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THE JOURNAL OF SYMBOLIC LoGIc 
Volume 60, Number 1, March 1995 

THE BOUNDED PROPER FORCING AXIOM 

MARTIN GOLDSTERN AND SAHARON SHELAH 

Abstract. The bounded proper forcing axiom BPFA is the statement that for any family of Nt many 
maximal antichains of a proper forcing notion, each of size RI, there is a directed set meeting all these 
antichains. 

A regular cardinal X is called E -reflecting, if for any regular cardinal X) for all formulas A, "HH(X) we'pt 
implies "36 < es H(6) ,W '". 

We investigate several algebraic consequences of BPFA, and we show that the consistency strength of 
the bounded proper forcing axiom is exactly the existence of a 1 -reflecting cardinal (which is less than 
the existence of a Mahlo cardinal). 

We also show that the question of the existence of isomorphisms between two structures can be reduced 
to the question of rigidity of a structure. 

Introduction. The proper forcing axiom has been successfully employed to decide 
many questions in set-theoretic topology and infinite combinatorics. See [Ba 1] 
for some applications, and [Sh b] and [Sh fi for variants. 

In the recent paper [Fu], Fuchino investigated the following two consequences 
of the proper forcing axiom: 

(a) If a structure %? of size Ri cannot be embedded into a structure A, then 
such an embedding cannot be produced by a proper forcing notion. 

(b) If two structures At and 23 are not isomorphic, then they cannot be made 
isomorphic by a proper forcing notion. 

He showed that (a) is in fact equivalent to the proper forcing axiom, and asked 
if the same is true for (b). 

In this paper we find a natural weakening of the proper forcing axiom, the 
"bounded" proper forcing axiom, and show that it already implies property (b) 
above. 

We then investigate the consistency strength of this new axiom. While the exact 
consistency strength of the proper forcing axiom is still unknown (but large, see 
[To]), it turns out that the bounded proper forcing axiom is equiconsistent to a 
rather small large cardinal. 

For notational simplicity we will, for the moment, only consider forcing notions 
which are complete Boolean algebras. See 0.4 and 4.6. 

We begin by recalling the forcing axiom in its usual form: For a forcing notion 
P, FA(P, a) is the following statement: 
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THE BOUNDED PROPER FORCING AXIOM 59 

Whenever (Ai: i < a) is a family of maximal antichains of P, then there 
is a filter G* C P meeting all Ai. 

If f is a P-name for a function from X to the ordinals, we will say that G* C P 
decides f if for each i < X, there is a condition p E G* and an ordinal ai such 
that p Ik-f (i) = ai. (If G* is directed, then this ordinal must be unique, and we 
will write f [G*] for the function i | -* ai.) Now it is easy to see that the FA(P, a,) 
is equivalent to the following statement: 

Whenever f is a P-name for a function from X to the ordinals, then there 
is a filter &* C P which decides f. 

This characterization suggests the following weakening of the forcing axiom: 
0.1. DEFINITION. Let P be a forcing notion, and let K and A be infinite cardinals. 

BFA(P, a, A) is the following statement: Whenever f is a P-name for a function 
from X to A then there is a filter G * C P which decides f, or equivalently: Whenever 
(Ai: i < a) is a family of maximal antichains of P, each of size < A, then there 
is a filter G* C P which meets all Ai. 

0.2. Notation. (1) BFA(P, A) is BFA(P, A, A), and BFA(P) is BFA(P, cal). 
(2) If F is a class or property of forcing notions, we write BFA(9') for VP E 

g BFA(P), etc. 
(3) BPFA = the bounded proper forcing axiom = BFA(proper). 
Also, we use Q to denote the end of a proof, and we write (0 when we leave 

a proof to the reader. 
0.3. REMARK. For the class of ccc forcing notions we get nothing new: 

BFA(ccc, A) is equivalent to Martin's axiom MA(i), i.e., FA(ccc, A). 00.3 
0.4. REMARK. If the forcing notion P is not a complete Boolean algebra but 

an arbitrary poset, then it is possible that P does not have any small antichains, 
so it could satisfy the second version of BFA(P) vacuously. The problem with the 
first definition, when applied to an arbitrary poset, is that a filter on ro(P) which 
interprets the P-name (= ro(P)-name) f does not necessarily generate a filter on 
P. So for the moment our offical definition of BFA(P) for arbitrary posets P will 
be 

BFA(P) :# BFA(ro(P)). 

In 4.4 and 4.5 we will find an equivalent (and more natural?) definition BFA'(P) 
which does not explicitly refer to ro(P). 

The contents of the paper are as follows. In ?1 we investigate connections 
between BFA and Fuchino's axioms. In ?2 we define the concept of a E1 -reflecting 
cardinal, and we show that from a model with such a cardinal we can produce a 
model for the bounded proper forcing axiom. In ?3 we describe a (known) forcing 
notion which we will use in ?4, where we complement our consistency result by 
showing that a El-reflecting cardinal is necessary: If BPFA holds, then N2 must 
be El-reflecting in L. 

We will use gothic letters 2t, X, C,. .. for structures (= models of a first or- 
der language), and the corresponding latin letters A, B. M,. . . for the underlying 
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60 MARTIN GOLDSTERN AND SAHARON SHELAH 

universes. Thus, a model St will have the universe A, and if A' C A then we let 
9A! be the submodel (possibly with partial functions) with universe A', etc. 

All theorems of this paper are due to the second author. We are grateful to 
Jdrg Brendle for pointing out a mistake in an earlier version of ?1. 

?1. Fuchino's problem and other applications. Let F be a class of forcing notions. 
1.1. DEFINITION. Let 2A and 93 be two structures for the same first order lan- 

guage, and let 9' be a class (or property) of forcing notions. We say that St and 
9 are i-potentially isomorphic (2t cd B) iff there is a forcing P E 9' such that 
l-p "2T c 9". SA cop 9 means 2t -1p} B. 

1.2. DEFINITION. We say that a structure 2A is nonrigid if it admits a nontrivial 
automorphism. We say that A is F-potentially nonrigid if there is a forcing notion 
P E 9' such that lIp "2t is nonrigid". 

We say that 2t has an F-potential nontrivial endomorphism if there is a forcing 
notion P E 9' such that 

IF "there is a homomorphism f 2t - St which is not the identity". 
P 

1.3. DEFINITION. (1) PI(9', A) is the statement: Any two F-potentially isomor- 
phic structures of size A are isomorphic. 

(2) PA(', A) is the statement: Any F-potentially nonrigid structure of size A 
is nonrigid. 

(3) PE(?, A) is the statement: For any structure A of size at most A, if 2% has 
an F-potential nontrivial endomorphism, then A has a nontrivial endomorphism. 

PI(9', A) was defined by Fuchino [Fu]. It is clear that 

FA(9', A) X BFA(9', A) * PI(?, A) & PA(9", A) & PE(', A) 

for all A, and Fuchino asked if PI(g', A) implies FA(', A), in particular for the 
cases g' - ccc, g = proper, and 9' = stationary-preserving. 

In the next sections we will show that for F = proper, the first implication 
cannot be reversed, by computing the exact consistency strength of BPFA and 
comparing it to the known lower bounds for the consistency strength of PFA. 

1.4. THEOREM. For any forcing notion P and for any A, we have: 

BFA(P, 2) X PE(P, 2) > PA(P, 2) X PI(P, 29). 

PROOF OF PI X> PA. We will only give a proof under the additional assumption 
that we have not only PI(P) but also PI(Pp) for all p E P, where Pp is the set of 
all elements of P which are stronger that p. 

Let 9) be a potentially nonrigid structure. So there is a P-name f such that 

IF "f is a nontrivial automorphism of 9C". 
P 

We can find a condition p E P and two elements a :& b of 9)1 such that 

P IF "f (a) = b". 
P 

Since we can replace P by Pp, we may assume that p is the weakest condition of P. 
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THE BOUNDED PROPER FORCING AXIOM 61 

So we have that (9, a) and (O, b) are potentially isomorphic. Any isomorphism 
from (C), a) to (C), b) is an automorphism of M mapping a to b, so we are done. 

OPI=>PA 
1.5 SETUP. Let P be a complete Boolean algebra, and let (Ai: i E I) be a system 

of A many maximal antichains of size A. We may assume that this is a directed 
system, i.e., for any i, j E I there is a k E I such that Ak refines both Ai and A1. 
So if we write i < j for "Aj refines As", then (I, <) becomes a partially ordered 
upwards directed set. (We say that A refines B if each element of A is stronger 
than some unique element of B, or in the Boolean sense if there is a partition 

A = UbGBAb of the set A satisfying Vb E B LarAb a = b.) 
Assuming PE(P, A), we will find a filter(base) meeting all the sets Ai. 
1.6. DEFINITION. (a) Let M be the disjoint union of the sets Ai. 
(b) For i E I,z EAi let Ri,z ={(x,y): x,y E Ai,x = y or x = z}. 

(c) If i < j, then there is a "projection" function h/ from A1 to Ai: For 
p E A1, hi (p) is the unique element of Ai which is compatible with (and in 
fact weaker than) p. 

1.7. FACT. (1) The functions h/ commute, i.e., if i < j < k then hfr = hi o h. 

(2) If i < j and p CA A, then p is stronger than h/ (p). 01.7 
Now let 9C = (M, (Ai)iEI, (Ri,z)iEIzEAi, (hj)iGIjGIi<j), where we treat the sets 

Ai, Ri,z, hi as relations on M. 
1.8. DEFINITION. Let G C P be a filter which meets all the sets Ai, say G n Ai = 

{yi (G)}. Define f G: M -* M as follows: If x E Fi, then f G (x) = x * yi (G) 
(here * = *i is the group operation on F1). 

1.9. FACT. If G is a filter which meets all sets Ai, then f G is an endomorphism 
of 1 01.8 

So 9 has a potential nontrivial endomorphism. So by PA(P, A) we know that 
9 really has such an endormorphism. 

Finally we will show how a nontrivial endomorphism of 9 defines a filter G* 
meeting all the sets Ai. 

Let F: 9) 91 be an endomorphism which is not the identity. Let yo = 

f (xo) = x0, xo E Ai.. We claim that 

(1) For all j > io, F A 1A is not the identity. 
(2) For all j > io, F [ A1 is constant, say with value pi. 
(3) The set {pj: j > io} generates a filter GF meeting all sets Ai. 

PROOF. (1) If hi (x) = xo, then h .J(F (x)) = yo, so F (x) =z x. 

PROOF. (2) Let x E cA, F(x) =& x. Then for all y E A1 we have (x, y) E Rj,,, 
so (F (x), F (y)) E Fj1,, and we must have F (x) = F (y). So F is constant on A1. 

PROOF. (3) If j > i > io, then hi (pi) = pi (since F is a homomorphism), and 
pi is stronger than pi. Since the set {j E I: j > io} is directed, also {pj: j > io} 
is directed. For any i E I there is j > i satisfying j > io, so Ai n Gf D {hi(p )}. 

01.4 
For Theorem 1.11 below we need the following definitions. 
1.10. DEFINITION. A tree on a set X is a nonempty set T of finite sequences of 

elements of X which is closed under restrictions, i.e., if a: k -? X is in T and i < k, 
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62 MARTIN GOLDSTERN AND SAHARON SHELAH 

then also C i E T. The tree ordering ?T is given by the subset (or extension) 
relation: ?< v iffy1 C v iffEi: = v [ i. 

For C E T let SUCT() := {x E X: r-x E T}. 
For A C T and q E T we let rk(q, A) be the rank of q with respect to A, i.e., 

the rank of the (inverse) tree ordering on the set 

{v: q < v C T, Vv': q < v < v =' V v' A}. 

In other words, rk(q, A) = 0 iff q C A, rk(1, A) = oc iff there is an infinite branch 
of T starting at q which avoids A, and rk(q, A) = sup{rk(v, A) + 1 : v a direct 
successor of a} otherwise. 

1.1 1. THEOREM. For any two structures 2t and 9 there is a structure e: = (t(2, 9) 
such that, in any extension V' D V of the universe, V' k "2t - 9 + e: is not rigid". 

PROOF. Without loss of generality we take IAI < IB 1, and 2t and 9 are structures 
in a purely relational language Y. We may also assume that A n B = 0. 

We will say that a tree T on A U B "codes A" iff the following three conditions 
hold. 

(1) SUCT(hl) {A,B} for all q c T. 
(2) When TA := ft C T: SUCT(h) = A}, the ranks rk(1, TA) are less than 

0o for all q c T. 
(3) The function q |-* rk(q, TA\{q}) is one-to-one on TA. 

Such a tree can be constructed inductively as T = U, Tn, where the T, are 
well-founded trees, each T,+, end-extends Tn, and all nodes in T,+, - T, are 
from B except those at the top (i.e., those whose immediate successors will be in 
Tn+2 - T,+,). Because we have complete freedom in what the rank of the tree 
ordering for each connected component of T,+, - T, should be (and because all 
the T, have size =IBI), we can arrange to satisfy (1), (2), and (3). 

Moreover, we can find trees To and T1, both coding A, such that 
(4) SucT0(0) = A, SucT, (0) = B. 

We will replace the roots (0) of the trees To and T1 by some new and distinct 
objects 0o and 01. So the trees To and T1 will be disjoint (by (4)). 

Now define the structure (t as follows: We let C = To U T1. 
The underlying language of (t will be the language Y plus an additional binary 

relation symbol <, which is to be interpreted as the tree order. Whenever R is an 
n-ary relation in the language Y, we interpret R in (t by 

R: {(qal,.. . q^an): q C To U T1, and 

Suc(q) = A (a,, . .., an) R, 

Suc(q) = B (a,,...,an) C R }. 

Now work in any extension V' D V. First assume that f: 2t -* 9 is an 
isomorphism. We will define a map g: To -* T1 such that the map g U g-1 is a 
(nontrivial) automorphism of C. 

We define g inductively as follows: 
(a) g(0O) = 01. 
(b) If SUCT0(5) = SUCT1 (g( )), then g(p^a) = g ()-a. 
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THE BOUNDED PROPER FORCING AXIOM 63 

(c) Otherwise, g(qpa) = g(q)^f (a) or g(p-a) = g(q)-lf'(a), as appro- 
priate. 

It is easy to see that g U g1 will then be a nontrivial automorphism. 
Now assume conversely that g: t .t is a nontrivial automorphism. Recall 

that the tree ordering is a relation on the structure C, so it must be respected by 
g. 

First assume that there are i, j C {0, 1 } and an q such that 

W8 V C Ti, g (q) C Tj, S.UCTS( M = 
SucTi (g (0) 

So, without loss of generality, SucT, (q) = A and SucTh (g(q)) = B. Now define a 
map f: A -* B by requiring g(r -a) = g(q)-f(a), and check that f must be an 
isomorphism. 

Now we show that we can always find i, j, q as in (*). If not, then we can first 
see that g respects To and TI, i.e., g (q) C To iff q C To. Next, our assumption 
implies that the function g [ To respects the set To, i.e., q E To iff g(r) C To . 

Hence for all q C To, we have rk( A TA) = rk(g(q), ToA), so (by condition (3) 
above) g(q) = q for all q C ToA. Since every v C To can be extended to some 

i7 C ToA and g respects <, we must have g(v) = v for all v C To. The same 
argument shows that also g [ T1 is the identity. 01.11 

1.12. REMARKS ON OTHER APPLICATIONS. Which other consequences of PFA 
(see, e.g., [Ba 1]) are already implied by BPFA? On the one hand it is clear that if 
PFA is only needed to produce a sufficiently generic function from co, to c(,, then 
the same proof should show that BPFA is a sufficient assumption. For example: 

BPFA implies "all tlj-dense sets of reals are isomorphic". 

On the other hand, as we will see in the next section, the consistency strength 
of BPFA is quite weak. So BPFA cannot imply any statement which needs large 
cardinals, such as "there is an Aronszajn tree on N2". In particular, BPFA does 
not imply PFA. 

We do not know if BPFA already decides the size of the continuum, but Woodin 
has remarked that the bounded semiproper forcing axiom implies 2o0 = N2. 

?2. The consistency of BPFA. 
2.1. DEFINITION. For any cardinal %, H(x) is the collection of sets which are 

hereditarily of cardinality < X: Letting trcl(x) be the transitive closure of x, trcl(x) 
- {x} U Ux U UUx U.., we have 

H(y) = {x: trcl(x)l <x}1 

(usually we require X to be regular). 
2.2. DEFINITION. Let n be a regular cardinal. We say that s is "reflecting" or, 

more precisely, 11-reflecting, if: 

For any first order formula p in the language of set theory, for any a E H(K): 
IF there exists a regular cardinal X > r, such that H(y) k ep(a), 
THEN there is a cardinal 6 < n such that a E HQ() and H(s) k (p(a). 
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64 MARTIN GOLDSTERN AND SAHARON SHELAH 

2.3. REMARK. (1) We may require ( to be regular without changing the concept 
of "El -reflecting". 

(2) We can replace "for all X" by "for unboundedly many X". 
PROOF. (1) Assume that H(Z) k (p(a), X regular. Choose some large enough 

Xi such that H(Z) E H(Xl) and XI is a successor cardinal. So H(Xl) k "3X, X 
regular, H(Z) exists, and H(Z) k '(p(a)'". We can find a (successor) 61 < X such 
that H(61) k "36, 6 regular, H(b) k '(p(a)`". So 6 is really regular. 

(2) If X < X1 then H(x) k '(p" iff H(X1) k "H(x) k 'p' ". 2.3 

2.4. REMARK. It is easy to see that if K is reflecting, then K is a strong limit, 
hence inaccessible. Applying El reflection, we get that X is hyperinaccessible, 
etc. 02.4 

2.5. REMARK. (1) There is a closed unbounded class C of cardinals such that 
every regular X E C (if there are any) is El reflecting. So if "oc is Mahlo", then 
there are many El-reflecting cardinals. 

(2) If K is reflecting, then L k "ai is reflecting". 
PROOF. (1) For any set a and any formula p let 

f '(a, (p) = min{X E RCard: H (X) k (p (a)} 

(where RCard is the class of regular cardinals, and we define min 0 = 0). Now let 
f: RCard -* RCard be defined by f (a) = sup{f'(a, 'p): (p a formula, a E H(a)} 
andlet C ={b ECard:Vac ERCard nr6 f(a) <6}. 

(2) is also easy. 0 2.5 

Our main interest in this concept is its relativization to L. In this context we 
recall the following fact: 

2.6. FACT. Assume V = L. Then for all (regular) cardinals X, H(Z) = Lx. 
(0 2.6 

2.7. FACT. Assume P E H(A) is a forcing notion, and X > 22z is regular. Then: 
(1) For any P-name x there is a P-name y E H(x) such that VP[ "x EH(W) => 

x y". (And conversely, if x E H(x), then l-P "x E H(W)".) 
(2) If x E H(X) and 'p(.) is a formula, then 

IF "H(x) k p(x)"X "H(x) k '- 1p(x)"'. 

PROOF. (1) is by induction on the rank of x in VP, and (2) uses (1). 02.7 

2.8. FACT. Let P be a forcing notion, P E H(A), and X> 22 regular. Then P 
is proper iff H(x) k "P is proper". 

2.9. LEMMA. Assume that K is reflecting, A < K is a regular cardinal, and 2t and 9 
are structures in H(A). If there is a proper forcing notion P such that Il- "2t 93 
then there is such a (proper) forcing notion in H(K). 

PROOF. Fix P, and let X be a large enough regular cardinal. So H(x) k "P 
proper, P E H(u), (22 ) exists". Also, there is a P-name f E H(Q) such that flFp 

"H (x) F 'f: A -* 9 is an isomorphism' ", so, by 2.7(2), H(x) k" Hlp 'f: Af 93 
is an isomorphism"'. 

Now we use the fact that K is reflecting. We can find 6 < K, 6 > A, and 
x' c H(b) such that H(b) k "nv 3Q C H(v), Q proper, 3g IFQ 'g: 2t * B is an 
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THE BOUNDED PROPER FORCING AXIOM 65 

isomorphism', and (22 ) exists." So this Q is really proper, and Q forces that A 

and 93 are isomorphic. 02.9 
2.10. FACT. If K, is reflecting, and P C H(r) is a forcing notion, then IFp "K% is 

reflecting". 
PROOF. Let P C H(A),, < N. Assume that p I- "H(Z) k '(p(a)', a c H(,)". 

We may assume that a E H(K). By 2.7 we have H(y) k "p IF 'p(q)"', so there 
is a 3 < a, 3 > A, such that H(5) k "p IF '(p(a)", hence p IF "H(b) k (p(a) ". ( 
is a cardinal in VP, because JPJ < A < 6. 02.10 

2.11. THEOREM. If "there is a reflecting cardinal" is consistent with ZFC, then 
also PI(proper) (and hence BPFA, by 1.4) is consistent with ZFC. 

PROOF (Short version). We will use a CS iteration of length X, where K reflects. 
All intermediate forcing notions will have hereditary size < K. By a bookkeeping 
argument we can take care of all possible structures on co,. If in the intermediate 
model there is a proper forcing notion which forces a nontrivial endomorphism, 
then there is such a forcing notion of size < a', so we continue. 

PROOF (More detailed version). Assume that K reflects. We define a countable 
support iteration (Pi, Qi: i < A,) of proper forcing notions and a sequence (9Ai: i < 
i,) with the following properties for all i < ts: 

(1) Pi E H (C). 
(2) Qi is a Pi-name, VP, "4Qi is proper, Qj E H(i)". 
(3) IVP, 2l1 < A. (This follows from (1) and (2).) 
(4) qAjl is a name for a structure on col. 
(5) IHp, "if there is a proper forcing notion of size < X. forcing a nontrivial 

endomorphism of Hi, then Qi is such a forcing notion". 
With the usual bookkeeping argument we can also ensure that 

(6) Whenever 9 is a Pi-name for a structure on co for some i, then there 
are unboundedly (or even stationarily) many j > i with H-1 "91 = 9". 

From (1) we also get the following two properties: 
(7) P,. e s--cc. 
(8) Whenever 91 is a P,,-name for a structure on co,, then there are i < K 

and a Pi-name C)' such that I H, 921 C)'. 
From these properties we can now show H,, BPFA. P,, is proper, so c1 is not 

collapsed. Let p be a condition, and let 91 be a P,,-name for a structure on co, 
and assume that 

p HF "Q proper, IF 9)1 has a nontrivial endomorphism", 
K ~~~ Q 

where Q is a P,,-name. So by (8) we may assume that, for some large enough 
i < K, 9) is a Pi-name and p E Pi. By (6) we may assume without loss of 
generality that 9)1 9)1.. Now letting R be the Pi-name (P,IGi) * Q, we get 

p IF "IH 9)1 has a nontrivial endomorphism". 

But by 2.10, IHi "K is reflecting", so by the definition of Qi and by 2.9 we get that 
p IHij 9) has a nontrivial endomorphism. 02.11 
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66 MARTIN GOLDSTERN AND SAHARON SHELAH 

2.12. REMARK. Since 2.8 is also true with "proper" replaced by "semiproper", 
we similarly get that the consistency of a E1 -reflecting cardinal implies the consis- 
tency of the bounded semiproper forcing axiom. 0 2.12 

?3. Sealing the co-branches of a tree. In this section we will define a forcing 
notion which makes the set of branches of an co,-tree absolute. 

3.1. DEFINITION. Let T be a tree of height cao. We say that B C T is an c(1- 
branch if B is a maximal linearly ordered subset of T and has order type col. 

3.2. LEMMA. Let T be a tree of height col. Assume that every node of T is on some 
co,-branch, and that there are at uncountably many co, -branches. (These assumptions 
are just to simplify the notation.) Then there is a proper forcing notion PT (in fact, 
PT is a composition of finitely many a-closed and ccc forcing notions) forcing the 
following: 

(1) T has t1 many 01-branches, i.e., there is afunction b: wi x Wi - > T such that 
each set Bc, = {b (a, fi): fi < co, } is an end segment of a branch of T (enumerated 
in its natural order), and every co,-branch is (modulo a countable set) equal to one 
of the Ba's, and the sets B, are pairwise disjoint. 

(2) There is a function g: T -* co such that, for all s < t in T, if g(s) = g(t) 
then there is some (unique) a < co, such that {s, t} C Ba. 

The proof consists of two parts. In the first part (3.3) we show that we may 
without loss of generality assume that T has exactly NI many branches. This 
observation is a special case of a theorem of Mitchell [Mi, 3.1]. 

In the second part we describe the forcing notion which works under the ad- 
ditonal assumption that T has only N, many branches. This forcing notion is 
essentially the same as the one used by Baumgartner in [Ba 2, ?8]. 

3.3. FACT. Let T be a tree of height o,, K, > IT , and let R1 be theforcing notion 
adding K, many Cohen reals. In VR1, let R2 be a u-closed forcing notion. Then every 
branch of T in VRI*R2 is already in VRI (and in fact already in V). 

Hence, if we take R2 to be the Levy collapse of the number of branches of T to 
N, (with countable conditions), T will have at most N, many branches in VR1 *R2. 

PROOF. Assume that b is a name of a new branch. So the set 

Tb := {t c T: ]p C R2 p IF t C- b} 

is (in VRI) a perfect subtree of T. In particular, there is an order-preserving 
function f: 2<' -) Tb. Since K, was chosen big enough, we can find a real c C 

2W n VRI which is not in V[f ]. Now note that T' is a-closed, so there is t* C T 
such that Vn f (c r n) < t*. But this implies that 

c = Ufs E2': f (s) < t*} 

can be computed in V[f], a contradiction. 03.3 
Now we describe a forcing notion P+ which works under the assumption that 

T has not more than N, branches. In the general case we can then use the forcing 
PT = R1 * R2 * PT. 

3.4. DEFINITION. Let T be a tree of height co, with N I many o I-branches {Bi: i < 
co,}, and assume that each node of T is on some a,-branch. Let B' = By\ Ui<j Bi 
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THE BOUNDED PROPER FORCING AXIOM 67 

and xj = min(B9), so that the sets BJ are disjoint end segments of the branches 
By, and they form a partition of T. Let A = {xi: i < co}. 

The forcing "sealing the branches of T" is defined as PT = {f: f a finite 
function from A to co, and if x < y are in dom(f), then f(x) & f (y)}. 

3.5. LEMMA. P+ satisfies the countable chain condition. (In fact, much more is 
true: If (pi: i < co1) are conditions in P, then there are uncountable sets S1, S2 C co, 

such that whenever i E Si and j E S2, then pi and pj are compatible. See [Sh f, XI].) 
PROOF. Essentially the same as in [Ba 2, 8.2]. 0 3.5 
To conclude the proof of 3.2, note that any generic filter G on P+ induces a 

generic fG: A - co. LetgG: T - co be defined bygG (y) = f G (xi) for all y E Bi. 
This function gG fulfills the requirement 3.2(2). 0 3.2 

?4. BPFA and reflecting cardinals are equiconsistent. In this section we will prove 
4.1. THEOREM. If BPFA holds, then the cardinal N2 (computed in V) is 1 -reflect- 

ing in L. 
Before we start the proof of this theorem, we exhibit some general properties 

of "sufficiently generic" filters. 
First a remark on terminology. When we consider BFA(P, A), then by "for all 

sufficiently generic G* C P, p(G*) holds" we mean: "there is a P-name f: A - A 
such that, whenever a filter G* interprets f, then p (G*) will hold". A description 
of the name f can always be deduced from the context. Instead of a single name 
f we usually have a family of A many names. 

The first lemma shows that from any sufficiently generic filter we can correctly 
compute the first order theory (that is, the part of it which is forced), or, equiv- 
alently, the first order diagram, of any small structure in the extension. 

4.2. LEMMA. Let P be a forcing notion, fl-p "9 is a structure with universe A 
with A many relations (Ri: i < A)". Assume BFA(P, A). Then for every sufficiently 
genericfilter G* C P. letting 9j* = (R,. R,[G*])i<2, (where R1[G*] {(x1, Xk) E 

,k: 3Ep C G* p IF 9t R(x1, . . , Xk)}) we have: 

Whenever (p is a closedformula such that fl-p 9)1 kp, then 9)1* p. 

PROOF. Let X be a large enough cardinal, and let N be an elementary submodel 
of H(Z) of size A containing all the necessary information (i.e., A C N, (P, <) E 
N, (Ri: i < A) C N). By BFA(P, A) we can find a filter G* C P which decides all 
P-names of elements of 9) which are in N and all first order statements about 
9C, i.e., 

(1) For all a E N, if fl-p "a E A" then there is f A E i and p E G* such that 
p U-p "a = 

(2) For all al, ... , a?k E A and all formulas (x1,... ., Xk) there is p E G* such 
that either p IF "9 1 k (a,... ., ak)" or p IF "9)1 -1= ( a1,. ?. , 

We now claim that, for every formula (x1, . . ., Xk) and every Q 1 ... 'Qzk E N, 
if FP "9A I= 1 . ? k)", then 9)* k p(cx1[G*],...,Ik [G*]). We assume that 
p is in prefix form, so in particular negation signs appear only before atomic 
formulas. The proof is by induction on the complexity of Ap, starting from atomic 
and negated atomic formulas. We will only treat the case 'p = 3x 'pi. So assume 
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68 MARTIN GOLDSTERN AND SAHARON SHELAH 

that IF-p 9)1= 3x p1 (x, q 1, . I o k). We can find a name b E N such that IF-p 9)11- 
f0l (be ?1, q ?k), so by the induction hypothesis we get 

CA* I- 91j(b[G*],Oq1[G*],. ,? IQn[G*]). (Q)4.2 

4.3. REMARK. In a sense the previous lemma characterizes "sufficiently generic" 
filters. More precisely, the following is (trivially) true: Let P be a complete 
Boolean algebra, let IF-p f: A -- A, and let 9) = ({,f ), where we treat f as 

a relation. For any ultrafilter G* C P the model 9C* = (R, f [G*]) is well-defined. 
Since f is forced to be a function, we have I-p "9) 1- 'Va 3]P (a, /) E f "'. Clearly 
G * "decides" f (as a function) iff Mt* satisfies the same V3 statement. 04.3 

This last remark suggests the following easy characterization of BFA(P): 
4.4. DEFINITION. Let P be an arbitrary forcing notion, not necessarily a com- 

plete Boolean algebra. If f is a P-name of a function from A to A, then let the 

"(forced) diagram" of 9A = (R, f ) be defined by 

DIF(M) = DIF(f) ={(,a1,... ,an): (X1, . - , Xn) a first order formula, 

aln. .., ahn C: A 1~p (p(aj,.* * ,?n)j- 

The "open (forced) diagram" D~Open () is defined similarly, but p ranges onlyover 

quantifier-free formulas. 
4.5. DEFINITION. For any forcing notion P let BFA'(P, A) be the statement 

BFA'(P, A) =Wheneverf: A -- A{ is a P-name of a function, 

then there is a function f* such that (RA, f*) I D'pen(f). 

4.6. FACT. For any forcing notion P, BFA(P, A) if BFA' (P, A)). 
PROOF. BFA'(P, A) is clearly equivalent to BFA'(ro(P), A). The same is true 

(by definition) for BFA. So we may assume without loss of generality that P is 
a complete Boolean algebra. It is clear that BFA(P, A) X. BFA'(P, A). 

Conversely, if f * is a function as in BFA', then we claim that the set {iff (a) = 

f * (a)J: ao E A} generates a filter on P (where EDj denotes the Boolean value of 
a closed statement A). Indeed, otherwise there are ordinals a, .I. ., a1, fli,. ,in 

such that 
f *(al) = pi &.. & f *(an) = An 

but the Boolean value 

fff (al) = pi & **& f (an) = Ainl 

is 0. This contradicts the fact that f * witnesses BFA'(P, A). 04.6 
After this digression we now continue our preparatory work for the proof of 

Theorem 4.1. Our next lemma shows that a generic filter will not only reflect 
first order statements about small structures, but will also preserve their well- 
foundedness. 

4.7. LEMMA. Assume that IFp "9) = ({, E) is a well-founded structure, A is a 
cardinal". Assume that cf (A) > co, and assume that BFA(P, A) holds. Then for every 
sufficiently generic filter G* C P we have that 9)* := ({, [G*]) is well-founded. 
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THE BOUNDED PROPER FORCING AXIOM 69 

(We will use this lemma only for the case where P is proper and A = Col.) 
PROOF. For each a < A let ra be the name of the canonical rank function on 

(a,e), i.e., 

H~p " dom(Ea) = a, VPl < a ra = sup{ra(Y) + 1: yEflj" 

As l-p "A is a cardinal", we have Ifp " rng(Ea) C A", so any sufficiently generic 
filter G* will interpret all the functions ra. Applying Lemma 4.2 to the structure 

(a, E[G*], ra[G*]), we see that raG*] is indeed a rank function witnessing that 

(a,,E[G*]) is well-founded. Since cf(A) > co, this now implies that (2, g[G*]) is 

also well-founded. 04.7 
We now start the proof of 4.1. The definitions in the following paragraphs will 

be valid throughout this section. 

Assume BPFA. Let K' := 2 We will show that 1i is reflecting in L. It is clear 

that K is regular in L. 

4.8. Claim. Without loss of generality we may assume: 
(1) 0# does not exist, i.e., the covering lemma holds for L. 

(2) R2' = R2. 
(3) There is A C R2 such that whenever X C Ord is of size < RI, then X c L[A]. 

Proof. (1) if 0 exists, then L, -< L, and it is easy to see that this implies that 

K is a reflecting cardinal in L. 

(2) Let P = Levy(N2, k'), i.e., members of P are partial functions from N2 

to R2 with bounded domain. Since P does not add new subsets of RI and P is 

proper, also VP will satisfy PE(proper, al). Also N v = vp and VP t R28 = 1 2, 
so we can without loss of generality work in VP instead of V. 

(3) By (2) we can find a set A _ N2 such that Z2L[A] = N2 and every function 

from Rl to N2 is already in L[A]. By (1), every set X of ordinals of size < R, can 

be covered by a set Y E L, IYI = RI. Let j: Y -+ otp(Y) be order preserving; 

then j[X] E L[A], j E L, so X E L[A]. 
PROOF OF 4.1. Let p(x) be a formula, a e L,<, and assume that X > K, Lx l 

p(a), and X is a regular cardinal in L. We have to find an L-cardinal X' < Kt such 

that a c L., andL, L (a). 
By 2.3, we may assume that X is a cardinal in L[A] or even in V. 

Informal outline of the proof. We will define a forcing notion P. In VP we will 

construct a model 9m = (M, c, x, x, . . . ) -< VP of size RI containing all necessary 

information. This model has an isomorphic copy 91 with underlying set Col. We 

will find a "sufficiently generic" filter G* which will "interpret" 9) as 9C*. By 4.7 

we may assume that 9C* = (co,, E*, X*,...) will be well-founded, so we can form 

its transitive collapse 9)' = (M', e',x . . . ). By 4.2 we have that 9A' k= "X' is a 

cardinal in L", i.e., X' is a cardinal in LM'nord. The main point will be to show 

that any filter on our forcing notion P will code enough information to enable us 

to conclude that X' is really a cardinal of L. 

4.9. DEFINITION OF THE FORCING NOTIONS Q0 AND Ql. Let Q0 be the Levy- 

collapse of Lx[A] to Rl, i.e. the set of countable partial functions from co, to 

LJ[A] ordered by extension. 
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70 MARTIN GOLDSTERN AND SAHARON SHELAH 

In VQo let T be the following tree: Elements of T are of the form 

((HiU: i < a), (f ij: i < j < a)) 

(we will usually write them as (4u , f ij: i < j < a)), where the uHi are ordinals 
less than x, the f ij are a system of commuting order-preserving embeddings, and 
a < cal. T is ordered by the relation "is an initial segment of". 

If B is a branch of T (in VQO, or in any bigger universe) of length s, then B 
defines a directed system (,uj, f ij: i < j < 5) of well-orders. We will call the direct 
limit of this system (YB, <B). In general this may not be a well-order, but it is 
clear that if the length of B is col, then (YB, <B) will be a well-order. 

Let Qi = PT be the forcing "sealing the wal-branches of T" described in 3.2. 
We let P = Qo * Ql. So P is a proper order, in fact it is a finite iteration of a-closed 
and ccc partial orderings. 

4.10. DEFINITION. In VP we define a model 9) as follows. Let fl be a large 
enough regular cardinal of V. Let (M, c) be an elementary submodel of (H(fl) vp, 
c) of size Nl containing all necessary information; in particular, M D L,[A]. We 
now expand (M, c) to a model 9= (M, c, x, A,...) by adding the following 
functions, relations and constants: 

* a constant for each element of Lx (where 4 is chosen such that a E La); 
* relations MO and Ml which are interpreted as M n H(fl) V and M n 

H(fl) v ?, respectively; 
* constants x, A, a., T, g, b (b is the function enumerating the branches of T 

from 3.2, and g is the specializing function g: T -- ca, also from 3.2); 
* a function c: x x ca1 -- x such that, for all s < x; if cf(s) = Nl, then 

c (6.): ca -- is increasing and cofinal in s. 
Since M, the underlying set of 91, is of cardinality N l, we can find an isomorphic 

model 
m= (clE,%,.) 

In V we have names for all the above: 9, E etc. Now let G* be a sufficiently 
generic filter, i.e., G* will interpret all these names. Writing E* for E[G*], etc., and 
letting 9C* = (ca, E*, *,. ..), we may by 4.7 and 4.2 assume that the following 
holds: 

4.1 1. FACT. (1) (co,, E*) is well-founded. 
(2) if yr is a closedformula such that IF-p "91 # yV", then 9C* V/. 04.11 
4.12. MAIN DEFINITION. We let 

I', = (Ml, C, XI'.** 

be the Mostowski collapse of 9)*. This is possible by 4.11(1). 9A1 = (MO', ) and 
9Cl = (Ml, c) will be "inner models" of 1'. 

Note. We will now do several computations and absoluteness arguments in- 
volving the universes V, L[A'], 91', L[A']9' = LM'nmrd[A'], etc. By default, all 
set-theoretic functions, quantifiers, etc., are to be interpreted in V, but we will 
often also have to consider relativized notions, like 91' - "L[A'] k '..."' (which 
is of course equivalent to LM/nOrd[A] '..- '), or cfL[A ], etc. 

Note that 9)' # "L[A'] 'K' = 2"' so we get OR' = - 
v 
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We will finish the proof of 4.1 with the following two lemmas: 
4.13. LEMMA. a EL/,,L / C M', and Lx # I(a). 
4.14. LEMMA. L t x' is a cardinal. 
Proof of 4.13. Since x' + 1 C M' and 9C' satisfies a large fragment of ZFC, we 

have Lxx C M' and Lxx E M'. For each y E Lx let cy be the associated constant 
symbol; then by induction (using 4.11(2)) it is easy to show that y = cm for all 
y E Lx. Since I[- "9)1 # [LX # '9 (a)']", we thus have 91' # "LxI # ' (a)' ". But 
Lxx C M/', so L [-- 7 (a). 

So we are left with proving 4.14. In L[A'] let ,u be the cardinality of x', and 
(again in L[A'J) let v be the successor of u. We will prove 4.14 by showing the 
following fact: 

4.15. LEMMA. V C M'. 
Proof of 4.14 (using 4.15). In fact we show that 4.15 implies that x' is a cardinal 

even in L[A']: If not, then iu < x', and since v is a cardinal in L[A'] we can 
find a y < v such that Ly[A'] # "there is a function from ,u onto x"'. By 4.15, 
y E M', so by the well-known absoluteness properties of L we have Ly[Al] C MI, 
so 91' - "L[A'] - 'x' is not a cardinal"'. But we also have F1p 91 - "L[A] - '# 
IS a cardinal"', so we get a contradiction to 4.11(2). 04.14 

Proof of 4.15. We will distinguish two cases, according to what the cofinality 
of U is. 

Case 1. cf(iu) = No. (This is the "easy" case, for which we do not need to 
know anything about the forcing Qi other than that it is proper, so the class 
{f: cf(s) = No} is the same in V, VQO, VP, and L[A].) We start our investigation 
of Case 1 with the following remark: 

4.16. FACT. (1) For all a, if cfL[A](Q5) > No, then cf(s) > No. 
(1) IF-p "For all s < x, if cfL[A]Q(5) > No, then cf(s) = N " 

(2) If 1' cfL[A](iU) > No, then 9)' - cf(i) = Ni. 
(3) If 91' "cf(it) = dl", then cf(it) = Ni. 

Proof. (1) By the choice of A, (see 4.8(3)). 
(2) Use (1) and the fact that P is proper, hence does not cover old uncountable 

sets by new countable sets. 
(3) Use (2) and 4.2. 
(4) If 9)1' - "cf(it) = dl", then the fucntion c'(,u,.) is increasing and cofinal 

in u. (Recall that cov = com .) 
4.17. Conclusion. Since cf(it) = No, from (3) and (4) we get 

9)' - "L[A'] - 'cf(i) = No 

Let 9)C' - "vi is the L[A']-successor of i". We will show that vj = v. This 
suffices, because M' is transitive. 

So assume that v, < v. Working in L[A'], we have I[,u]f8 I = v and IL,, [A']I < v, 
so we can find a y E [iUPO such that y E Ly[Al]\Ll,, [A'] for some y < v. Working 
in V, let Ly[A'] = Ui<, Xi, where (Xi: i < co,) is a continuous increasing chain of 
elementary countable submodels of Ly[A'], with y, A' E Xo. In 9Cl = (M', c) we 
can find a continuous increasing sequence (iY: i < co,) of countable elementary 
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submodels of Lu[A'] with Ui<,, Y1 = Lu[A'] and A' E Yo. We can find an i such 
that Xi n Lu [A'] = Yi. 

Let j: (Xi, c, A, Yi) -- (L [A^], E A, L4[A]) be the collapsing isomorphism. 
Now note that Y1 = Xi n L,[A'] is a transitive subset of Xi, so j ] Y1 is exactly 

the Mostowski collapse of (Yi, c), so j ] Y1 E Ml' and A E M1'. Hence also 

j(y) E L2[A] C M1', so we can compute 

y = {a: (j [ Yj)(a) E j(y)} 

in M1. Hence y E Ml'. But 

9A'1 n M' - n MO 
' [ nfO 0 L[A']" 

(the first equality holds because Qo is a a-closed forcing notion, the second because 
of our assumption 4.8(3)). 

Hence 9C' - y E L[A'], so 9C' I= y E L4, [A'], a contradiction to our choice of 
V. 04.15, Case 1 

Case 2. cf(pu) = N1. Let y < v. We have to show that y E M'. Since L[A'] - 

y = 4u, in L[A'] we can find an increasing sequence (At: 4 < A), y = U4</ AX, 
where each AX has cardinality < 4u in L[A']. Let ao be the order type of As; 
then the inclusion map from AX into A; naturally induces an order-preserving 
function fir: ao --o a(. Let B = (oa, fir: a < C < u), and write B / P for 
(oa, f i: 4 < ( < P). Clearly the direct limit of this system is a well-ordered set 
of order type y. 

So B is in L[A'], but we can moreover show that each initial segment B [ is 
already in L,[A']. This follows from the fact that each such initial segment can 
be canonically coded by a bounded subset of u. 

Since L, [A'] C Lz,[A'] C M1', we know that B [ is in M' for all /3 < ,u. In 
M1' let (di: i < co,) be an increasing cofinal subsequence of u. Let /i = a, and 
hij = f ,,ij. Note that the direct limit of the system Khs hij; i < j < co1) is still a 
well-ordered set of order type y. 

So for each (s < w1 we know that the sequence b3 K=iB fi: i < j < 6) is in 
M1, and 91A 1= b6 E T'. 

Now we can (in V) find an uncountable set C C co, and a natural number n 
such that for all s E C we have g'(b&) = n. Now recall the characteristic property 
of g (see 3.2) and hence of g' (by 4.1 1): for each s1 < s2 in C we have a unique 
branch B' = {b'(a,/3): /3 < co,} with {bbl,b32} C B a. A priori this a depends 
on ,1 and 12, but since Ba n Bf = 0 for a 78 /3 we must have the same a for all 

c E C. 
So the sequence (be: s E C) is cofinal on some branch B' which is in M'. So 

we get that y, the order type of the limit of this system, is also in M'. 

0D4.15, Case 2 0D4.1 
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