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1. Introduction

In [3], Gitik and Shelah answered a question of Fremlin’s [2, P1]. They showed that it is possible to con-
struct a model of set theory in which the continuum is real-valued measurable in a way that is different from
Solovay’s original construction of such a model [5]. Solovay used a measurable-length sequence of random
reals. Fremlin’s general question is, what properties of Solovay’s model are artefacts of the construction, and
which follow from the fact that the continuum is real-valued measurable. The paper [1] extends this line of
investigation. It gives yet another construction of a model with the continuum being real-valued measurable,
and isolates a measure-theoretic property which differentiates between this model and Solovay’s.
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It is natural to ask what happens when measure is replaced by category. The analogue of Solovay’s forcing
is the addition of a measurable-length sequence of Cohen reals, equivalently forcing with the open subsets
of the product space 2κ for κ measurable. The analogue of real-valued measurability, which holds in this
model is the following.

Definition 1.1. A cardinal κ is Cohen measurable if there is a κ-complete ideal I on κ such that P(κ)/I is
isomorphic to a Cohen algebra.

Here a Cohen algebra is the completion of a notion of forcing adding a certain amount of Cohen reals
(the finite support product of copies of 2<ω), equivalently, the Boolean algebra of regular open subsets of a
space 2X for some X.

One would expect that a modification of the notion of forcing from [1] would yield a model in which the
continuum is Cohen measurable. This follows the intuition that category is easier than measure. It turns
out however that this is not easily done; that construction heavily relies on the existence of measures on
measure algebras. In other words, with category we have fewer tools because we cannot say “how much
more or less meagre” is one open set compared to another; there is no real number value that can answer
such a question.

In this paper we give a new construction of a model in which the continuum is Cohen measurable. Rather
than drawing on [1], we adopt a technique from [4]. Whereas the statement in [1] differentiating the new
model from Solovay’s was somewhat ad-hoc, we now obtain a natural property of the continuum, which was
first shown to be consistent in [4].

Theorem 1.2. Let κ be a measurable cardinal such that 2κ = κ+. Then in a forcing extension, κ = 2ℵ0 is
Cohen measurable, and every function f : 2ω → 2ω is continuous on a non-meagre set.

In contrast, in [4], Shelah showed that in a model obtained by adding Cohen reals, some function from
2ω to 2ω will not be continuous on any non-meagre set.

1.1. Proof of Theorem 1.2

The general idea is to use a finite-support forcing iteration P̄ = 〈Pα,Qα〉 of length κ (where κ is a
measurable cardinal) which is “mostly Cohen”. We will specify a stationary subset S of Sκ

ℵ1
= {α < κ :

cf(α) = ℵ1}. This will be the set of locations α at which we can choose Qα to be a notion of forcing other
than Cohen forcing. The intention is to use a carefully chosen variant of Shelah’s notion of forcing from [4],
to add instances of continuity on a non-meagre set. Exactly how we choose them will be determined using
a diamond sequence on S. The guessing power of the diamond sequence will be sufficient to guess, for each
function F : 2ω → 2ω in V Pκ , sufficiently much about F , so that at some point α ∈ S, Qα will add both
the definition Ψ of a continuous function, and a non-meagre set A on which F will equal Ψ . The fact that
the iteration P̄ is mostly Cohen will be also used to show that the non-meagreness of A is preserved from
step α+ 1 all the way up to step κ. Further, S will be made sufficiently sparse, so that the deviations on S

from Cohen forcing do not aggregate too badly to prevent us from making κ Cohen measurable. One aspect
of this is that Qα will be determined by only few of the Qβ (β < α). We will call these “iterations with
restricted memory”.

The proper definition of what we do at steps α ∈ S actually relies on a structural analysis of what we
have done up to that stage. For that reason we define for each ordinal δ, classes Pδ(S) of forcing iterations of
length δ which could be the one chosen up to stage δ. Once we develop the general theory of these iterations,
we can then use the diamond sequence and give non-circular instructions at each step, how to choose the
next Qδ. In the construction of P̄ we will only use the fixed stationary set S ⊂ κ and naturally use only
ordinals δ � κ. However in the verification that in V Pκ , κ is Cohen measurable, we also need to consider the
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extension of P̄ by an elementary embedding j witnessing the measurability of κ. In particular we will need
to consider Pj(κ)(j(S)), where in our ambient universe j(κ) will not even be inaccessible and j(S) will not
be a stationary subset of j(κ). Hence we will give a general definition of the classes Pδ(S), for any ordinal
δ and any subset S ⊆ Sδ

ℵ1
(Definition 4.2). The restriction S ⊂ δ does not conflict with the plan for the

recursive definition of the eventual P; for S ⊂ κ and δ < κ, Pδ(S) will only depend on S ∩ δ.
We will show the following. For (4) below, we say that a set S reflects nowhere at a set of ordinals A if

for all limit γ ∈ A of uncountable cofinality, S ∩ γ is not stationary in γ. We note that if S ⊆ Sδ
ℵ1

and γ � δ

has countable cofinality then there is an ω-sequence cofinal in γ and disjoint from S, so “non-reflection” at
γ is automatic.

Proposition 1.3. Let δ be an ordinal and let S ⊆ Sδ
ℵ1

.

(1) Suppose that V ⊆ W are transitive models of set theory, and that ℵV
1 = ℵW

1 . Then membership in Pδ(S)
is upward absolute between V and W : (Pδ(S))V ⊆ (Pδ(S))W .

(2) If δ is an inaccessible cardinal, then for all P̄ ∈ Pδ(S):
(a) Pδ ⊂ Hδ.
(b) In V Pδ , δ = 2ℵ0 .

(3) If δ is an inaccessible cardinal and �(S) holds, then there is some P̄ ∈ Pδ(S) such that in V Pδ , every
function f : 2ω → 2ω is continuous on a non-meagre set.

(4) If α < δ, α /∈ S and S reflects nowhere in the interval (α, δ], then for all P̄ ∈ Pδ(S), Pδ/Pα is equivalent
to a Cohen algebra.

(5) If κ is a measurable cardinal and 2κ = κ+, then there is a forcing extension W of V , preserving the
measurability of κ, in which there is a stationary subset S ⊆ Sκ

ℵ1
and a normal ultrafilter embedding

j:W → N with critical point κ such that:
(a) �(S) holds; and
(b) in W , j(S) reflects nowhere in the interval (κ, j(κ)].

Note that (5b) means that for δ ∈ (κ, j(κ)] of uncountable cofinality, there is, in W , a club of δ disjoint
from S. Such a club will often not exist in N .

Theorem 1.2 is then proved as follows. Obtain a forcing extension W given by (5) of the proposition, and
work in W . Pick an iteration P̄ ∈ Pκ(S) given by (3). The desired model is W Pκ . By (2b), in W Pκ , κ = 2ℵ0 ;
and by (3), in W Pκ , every function f : 2ω → 2ω is continuous on a non-meagre set.

Since Pκ ⊂ Hκ (2a), j �Pκ
is the identity on Pκ and the iteration j(P̄) is an extension of the iteration P̄,

so for α � j(κ) we write Pα for j(P)α; we note that j(Pκ) = Pj(κ). We conclude that Pκ �Pj(κ). Now in N ,
j(P̄) ∈ Pj(κ)(j(S)), so by (1), j(P̄) ∈ Pj(κ)(j(S)) in W as well. Since κ is regular in W and j(S) ⊆ S

j(κ)
ℵ1

,
κ /∈ j(S). Since j(S) reflects nowhere in the interval (κ, j(κ)], by applying (4) in W to κ, j(κ), j(S)
and j(P̄), we see that in W Pκ , Pj(κ)/Pκ is equivalent to a Cohen algebra. However, as is well known (but see
Proposition 5.1 for completeness), because j is a normal ultrafilter embedding, in W Pκ there is a κ-complete
ideal I such that P(κ)/I is isomorphic to the completion of Pj(κ)/Pκ, and hence to a Cohen algebra. Thus
in W Pκ , κ is Cohen measurable. This completes the proof of Theorem 1.2.

1.2. Structure of the paper

In Section 2 we settle notation, give basic definitions and recall some facts about forcing iterations,
equivalence to Cohen algebras, and the forcing from [4], which as we mentioned will be one of the important
ingredients of this paper.

In Section 3 we define a broad class of forcing iterations, from which elements of the collections Pδ(S)
will be taken. These are the iterations with “restricted memory”.
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In Section 4 we define the classes Pδ(S). We easily observe that (1) and (2) of Proposition 1.3 hold. In
this section we also prove (4).

In Section 5 we deviate a little from the proof of Theorem 1.2. Apart from giving a proof of the iso-
morphism of j(P)/P and P(κ)/I (Proposition 5.1), which is mostly given for completeness, we show how
to obtain the conclusion of Theorem 1.2 if we are willing to start with a supercompact cardinal, equipped
with a suitable stationary subset. In this case we do not need the preparation forcing which gives us (5).

In Section 6 we prove (3) of Proposition 1.3. In Section 7 we prove (5) of Proposition 1.3.

2. Preliminaries

We fix some notation and recall some basics.

2.1. Complete embeddings

Let P ⊆ Q be partial orderings. A restriction of Q to P is a function i:Q → P such that: (1) i is
order-preserving; (2) for all q ∈ Q, q � i(q); (3) i �P= idP; and (4) for all q ∈ Q, every p � i(q) in P is
compatible with q in Q.

Note that if there is a restriction of Q to P then for all p, q ∈ P, p ⊥P q if and only if p ⊥Q p; and every
dense set D ⊆ P is pre-dense in Q. In this paper we write P�Q if there is a restriction from Q to P. This is
equivalent to the usual notion in case P and Q are complete Boolean algebras and P is a sub-algebra of Q.

If P ⊆ Q then we let Q/P be the P-name for the sub-ordering of Q on Q/GP = {q ∈ Q : for all p ∈
GP, p �⊥Q q}. For q ∈ Q and p ∈ P, p � q ∈ Q/P if and only if every r � p in P is compatible with q in Q.
Thus, if i is a restriction of Q to P then for all q ∈ Q, i(q) �P q ∈ Q/P. Also note that p �P q /∈ Q/P if and
only if p ⊥Q q. Further, for p ∈ P and q ∈ Q, if p �P q ∈ Q/P then p �P i(q) ∈ GP (every p′ � p is compatible
with q in Q, and so (by applying i) compatible with i(q) in P.) Thus i(q) is essentially the weakest condition
forcing that q ∈ Q/P (only lack of separativity could cause it to not literally be the greatest such condition).
Thus, if G ⊂ P is generic, then for all q ∈ Q, q ∈ Q/G if and only if i(q) ∈ G.

Fact 2.1. Let i:Q → P be a restriction. If D ⊆ Q is dense, then in V P, D ∩ (Q/P) is dense in Q/P. In
particular, for every g ∈ GP and every q ∈ Q/P = Q/GP there is some q̄ � q, g in Q/P.

Fact 2.2. Suppose that P�Q�R; let i be a restriction of Q to P and j be a restriction of R to Q. Then i ◦ j
is a restriction of R to P. In V P, Q/P � R/P.

For the following fact, recall that a map i:Q → P is called a dense homomorphism if it preserves
order and incompatibility, and its range is a dense subset of P. If there is such a map, then P and Q are
forcing-equivalent.

Fact 2.3. Let P ⊆ Q, and suppose that i:Q → P is a dense homomorphism. Suppose that i is an idempotent:
i�P= idP. Then i is a restriction of Q to P.

Fact 2.4. Let P ⊆ Q, and suppose that i:Q → P is dense. If Q�R then in V Q = V P, R/Q = R/P.

2.2. Embeddings into a Cohen algebra

For a set X, we let C(X) be the finite support product, indexed by X, of one-dimensional Cohen forcing
C = (2<ω,�). We let C(X) be the completion of C(X) (the complete Boolean algebra of which C(X) is a
dense subset). For disjoint sets X,Y we write C(X,Y ) for C(X ∪ Y ). We let C = C(1).
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We say that a partial ordering (a notion of forcing) P is equivalent to a Cohen algebra if there is a dense
embedding of P into C(X) for some X. We write P ∼ C(X).

If X ⊆ Y then there is a natural embedding of C(X) into C(Y ), which is complete. It induces a complete
embedding of C(X) into C(Y ).

We will make use of the following lemma. It is surely known; we include a proof for completeness.

Lemma 2.5. Let P � Q, and suppose that P ∼ C(X). Let Y be a set. The following are equivalent:

(1) �P Q/P ∼ C(Y );
(2) Every dense embedding of P into C(X) can be extended to a dense embedding of Q into C(X,Y ).
(3) There is a dense embedding of P into C(X) which can be extended to a dense embedding of Q into

C(X,Y ).

We will be imprecise and write “Q/P is (equivalent to) a Cohen algebra” when we mean that for some
Y ∈ V ,

�P “Q/GP is equivalent to C(Y )”.

Proof. In this proof, for neatness, let R = 2ω be Cantor space.
Assume (1), we show (2). Let j be a P-name for a dense embedding of Q/P into C(Y ). Let q �→ q �P be a

restriction map. For q ∈ Q and p � q �P, let U(p, q) be the supremum of the set

U(p, q) =
∑C(Y ){

D ⊆ RY is clopen, and p �P D ⊆∗ j(q)
}

where we think of the elements of C(Y ) as regular open subsets of RY , and A ⊆∗ B means that A \ B is
meagre.

Let i:P → C(X) be a dense embedding. For q ∈ Q, let

k(q) =
∑{

i(p) × U(p, q) : p � q �P
}
.

Let q0, q1 ∈ Q. Say q1 � q0. Then q1 �P� q0 �P, and for all p � q1 �P, U(p, q1) ⊆ U(p, q0). Hence
k(q1) ⊆ k(q0).

Suppose that k(q0) and k(q1) are compatible; let E ⊆ RX and D ⊆ RY be clopen such that E × D ⊆
k(q0)∩k(q1). First find p0 � q0 �P such that E∩i(p0) �= ∅ and D∩U(p0, q0) �= ∅. Find E0 and D0 clopen such
that E0×D0 ⊆ (E×D)∩(i(p0)×U(p0, q0)). Find p1 � q1 �P such that E0∩i(p1) �= ∅ and D0∩U(p1, q1) �= ∅.
So p0 and p1 are compatible in P; let p ∈ P extend both; p forces that j(q0) and j(q1) are compatible, so p

forces that q0 and q1 are compatible in Q/GP, and so q0 and q1 are compatible.
Let E ×D be clopen. There is some p ∈ P such that i(p) ⊆∗ E. There is some p̄ �P p and some q ∈ Q

such that p̄ � q ∈ Q/GP & j(q) ⊆∗ D. In particular, p̄ �⊥Q q; let q̄ �Q p̄, q. Then q̄ �P� p̄ �P= p̄. For any
r � q̄ �P we have i(r) ⊆∗ E and r �P j(q̄) ⊆∗ D, so U(r, q̄) ⊆∗ D. It follows that k(q̄) ⊆∗ E ×D.

Let p ∈ P. Then p forces that p is compatible with every q ∈ Q/GP. It follows that U(p, p) = RY . For
let D ⊆ RY be clopen. In P, densely below p we can find p′ for which we can find some q′ ∈ Q with
p′ � q′ ∈ Q/GP and p′ � j(q′) ⊆∗ D. Since p′ also forces that p and q′ are compatible, it forces that j(p)∩D

is nonempty. Hence p forces that j(p) is dense, i.e. that j(p) =∗ RY . Hence k(p) = i(p) × RY .
Assume (3), we show (1). Let i:P → C(X) be a dense embedding, and let k:Q → C(X,Y ) extend i. Let

G be P-generic, and let r̄G be the Cohen generic sequence in RX . In V [G], for q ∈ Q/G let j(q) be the
section k(q)r̄G which is an open subset of RY .



JID:APAL AID:2401 /FLA [m3L; v 1.134; Prn:22/05/2014; 12:24] P.6 (1-20)
6 N. Greenberg, S. Shelah / Annals of Pure and Applied Logic ••• (••••) •••–•••

Sh:1039
Let q0, q1 ∈ Q/G. If q1 �Q q0 then k(q1) ⊆ k(q0) (we use maximal representatives, i.e., regular open sets)
and so j(q0) ⊆ j(q1).

We show that if p � q ∈ Q/G and p � D ⊆ j(q) (for some clopen D) then i(p)×D ⊆∗ k(q). Suppose not;
find some clopen E and C such that E × C ⊆ i(p) ×D but E × C is disjoint from k(q). Find some p̄ � p

such that i(p̄) ⊆ E. Since p̄ forces that r̄G ∈ E, it forces that C is disjoint from j(q), which is impossible.
Suppose that j(q0) and j(q1) are compatible; let p ∈ G force that D ⊆ j(q0) ∩ j(q1) for some nonempty

clopen subset D of RY , and that q0, q1 ∈ Q/G. Then i(p)×D ⊆ k(q0)∩k(q1). For densely many p̄ � p (in P)
there is some q �Q q0, q1 such that p̄ � q ∈ Q/G. For let p′ � p. Let q �Q q0, q1 such that k(q)∩ (i(p′)×D)
is nonempty. Let p̄ � p′ such that i(p̄) ×D′ ⊆ k(q) for some nonempty clopen D′ ⊆ D. Then p̄ � q ∈ Q/G.

Let D ⊆ RY be clopen. Given p ∈ P, find some q ∈ Q such that k(q) ⊆ i(p) ×D. Find some p̄ � p and
some D′ ⊆ D such that i(p̄) ×D′ ⊆ k(q). So p̄ � q ∈ Q/G and j(q) ⊆ D. �
2.3. A restricted form for iterations

All partial orderings have a greatest element, usually denoted by 1.
We restrict ourselves to two-step iterations of the following form: P is a partial ordering, (R,�) is some

partial ordering, and S is a P-name for a non-empty upward-closed subset of R (in particular, �P 1R ∈ S);
we assume that as a name, S ⊆ P×R. We then let P ∗ S be the collection of pairs (p, s) ∈ P×R such that
p � s ∈ S, ordered as a sub-ordering of P × R. We note that if P � Q (with restriction i), then Q/P is a
P-name for an upward-closed subset of Q. The map q �→ (i(q), q) is a dense embedding of Q into P ∗ (Q/P),
so these notions of forcing are equivalent.

Fact 2.6. Suppose that P�Q with i:Q → P a restriction. Let S ⊆ Q×R be a Q-name for an upward-closed
subset of a partial ordering R. Then the map (q, s) �→ i(q) is a restriction of Q ∗ S to P.

Under the hypothesis of Fact 2.6, P � Q ∗ S. Here we identify P with its image in Q ∗ S under the map
p �→ (p, 1). In particular, of course, Q�Q ∗ S.

For the following note that if P�Q and S ⊆ P×R is a P-name for a subset of R, then S is also a Q-name
for a subset of R.

Fact 2.7. Suppose that P �Q with i:Q → P a restriction. Let S ⊆ P×R be a P-name for an upward-closed
subset of a partial ordering R. Then:

(1) For all q ∈ Q and s ∈ R, q �Q s ∈ S if and only if i(q) �P s ∈ S. In particular, for p ∈ P, p �P s ∈ S

if and only if p �Q s ∈ S.
(2) S is also a Q-name for an upward-closed subset of R.
(3) The map (q, s) �→ (i(q), s) is a restriction of Q ∗ S to P ∗ S.

2.4. Forcing continuity on a non-meagre set

We fix notation for the notion of forcing from [4]. In full generality, let P be a notion of forcing, and
let η̄ = 〈ηi〉i<ω1

and ζ̄ = 〈ζi〉i<ω1
be two sequences of P-names for reals (in this paper, elements of Cantor

space 2ω). We let Sh(η̄, ζ̄) be the P-name for the notion of forcing which adds the definition of a continuous
function which makes the map ηi �→ ζi continuous on a non-meagre set. Technically, the conditions in
P ∗ Sh(η̄, ζ̄) will be pairs (p, a, Ψ), where:

• p ∈ P;
• a is a finite subset of ω1;
• Ψ is a finite, (strict) order-preserving map from 2<ω to 2<ω, and:
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(1) p forces that every element of domΨ is an initial segment of ηi for some i ∈ a; and
(2) If i ∈ a, (σ, τ) ∈ Ψ and p �P σ ≺ ηi then p �P τ ≺ ζi.

A condition (q, b, Φ) extends a condition (p, a, Ψ) if q extends p in P, a ⊆ b, and Ψ ⊆ Φ. Note that
this is an example of a two-step iteration which obeys the restrictions above: Sh(η̄, ζ̄) is a P-name for an
upward closed subset of R where R consists of pairs (a, Ψ) where a is a finite subset of ω1 and Ψ is a finite,
(strict) order-preserving map from 2<ω to 2<ω, ordered by ⊆ on both coordinates. Note that R ⊂ H(ω1)
and |R| = ℵ1.

Shelah’s notion of forcing starts with P = C(ω1). Letting ηi be the name for the Cohen real added by
C({2i}) and ζi be the name for the Cohen real added by C({2i + 1}), Shelah uses C(ω1) ∗ Sh(η̄, ζ̄). We
denote this simply by C(ω1) ∗ Sh.

Proposition 2.8. (See [4].)

(1) In V C(ω1)∗Sh there is a non-meagre subset of {ηi : i < ω1} on which the map ηi �→ ζi is continuous.
(2) For all i < ω1, C(2i) � (C(ω1) ∗ Sh) and (C(ω1) ∗ Sh)/C(2i) is equivalent to a Cohen algebra (of

dimension ℵ1).

3. Iterations with restricted memory

Let P̄ = 〈Pα,Qα〉α<δ be a finite support iteration. For α � δ, we think of the elements of Pα as sequences
of length α. As above, we suppose that all successor steps are “V -based”, in the sense that for all α < δ

there is some partial ordering (Rα,�) in V such that Qα is a Pα-name for an upward-closed subset of Rα,
and the ordering on Pα+1 = Pα ∗Qα is inherited from the one on Pα ×Rα. It follows that Pδ is a subset of
the finite-support product

⊕
α<δ Rα of the Rα’s, with the inherited ordering. That is, for p, q ∈ Pδ, p �Pδ

q

if and only if for all α < δ, p(α) �Rα
q(α). Below, we will always assume the existence of such ambient

orderings Rα.
For u ⊆ δ we let

Pu =
{
p ∈ Pδ : for all α ∈ δ \ u, p(α) = 1

}
,

with order inherited from Pδ. Technically we should have called this Pu,δ. However, if u ⊆ α < δ then Pu,α

and Pu,δ are naturally isomorphic by appending a sequence of ones, so we ignore the difference between
them. Under this identification there is no conflict between the two meanings of Pα for α < δ. Note that Pu

is upward-closed in Pδ. If u ⊆ v ⊆ δ then Pu ⊆ Pv.
Now the main point is that usually, unless u = α is an initial segment of δ, Pu will not contain much.

For example, if 0 /∈ u, but to define each Qα (for α > 0) we need access to Q0, then Pu will contain very
little, since each condition in Pu knows nothing about Q0. In the other extreme, if the iteration is actually
a product, no Qα needs any information about any other Qβ , and in this case, for any u ⊆ δ, Pu is just
the product restricted to u, which behaves perfectly nicely; in particular, Pu � Pδ. As we mentioned in
the introduction, we will be using iterations which are not quite products but for which each Qα needs
information from “not so many” Qβ for β < α, and so for many sets u ⊆ δ we will have Pu � Pδ. In other
words, each Qβ will have “restricted memory”. A memory template for the iteration P̄ specifies, for each α,
which Qβ (for β < α) are needed to compute Qα.

Definition 3.1. A memory template (of length δ) is a sequence u = 〈uα〉α<δ such that for all α < δ,

• uα ⊆ α; and
• if β ∈ uα then uβ ⊂ uα.
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The second condition is a natural transitivity requirement: if Qβ is needed to compute Qα, and Qγ is
needed to compute Qβ , then certainly Qγ is needed to compute Qα. Note that if u is a memory template
of length δ and α < δ, then u�α is a memory template of length α.

Definition 3.2. Let u be a memory template of length δ. A finite support iteration P̄ = 〈Pα,Qα〉α<δ is a
u-iteration if for all α < δ, Qα is a Puα

-name. (We will show below that in this case, Puα
�Pδ, which means

that this definition makes sense.)

Here we assume as above that as a name, Qα is a subset of Puα
× Rα (where Rα is the ambient partial

ordering for Qα mentioned above).

Definition 3.3. Let u be a memory template of length δ. A subset u of δ is u-closed if for all α ∈ u, uα ⊂ u.

So each uα is u-closed. Note that each α < δ is u-closed, indeed if u ⊆ δ is u-closed and α < δ then u∩α

is u-closed. A subset of α < δ is u-closed if and only if it is u�α-closed.
Let P̄ be an iteration of length δ, and let u ⊆ δ. For p ∈ Pδ we define a δ-sequence p �u by letting, for

α < δ,

p�u (α) =
{
p(α), if α ∈ u;
1, if α /∈ u.

Note that for all p ∈ Pu, p�u= p. In general, p�u may not be an element of Pδ, again, because erasing part
of its head may cause us to lose the evidence for its tail being in Pδ.

Lemma 3.4. Let u be a memory template of length δ, let P̄ be a u-iteration, and let u ⊆ v ⊆ δ be u-closed.
Then for all q ∈ Pv, q �u∈ Pu, and the map q �→ q �u is a restriction of Pv to Pu (so Pu � Pv).

Proof. By induction on δ. First, suppose that δ is a limit ordinal and that the lemma holds for all α < δ.
That the lemma holds for δ follows from the fact that P̄ is of finite support, so viewed as sequences of length
below δ, we have Pv =

⋃
α<δ Pv∩α, and Pu =

⋃
α<δ Pu∩α; and noting again that for all α < δ, u ∩ α and

v ∩ α are u�α-closed subsets of α.
Next let δ be any ordinal and suppose that the lemma holds for δ; we show it holds for δ + 1. Of course

the point is that if w ⊆ δ+1 is u-closed and δ ∈ w, then uδ ⊂ w. Then w∩δ is u�δ-closed, and by induction
and by Fact 2.7, Qδ ⊆ Pw∩δ ×Rδ is also a Pw∩δ-name for an upward-closed subset of Rδ.

Let u ⊆ v ⊆ δ + 1 be u-closed. There are three cases:

• If δ /∈ v then the lemma for u and v follows from the fact it holds at stage δ.
• If δ ∈ v but δ /∈ u then the lemma for u and v follows from Fact 2.6 applied to P = Pu and Q = Pv∩δ.
• If δ ∈ u then the lemma for u and v follows from Fact 2.7 applied to P = Pu∩δ and Q = Pv∩δ. �

For the rest of this section, let u be a memory template (of length δ) and let P̄ be a u-iteration.

Porism 3.5. Let u ⊆ δ be u-closed and suppose that u has a greatest element α. Then Pu = Pu∩α ∗Qα.

Let p, q ∈
⊕

α Rα and suppose that for all α < δ, p(α) and q(α) are comparable in Rα. Then we can
define p ∧ q = min(p, q) ∈

⊕
Rα by taking at every α the smaller of the two values p(α) and q(α); p ∧ q is

the greatest lower bound of p and q in
⊕

Rα. An induction on δ shows that if p, q ∈ Pδ then p ∧ q ∈ Pδ as
well, and so p ∧ q is the greatest lower bound of p and q in Pδ, similarly in Pu for any u-closed u such that
p, q ∈ Pu.
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In particular, in the situation above (u ⊆ v ⊆ δ are u-closed), if q ∈ Pv, p ∈ Pu and p � q �u, then
p ∧ q ∈ Pv is the greatest lower bound of p and q in Pv.

For the next lemma, note that if u, v ⊆ δ are u-closed, then u ∩ v and u ∪ v are also u-closed. The map
from Pu∪v to Pu × Pv given by q �→ (q �u, q �v) is injective, and preserves both order and non-order.

Lemma 3.6. Let u, v ⊆ δ be u-closed. In V Pu∩v , the map q �→ (q �u, q �v) is a dense embedding of Pu∪v/Pu∩v

into (Pu/Pu∩v) × (Pv/Pu∩v).

Proof. Let H ⊆ Pu∩v be generic; work in V [H]. Certainly if q ∈ Pu∪v/H then as q �u∩v∈ H and (q �u)�u∩v=
q �u∩v (and similarly for v), again we have q �u∈ Pu/H and q �v∈ Pv/H. So the map j(q) = (q �u, q �v) is
indeed from Pu∪v/H to (Pu/H) × (Pv/H).

We show that the range of j is dense. Let (p, q) ∈ (Pu/H) × (Pv/H). Then p �u∩v, q �u∩v∈ H; find some
g ∈ H extending both. Then g ∧ p ∈ Pu and so (g ∧ p) ∧ q ∈ Pu∪v; since its restriction to u ∩ v is g, we see
that (g ∧ p) ∧ q ∈ Pu∪v/H. And j(g ∧ p ∧ q) = (g ∧ p, g ∧ q) extends (p, q).

We show that j preserves incompatibility. Let q0, q1 ∈ Pu∪v/H, and suppose that j(q0) and j(q1) are
compatible in (Pu/H) × (Pv/H); let (hu, hv) � j(q0), j(q1) witness this. Find some s ∈ Pu∪v/H with
j(s) � (hu, hv). So s�u� hu � q0 �u, q1 �u and s�v� hv � q0 �v, q1 �v, and we conclude that s � q0, q1. �

Thus, the filters K ⊂ Pu∪v generic over V correspond to the filters G ⊂ Pu and H ⊂ Pv with G generic
over V , H generic over V [G] and G ∩ Pu∩v = H ∩ Pu∩v, with K = {g ∧ h : g ∈ G & h ∈ H}.

Porism 3.7. Let u, v ⊆ δ be u-closed and let H ⊆ Pu∩v be generic. If (p, q) ∈ (Pu/H) × (Pv/H) then there
is some h ∈ H such that (h ∧ p) ∧ q ∈ Pu∪v.

Lemma 3.8. Let u, v ⊆ δ be u-closed. In V Pu , the map q �→ q �v is a dense embedding of Pu∪v/Pu into
Pv/Pu∩v.

Proof. Let G ⊆ Pu be generic, and let H = G ∩ Pu∩v. Since Pu∪v/G ⊆ Pu∪v/H, and we noticed that if
q ∈ Pu∪v/H then q �v∈ Pv/H, the map i defined on Pu∪v/G defined by q �→ q �v is indeed into Pv/H. It is
order-preserving.

The map i is onto Pv/H. For let p ∈ Pv/H; so p �u= p �u∩v∈ H ⊆ G, so p ∈ Pu∪v/G, and p = i(p). It
remains to show that i preserves incompatibility.

Let j:Pu∪v/H → (Pu/H) × (Pv/H) be the dense embedding q �→ (q �u, q �v). For q ∈ Pu∪v/H, we have
q �u∈ G if and only if q ∈ Pu∪v/G and so j−1[G× (Pv/H)] = Pu∪v/G.

Let r0, r1 ∈ Pu∪v/G, and suppose that i(r0) and i(r1) are compatible in Pv/H. Since r0 �u, r1 �u∈ G, it
follows that j(r0) and j(r1) are compatible in G× (Pv/H); let (g, p) ∈ G× (Pv/H) extend both j(r0) and
j(r1). By Porism 3.7 there is some h ∈ H such that r = (h ∧ g) ∧ p ∈ Pu∪v. Since (h ∧ g) ∈ G, r ∈ Pu∪v/G

extends both r0 and r1. �
Corollary 3.9. Let u ⊆ v ⊆ δ be u-closed, let α < δ and suppose that u ∩ [α, δ) = v ∩ [α, δ). Then in V Pu ,
Pv/Pu is equivalent to Pv∩α/Pu∩α.

Proof. Immediate from Lemma 3.8, since v = u ∪ (v ∩ α) and u ∩ α = u ∩ (v ∩ α). �
Corollary 3.10. Let u ⊆ v ⊆ δ be u-closed. Let β < δ. Then in V Pu , Pv∩β/Pu∩β � Pv/Pu and in V Pu∪(v∩β) ,

Pv/Pu

Pv∩β/Pu∩β
= Pv

Pu∪(v∩β)
.
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Proof. For neatness, let v̄ = v∩β and ū = u∩β = u∩ v̄. First, let G ⊂ Pu be generic and H = G∩Pū. The
previous lemmas show that in V [G], Pv̄/H �Pv̄∪u/G and Pv̄/H ∼ Pv̄∪u/G. Since Pu �Pu∪v̄ �Pv, Fact 2.2
shows that Pv̄∪u/G� Pv/G, so overall, Pv̄/H � Pv/G. But also, Fact 2.4 shows that in V [G]Pv̄∪u,

Pv/G

Pv̄∪u/G
= Pv/G

Pv̄/H
.

Let K ⊂ Pv̄∪ū/G be generic over V [G], and let K̄ = K ∩ Pv̄. Then interpreted in V [G,K],

Pv/G

Pv̄/H
= Pv/K̄,

and

Pv/G

(Pv̄∪u/G) = Pv/K.

So Pv/K = Pv/K̄, and this is what needs to be shown. �
Finally, we show:

Lemma 3.11. Suppose that c ⊆ δ is unbounded in δ. Let u ⊆ v ⊆ δ be u-closed. Then in V Pu ,

Pv/Pu =
⋃
β∈c

Pv∩β/Pu∩β .

Proof. This is only interesting if δ is a limit ordinal. Let G ⊂ Pu be generic; for β ∈ c, let Gβ = G ∩ Pu∩β .
We already know that Pv∩β/Gβ ⊆ Pv/G. Let p ∈ Pv/G. Since Pv =

⋃
β∈c Pv∩β , for some β ∈ c we have

p ∈ Pv∩β . Since p�u∩β= (p�u)�u∩β and p�β∈ G, we have p�u∩β∈ Gβ and so p ∈ Pv∩β/Gβ . �
4. S-iterations

Fix an ordinal δ and a set S ⊆ Sδ
ℵ1

. We wish to define the class Pδ(S) of iterations of length δ which are
“mostly Cohen” but on elements of S are allowed to deviate from being precisely Cohen.

Definition 4.1. A memory template u of length δ is an S-memory template if:

(1) For all α ∈ δ \ S, uα = ∅;
(2) For all α, |uα| � ℵ1; and
(3) For all α ∈ S, every β ∈ S ∩ α which is a limit point of uα is an element of uα.

Definition 4.2. Let u be an S-memory template of length δ. A u-iteration P̄ is a u-quasi-Cohen iteration if:

(1) For all α ∈ δ \ S, Qα = C is 1-dimensional Cohen forcing;
(2) For all α < δ, Rα ⊂ Hω1 and |Rα| � ℵ1 (where recall that Rα is the ambient partial ordering from

which Qα is taken as a subset); and
(3) For all α ∈ S, for all β ∈ α \ S, Puα∪{α}/Puα∩β is equivalent to a Cohen algebra.

We let Pδ(S) denote the set of iterations P̄ of length δ which are u-quasi-Cohen iterations for some S-memory
template u.
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Having defined Pδ(S), we note that the definition is upward absolute provided ℵ1 does not change; this
gives us (1) of Proposition 1.3 (note that in an extension in which ℵ1 is collapsed, S is no longer a subset
of Sκ

ℵ1
, and so in that universe Pδ(S) is not defined). Let P̄ ∈ Pδ(S). If δ is an inaccessible cardinal then

the fact that Rα ⊂ Hω1 for all α < δ implies that Pδ ⊂ Hδ. Further, since in this case |δ \ S| = δ, and each
Qα for α /∈ S adds a Cohen real, in V Pδ , 2ℵ0 � δ. To show that 2ℵ0 � δ in V Pδ we prove a general lemma
which will be useful later as well.

Lemma 4.3. Let δ be any ordinal and S ⊆ Sδ
ℵ1

. Let P̄ ∈ Pδ(S), and let η be a Pδ-name for a real. Then
there is some u-closed set u ⊂ δ of size at most ℵ1 such that η is a Pv-name.

Proof. Let u be an S-memory template which witnesses that P̄ ∈ Pδ(S). Let M ≺ V (you know what we
mean) of size ℵ1 such that ω1 ⊂ M , with δ, S,u, P̄, η ∈ M . Let u = M ∩ δ. First, observe that u is u-closed.
If α ∈ u then α ∈ M and so uα ∈ M . Since ω1 ⊂ M and |uα| � ℵ1, uα ⊂ M , so uα ⊂ u.

We claim that Pu = Pδ ∩ M . In one direction, let p ∈ Pδ ∩M . Then the support supp(p) of p is finite
and is an element of M , and so supp(p) ⊂ M . In the other direction, let p ∈ Pu. Since supp(p) is finite and
is a subset of M , it is an element of M . For each α ∈ u, Rα ∈ M and since |Rα| � ℵ1, Rα ⊂ M , and so, for
all α ∈ supp(p), p(α) ∈ M . It follows that p�supp(α) (restriction as a function) is in M , whence p ∈ M .

For n < ω, let An be the set of conditions p ∈ Pδ such that p �Pδ
σ ≺ η for some σ ∈ 2n. Then An is

dense in Pδ, and so An ∩M is dense in Pδ ∩M . Since Pu � Pδ, we see that An ∩ Pu is dense in Pδ, whence
η is a Pu-name. �

In order to show that (4) of Proposition 1.3 holds, we prove something stronger, which is necessary
elsewhere but also for the inductive proof.

Definition 4.4. Let u be an S-memory template of length δ.

(1) Let u ⊆ v ⊆ δ be u-closed. We say that v is a u-straight extension of u if for all β ∈ v ∩ S, if u ∩ β is
unbounded in β then β ∈ u. We write u �u v.

(2) A u-closed set u ⊆ δ is u-straight if every u-closed set v ⊇ u is a u-straight extension of u.

Note that:

• �u is a transitive relation. Also, if u ⊆ v ⊆ w are u-closed and u �u w then u �u v.
• A u-closed set u ⊆ δ is u-straight if and only if u �u δ, i.e., if and only if for all β ∈ S, if u ∩ β is

unbounded in β then β ∈ u.
• For all α ∈ S, uα ∪ {α} is u-straight.
• If u ⊆ δ is u-closed and α ∈ δ \ S then u ∩ α �u u. In particular, every α ∈ δ \ S is u-straight.

We also remark that in Lemma 4.3 we can require u to be u-straight, not merely u-closed. This is because
every u-closed subset of δ of size ℵ1 is contained in a u-straight subset of ℵ1 of the same size; there are
at most ℵ1-many δ ∈ S which are limit points of u; adding each of those, and for each such δ, adding uδ,
results in a set of size ℵ1 (as every uδ has size at most ℵ1); repeating ω times gives the desired u-straight
set.

Proposition 4.5. Let P̄ ∈ Pδ(S), witnessed by u. Let u ⊆ v ⊆ δ be u-closed. Suppose that:

• u �u v; and
• S does not reflect at any limit point of v \ u.

Then Pv/Pu is equivalent to a Cohen algebra.
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Note that Proposition 4.5 implies (4) of Proposition 1.3.

Proof. By induction on δ.
First suppose that δ is a limit ordinal. Fix u ⊆ v ⊆ δ satisfying the hypotheses of the proposition.
Suppose that v\u is bounded below δ; let α = sup(v\u). By Corollary 3.9, in V Pu , Pv/Pu is equivalent to

Pv∩α/Pu∩α. The conditions of the proposition hold for the pair (u∩α, v∩α) and so by induction, Pv∩α/Pu∩α

is equivalent to a Cohen algebra.
Suppose then that v \u is unbounded below δ. Then S does not reflect at δ. Let c be a closed, unbounded

subset of δ disjoint from S (as mentioned above, this is by definition if cf(δ) � ω1; otherwise, we use the fact
that every element of S has cofinality ℵ1). Let α < β be elements of c. By Corollary 3.10, in V P(v∩α)∪(u∩β)

Pv∩β/Pu∩β

Pv∩α/Pu∩α
= Pv∩β/P(v∩α)∪(u∩β).

Because α /∈ S, (v ∩ α) ∪ (u ∩ β) �u (v ∩ β). By induction, in V Pu∩β ,

Pv∩β/Pu∩β

Pv∩α/Pu∩α

is equivalent to a Cohen algebra. Further, if β is a limit point of c, then by Lemma 3.11,

Pv∩β/Pu∩β =
⋃

α∈c∩β

Pv∩α/Pu∩α.

Let G ⊆ Pu be generic; for α < δ, let Gα = G∩ Pu∩α. Using Lemma 2.5, by induction on α ∈ c∪ {δ} we
define an increasing and ⊆-continuous sequence of sets 〈Xα〉 and an increasing and continuous sequence of
dense embeddings θα:Pv∩α/Gα → C(Xα).

Now suppose that the lemma is known for δ. Fix u ⊆ v ⊆ δ+1 satisfying the hypotheses of the proposition.
For brevity, let ū = u ∩ δ and v̄ = v ∩ δ. By induction, Pv̄/Pū is equivalent to a Cohen algebra.

If δ /∈ v then v = v̄ and u = ū. If δ ∈ u then by Corollary 3.9, Pv/Pu ∼ Pv̄/Pū. We suppose, then, that
δ ∈ v \ u, so ū = u.

Now there are two cases. If δ /∈ S then Pv = Pv̄ × C, so Pv/Pu = (Pv̄/Pu) × C and so is equivalent to a
Cohen algebra.

Suppose that δ ∈ S. Then u �u v implies that u is bounded below δ. Find some γ ∈ [supu, δ) \ S (recall
that S does not, for example, contain successor ordinals). Since v is u-closed, uδ ⊂ v. We analyse Pv/Pu in
three steps. Let y = u ∪ uδ ∪ {δ}.

(1) Py∩γ/Pu is equivalent to a Cohen algebra: this follows from induction as u �u (y ∩ γ) (since y ∩ γ ⊆ v).
(2) Py/Py∩γ is equivalent to a Cohen algebra: by Lemma 3.8, Py/Py∩γ ∼ Puδ∪{δ}/Puδ∩γ , because uδ ∩ γ =

(y ∩ γ) ∩ (uδ ∪ {δ}) (by the definition of y); we then use the assumption that P̄ is u-quasi-Cohen.
(3) Pv/Py is equivalent to a Cohen algebra: here we note that since u �u v and uδ ∪ {δ} is u-straight, we

have y �u v. Certainly v \ y is bounded below ordinals at which S reflects as u ⊆ y. Since δ ∈ y, v we
are back in a previous case. (Namely, by Corollary 3.9, Pv/Py ∼ Pv̄/Pȳ where ȳ = y ∩ δ.) �

Remark 4.6. One way to think of Proposition 4.5 is by thinking of “rearrangements” or “relistings” of the
coordinates. In the situation described, v\u can be re-ordered so that every initial segment (together with u)
is u-closed, and the corresponding partial ordering is equivalent to a Cohen algebra. We do not pursue this
formally here.
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5. Toward Cohen measurability

The following is known; we add a proof for completeness.

Proposition 5.1. Let j:V → M = Ult(V, μ) be a normal ultrafilter embedding witnessing that κ is a measur-
able cardinal. Let P ⊂ Vκ be a notion of forcing, and suppose that P�j(P). Then in V P there is a κ-complete
ideal I on κ such that P(κ)/I ∼ j(P)/P.

Proof. Let G ⊂ P be generic over V . In V [G], let B be a complete Boolean algebra such that j(P)/G is a
dense subset of B (technically, its separative quotient is, we ignore this point).

For any sentence ϕ of the forcing language for j(P) (with names from M j(P)), let

Y (ϕ) =
{
p ∈ j(P)/G : (p �j(P) ϕ)M

}
,

and let y(ϕ) =
∑B

Y (ϕ).
Fact 2.1 tells us that for any ϕ, y(¬ϕ) = ¬By(ϕ). Further, we note that if g ∈ G and g ∈ Y (ϕ) then

y(ϕ) = 1B, as g is compatible with every p ∈ j(P)/G.
For a P-name A for a subset of κ we consider y(κ ∈ j(A)). Let A and B be such P-names, and suppose that

g ∈ G and g �P A ⊆ B. Since j(g) = g, we see that in M , g �j(P) j(A) ⊆ j(B), so y(j(A) ⊆ j(B)) = 1B.
It follows that y(κ ∈ j(A)) � y(κ ∈ j(B)). This shows that the map A �→ y(κ ∈ j(A)) induces an
order-preserving function ψ from P(κ)V [G] to B.

The observation above shows that for all A ∈ P(κ)V [G], ψ(κ \ A) = ¬Bψ(A). Certainly ψ(∅) = 0B and
ψ(κ) = 1B.

Let γ < κ, and let 〈Di〉i<γ be a sequence of subsets of κ in V [G]. We can fix a sequence 〈Ai〉 of P-names
for Di; we also fix a P-name A∨ for

⋃
i<γ Di. In V j(P), j(A∨) =

⋃
i<γ j(Ai).

Since for each k < γ, Ak ⊆ A∨ in V P, we know that ψ(Dk) � ψ(
⋃

i<γ Di), and so
∑B

ψ(Di) � ψ(
⋃

i Di).
To get equality, note that by Fact 2.1,

⋃
i<γ Y (κ ∈ j(Ai)) is dense below each p ∈ Y (κ ∈ j(A∨)) (in j(P)/G).

This shows that ψ is a κ-complete Boolean homomorphism. So I = ker(ψ) is a κ-complete ideal on κ in
V [G], and ψ induces an embedding of P(κ)/I into B in V [G]. It remains to show that ψ is dense.

Let p ∈ j(P)/G. Recall that μ is the normal ultrafilter generating j; so p = [p̄]μ for some p̄:κ → P;
write p̄ = 〈pα〉α<κ. Define a P-name A for a subset of κ by letting A = {(pα, α) : α < κ}. Then for all
α < κ and q ∈ P, q �P α ∈ A if and only if q �P pα ∈ G. Hence in M , since κ = [id]μ, for all q ∈ j(P)/G,
q �j(P) κ ∈ j(A) if and only if q �j(P) p ∈ Gj(P) if and only if in B, q � p. Hence ψ(A[G]) = p. �

For the following proposition, let P̄ ∈ Pκ(S) and let j:V → M be an elementary embedding with critical
point κ. Write P for Pκ. Since every p ∈ P has finite support (in particular, support bounded below κ), we
see that essentially j �P= idP and that in M , P = j(P)κ. Hence P � j(P) (in M , but this is absolute).

Proposition 5.2. Suppose that κ is 2κ-supercompact. Suppose that S only reflects at inaccessible cardinals.
Let P̄ ∈ Pκ(S). Then there is an elementary embedding j:V → M given by a normal ultrafilter on κ such
that j(P)/P is equivalent to a Cohen algebra. Hence, in V P, κ is real-valued Cohen.

Note that the dense embedding of j(P)/P into a Cohen algebra is not necessarily in MP.

Proof. Let i:V → N be an elementary embedding with critical point κ such that i(κ) > 2κ and N2κ ⊂ N .
Let U be the ultrafilter on κ generated by i, i.e. A ∈ U iff κ ∈ i(A). Let M = Ult(V,U) be the transitive
collapse of V κ/U and let j:V → M be the associated elementary embedding. The triangle can be completed
by an elementary embedding k:M → N , defined by k([f ]U ) = (i(f))(κ). So i = k ◦ j.
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Since κκ ⊂ N and U ∈ N , we see that k �j(κ)∈ N , and so v = k[j(κ)] ∈ N . In N , |v| = 2κ, so in N , v \κ is
an Easton set (it is bounded below every inaccessible cardinal). The set v is i(u)-closed, where u witnesses
that P̄ ∈ Pκ(S). For let γ ∈ v; let α = k−1(γ). Then k(j(u)α) = i(u)γ , and since |j(u)α| = ℵ1 < κ, k �j(u)α
is a bijection between j(u)α and i(u)γ . It follows that i(u)γ ⊂ k[j(κ)] = v.

Also note that κ /∈ i(S) (κ is regular in N), and so κ �i(u) v. In N , i(S) only reflects at inaccessible
cardinals and v \ κ is bounded below these. Hence, the conditions of Proposition 4.5 hold and we conclude
that in N , P � i(P)v and i(P)v/P is a Cohen algebra; this is upwards absolute, so holds in V .

We claim that j(P) and i(P)v are isomorphic over P. Certainly, k[j(P)] ⊆ i(P) and k �j(P) is order-
preserving. However, since j(P) is a finite support iteration, for each p ∈ j(P), k pointwise maps the support
of p to the support of k(p), and so k(p) ∈ i(P)v.

It remains to show that k is onto i(P)v. By induction on δ � j(κ), we show that k �j(P)δ is onto i(P)k[δ].
This is preserved at limit stages since for limit δ � i(κ), i(P)v∩δ =

⋃
α<δ i(P)v∩α. Let δ < j(κ) and suppose

that k �j(P)δ is onto i(P)k[δ] = i(P)v∩k(δ).
As observed above, k �j(u)δ is a bijection between j(u)δ and i(u)k(δ). It follows that k �j(P)j(u)δ

is an
isomorphism from j(P)j(u)δ to i(P)i(u)k(δ)

Recall that for some Rδ ⊆ Hω1 , j(P)δ+1 = j(P)δ ∗ Qδ, where Qδ ⊆ j(P)j(u)δ × Rδ is a j(P)j(u)δ -name
for an initial segment of Rδ, and j(P)δ+1 = j(P)δ ∗ Qδ. Then k(Qδ) = k[Qδ] is an i(P)i(u)k(δ)-name for an
upward closed segment of k(Rδ) = Rδ, and i(P)v∩k(δ+1) = i(P)v∩k(δ) ∗ k(Qδ). For p ∈ j(P)δ and s ∈ R,
p �j(P)δ s ∈ Qδ if and only if k(p) �i(P)i(u)k(δ)

s ∈ k(Qδ) and this shows that k �j(P)δ+1 is an isomorphism
between j(P)δ+1 and i(P)k[δ+1]. �

6. Continuity on a non-meagre set

Definition 6.1. Let κ be an inaccessible cardinal and let S ⊆ κ be stationary. A �̂(S) sequence is a sequence
〈fδ : δ ∈ S〉 of functions such that for each δ ∈ S, dom fδ ⊆ δ is unbounded in δ, range fδ ⊂ Vδ, and for
every set T ⊆ κ unbounded in κ and every function F :T → Vκ, for stationarily many δ ∈ S we have
F �dom fδ= fδ.

By replacing a function F :κ → Vκ by the function α �→ F �α we see that (since κ is inaccessible), a �̂(S)
sequence exists if and only if �(S) holds. We will use this slight variant of the diamond because it is easier
to construct such a sequence.

The aim of this section is to prove (3) of Proposition 1.3: if κ is inaccessible (in fact κ � ℵ3, 2ℵ1 is
sufficient), S ⊆ Sκ

ℵ1
and �(S) holds, then there is P̄ ∈ Pκ(S) such that in V Pκ , every function from 2ω to

2ω is continuous on a non-meagre set.
We fix such κ and S. Below, for brevity, for δ < κ we write Pδ(S) for Pδ(S ∩ δ). The construction of P̄

(together with a witness template u) will be by induction, so we explain how to obtain elements of Pδ(S)
from Pα(S) for α < δ. The following are immediate from the definition of Pδ(S):

• Let δ � κ be a limit ordinal. Then Pδ(S) is the set of all finite-support iterations P̄ of length δ such
that for some S ∩ δ-memory template u of length δ, for all α < δ, u�α witnesses that P̄�α∈ Pα(S).

• Let δ < κ and let P̄ ∈ Pδ(S), as witnessed by u. Then u 〈̂∅〉 witnesses that P̄× C ∈ Pδ+1(S).

For the rest of the section, recall that if j:P → Q is a dense embedding and ζ is a Q-name for a real
then the pullback ξ = j−1[ζ] is the P-name determined by p �P ξ(n) = i if and only if j(p) �Q ζ(n) = i.
Similarly, if ξ is a P-name for a real then the push-forward ζ = j[ξ] is the Q-name for a real determined by
q �Q ζ(n) = i if and only if the set of j(p) such that p �P ξ(n) = i is dense below q.
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Lemma 6.2. Let δ ∈ S, and let P̄ ∈ Pδ(S), witnessed by u. Suppose that:

(1) w ⊆ δ is u-straight, and |w| � ℵ1;
(2) for some set X, j:Pw → C(ω1, X) is a dense embedding;
(3) c is an unbounded subset of δ which is disjoint from S;
(4) For all γ ∈ c, j �Pw∩γ

is a dense embedding of Pw∩γ into C(εγ , Xγ) for some even εγ < ω1 and some set
Xγ ⊂ X.

For i < ω1, let ηi be the Pw-name for a real which is the j-pullback of the Cohen name given by C({2i}), and
similarly let ζi be the pullback of the name given by C({2i + 1}). Then uˆ{w} witnesses that P̄ ∗ Sh(η̄, ζ̄) ∈
Pδ+1(S).

Proof. We need to show that for all β ∈ δ \ S, Pw ∗ Sh(η̄, ζ̄)/Pw∩β is equivalent to a Cohen algebra. Fix
such β. Find some γ ∈ c greater than β. Since β /∈ S, w∩β �u w∩ γ. Since |w| � ℵ1 and S does not reflect
at any ordinal of cofinality ℵ1 (as S ⊆ Sκ

ℵ1
), w is bounded below any ordinal at which S reflects. Hence, by

Proposition 4.5, Pw∩γ/Pw∩β is equivalent to a Cohen algebra.
It remains to show that Pw ∗ Sh(η̄, ζ̄)/Pw∩γ is equivalent to a Cohen algebra. As εγ is an even ordinal,

Proposition 2.8 says that (C(ω1) ∗ Sh)/C(εγ) is equivalent to a Cohen algebra. The names (η̄, ζ̄) are defined
so that the dense embedding j extends to a dense embedding of Pw ∗ Sh(η̄, ζ̄) into C(X,ω1) ∗ Sh. Then
Pw ∗ Sh(η̄, ζ̄)/Pw∩γ is equivalent to (C(X,ω1) ∗ Sh)/C(Xγ , εγ). This in turn is equivalent to C(X \ Xγ) ×
((C(ω1) ∗ Sh)/C(εγ)), which is equivalent to a Cohen algebra. �
Lemma 6.3. Let P̄ ∈ Pκ(S), witnessed by u. Suppose that p ∈ Pκ forces that A ⊂ 2ω has size ℵ1 and is
meagre. Then there is some u-closed w ⊂ κ of size ℵ1 such that p ∈ Pw, A is a Pw-name and such that
p �Pw

“A is meagre”.

Proof. This is similar to the proof of Lemma 4.3. There is a countable sequence 〈Ti〉 of Pκ-names for trees in
Cantor space (subtrees of 2<ω) such that p forces that no [Ti] contains a clopen set, and A ⊆

⋃
i[Ti]. We pass

to an elementary submodel M of the universe of size ℵ1 containing all pertinent objects. Let 〈ηα : α < ω1〉
be a sequence of Pκ-names for reals such that p forces that A = {ηα : α < ω1}. For each α and each n, the
set of conditions q ∈ Pκ for which there is some finite binary string σ of length n such that q forces in Pκ

that σ ∈
⋃

i Ti and σ ≺ ηα is dense below p, and so dense below p in Pw = Pκ ∩M where w = κ∩M . Since
Pw � Pκ and these statements are absolute, forcing them in Pκ and in Pw are equivalent. �
Lemma 6.4. Let P̄ ∈ Pκ(S), witnessed by the S-memory template u. Let v ⊂ κ be u-straight and suppose
that in V Pv , A ⊆ 2ω is non-meagre and has size ℵ1. Then A is also non-meagre in V Pκ .

Proof. If not, then there is some p ∈ Pκ which forces that A is meagre. By Lemma 6.3, there is some
u-closed w ⊇ v such that |w \ v| � ℵ1, p ∈ Pw and p �Pw

“A is meagre”. This is impossible, since Pw/Pv is
a Cohen extension. �

For δ � κ, P̄ ∈ Pδ(S) (witnessed by u) and α ∈ δ \ S, we let ρα be the name for the Cohen real added
by Qα = P{α}. Since ρα is a P{α}-name, it is a Pv-name for any u-closed set v containing α.

Lemma 6.5. Let δ ∈ S, and let P̄ ∈ Pδ(S), witnessed by u.
Suppose that {αi : i < ω1} is an increasing enumeration of an unbounded subset of δ, disjoint from S,

and that we have:
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• for i < ω1, u-straight sets wi of size ℵ1 such that αi ∈ wi, wi ⊂ αi+1 and wi ∩ αi is a constant w∗;
• sets Y,Z,W and dense embeddings ji of Pwi

into C(Y,Z,W ), such that ji �Pw∗ is constant, a dense
embedding into C(Y ); and ji �Qαi

is a dense embedding into C(Z) such that ji[ραi
] is the Cohen real

added by C(Z);
• A Pwi

-name ηi for a real such that the push-forward ji[ηi] (which is a C(Y,Z,W )-name for a real) is a
constant ν∗.

Let w =
⋃

i wi. Then w ∪ {δ} is u-straight and there is a Pw-name Q for a notion of forcing such that:

• P̄ ∗Q ∈ Pδ+1(S) (witnessed by u 〈̂w〉); and
• In V Pw∗Q there is a non-meagre subset A of {ραi

: i < ω1} such that the map ραi
�→ ηi is continuous

on A.

Proof. Since C(Y, Z,W ) is c.c.c., there is a countable set X ⊆ W such that ν∗ is a C(Y,Z,X)-name. We
replace W by W \X. Also note that Z is countable.

We merge the embeddings ji as follows. We assume that Y and W are disjoint from ω1. For i < ω1 fix
isomorphisms fi of C(Z) with C({2i}) and gi of C(X) with C({2i+ 1}). Also fix sets Ai (pairwise disjoint,
and disjoint from Y and ω1) and isomorphisms hi of C(W ) with C(Ai). Let A<i =

⋃
i′<i Ai′ and A = A<ω1 .

The product map ϕi = (idC(Y ), fi, gi, hi) is an isomorphism of C(Y,Z,X,W ) with C(Y, {2i, 2i + 1}, Ai).
The composition ψi = ϕi ◦ ji is a dense embedding of Pwi

into C(Y, {2i, 2i + 1}, Ai). The map ψi �Pw∗

equals ji �Pw∗ (a constant, dense embedding into C(Y )). Letting νi be the name for the Cohen real added
by C({i}), we have ψi[ραi

] = ν2i.
w ∪ {δ} is u-straight since every limit point of w (other than δ) is a limit point of some wi. Let p ∈ Pw.

For all but finitely many i < ω1 we have p �wi
∈ Pw∗ . In other words, Pw is the finite support product of

the Pwi
over the root Pw∗ . Thus, the sequence ψ(p) = 〈ψi(p) : i < ω1〉 is an element of the finite support

product of C(Y, {2i, 2i+1}, Ai) over C(Y ) which equals C(Y, ω1, A), and ψ is a dense embedding of Pw into
C(Y, ω1, A). Further, for i < ω1, ψ �Pw∩αi

is a dense embedding of Pw∩αi
= P⋃

i′<i wi′ into C(Y, 2i, A<i).
The isomorphism ϕi carries the name ν∗ to a C(Y, {2i, 2i + 1})-name for a real ϕi[ν∗]. In V C(Y ) there

is a continuous function which in V C(Y,ω1) maps the pair (ν2i, ν2i+1) to ϕi[ν∗] = ψi(ηi). Translating back,
letting μi = ψ−1[ν2i+1], in V Pw∗ there is a continuous function which in V Pw takes the pair (ραi

, μi) to ηi.
Let Q = Sh(〈ραi

〉, 〈μi〉). Then in V Pw∗Q there is a non-meagre subset A of {ραi
: i < ω1} on which the

map ραi
�→ μi is continuous. On A, the map ραi

�→ ηi is the composition of two continuous functions and
so is continuous. Finally, Lemma 6.2 shows that P̄�δ ∗Q ∈ Pδ+1(S). �

We now prove (3) of Proposition 1.3. Let 〈fδ : δ ∈ S〉 be a �̂(S)-sequence.
By recursion we define P̄ ∈ Pκ(S) with a witness template u. At step δ < κ, say we have already defined

u �δ and P̄ �δ (taking limits at limit stages). In the interesting case, suppose that δ ∈ S. If dom fδ is a
set increasingly enumerated as {αi : i < ω1} and fδ(αi) = (wi, Y, Z,W, ji, ηi) where the conditions of
Lemma 6.5 hold, then we choose uδ = w and Qδ = Q for (w,Q) given by the lemma. Otherwise we let
uδ = ∅ and Qδ = C.

This defines u and P̄ ∈ Pκ(S). Now let F be a Pκ-name for a function from 2ω to 2ω. Again recall that
for α ∈ κ \ S, ρα is the Qα = P{α}-name for the Cohen real added.

By Lemma 4.3 (and the discussion after Definition 4.4), for α ∈ κ \S let vα be a u-straight set of size ℵ1
such that F (ρα) is a Pvα-name. By increasing, we may assume that α ∈ vα.

Since |vα| = ℵ1, it is bounded below any ordinal at which S reflects. Then Pvα∩α is equivalent to a Cohen
algebra (of dimension at most ℵ1). Of course Pvα∩(α+1)/Pvα∩α = P{α} is equivalent to a Cohen algebra (of
dimension 1), and since α + 1 /∈ S, Pvα/Pvα∩(α+1) is equivalent to a Cohen algebra. We can therefore find
sets Yα, Zα,Wα ∈ Vω1 (all of size at most ℵ1, and Zα countable (or a singleton)) and a dense embedding kα
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of Pvα into C(Yα, Zα,Wα) such that kα �Pvα∩α
is a dense embedding into C(Yα) and kα �P{α} is the canonical

dense embedding into C(Zα) (so kα[ρα] is the Cohen real added by C(Zα)). We let να = kα[F (ρα)].
Since κ \ S is stationary, there is some unbounded (indeed stationary) set T ⊂ κ such that for α ∈ T ,

Yα, Zα,Wα and να are constant Y,Z,W and ν∗; and further, since κ is inaccessible, vα ∩α is a constant w∗

and jα �Pw∗ is a constant j∗. By induction we choose an unbounded T ′ ⊂ T such that for α < β from T ′,
vα ⊂ β. For α ∈ T ′, let h(α) = (vα, Y, Z,W, jα, F (ρα)).

There is some δ ∈ S such that fδ = h �dom fδ . By restricting to a subset we may assume that dom fδ =
{αi : i < ω1} (increasing enumeration). Then letting wi = vαi

and ηi = F (ραi
), we see that the conditions

of Lemma 6.5 hold, and so, for the resulting w, in V Pw∪{δ} there is a non-meagre set A ⊆ {ραi
: i < ω1}

on which ραi
�→ ηi = F (ραi

) is continuous. By Lemma 6.4, A is non-meagre in V Pκ as well. This concludes
the proof.

7. Consistency strength

We prove (5) of Proposition 1.3. Several ideas come from [3]. Let κ be a measurable cardinal. We want
to show that in a forcing extension W there are a stationary S ⊆ Sκ

ℵ1
and a normal ultrafilter embedding

j:W → N with critical point κ such that:

(1) �(S) holds; and
(2) in W , j(S) reflects nowhere in the interval (κ, j(κ)].

We first add S and its diamond sequence. As indicated above, it is more natural to add a �̂(S)-sequence.

Notation 7.1. Let I be the class of inaccessible cardinals and let Ī be its closure. For α < κ let α� be the
least element of I greater than α.

Definition 7.2. Let Q consists of the pairs p = (σ, F ) such that:

• σ is a partial function from the ordinals to 2. The domain of σ is an Easton set (bounded below each
inaccessible cardinal). Further, for all δ ∈ Ī, the domain of σ �[δ,δ�) is an initial segment of [δ, δ�).

• Every α ∈ σ−1{1} has cofinality ℵ1.
• For all α < κ of uncountable cofinality, if domσ is unbounded in α, then σ−1{0} contains a club of α.
• F = 〈fα : α ∈ σ−1{1}〉 is a sequence of functions such that for all α ∈ σ−1{1}, dom fα is a club of α of

order-type ω1 and range fα ⊂ α.

Extension in Q is given by extension in both coordinates.

As defined, Q is a class of conditions, and we will use only a set of these. For an interval of ordinals A,
we let QA be the set of conditions (σ, F ) ∈ Q such that domσ ⊆ A. We will be mainly interested in the
case A = κ.

Definition 7.3. Let p = (σ, F ) ∈ QA. We define a condition p̄ = (σ̄, F ) by defining σ̄(β) = 0 for all
β ∈ A \ dom σ such that β ∩ dom σ is unbounded in β. Since we are only adding to dom σ̄ limit points of
dom σ, it follows that the limit points of domσ and dom σ̄ are the same, and so p̄ ∈ QA.

Let γ be an ordinal, and suppose that 〈pi〉i<γ is a decreasing sequence from Q. If pi = (σi, Fi) then we
let σ<γ =

⋃
i<γ σi, F<γ =

⋃
i<γ Fi, and p<γ = (σ<γ , F<γ). If pi ∈ QA for all i < γ, and cf(γ) < (minA)� it

may still be the case that p<γ /∈ Q, because of the non-reflection requirement. However, if in addition the
sequence witnesses non-reflection the we get closure.
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Lemma 7.4. Let A be an interval of ordinals. Let γ < (minA)�, and let 〈pi〉i<γ be a decreasing sequence of
conditions in QA. Further suppose that for all i < γ, pi extends p<i. Then p<γ ∈ QA.

Proof. We only need to check the non-reflection condition. Let α have uncountable cofinality and suppose
that dom σ<γ is unbounded in α. We assume that for all i < γ, α ∩ dom σi is bounded below α; let
βi = sup(dom σ<i ∩ α). The sequence 〈σ<i〉 is continuous so {βi : i < γ} is a club of α. By restricting to a
club of i ∈ γ, we may assume that βi /∈ dom σ<i, and in this case σi(βi) = σ<i(βi) = 0. Thus, a club subset
of the βi ensures that α does not prevent p<γ from being in QA. �

This shows that QA is < (minA)�-strategically directed closed, and so < (minA)�-distributive. If λ < κ

is inaccessible, then |Qλ| = λ, and Qκ = Qλ × Q[λ,κ). Since Q[λ,κ) is λ+-distributive, this shows that Qκ

preserves all cofinalities (and so, preserves all cardinals). Similarly, for any cardinal δ < κ, since |Qδ| < δ�,
(2δ)VQδ < δ�, and Q[δ,κ) does not add subsets of δ. We conclude that any inaccessible cardinal in V is also
inaccessible in V Qκ .

Proposition 7.5. Assume 2κ = κ+. Then κ is measurable in V Qκ .

This is fairly standard (see for example [3, Claim 2.6]), but we include a proof for completeness.

Proof. Let j:V → M be a normal ultrafilter elementary embedding with critical point κ; so Mκ ⊂ M . In M ,
j(Qκ) = Qj(κ) = Qκ ×Q[κ,j(κ)), where Qκ is absolute between V and M (and j is the identity on Qκ).

In V there is a list 〈Di〉i<κ+ of all dense open subsets of QM
[κ,j(κ)). [To see this observe that in M ,

|QM
j(κ)| = j(κ) and 2j(κ) = j(κ)+, whereas (j(κ)+)M = j(κ+) and in V |j(κ+)| = (κ+)κ = κ+.] In V we

can construct a filter H ⊆ QM
[κ,j(κ)) generic over M by building a sequence of conditions 〈pi〉i<κ+ , with pi

meeting Di; we can keep going by ensuring that pi extends p<i, noting that p<i ∈ M since Mκ ⊂ M .
Let G ⊂ Qκ be generic over V . Since M [H] ⊂ V , G is also generic over M [H] and so G×H ⊂ QM

j(κ) is
generic over M . We extend the embedding j to an embedding j:V [G] → M [G×H]: for x ∈ V Qκ we have
j(x) ∈ MQM

j(κ) and we map x[G] to j(x)[G×H]. The fact that j(p) = p for all p ∈ G is used to show this is
well-defined and elementary. �

If G ⊂ Qκ is a generic filter, we let S = S[G] be the union of σ−1{1} where (σ, F ) ∈ G for some F .

Lemma 7.6. In V Qκ , S is stationary and �(S) holds.

Proof. The �̂(S) sequence is a modification of the sequence given generically by the second coordinate of the
forcing conditions. Let 〈fδ〉δ∈S be the union of F where (σ, F ) ∈ G for some σ. We show that in V Qκ , for any
function h from an unbounded subset of κ to κ, there are stationarily many δ ∈ S such that h�dom fδ= fδ.
To then capture functions into Vκ we compose the functions fδ with some fixed bijection between κ and Vκ.

Let C be a Qκ-name for a club of κ, and let h be a Qκ-name for a function from an unbounded subset
of κ to κ.

Starting from an arbitrary p0 ∈ Qκ, we define a decreasing sequence 〈pi〉i<ω1
with each pi extending p<i,

and three increasing sequences 〈αi〉i<ω1
, 〈ζi〉i<ω1

and 〈γi〉i<ω1
such that:

• αi < γi < αi+1 and ζi < αi+1;
• pi �Qκ

αi ∈ C;
• pi �Qκ

γi ∈ domh & h(γi) = ζi.

Let α∗ = supi<ω1
αi. Define p∗ by extending p<ω1 by letting σ∗(α∗) = 1 and fα∗ = 〈γi �→ ζi〉. Then p∗

forces that S intersects C at α∗ and that h�dom fα∗ = fα∗ . �
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Lemma 7.7. In V Qκ , S only reflects at inaccessible cardinals.

Proof. Let α < κ of uncountable cofinality be accessible in V Qκ ; then it is accessible in V as well. Let
p = (σ, F ) ∈ Qκ. If dom σ ∩ α is unbounded in α, then since σ−1{0} contains a club of α, p forces that S

does not reflect at α. The collection of condition p = (σ, F ) such that dom σ ∩α is unbounded in α is dense
in Qκ; we can always extend any given condition by sufficiently many zeros (on an interval if α is not a
limit of inaccessible cardinals, and on a club of α of order-type cf(α) otherwise). �

Our next step is to extend V Qκ to a model in which j(S) reflects nowhere in (κ, j(κ)]. As this is mirrored
below κ, we look at λ < κ first.

We work in V . Let λ < κ. We let Rλ be the collection of all functions C whose domain is I ∩ (λ, κ] such
that for each δ ∈ domC, C(δ) ⊆ (λ, δ) is a closed set, bounded below δ (so supC(δ) ∈ C(δ)). We order
Rλ coordinatewise by end extension. We define a Q[λ,κ)-name Sλ for an upward-closed subset of Rλ. This
name consists of the pairs ((σ, F ), C) ∈ Q[λ,κ) × Rλ such that for all δ ∈ I ∩ (λ, κ], C(δ) ⊆ σ−1{0}. Note
that since Qκ = Qλ ×Q[λ,κ), Sλ is also a Qκ-name.

Proposition 7.8. In V Qκ∗Sλ , S reflects nowhere in the interval (λ, κ].

Proof. If δ ∈ (λ, κ] is an accessible ordinal of uncountable cofinality, then by Lemma 7.7, in V Qκ , S is
disjoint from a club of δ in V Qκ and hence also in any extension of V Qκ .

Let δ ∈ (λ, κ] be inaccessible. As V Q[λ,κ)∗Sλ ⊂ V Qκ∗Sλ , it is sufficient to show that S[λ,κ) (the generic
subset of [λ, κ) added by Q[λ,κ)) does not reflect at δ in V Q[λ,κ)∗Sλ . If G is a generic filter for Q[λ,κ) ∗ Sλ

over V then we let Dδ be the union of C(δ) where (p, C) ∈ G for some p. It is clear that Dδ is disjoint
from S[λ,κ), and that Dδ is a closed subset of supDδ. We need to show that supDδ = δ.

We work in V . Let γ < δ; let ((σ, F ), C) be any condition in Q[λ,κ) ∗ Sλ. Since δ ∩ dom σ is bounded
below δ, it is easy to extend σ to σ′ by adding sufficiently many zeros so that γ ∈ dom σ′ and extend C to
C ′ so that C ′(δ) intersects the interval [γ, δ). �
Proposition 7.9. In V Qκ , Sλ is < λ�-distributive.

Proof. It suffices to show that Q[λ,κ) ∗ Sλ is < λ� distributive in V . Then we argue that it has the same
property in V Qλ . This relies on the fact that |Qλ| = λ. For let f ∈ V Qλ×Q[λ,κ)∗Sλ be a function from γ < λ�

to ordinals. We think of f as a Qλ-name in V Q[λ,κ)∗Sλ . Define g(p, α) = β if p �Qλ
f(α) = β. The domain

of g has size less than λ� since |Qλ| � λ. Hence g ∈ V . With g, any Qλ-generic can calculate f and so
f ∈ V Qλ as required.

In turn we observe that for γ < λ�, all sequences of ordinals of length γ in V Qκ∗Sλ in fact lie in V Qλ and
so in V Qκ , proving the proposition.

Working in V , we show that Q[λ,κ)∗Sλ is < λ� distributive. Given a condition q = (p, C) in Q[λ,κ)∗Sλ, we
define q̄ = (p̄, C̄) by taking p̄ as above, and defining, for each limit point β of dom σ (where p = (σ, F )) which
is not already in dom σ, for each inaccessible δ > β such that dom σ ∩ [β, δ) = ∅, C̄(δ) = C(δ) ∪ {β}. Since
for such δ we have C(δ) ⊆ β, C̄(δ) is indeed an end-extension of C(δ), and it is clear that q̄ ∈ Q[λ,κ) ∗ Sλ.

We show that a dense subset of Q[λ,κ) ∗ Sλ is < λ�-strategically closed. Let T be the set of conditions
((σ, F ), C) ∈ Q[λ,κ) ∗ Sλ such that:

• dom σ is a closed subset of κ; and
• For all δ ∈ I ∩ (λ, κ], maxC(δ) = sup(domσ ∩ δ).

Extending a given condition ((σ, F ), C) from Q[λ,κ) ∗ Sλ to a condition ((σ′, F ), C ′) in T is not difficult; for
each δ ∈ I∩(λ, κ] we add ε = sup(dom σ∩δ) and also ε+1 to dom σ′, and let σ′(ε+1) = 0 and ε+1 ∈ C ′(δ).
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Let γ < λ� and let 〈qi〉i<γ be a decreasing sequence of conditions from T such that for all i < γ,
qi extends q<i. Then q<γ ∈ T . �

We can now prove (5) of Proposition 1.3. Starting with the measurable cardinal κ such that 2κ = κ+, we
first work in V Qκ . Since κ is measurable in V Qκ (Proposition 7.5), let μ be a normal ultrafilter on κ in V Qκ ,
and let j be the associated embedding from V Qκ into the transitive inner model P = (Ult(V Qκ , μ)) of V Qκ .
Using μ to average the notions of forcing Sλ for inaccessible λ < κ (again, thinking of these as elements
of V Qκ), we see that in P there is some notion of forcing S such that:

• in P , S is < κ�-distributive;
• in P S, j(S) reflects nowhere at the interval (κ, j(κ)].

Since P is an inner model of V Qκ , S is an element of V Qκ . The model W we are after is V Qκ∗S. Because
in V Qκ , P is closed under taking sequences of length κ, we see that S is < κ+-distributive in V Qκ as well.
This means that (Vκ+1)Qκ = (Vκ+1)W . From this we conclude:

• In W , S is a stationary subset of κ and �̂(S) holds.
• μ is a normal ultrafilter on κ in W as well, and by taking the ultrapower Wκ/μ, the embedding j can

be extended in W to an embedding (which we also call j) from W to an inner model N of W .

Finally, since P ⊂ V Qκ , P S ⊂ W . As non-reflection is upward absolute, j(S) reflects nowhere at the interval
(κ, j(κ)] in W as well. This concludes the proof.
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