k=
M & |1 is an increasing list of all ordinals in dom(m) between : and
M & |1 .

(D19.2) A matrix m is said to be M-full if for each : # M & dom(m)
and each N # m(:)"prM(m)(:) there is M� # m(M & |1) such that N # M�
and i(N ) # prM(m)(:), where i : M� � M is the unique isomorphism of M�
and M.
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Obviously, prM(m) # M & M. The idea behind this definition is that
prM(m) should be a matrix in M which grasps all the information about
m understandable from within M.

Now here is the promised notion of transcendence over a countable sub-
model MOH} . Parallel definitions appeared before in Todorc� evic� 's work.

Definition 20. Let P be a separative partially ordered set. A set R/P
is small if for every a # [R]+ 0 there is b # [P]< + 0 such that for every r # a
there is p # b with r�p.

Some elementary observations: principal filters in the poset P are small;
and a small set cannot contain an infinite antichain. A good example of a
small set is a cofinal branch in a tree of height |1 . Obviously, the set of
all small subsets of P is an ideal. The idea behind Definition 20 is that if
the poset P is complicated enough, the small sets cannot capture the
structure of P. This is recorded in the following:

Lemma 21. Assume that a poset P has no countable locally dense subsets
and let I denote the _-ideal on P generated by the small subsets of P. Then
for every R # I the set P"R/P is dense; in other words, for every p # P the
set P � p is I-positive.

Remark. Say that a condition p # P is ``transcendental'' over a count-
able model MOH} if p � �[R # M: R is a small subset of P]. Then the
lemma says that there is a dense set of conditions in the poset P ``trans-
cendental'' over M, provided that P has uniform density +1 .

Proof. The proof is by contradiction. Assume that p # P, R # I,
R=�i # | Ri , and P � p/R, where the sets Ri/P are small. To simplify
the notation we assume that p=1. There are two cases:

(1) There is a c.c.c. forcing Q such that Q && ``P8 is not c.c.c.''. Choose
such Q and a Q-name A4 such that && ``A4 /P is an uncountable anti-
chain''. As Q preserves +1 , we can find q # Q, i # | so that q && ``A4 & R8 i is
uncountable''. So Ri contains infinite antichains in a generic extension;
therefore it must contain such an antichain in the ground model (the tree
of finite sequences of pairwise incompatible elements of Ri is ill-founded).
So the set Ri is not small, contradiction.

(2) Otherwise. In particular, P is productively c.c.c. We fix a large
enough regular cardinal } and build a sequence ((M: , p:): : # |1) so that
M:OH} is a countable model, p: # P, P, Ri , [(M; , p;): ; # :] # M: and
for no r # P & M: we have r�p: . This is possible as P & M:/P is not
dense by our assumption on P. Take i # | such that A=[: # |1 : p: # Ri]
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is uncountable. Since Ri/P is small, for each : # |1 we can find a finite
collection [r:, j : j<n:]/P so that

\; # A & : _ j<n: p;�r:, j . (P2)

By elementarity we may and will assume that [r:, j : j<n:]/M: . From
the construction of p:'s we can then conclude that P:*A�3 r:, j for
: # |1 , j<n: . By separativity we can strengthen all r:, j so that they are
incompatible with p:* A . This preserves the property (P2) of the system
[r:, j : j<n: , : # |1] even though now r:, j may be outside M: . Fix n # |
and an uncountable set B/|1 so that for all : # B we have n:=n and
:*B>:*A. Remembering that the poset P is assumed to be productively
c.c.c., the collection [(r:, j : j<n): : # B]/Pn is not an antichain in Pn and
we can choose !<& in B with r!, j , r&, j compatible for all j<n. By (P2)
there is j<n so that p!* A�r&, j . However, r!, j is both incompatible with
p!* A and compatible with r&, j , contradiction. KL21

Finally, we are ready to define the forcing Q0 introducing a dense almost
avoidable subset to a given poset P. Fix a poset P of uniform density +1 .
Without loss of generality we may assume that the universe of P is |1 .
Furthermore, set }=|2 , 2=P and fix a wellordering << of H} . Below,
the set M of matrices of models will be computed using these parameters.

Definition 22. A forcing notion Q0 is defined as the set of all pairs
(q, m) for which

(D22.1) q and m are finite functions with the same domain, which is
a finite subset of |1

(D22.2) for every : # dom(q) the value q(:) is a pair ( pq
: , gq

:) where,
if no confusion can result, we can drop the superscript q

(D22.3) \: # dom(q) p: # P and g:/dom(q) & :

(D22.4) \: # dom(q) _p$:�p: \; # (dom(q) & :)" g: p$: = p;

(D22.5) m is a matrix of models, i.e., m # M

(D22.6) for every :<; both in dom(q)=dom(m) and for every
N # m(;) we have p: # N

(D22.7) for every : # dom(q), for every N # m(:) and for every small
set R/P in N, we have p: � R.

The order is defined by (q0 , m0) �(q1 , m1) if q0/q1 and m0�M m1 .
For a condition (q, m) # Q0 , we set q� =[ p # P: _: # dom(q) p=pq

:].

Explanation. This may look complicated but in fact it is not. In a con-
dition (q, m) , the q part is exactly like an element of Q0 in the previous
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section, except that it ignores any stratification of the poset P. The proper-
ties (D22.2, 3, 4) describe just this fact. The matrix m is just the control
device described in Definition 18. Here it is tied to q by (D22.6, 7). The
transcendence requirement (D22.7) is the main technical point in the
construction.

As it was the case in the previous section, the forcing Q0 serves to
introduce a dense almost avoidable subset D to P. The set q� is a finite
piece of the future set D, and the trace of p: will be obtained as tr( pq

:)=
[ pq

:] _ [ pq
; : ; # gq

:].

We start with a simple preliminary lemma.

Lemma 23. If (q, m) # Q0 and MO (H} , # , <<, P) are such that M #
m(M & |1) then there is a condition (q, n) # Q0 such that (q, n)�(q, m)
and n is M-full.

Proof. Fix a condition (q, m) # Q0 . The M-full matrix n�m will be
built so that dom(m)=dom(n). We shall start with m; then we gradually
add some new models to the values m(:), : # dom(m) & M, preserving
properties (D18.1, 2, 3), (D22.6, 7) at each step. After finitely many steps,
an M-full system n�m will emerge.

Let :0<:1< } } } <:k=M & |1 be an increasing list of all ordinals in
dom(m) below M & |1 inclusive. Let N # m(:j )"prM(m)(:j ) be a model, for
some j<k. Then by using (D18.3) repeatedly, we can find an # -chain
N0 # N1 # } } } # Nj=N # Nj+1 # } } } # Nk such that Nl # m(:l ), all l�k. Let
i : Nk � M be the isomorphism. We throw all models i(Nl ) into n(:l ), for
l<k. It is readily checked that this operation preserves properties
(D18.1, 2, 3), (D22.6, 7); for example, i(Nl ) is isomorphic to Nl via i � Nl

and if l1<l2 then i(Nl1
) # i(Nl2

). We repeat this procedure for all models
N # m(:j )"prM(m)(:j ). The reader can check that the resulting matrix n is
as required. KL23

Now we are in a position to demonstrate that the forcing Q0 is as mild
as needed for Theorem 17. The following proof is much like some
arguments in [11].

Lemma 24. Q0 is proper.

Proof. Choose a large regular cardinal *, a condition (q0 , m0) # Q0 ,
and a countable submodel MOH* with q0 , m0 , }, <<, P in M. We shall
produce a master condition (q1 , m1)�(q0 , m0) for the model M.
Find p # P"�[R # M: R/P small]; there is a dense set in P of these
due to Lemma 21. We define q1=q0 _ [(M & |1 , ( p, dom(q0)))] and
m1=m0 _ [(M & |1 , [M & H}])].
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Claim 25. (q1 , m1) # Q0 , (q1 , m1) �(q0 , m0).

We must verify that (q1 , m1) is a master condition for the model M. So
for any maximal antichain A of Q0 in M, the set A & M should be predense
below (q1 , m1) . To prove this, let A # M be a maximal antichain of Q0

and choose a condition (q2 , m2) �(q1 , m1) . By eventually strengthening
the condition, we can assume that there is an element x of A above it and
m2 is M & H}-full (Lemma 23). We shall show that the element x belongs
actually to A & M, finishing the proof of properness. We define a condition
(q3 , m3) �(q2 , m2) , a sort of projection of (q2 , m2) to the model M. So,
let q3=q2 � M and m3=prM & H } m2 .

Claim 26. (q3 , m3) # M & Q0 , (q2 , m2) �(q3 , m3).

The task now is to carefully extend the condition (q3 , m3) within M to
(q4 , m4) which has an element of A above it and is still compatible with
(q2 , m2) . Let :0<:1< } } } <:n be an increasing list of dom(q2)"dom(q3);
thus :0=M & |1 . For 0�i�n we put p:i=pq2

: i
.

Definition 27. For all x # [P]< + 0 simultaneously by induction on
i # | we define sets x(i )/P:

(D27.1) x(0)=[ p # P: _(q4 , m4) �(q3 , m3) q� 4=q� 3 _ x _ [ p] and
there is an element of A above (q4 , m4)].

(D27.2) x(i+1)=[ p # P: (x _ [ p])(i ) is not small].

Note that the collection [x(i ) : x # [P]< + 0, i # |] is in M & H} .

Claim 28. The set 0(n) is not small in the poset P.

Proof. By contradiction. Assume the set is small. By induction on
0�i�n we prove that

(1) Zi=[ p:0
, p: 1

, ..., p:j , ..., j<i](n&i ) is small in P

(2) p:i � [ p:0
, p:1

, ..., p:j , ..., j<i] (n&i ),

which wil be a contradiction for i=n, as p: n # [ p:0
, p: 1

, ..., p:j , ..., j<n] (0),
as witnessed by (q2 , m2). Now for i=0 we have 0(n) is small by the
assumption and p: 0

=p � 0(n) # M & H} by the choice of p. Now given (1)
and (2) for i<n, by (D27.2) we immediately get that the set Zi+1 is small,
i.e., (1) for i+1. Now by (D18.2) for the system m2 we find a model
N # m2(:i+1) with M & H} # N. Then Zi+1 # N and by (D22.7) p:i+1

� Zi+1 ,
i.e., (2) for i+1. This completes the argument. KC28
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We proceed with the construction of (q4 , m4). For 0� j�n fix p$:j�p: j

witnessing (D22.4) for q2 . By induction on 0�i�n we build ri , p$i
: j ,

0� j �n so that

(1) ri # P & M, p: j � p$: j � p$0
: j � p$1

: j � } } } � p$ i
: j is a decreasing

sequence of elements of P for all 0� j �n
(2) Let Zi=[r0 , r1 , ..., rk , ..., k<i] (n&i ). Then Zi/P is not small

and ri # Zi & M
(3) p$i

: j = ri for all 0� j �n.

To construct r0 recall that the set 0(n) is not small. Thus there is
a # [0(n)]+ 0 & M witnessing that. We have a/M & H} and as
[ p$: j : 0� j �n] does not bound all elements of a we can choose r0 # a with
r0�3 p$:j for all 0� j �n. By the separativity of the poset P there are p$:j�p$0

:j

with r0 = p$0
:j . By (D27.2) the set [r0] (n&1) is not small. The induction step

from i<n to i+1 is carried out similarly with p$i
: j in place of p$:j and Zi in

place of 0(n).
The induction have been carried out up to n we have rn # [r0 , r1 , ...,

rk , ..., k<n](0) and so by (D27.1) applied in M there exists a condition
(q4 , m4) # M such that (q4 , m4) �(q3 , m3) , q� 4=q� 3 _ [ri : 0�i�n] and
there is an element of A & M above it.

Claim 29. The conditions (q2 , m2) and (q4 , m4) are compatible.

Proof. We shall produce a lower bound of (q5 , m5) # Q0 of the two
conditions. First, we define q5=q2 _ q4 . It is easy to see that q5 is a func-
tion satisfying (D22.2, 3) and such that q5 � M=q4 . We must check the
property (D22.4). There are two cases:

(1) : # dom(q5) & M (i.e. : # dom(q4)). In this case, the element
p$:�p: witnessing (D22.4) for q4 will do even for q5 , since q5 � (:+1)=
q4 � (:+1).

(2) : # dom(q2)"M (i.e. :�M & |1 and : # dom(q2)). Then :=:j for
some j�n. We claim that p":=p$: j�p: witnesses (D22.4) for : and q5 . To
see this, choose an ordinal ; in (dom(q5) & :)"g: . Only two things can
happen here. Either ; # dom(q4). In this case already p$: j�p: as fixed above
is incompatible with p; ; since p":�p$: j we then have p": = p; as well. Or,
; # dom(q4)"dom(q2). Then by the above construction, p;=ri for some
i�n and consequently p$i

: j�p: is incompatible with p;=ri . Since p":�p$ i
: j

we have p": = p; as well. All relevant ;'s in the second universal quantifier
in (D22.4) have been checked and (D22.4) follows.

We still have to define the matrix m5 . Here is the place where we use the
M & H}-fullness of the matrix m2 . We shall have dom(m5)=dom(m2) _
dom(m4); the description of the values m5(:) splits into two cases:
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(1) if : # dom(m5)"M (i.e. :�M & |1 and : # dom(m2)) then
m5(:)=m2(:)

(2) if : # dom(m5) & M (i.e. : # dom(m4)) then m5(:)=m4(:) _
[i(N ): N # m2(:) and i : M � M� is an isomorphism with M� # m2(M & |1)].

The reader can verify that the function m5 is in M and satisfies the condi-
tions (D22.6, 7). The M & H}-fullness of the matrix m2 together with our
construction of m5 ensures that m5�m2 , m4 as desired. KC29

Now A/Q0 is an antichain and its elements above the conditions
(q2 , m2) and (q4 , m4) must be identical. However, the unique element of
A above (q4 , m4) # M is in M by elementarity, and we have finished the
proof of Lemma 24. KL24

Lemma 30. Q0 has |2-p.i.c.

We remind the reader what this is all about.

Definition 31 [7, Chap. VIII, Sect. 2]. A forcing Q has |2-p.i.c.
(properness isomorphism condition) if for all regular cardinals * and
every 2 # H* , for every #<$<|2 , q0 , h, M# , M$ countable submodels
of (H* , # , 2) with # # M# , $ # M$ , Q # M# & M$ , M# & #=M$ & $,
M# & |2/$, q # Q & M# , i : M# � M$ an isomorphism which is identity
on M# & M$ there is q1�q0 , a master condition for M# such that
q1 && ``i"(M8 # & G4 )=M8 $ & G4 ''. A condition q1 as above is called a sym-
metric master condition for M# , M$ .

Intuitively, we want the isomorphism i to extend in the generic extension
to an isomorphism @̂: M#[G] � M$[G] in the most natural way: we want
to set @̂({�G)=i({)�G. The condition q1 forces that this will indeed be an
isomorphism. Perhaps at least one rather trivial example is in order: any
proper forcing Q of cardinality +1 has |2-p.i.c. This is because in any two
models as in the Definition we obtain i � Q & M#=id. Therefore, every
master condition q1 for the model M# will have the requred ``symmetricity''
property.

The point in such a strange property of the forcing Q is that granted the
Continuum Hypothesis, an |2-p.i.c. forcing Q has +2-c.c. and preserves the
Continuum Hypothesis. In fact, this is even true for short iterations of
|2-p.i.c. forcings:

Fact 32 [7, Ch. VIII, 92]. Assume CH. If (P: : :�|2 , Q4 : : :<|2) is a
countable support iteration of forcings such that for each :<|2 we have
P: && ``Q4 : has |2-p.i.c.'' then

(F32.1) \: # |2 P: has |2-p.i.c. and P: && ``CH''

(F32.2) P| 2
has +2-c.c.
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Proof of Lemma 30. We show a little more general statement than
that of Definition 31. Choose a large regular cardinal *, a condition
(q0 , m0) # Q0 and two isomorphic countable submodels M0 , M1 O
(H* , # , P) such that Q0 , <<, } are in both of them and (q0 , m0) # M0 .
Let i : M0 � M1 be an isomorphism, i(P)=P, i(<<)=<<. We shall
produce the desired symmetric master condition (q1 , m1)�(q0 , m0) for
the two models.

First, we pick p # P which does not belong to any small subset of P
which is in M0 _ M1 . There is a dense set of these due to Lemma 21. Now
we set q1=q0 _ [M0 & |1 , ( p, dom(q0)))]. We construct m1 as the
unique function such that dom(m1)=dom(m0) _ [M0 & |1] and the values
are defined as follows: for : # dom(m0) we set m1(:)=m0(:) _ i(m0(:)) and
for :=M0 & |1 we set m1(:)=[M0 & H} , M1 & H}]. The following is
immediate:

Claim 33. (q1 , m1) # Q0 , (q1 , m1)�(q0 , m0).

We claim that (q1 , m1) is the desired symmetric master condition for
M0 , M1 . Obviously, (q1 , m1) is a master condition for M0 since it is
stronger than the master condition described in Lemma 24. We must verify
that (q1 , m1) && ``i"(M8 0 & G4 )=M8 1 & G4 ''. We prove that (q1 , m1) &&
``i"(M8 0 & G4 )/M8 1 & G4 ''; the proof of the opposite inclusion is parallel. So
let x # M0 & Q0 and let (q2 , m2)�(q1 , m1) be a condition such that
(q2 , m2) && ``x� # G4 ''. We shall obtain a condition (q2 , m3) such that
(q3 , m3) && ``i(x� ) # G4 ''. By a genericity argument, this will complete the
proof. Now by eventually strengthening the condition (q2 , m2) we can
assume that (q2 , m2) �x.

Claim 34. M0 < ``there is a matrix n such that n�prM & H } m2 and
(q2 � M0 , n) �x''.

Proof. Notice first that the parameters of the formula�the system
prM & H} m2 , the condition x and the finite function q2 � M0-are all in the
model M0 . The claim follows from the elementarity of M0 , since the for-
mula is witnessed in H* by the matrix m2 � M0 . KC34

Now let a system n be as in the Claim. We define a matrix m3 by
dom(m3)=dom(m2), for : # dom(m2) & M0 we set m3(:)=m2(:) _ i(n(:))
and for : # dom(m2)"M0 we set m3(:)=m2(:).

Claim 35. m3 is a matrix of models and (q2 , m3) # Q0 .

We claim that (q2 , m3) is the desired condition. First, obviously
(q2 , m3) �(q2 , m2) . Second, we have (q2 , m3) �i(x): this is because
i(q2 � M0)=q2 � M0 and so (q2 , m2) �i((q2 � M0 , n)�i(x) by the iso-
morphism properties of i. KL30
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Now we proceed exactly as in the previous Section. Choose a generic
filter G/Q0 and in V[G], define a set D/P by D=�[q� : (q, m) # G, for
some coherent system m].

Lemma 36. The set D/P is dense almost avoidable in P.

Proof. This is almost exactly the same as Lemma 13. We show why the
set D is dense in the poset P. Fix p # P and a condition (q0 , m0) # Q0 . We
shall produce a condition (q1 , m1) �(q0 , m0) such that (q1 , m1) &&
``there is an element of D4 below p� ''. The density of D will then follow
from a genericity argument. So we choose a large regular cardinal * and a
countable elementary submodel MOH* such that Q, P, p, (q0 , m0) are all
in M. By Lemma 21, there is p$�p in the poset P such that p$ does not
belong to any small subset of P which is in the model M. We set q1=q0 _
[(M & |1 , [ p$, dom(q0)])] and m1=m0 _ [(M & |1 , [M & H}])].
Obviously, the condition (q1 , m1) is as desired. KL36

The proof of Theorem 17 is now finished as in the previous section
with Q=Q0 V C4 + 1

. We must verify that the forcing Q=Q0 V C4 + 1
has the

required properties. As in Lemma 3 Q && ``C+ 1
<} P ''. The forcing Q is

proper |2-p.i.c. since it is an interation of two forcings. The last thing to
check is the size of Q. The forcing Q as an iteration may be large, but it
has a dense subset isomorphic to Q0_C+ 1

. Now under GCH, I have
|H+ 2

|=+2 and so |Q0 |=+2 . As a result, the forcing Q has a dense subset
of size +2 } +1=+2 . Theorem 17 has been proven. KT17

Corollary 37. Under the Proper Forcing Axiom, every complete
Boolean algebra of uniform density +1 contains a complete subalgebra
isomorphic to C(+1).

To simplify the proof of this, we fist we prove the following multipurpose
Lemma.

Lemma 38. The Proper Forcing Axiom implies that for every proper for-
cing notion Q, a regular large enough cardinal } and a distinguished element
2 # H} there are a model M so that MOH} , |1/M, Q, 2 # M and a filter
G/M & Q which is M-generic over Q. That is, for every dense set D/Q
which is in M, we obtain G & D{0.

Remark. A similar statement for MA+ 1
and c.c.c. forcings is virtually

trivial, since c.c.c.-ness of Q is inherited by Q & M: first, choose a model M
of cardinality +1 and then apply MA+ 1

to Q & M and all the dense sets of
Q in M. However, properness is not usually inherited to arbitrary sub-
posets and we need an additional twist to complete the argument.
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Proof. Choose a proper forcing Q, a large regular cardinal } and
2 # H} . There is a function f : H <|

} � H} such that if a set M/H} is closed
under f, then M is already a submodel of (H} , # , 2, Q) . So let us choose
such a function f. By induction on n # | we define simultaneously for all
sets a # [H}]< + 0 and all conditions q # Q the following finite sets
a(n, q)/H} :

(1) a(0, q)=a.

(2) The induction step from n to n+1 is conducted as follows: we set
b=a(n, q) _ [x # Q: there is a maximal antichain A/Q such that A # a(n, q),
x # A and q�x]. Then we define a(n+1, q)=b _ f"b<|.

For an integer n and a set a # [H}]< + 0 we define a subset Dn, : of the forc-
ing Q by Dn, a=[q # Q: for every i<n and every maximal antichain A/Q
with A # a(i, q) there is x # A such that q�x].

Claim 39. The sets Dn, a/Q are open dense in Q.

Proof. The openness of Dn, a follows straight from its definition. Note
that if q # Dn, a and r�q then we have a(i, r)=a(i, q) for all integers i<n. To
show that the set Dn, a/Q is dense, fix q # Q and by induction on i�n+1
build a decreasing sequence q(0)�q(1)� } } } �q(i )� } } } so that

(1) q=q(0)

(2) q(i+1) # Di, a .

This is easily done, since at each step we have to meet only finitely many
antichains. The above observation makes sure that by passing to stronger
conditions we do not destroy the work done so far. The q(n+1) # Dn, a and
q(n+1)�q and the argument is complete. KC39

Now by the Proper Forcing Axiom there is a filter H/Q meeting all the
sets in the family [Dn, a : n # |, a # [|1] < + 0 ]. We define a function
g: H} � H} by

(1) If A/Q is a maximal antichain such that H & A{0 then
g(A)=the unique element of H & A.

(2) Otherwise the function g is just identity.

Let M be the closure of |1 under the functions f, g. So
MOH} , Q, 2 # M and |1/M. The following Claim completes the proof
of the Lemma.

Claim 40. Let G=M & H. Then G/Q & M is an M-generic filter.
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Proof. For the genericity of G, it is enough to prove that for any maxi-
mal antichain A/Q in M, We have G & A{0. So fix an antichain A # M.
Since the model M is chosen as a closure, there are a set a # [|1]<+0 and
an integer n such that A belongs to the closure of a under f, g and is
obtained after n successive applications of the functions f or g. By the
genericity of the filter H/Q, there is a condition q # H & Dn+1, a . By the
definition of the set Dn+1, a , the antichain A belongs to the finite set a(n, q)

and the condition q has an element x of A above it. Since q�x and q # H,
we have x # H & A. Since the model M is closed under the function g, we
have x # M and so x # G.

We should verify that G is a filter on Q & M. Upwards closure follows
from the same property of the filter H. If q and r are two conditions in G,
then there is a lower bound of these two conditions in H, but not a priori
in G. To remedy this defect we use the previous paragraph: by elemen-
tarity, in the model M there is a maximal antichain A/Q such that for
x # A, either r = x or q = x or x�q, r. By the above argument, there is
x # A with x # G/H. But this x must be compatible with both q, r (since
H is a filter) and so it falls into the third category. Thus there is a lower
bound of q and r in G and G is a filter. KC40,L38

The proof of Corollary 37 is now finished in the same fashion as the
argument for Corollary 14.

Main Theorem. If ZFC set theory is consistent then so is ZFC+``every
complete Boolean algebra of uniform density +1 contains a complete sub-
algebra isomorphic to C(+1)''.

Proof. The hard work has been done. The proof is now a routine itera-
tion argument using Theorem 17 to deal with one algebra at a time. We
give only a outline of the argument, since we believe that a reader who
could bear with us up to here can easily provide the details. The scrupulous
reader is advised to check with [7] for every detail.

We start with a model of ZFC+GCH and set up a countable support
iteration

(P: : :�|2 , Q4 : : :<|2)

such that P| 2
&& ``every complete Boolean algebra of uniform density +1

contains a complete subalgebra isomorphic to C(+1)''. We shall have

(1) the iterands are proper |2-p.i.c. forcings of size +2 .

Using a suitable bookkeeping device ({: : : # |2) we shall browse through
all potential P| 2

-names {: for separative posets of uniform density +1

whose universe is |1 . At all intermediate stages :<|2 we shall have
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(2) P: is a proper +2-c.c. forcing notion of size +2

(3) P: && ``GCH''

These two properties hold true for any countable support iteration with
property (1)�see Fact 32. So it will be possible, using Theorem 17 in VP :,
to pick a P:-name Q4 : for a proper |2-p.i.c. forcing of size +2 so that

(4) P: && ``if {: is a separative poset of uniform density +1 then
Q4 : &&C+ 1

<} {:''. For the final forcing P|2
, the following will be true:

(5) P|2
is a proper +2-c.c. forcing�this holds by (1) and Fact 32.

(6) |P| 2
|=+2��this is because the forcing P|2

is a direct limit of the
forcings P: , :<|2 of size +2 .

The properties (5), (6) make it possible to choose that suitable bookkeep-
ing device ({: : :<|2). Now by (5), P|2

does not collapse cardinals. We
must verify that P|2

&& ``every complete Boolean algebra of uniform density
+1 contains a complete subalgebra isomorphic to C(+1)''. So let { be a
P| 2

-name such that P|2
&& ``{ is a separative poset of uniform density +1

with universe |1''. Then for some :<|2 we shall have that {={: , { is a
P:-name and P: && ``{ is a separative poset of uniform density +1 with
universe |1''. By (4) we have P:+1 &&C+ 1

<} {. As a result, P| 2
&& ``the

poset C+ 1
regularly embeds into every separative poset { of uniform density

+1'' and the Main Theorem is proven. KMT

4. TOWARDS HIGHER DENSITIES

A natural question arises immediately upon seeing results a� la Theorem
5: Is it possible to repeat such a feat for cardinalities higher than +1? We
are very pessimistic about such a possibility; already the +2 case seems to
present unsurmountable difficulties. The following Theorem is the best
negative result we can find in ZFC:

Theorem 41. There is a separative partially ordered set P of uniform
density +|+1 such that C+ |+1

does not embed into it.

It should be remarked that if e.g. the cardinals are the same in V as in
L, the constructible universe, then we can find a poset as in Theorem 41
already in L.

Proof. We shall need the following two facts from pcf theory.

Lemma 42. Let (}n : n # |) be an increasing sequence of regular cardinals
with tcf(>n # | }n) mod fin=* as witnessed by a modulo finite increasing and
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cofinal sequence ( f; : ;<*)/>n # | }n . Then there are ordinals ;0<;1<*
such that for all n # | we have f; 0

(n)�f;1
(n).

The proof is supplied below.

Fact 43 ([1]). There is (}n : n # |) , an increasing sequence of regular
cardinals <+| with tcf(>n # | }n) mod fin=+|+1.

Now fix (}n : n # |) , an increasing sequence of regular cardinals <+|

with tcf(>n # | }n) mod fin=+|+1 and a modulo finite increasing and
cofinal sequence ( f; : ;<||+1) />n # | }n . We are ready to define our
partially ordered set P:

Definition 44. The partially ordered set P is a set of all pairs (s, f )
such that there are an integer m with s # >n # m }n and an ordinal ;<||+1

with f=f;].
The order is defined by (s0, f 0) �(s1, f 1) if s0/s1, \n # dom(s1)"

dom(s0) s1(n)>f 0(n) and \n � dom(s1) f 1(n)�f 0(n).

Explanation. So we add a function >n # | }n which modulo finite
dominates all the f;'s. The s part of a condition in P is just a finite piece
of this function.

We prove now that the poset C+ |+1
does not embed into P. Actually,

more is true: if c: |V
|+1 � 2 is a funcion in the generic extension by P, then

there is an infinite set A/||+1 in the ground model such that c � A is in
the ground model again. Consequently, the function c cannot be C+ |+1

-
generic over the ground model.

So let p # P, p && ``c* : |V
|+1 � 2 is a function''. We choose a sequence

[(s: , f; : ) , i: : : # ||+1] such that the following conditions are satisfied:

(1) for each ordinal : # ||+1 we have (s: , f;: ) # P, i: # 2

(2) for each ordinal : # ||+1 we have (s: , f;: ) && ``c* (:)=i:''

(3) for ordinals !<&<||+1 we have ;!<;& .

This is easily done. Now there are a set S/||+1 of full cardinality and
a finite sequence s such that for every ordinal : # S the constructed s: is just
s. We define the following partition h of S2 : for ordinals !<& both in S we
set h(!, &)=0 if there is an integer n such that f;! (n)>f;& (n); otherwise, we let
h(!, &)=1. By the Erdo� s�Dushnik�Miller theorem, we can have two cases:

(1) There is a set T/S of cardinality +|+1 homogeneous in 0. But
this cannot happen since then the sequence ( f; : : : # T)/>n # | }n con-
tradicts Lemma 42. Notice that this sequence is indeed cofinal in >n # | }n

since by (3) above, the set [;: : : # T] is cofinal in ||+1.

(2) There is a set A/S of ordertype |+1 homogeneous in 1.
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Since the first case leads to a contradiction, the second case must hap-
pen. But then, if :=max(A) and ! # A, we have by the definition of the
poset P that (s! , f; ! ) �(s: , f; : ). As a result, (s: , f;) && ``for every ! # A,
we have c* (!)=i!'' and the argument is complete, since the condition
(s: , f;: )�p decides the values of c* on an infinite set A as desired. This
leaves us with the last thing to demonstrate, namely Lemma 42.

Proof of Lemma 42. The proof is quite technical and is modeled after
Todorcevic's proof of a similar fact about unbounded sequences of func-
tions in ||[11]. Fix #<* such that [s # �m # | >n # m }n : _;<#s/f;]=
[s # �m # | >n # m }n : _;<*s/f;]. This is possible since *>sup(}n : n # |)
is regular. We choose an integer n0 and a set S/* of full cardinality so
that for every n�n0 and for every ; # S we have f;(n)�f#(n). Define
T=[s # �m # | >n # M }n : |[; # S: s/f;]|=*]. So T is a tree of height |.
By induction on n # | simultaneously for all s # T we define set A(s, n):

(1) A(s, 0)=[t # T: s/t, lth(t)=lth(s)+1]

(2) A(s, n+1)=[t # T : s/t, lth(t)=lth(s)+1, |A(t, n)|=}lth(t)].

Claim 45. There is s # T such that for all n # | |A(s, n)|=}lth(s) .

Proof of the Claim. By contradiction. Assume that the Claim is false
and for any sequence s # T define o(s)=min[n # |: |A(s, n)|<}lth(s)].
Choose $ # * such that for all s # �m # | >n # m }n"T we have [; # S :
s/f;]/$. We define a function g # >n # | }n by:

g(n)=max {f$(n), sup {t(n): t # `
m # n+1

}m & T and t # A(t � n, o(t � n))==
This is well-defined as the sets A(s, o(s)) are small. Now by the co-

finality of the sequence ( f; : ; # S) one can find an ordinal ; # S and
integer n1 such that for all n�n1 f;(n)�g(n). By our choice of the ordinal
$ we have that f; is a path through T. It can be easily verified now that
the sequence of integers (o( f; � n): n�n1) is strictly decreasing before it
hits 0 for the first time. Let n2�n1 be such that o( f; � n2)=0. So
|A( f; � n2 , 0)|<}n2

and since f; � n2+1 # A( f; � n2 , 0) we obtain f;(n2)<
g(n2), contradicting our choice of n1 . KC45

To complete the proof of Lemma 42, choose a sequence s # T as in
Claim 45. By our choice of #, there is an ordinal ;0<# such that s/f; 0

.
Since f; 0

is modulo finite less than f# we can find an integer n1�n0 such
that \n�n1 f; 0

(n)�f#(n). Set m=lth(s) and choose by induction finite
sequences s=sm/sm+1/ } } } /sn 1

so that:
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(1) sj # T, lth(sj )=j
(2) sj+1 # A(sj , n1&j ), sj+1( j )�f;0

( j ).

This is possible since by induction on j, m� j �n1 one can verify that
|A(sj , n1&j )|=}j . Now pick ;1 # S with sn1

/f;1
. We claim that the

ordinals ;0<;1 exemplify the statement of the Lemma.
So we should show that for n # |, f; 0

(n)�f;1
(n). There are three

cases. If n<lth(s) then actually f; 0
(n)=f; 1

(n). For lth(s)�n<n1 the
desired inequality follows from (2) above and for n�n1 the inequality
holds since f; 0

(n)�f#(n)�f;1
(n) (remember n�n1�n0). The argument is

complete. KL42,T41

5. OPEN PROBLEMS

There are several questions related to the Main Theorem left open in this
paper. The first two concern the structure of the real line in the resulting
model.

Problem 46. Assume that C(+1) embeds into every algebra of uniform
density +1 . Does it follow that 2+ 0=+2?

Problem 47. Assume that C(+1) embeds into every algebra of uniform
density +1 . Does it follow that there is a Cohen real over L?

Section 4 provides definite limitations for the possibility of obtaining
results a� la Theorem 5 for higher densities than +1 . In the positive direction
we can ask (motivated by [FMS]):

Problem 49. Is it consistent that C(}) embeds into every separative
partial order in L of uniform density }? Is it implied by 0*?

The following questions can hopefully inspire further development of our
techniques for the +1 case:

Problem 50. Is it consistent that the following are equivalent for a
separative poset P of size +1:

(1) P is nowhere c.c.c.

(2) P adds a closed unbounded subset of |1 with no infinite subset
in the ground model.

Problem 51 (Laver). Is it true in ZFC (or is it consistent or does it
follow from PFA) that every forcing of size +1 adds a Souslin tree?

The last question can be extended into an infinite scheme of problems,
replacing ``adding a Souslin tree'' by other combinatorial consequences of
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adding a single Cohen real. Many of them would have a positive answer
if the following problem does.

Problem 52. Is it consistent (does it follow from PFA) that every forcing
P of size +1 embeds C+ 0

as a factor, i.e., P can be written as P=C+ 0
_Q for

some forcing Q in the ground model? 1

Our proofs do not say anything about the way C+ 1
is embedded into the

forcings we are working with, and this is no accident: it is provable in ZFC
that a c.c.c. }-generated algebra does not embed any *-generated algebra as
a factor, if }<*. Now C+ 1

is +1-generated, and it is easy to construct a
c.c.c. +0-generated algebra of uniform density +1 in ZFC. So this algebra,
even though it may have to embed C+ 1

, it can never embed it as a factor.
This argument fails for C+ 0

and that leads to Problem 52.
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