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EXAMPLES OF NON-LOCALITY 

JOHN T. BALDWIN* AND SAHARON SHELAH 

Abstract. We use «-free but not Whitehead Abelian groups to construct Abstract Elementary Classes 

(AEC) which satisfy the amalgamation property but fail various conditions on the locality of Galois-types. 

We introduce the notion that an AEC admits intersections. We conclude that for AEC which admit in­

tersections, the amalgamation property can have no positive effect on locality: there is a transformation 

of AEC's which preserves non-locality but takes any AEC which admits intersections to one with amal­

gamation. More specifically we have: Theorem 5.3. There is an AEC with amalgamation which is not 

(No, N| )-tame but is (2N°, oo)-tame; Theorem 3.3. It is consistent with ZFC that there is an AEC with 

amalgamation which is not (< ^2, < N2)-compact. 

A primary object of study in first order model theory is a syntactic type: the 
type of a over B in a model N is the collection of formulas 4>{x,b) which are 
true of a in N. Usually the N is suppressed because a preliminary construction 
has established a universal domain for the investigation. In such a homogeneous 
universal domain one can identify the type of a over B as the orbit of a under 
automorphisms which fix B pointwise. 

An abstract elementary class is a pair (K,^g), a collection of structures of 
a fixed similarity type and a partial order on K which refines substructure and 
satisfies natural axioms which are enumerated in many places such as [She87, BalOO, 
She99, Gro02, GV06b]. In this case, 'Galois' types (introduced in [She87] and 
named in [Gro02]) are defined as equivalence classes of triples (M, a, N) where 
a e N — M under the equivalence relation generated by {M\ ,a\,N\) ~ (M2, aj_, N2) 
if Mi = Mi and there is an amalgam of JV"i and N2 over M\ where a\ and aj have 
the same image. If K has the amalgamation property the equivalence classes, 
i.e., the Galois types, of this equivalence relation can again be identified as orbits 
of automorphisms of a universal domain which fix the domain of the type. The 
notions and definitions which appear in this paper stem from a long series of papers 
by Shelah ([She87, She99, SheOl] etc.) They occur in the form used here in [BalOO]. 
Grossberg and Vandieren [GV06b] isolated the notion of tame as a fruitful object of 
study. Recent work by such authors Grossberg, Kolesnikov, VanDieren, Villaveces 
[BKV06, GV06b, GV06a, GV06c, GK] either assume or derive tameness. In 
particular, a number of results on the stability spectrum and transfer of categoricity 
have been proved for tame AEC. 
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766 JOHN T. BALDWIN AND SAHARON SHELAH 

Unless we specifically add hypotheses, K denotes an arbitrary AEC. The 
Lowenheim-Skolem number of an AEC K is denoted LS(A'). We introduce in 
this paper two new notions: admitting intersections and model completeness. As 
explained in Section 1, in an AEC which admits intersections the notion of Galois 
type is better behaved. Model completeness is the natural analog of the first order 
notion in this context. 

Syntactic types have certain natural locality properties. Any increasing chain of 
types has at most one upper bound; two distinct types differ on a finite set; an 
increasing chain of types has a realization. The translations of these conditions to 
Galois types do not hold in general. But there have been few specific examples of 
their failure. In the first section, we first give precise names to these three notions (in 
order): locality, tameness, and compactness and attach certain cardinal parameters 
to them. Precise statements of the results depend on these definitions and occur 
with the proofs. But vaguely speaking, in Section 2 we show there is an AEC with 
the amalgamation property which is not Ko-tame and does not attain tameness 
at any small cardinal. In Section 3 we find a K which is not compact at one of 
Ki,^2- These results were proved before Baldwin and Kolesnikov [BK] generated 
a number of examples of tameness failing at different low cardinalities. These two 
papers seem to represent different kinds of failures of tameness. Here, we code non-
continuity of 'freeness'. The key to [BK] is requiring a number of parameters before 
structure imposed by affine maps becomes apparent; this appearance manifests 
itself in failures of £>goodness for larger k and failure of tameness at larger K .̂ In 
Section 4 we introduce a general construction which shows that one can transform 
a failure of locality in an AEC which admits intersections to a failure in an AEC 
with amalgamation. And in Section 5, we combine Sections 2 and 4 and answer a 
question of [GV06b] by providing an example which is not No-tame but is 2K°-tame. 

In the presence of amalgamation, the subject of this paper can be considered as a 
study of the automorphism group of the monster model. For example, compactness 
is the assertion: if M, is an increasing sequence of strong submodels of Jl, G, = 
au t^ (Jt), and Xt is a decreasing sequence of orbits under G,, then the intersection 
of the Xt is nonempty. The cardinal parameters of the formal definition fix the 
cardinality of the M, and the length of the chain. 

§1. Some notions of locality. We work throughout in an abstract elementary 
class (K, -<jf). A strong embedding is an injective homomorphism / from M into 
N such that fM - ^ N. A chain (At: i < 3) is a sequence of members of K 
such that if i < j , At -<% Af, the chain is continuous if for each limit ordinal a, 

Although we compare the properties of Galois types and syntactic types, the 
types that actually occur in this paper are all Galois-types. So we fix the following 
notation. 

DEFINITION 1.1. 1. For M -<K N\ G K, M ^ K N2 G K and a G N\ - M, 

b G N2 - M, write (M, a, W~i) ~AT (M, b, _/V2) if there exist strong embeddings 
f\»fi ofN\, N2 into some N* which agree on M and with f\ (a) = fi{b). 

2. Let ~ be the transitive closure O/~AT (as a binary relation on triples). 
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EXAMPLES OF NON-LOCALITY 767 

3. We say the Galois type of a over M in N\ is the same as the Galois type a over 
M in Ni if{M, a,N\) ~ (M, b, N2) and write 

tp(a/M, M ) = tp{b/M, N2). 

We define the notions below with two cardinal parameters: the first is the size of 
a certain submodel or the length of a sequence of types; the second is the size of the 
models under consideration. In a rough sense, the first parameter is the important 
one; ideally the second can be replaced by 00. But the main theorem which derives 
locality from categoricity (without identifying Galois types with syntactic types of 
some sort) [She99], chapter 12 of [BalOO] does so only for models of fixed size. So 
we use the fastidious notation. Replacing (A, K) by e.g., (< X, K) has the obvious 
meaning. The following property holds of all AEC considered in this paper. 

DEFINITION 1.2. We say the AEC (K, -<g) admits intersections if for every X C 
M G K, there is a minimal closure of X in M. That is, C\M(X) -<£ M is the 
substructure of M with universe f\{N: X C N -<% M}. 

Any relation defined by such an intersection will have the monotonicity, finite 
character, and transitivity properties of a closure relation. Note that this property 
is nontrivial even if one restricts to first order theories with elementary submodel. 
In that case it applies to strongly minimal or o-minimal theories; the first order case 
was characterized by Rabin [Rab62]. And of course the condition is satisfied when 
one has Skolem functions. But we work in a more general situation. If an AEC 
admits intersections we have a natural way to check equality of Galois types. 

LEMMA 1.3. Let (K, -<g) admit intersections. 

1. Suppose Mo -<K M\,Mi with at G Mi for i = 1,2. Then tp(ai/M0,Mi) = 
tp(fl2/A/o, M2) if and only if there is an isomorphism over Mo from 
M\ \ C\M, (Moa\) onto M2 \ C\M2{Moai) which maps a\ to 02-

2. (Mi ,a\,Ni) and [Mi, ai, N2) represent the same Galois type over Mi iff Mi = 
Mi and there is an amalgam of Ni and N2 over Mi where ai and a2 have the 
same image. 

PROOF. Immediate. Di.3 

That is, while in general Galois equivalence may result from a finite composition 
of maps, in this context only one step is required. If M -<g N, p G ga-S(M), 
q G ga-S(M), the notion that q extends p is similarly complicated in an arbitrary 
AEC. Lemma 1.3 yields a simpler characterization. 

FACT 1.4. Suppose K admits intersections or has the amalgamation property. If 
M -<j[ N, p G ga-S(M), q G ga-S(M), then q extends p if and only if for each 
(N, b, N') realizing p there is a K-mapfixing M and taking (N, b, N') to an (M, a, M') 
realizing q. 

We illustrate in this article that unions of increasing chains of Galois types do 
not behave as increasing chains of syntactic types. The problem is that to guarantee 
an increasing chain of types has an upper bound we need that it is coherent in the 
following sense. 

DEFINITION 1.5. Let (Mi \ i < y) be an increasing -<^-chain of submodels of J(. 
A coherent chain of Galois types of length y is an increasing chain of types pt G 
ga.-S{Mi) equipped with realizations at of pi and for i < j < y functions f\j G aut(^#) 
such that fij fixes M,, / y (a7-) = a,- and for i < j < k < y, ftj o fjk = fik. 
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768 JOHN T. BALDWIN AND SAHARON SHELAH 

Here is a characterization of realizing the union of a chain of types in terms of 
maps. The straightforward justification is in [BalOO] in the chapter on locality and 
tameness. 

FACT 1.6. 1. If pi e ga-S(M,)/or i < S is a coherent chain of Galois types, 
there is a ps e ga-S(A/^) that extends each pt so that {pt: i <S) is a coherent 
sequence. 

2. Conversely, ps £ ga-S(M^) extends each pt, there is a choice offtj fori < j <S 
that witness (/?,•: i <S) is a coherent sequence. 

DEFINITION 1.7. Galois types are (K, A)-compact in K if for every continuous in­
creasing chain M = {Ji<K Mt of members of K with \M\ = X and every increasing 
chain {pt: i < K} of members ga-S(M,) there is a p G ga-S(Af) with p\Mt = pifor 
every i. 

DEFINITION 1.8. K has (K, A)-local galois types if for every continuous increasing 
chain M — \Ji<K Mi of members ofK with \M\ = X and for any p,q € ga-S(M): if 
p \Mj = q \Mi for every i then p = q. 

The following results were stated by Shelah in e.g., [She99]; a full proof appears 
in [BalOO]. 

LEMMA 1.9. For any X, if K has (< K, < X)-local Galois types, then Galois types 
are (< K, < A)-compact in K. 

Now we turn to the notion of tameness. The property was first isolated in [She99] 
in the midst of a proof. Grossberg and VanDieren [GV06b] focused attention on 
the notion as a general property of AEC's. We introduce a parameterized version 
in hopes of deriving tameness from categoricity by an induction. And weakly tame 
is the version that can actually be proved. That is, the best result now known 
[She99, BalOO] is that if A" is categorical in some regular X greater than H\ = H(K) 
(the Hanf number for K), then for each /i < X, K is (j,//)-weakly tame for some 
X<Hu 

DEFINITION 1.10. 1. We say K is (/, ,u)-weakly tame if for any saturated N £ K 
with \N\ < JU if p,q, € ga-S(iV) andfor every N0 < N with \N0\ < / , p\No = 
q \No then q = p. 

2. We say K is (x, //)-tame if the previous condition holds for all N with cardinal­
ity ix. 

3. {%, it)-weakly compact and (%, ii)-weakly local are defined analogously. 

Thus the vague notion of K-tame in the introduction is formally (K, oo)-tame. 
Finally, we say K is K (weakly)-tame or (K, OO) (weakly)-tame if it (K, /l)-(weakly)-
tame for every X > K. There are a few relations between tameness and locality. The 
second was observed in conversation by Olivier Lessmann. 

LEMMA 1.11. If X > K and cf(/«) > / , then (x,X)-tame implies (K,X)-local. In 
particular, (No, ~&\)-tame implies (Ni, Ni)-local. 

PROOF. Suppose (Mt, pt: i < K) is an increasing chain with 1J; M, = M and 
\M\ < X. If both p,q e ga-S(M) extend each pt, by (x, A)-tameness, there is a 
model N of cardinality x on which they differ. Since cf(/«) > / , ./V is contained in 
some M,-. Di.n 

LEMMA 1.12. If K is (< ju, < fi)-local and ju > LS(A") then K is (LS(JST), /u)-tame. 
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EXAMPLES OF NON-LOCALITY 769 

PROOF. We prove the result by induction on ju and it is clear for /u = LS(A"). 
Suppose it holds for all K < p.. Let p, q be distinct types in ga-S(M) where \M\ — JX 
and write M as an increasing chain (M,-: i < ju) with |M,-| < \i\ + LS(JT). Let /?,-, 
respectively qt denote the restriction to A/,-. Since p ^ q, locality gives an Mj with 
Pj =£ qj and \Mj\ < ju. By induction there exists an N -<g Mj with \N\ = LS(JST) 
and pj | N ^ <// | N. But then, p \N ^ q \ N and we finish. n U 2 

§2. A concrete example of non-tameness. In this section we find a concrete exam­
ple of a class which is not (Ni, Ni)-local and so not (No, Ki)-tame. We encode some 
well-known 'incompactness' phenomena for Abelian groups. Recall again that all 
types are Galois types. 

DEFINITION 2.1. We say A is a Whitehead group ifExt(A, Z) = 0. That is, every 
short exact sequence 

O^Z^H -^A->0, 

splits or in still another formulation, H is the direct sum of A and Z. 

Every free group is Whitehead and a Whitehead group of power Ni is Ni -free, i.e., 
every countable subgroup is free. Recall that J.H.C. Whitehead conjectured that 
every Whitehead group of cardinality Ni is free. We do not rely in this section on 
Shelah's argument that the Whitehead conjecture is independent of ZFC. But we 
use some of the techniques of the argument and more appear in the next section. 
Now we contradict locality. We rely on Shelah's construction, reported on page 228 
of [EM90] of a group with the following properties. The moreover clause is not 
used in this section but is crucial for Section 5. 

FACT 2.2. There is an ~&\-free group G of cardinality Ni which is not Whitehead. 
Moreover, there is a countable subgroup RofG such that G/R is p-divisible for each 
prime p. 

EXAMPLE 2.3. Let K be the class of structures M = {G, Z, I, H), where each of 
the listed sets is the solution set of one of the unary predicates (G,Z,I,H). G is 
a torsion-free Abelian Group. Z is a copy of (Z, +) . I is an index set and H is a 
family of infinite Abelian groups. The vocabulary also includes function symbols 
F, k and it, naming functions F, k, and n. F maps H onto / and for s € I, +(_, _, s) 
is a group operation on Hs = F~~l(s). Finally, n maps H onto G so that ns — n \HS 

is a projection from Hs onto G. The kernel of each ns is isomorphic to Z via a map 
k(.,s) where k: Z x / H-> H. 

Further, we write Mo -<% M\ if Mo is a substructure of M, but ZMo = ZMx and 
GMo is a pure subgroup of GMl. 

Since each GM is torsion-free, it follows that if Mo -<£ M\, for each t e IM°, 
Hf" is pure in //f^. (Recall that if the abelian group G is elementarily equivalent 
to G\ and G is pure in G\ then G is an elementary submodel of G\.) The class K 
is almost first order definable; we require some infinitary logic to keep Z standard. 
But the notion of -< •£ is much weaker than elementary submodel. The models are 
essentially many exact sequences. They all have the same kernel Z; and there may be 
many with the same image G, but the middle terms H are all disjoint. It is fruitful 
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770 JOHN T. BALDWIN AND SAHARON SHELAH 

(see Section 5) to restrict the class of image groups. But it is delicate to do so while 
keeping K closed under unions and amalgamation. 

It is easy to check that under these definitions 

LEMMA 2.4. The class (K, -<%) defined in Example 2.3 is an abstract elementary 
class. 

We defined the notion of an AEC admitting intersections in Definition 1.2 

LEMMA 2.5. The class (K, -<g) defined in Definition 2.3 admits intersections. 

PROOF. TO find the the required closure of a subset A of M, first close A under 
the functions of the language: FM, nM and the group operation in G and in each 
fiber of HM to form a set X'. Then take the pure closure of X' n GM in GM as X". 
Finally add those y e HM which satisfy both nM{y) G X" and FM(y) G X". If 
N is the substructure of M with this universe it is easy to check that N -<% M and 
N is contained in any N' with A c N' -<g M. 025 

The next easy lemma provides a nice characterization for this example of equality 
for certain Galois types. 

LEMMA 2.6. Suppose Mo -<% M\,M2 and the group G = G "is the same in 
each of the three structures. Let t\,t2 be in IMi - IM°, IMl - IM° respectively. The 
following are equivalent. 

1. tp(ti/M0,Mi) = tp(t2/M0,M2). 
2. There is an isomorphism h from H^' onto 77£f2 such that 

(a) For z G ZM\ h(kM'(z, ?,)) = kMi(z, t2) and 
(b)foryeH^,h(7i^(y,tl)) = nM'(h(y),t2). 

Recall that the class of torsion-free abelian groups has the amalgamation property 
for pure embeddings. Specifically, to amalgamate G\ and G2 over Go just form 
G\ x G2 and factor out the subgroup of elements {(x, —x): x e Go}. The purity of 
Go in G\ and G2 guarantees the amalgam is torsion free. Note that if Ho c Hi, H2 

and we have maps from Hi onto Gi and from H2 onto G2 with common kernel 
contained in Ho, these maps extend coordinate-wise to maps from the amalgam of 
the H's to the amalgam of the G's. 

LEMMA 2.7. (K, -<g) has the amalgamation property. 

PROOF. We want to amalgamate Mi and M2 over Mo to construct M3. Without 
loss of generality we can assume Mi and M2 intersect in MQ. So just take disjoint 
union on / , the group amalgams on G and also the group amalgam of each H) 
and H] if t e IM° and extend the functions naturally. If t e 71 - I2, H) = H]. 
(The case / ' — I2 ^ 0 is similar.) In particular, nM,(yi,y2) is only defined if 
FM'(yi) = FM*(y2) and in that case, the value is{{nMi{yi),{nM*{y2))/G

M°. There 
is no interaction between the problems for Hs and Ht if 5 ^ t e lMl U IMl. u21 

LEMMA 2.8. Let (K, -<g) be as in Example 2.3. {K, -<g) is not (Ki, Ki)-/oca/. 
That is, there is an M° e K of cardinality Hi, a continuous increasing chain of models 
Mf fori < Ni, and two distinct types p, q G ga-S(M°) with p\Mf = q\Mjforeach i. 

PROOF. We define p and q, show they are distinct, and then show their restrictions 
are the same. 
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EXAMPLES OF NON-LOCALITY 771 

Let G be the Abelian group from Fact 2.2 of cardinality Nj which is Ni-free but 
not a Whitehead group. Then, there is an H such that, 

0-+Z^H ->G ->0 

is exact but does not split. Say g\: H —* G. But, we can write G as a continu­
ous increasing chain G = |J /<N G, of countable free groups such that each exact 
sequence: 

0 -> Z -> Hi -> G,: ^ 0, 

splits, where i/, = g f 1 ^ ) ' because G, is free. 

Let M° have GM° = G, ZM° = Z, / M ° = {a}, and /7M° a copy of G © Z. 
Now define M 1 ,M2 which have one additional point tt e / M i . The key point is 
that HM" is H and i / ^ 2 is G © Z. For ease of reading let nm{., h) be gi and 
nMl{„, f2) be the projection map g2 from G © Z onto G. Let /> = tp(?i/M°, M1) 
and # = tpfo/M0, M1). Since the exact sequence for HM splits and that for HM 

does not, it is immediate from Lemma 2.6 that p ^ q. 
Now we define the models Mf for i < Hi and € = 0,1,2. Then Mf is naturally 

obtained by letting GM> = G, and leaving the other components as in M°. For 
^ = 1,2, let Mf be the restriction of Me to 

( G „ Z , { ( < } , { 7 e f f M ' : f t W £ G , ] ) . 

By Lemma 1.3, tp(te/Mf,Me) = tp(te/Mf,Me) for each i and ^ = 1,2. By 
the choice of H, for £ = 1 and by the restriction of g2 for £ = 2 each of the exact 
sequences: 

splits. This implies there is an isomorphism h from M/ onto Mf over M? mapping 
h to *2- That is, tp(?i /M?,M}) = tp(t2/M?,Mf). Thus, /jfAfP = q\Mf. We have 
the required counterexample. D2.g 

REMARK 2.9. While the existence of an Ki-free group which is not Whitehead 
can be done in ZFC, K-free but not Whitehead groups for larger regular K become 
sensitive to set theory. But if, for example V = L (much weaker conditions suffice), 
the class K is not (K, /«)-local for arbitrary regular K. 

§3. Incompactness. In this section we construct an increasing sequence of Galois 
types which has no upper bound. The model theoretic example is the same as 
Section 2 but the choice of groups for the counterexample is different. In contrast 
to nonlocality we obtain only a consistency result. The set theoretic hypotheses, • 
and the various diamonds, used below follow from V — L. 

DEFINITION 3.1. • holds if there exists (Ca: a < coi, ct limit) such that: 

1. Ca is a club of a; 
2. \Ca\ < No when cf(a) = No; 
3. and if P e Ca is a limit ordinal, Cp = CaC\ fi. 
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772 JOHN T. BALDWIN AND SAHARON SHELAH 

NOTATION 3.2. Assuming • , we fix this notation for subsets 0/^2-

1. For each a, let 

and 

S = {a e C02: a = sup(C^)}. 

2. So is the elements ofS with cofinality co and Si is the elements ofS with cofinality 
co\. {Note that, in fact, S\ contains all ordinals less than K2 of cofinality co\; i.e., 
Si = S\.) 

3. Choose a ladder system {t]$: S 6 So} from the Cg. That is, each n$ is an 
increasing co sequence with limit S of elements of Cg. 

We will use the n-principle in the proof of Lemma 3.9. 

THEOREM 3.3. Assume 2K° = Nj, and-C}^, 0^2, and()S2, where 

S? = {cS<N2:cf(cS)=Ni}. 

If the K from Section 2 is ()H\,)b\)-compact then it is not (N2, \Hi)-compact. 

Note that this is a more precise version of the statement in the abstract that K is 
not (< K2, < N2)-compact. 

We will use several times the following fact, which is one of the equivalent condi­
tions in Lemma IV.2.3 of [EM90]. 

FACT 3.4 (Pontryagin's criterion). G is an #,\-free Abelian group if and only G 
is torsion free and every finite subset of G is contained in a finitely generated pure 
subgroup of G. 

The set theoretic hypotheses of Theorem 3.3 allow us to define subsets of N2 

satisfying the following conditions. From them we will define a family of groups 
to establish the result. Note that o implies every Whitehead group of power tti is 
free [EM90, She74]. 

DEFINITION 3.5. For a < N2, let Ga be the Abelian group generated by 

{xp: P < a) U {y^„: d € So n a, n < co} 

subject only to the relations n\ys,n+i = y$,„ — *nd(n)> where n\ is the factorial of n. 

We use interval notation in the ordinals, writing {y: a + l < y < /?} as [a + 1, /?). 

LEMMA 3.6. With the notation above, 

1. The Ga form an increasing continuous sequence (under pure embedding) of 
U1 -free abelian groups. 

2. For a < /? < K2, Ga+\ is a direct summandofGp. 

PROOF. Check (1) using Pontryagin's criteria. We now prove 2. For S e So n 
[a + 1,0), choose b(d) = b < co so that n$(b) > a + 1. Let Ga+\j be the group 
generated by 

{xy-.a+l <y</3}U{ys,m:d € S0 n [a + 1,0), b{3) <m}. 

Then Gp = Ga+\ © Ga+\tp as required, since there are no relations between the 
generators of Ga+\ and Ga+ij? and each y^n with tjs(n) < b{S) can be written as a 
sum of elements from Ga+i and Ga+i,/?- 03.6 
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EXAMPLES OF NON-LOCALITY 773 

NOTATION 3.7 (o^). Let (Fs~. 8 G Si) be a diamond sequence, i.e., 

1. Fg is a two-place function with domain 8,Fg(yi,yi) is a permutation of some 
Ps.vv.V2 <8foryi <y2<S. 

2. Iff = (fyi,y2: y\ < yi < ^2),fy,.v2 is a permutation of some Pyiy2 < Hi then 
{8 G Si: {Vyiy2){yi < yi < 5)fyun = Fs(y\, 72)} is stationary. 

We can assume the universe of Ga is an ordinal 8a < N2, since the Ga are a 
continuous increasing sequence. 

Now we construct by induction on a an array of Abelian groups indexed by 
the pairs below the diagonal in K2 x N2: (< Hpa,gpa > : /? < a < N2) and 
(npa : P < a < K2) which satisfy the following pair of conditions: 

• Aa: 
1. Haa is an abelian group with universe 8a. 
2- ga.a = £fQ is a homomorphism from Haa onto Ga with kernel Z. 
3. For p<a, Hp,a = Haa \{x G Haa: ga,a{x) G Gp); Hp denotes HM. 
4- gp,a = ga,a\Hp,a-
5. If P < a < ^2, np.a is an isomorphism from Hp onto Hp_a such that 

gp.p = gp.a ° np,a- (Each np,p is the identity map). 
• Ba: If a & Si, the sequence of maps Fa (given by the diamond on Si) does 

not satisfy B(a, Fa) (Definition 3.8). 

DEFINITION 3.8. [B(a, Fa)] Supposed G S\,andfor each Pi < Pi < a, Fa(Pi,p2) 
is a permutation ofHpl. B(a, Fa) holds if 

(Hp;np2tpl o Fa(P\, Pi) : P\ < Pi < ct) form a sequence of commuting maps. 
That is, for Pi < P2 < Pi < a and any x e Hpx: 

(nMoFa(Pi,pMx) = {nM2oFa{p2,pMnp2,pxoFa{Pi,p2)){x)). 

These automorphisms and projections are a slightly different formalism for de­
scribing the realization of unions of types than that described in Fact 1.6. We work 
directly with the groups; in Section 2 we represented the extension groups by a single 
element using the map n. 

We need one more lemma concerning the structure of the Ga; it is here that we 
invoke • . 

LEMMA 3.9. If a € Si then Ga can be decomposed as Ga = G'a © G% where G'a is 
countable and free. 

PROOF. Let 

G'a =• ({xp: /? e O U (yp,„ : £ G S0 n C > < co})Ga 

and 

G'a' = ({xp: P G a \ 0 U {J(5,„ : 8 G a n S0\Ca and ns(n) > sup(Ca n Q')})Go. 

Now if 5 G a n S0\C^ then {«: ns («) G O i s n n i t e (otherwise 8 = sup(Cg n C^), 
whence 8 G C„). And the ysM with /^(w) < sup(C„ n C#) are represented as sums 
of elements in Ga and Ga\ Since C^ is countable, Ga is countable and free since Ga 

is Ki-free. n3.9 

CONSTRUCTION 3.10. We construct groups HptCt and functions ga,p, nap for p < 
a < ^2 by induction to satisfy conditions Aa and Ba. 

Let Ho be Z © Go; go is the projection of HQ onto Go; 7To,o is the identity. 
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To satisfy Aa in limit stages of cofinality co: (One is tempted to just take unions; 
the 7ifita have not been constructed to commute so this may fail.) For S g So, 
choose a sequence rjs(n) with limit S; for S € So, we already have one. For the 
moment, we consider only the structures -^(m),^*) with m,k < co. We form new 
maps n*,-, ^ by the composition of ^(r).^(r+i) for m < r < k. Now for each 
k < co the (Hns(s), n* ( > ,tyS<t<co) form a direct system and we can choose 
Hs as the direct limit of this system with limit maps n* ,^g from Hm^ into Hs. 
Denote the range ofn*sW as HmW. Now define gm(r)yS from Hm(rU onto Gm{r) 

as gm(r),iAr) ° (n%\r),s- T h i s §ives ^ through (3) of As. Now we satisfy (4) and (5) 
by denning Hpj and gpj in the natural manner. It remains to define n$ when y is 
not in the range of t]$. Choose m such that r\&{m) > y and let 

nty =7tS,tidm) °nisM,r-

To satisfy Aa+i in a successor stage: given 0 —> Z —> //Q —• Ga —> 0, we 
proceed as follows. Let a = fi + 1. If jff is not in So, Ga = Gp® (xp) and we just 
extend Hp freely by a single generator. If >9 e So, choose elements x'^n £ Hp with 
gp(x'p„) = JC^(«). Now form #„ by adding to /fy elements x'p and ^ B subject only 
to the relations: 

nty'fi* = y'fi,n-l - Xp,n-
Now if we map Ha to Ga by gp on /fy and just dropping the primes on the generators 
of Hp over Gp, we have the required homomorphism. 

We now consider a of cofinality Hi. Let Ca = {ye- £ < ^i},ys increasing 
continuous with e. We choose by induction objects (-H$a.g{fa,rcjja: P < ye) to 
satisfy the relevant parts of Aa. Let H®a = U{H^a: 0 < a}, n°aa = idHoa,g^a = 
u{Spa '• P < <*}• Consider an M e K with GM = Ga and for some t e I, 
Hf — Haa- We are assuming that K is (Hi, Hi)-compact so Condition Aa holds. 
If Ba holds for this choice, i.e., Fa(a) ^ id#o , we are done. If not, recall the 
decomposition of Ga in Lemma 3.9. 

Let 

K = {x£<a--ga,aW£Ga} 

K = {* e <*• g°aJx) e G:} 
(so their intersection is the copy of Z). 

Since we have assumed o^,, every Whitehead group of power Hi is free. 
Ext(G'a, Z) ^ 0 as G'a is not free. Hence, we can find {H*,g*) such that 

(a) H* is an abelian group; 
(b) g* is a homomorphism from H* onto Ga, which does not split; 
(c) K e r ( g * ) - K e r ( ^ J C i / a > a ; 
(d) # ' n f l £ = Ker(£:); 
Now we have a new candidate for Ha,a: 

Ker(g»,J 

where we define gaa € Hom{Haa, Ga) by extending g° on ^ ' and g* on / ^ . 
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It remains to construct n\ for /? < a. Note that 

G„ = {G'a n Gf) © (GZ n Gp). 

On those x € Hp with gp{x) G G£' n Gys, let rc|ja(x) = ?$,<»(•*)• We need to define 

n\a{x) on Hp = {x £ Hp: gp{x) G G = G£ n Gp}. Let if* = {x G #a*: 

^ ( x ) G G}. Since G is free, 0 —> Z —> i /J —» G —• 0 splits; g* has an inverse fp. 

This shows Ba is satisfied since Fa(a) cannot commute with both the f! a and n\ a. 
Thus we choose {Ha<a, gp<a,np<a) from (H^a,g^a, n^a) and {H^a, g

l
p<a,n^a) as the 

sequence that satisfies Ba. 

Since we assumed that K is (Hi, Hi) compact, we can carry out the construction 
for H2 steps to obtain a sequence (Hp#2, gn2tp o JT£N2: /? < H2)• We finish as follows: 

CLAIM 3.11. It is not possible to define 7ipx2: /? < ^2 so that: 

• The sequence {Hp^2,gx2ip o 7T£K2: /? < H2) satisfies: 
(a) Hx23x2 an abelian group; 
(b) ^ 2 , N 2 wa/w #N2,N2 o«fo GN2; 
(c) /fy,K2 = {* e #N2,N2: £N2,K2(*) G G^}; 
(d) £#N2 =^2,N2l'-

flr^K2; 
(e) 7i/?,N2 is on isomorphism from Hp^2 onto Hp,p\ 
(f) ifx G ify,n2 thengpMl(x) = gp,p(n^p(x)) G G^. 

PROOF. Suppose for contradiction that we have constructed such a sequence. 
Then letting, 

PfiiA = %~h,h ° n*lh ° ^ ^ 

we have a system {Hptp, {np2ipl o pp2tpl): fi < ~&2,P\ < fii < H2) of commuting maps. 
But by the choice of (i^ : <5 e Si) and since, by 0̂ 2 and Si = Sf, Si is stationary in 
H2 for some 8* we have: 

(tyi < y2 < S*)Fs*(yi,y2) = pn,n. 

This contradicts Bs* in the construction and we finish. n3 n 

Now we have a counterexample to (H2, H2)-compactness. The Hp#2 from 
Claim 3.11 give rise to a sequence of Galois types (of singletons via the coding spelled 
out in Section 2) over the Gp which have no common extension over GK2. CI3.3 

Fact 1.9 implies that if K were (Ho, Hi)-local then it would be (Hi, Hi)-compact 
and we would have an example of non-(Hi,Hi)-compactness. But this route is 
not open to us. We now show that K even fails (Ho, Ho)-locality (and failure of 
(Ho, Hi)-locality is an easy consequence in this case). 

LEMMA 3.12. K is not (Ho, Ho)-/oca/. 

PROOF. We construct a sequence of pairs of Abelian group (Ha, Ga) such that 
for a < co, Ha = Z © Ga, but Hm is not a split extension of Gm. Since Z © Gm is 
another limit of this chain, we contradict locality. 

Let H+ be the Q-vector space generated by elements x,z,y„ for n < co. Fix 
distinct odd primes p„ and qnjc for n, k < co. We denote (p„ — l ) /2 by r„. 
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For each n < co, H„ is the subgroup of H+ generated by x, z, yn for n < co and 
the elements P»y»+x-r-z for k < co. 

In.k 

Clearly Hn is a pure subgroup of Hn+\\ let Hm = UnHn 

CLAIM 3.13. Zz = {nz: n 6 Z} is a direct summandof Hn. 

PROOF. Since Z is free every projection onto Zz splits. So we need only construct 
a homomorphism h„ from Hn onto Zz. Choose, by the Chinese remainder theorem 
r'n such that r'n — re mod pe for all i < n. Now let h„{z) = z, h„(x) = r'nz, 

hn(yi) = -^,*ndhm(*»&^) = 0. 
The choice of r'n guarantees that each h„(y() e Zz (the coefficient is an integer). 

Clearly h„ maps onto Zz; the danger is that it is not well defined. It suffices to show 
that from the values of hn on z, x and the j / , hn{pnyn + x - r„z) = 0 since that 
makes our definition consistent. For this, we compute: 

(/•' - r„)z 
hnipeye +x - rez) = -pi— n— + r'nz - rtz = 0. D313 

Pe 
CLAIM 3.14. Zz = {nz: n € Z} is not a direct summand of Ha,. 

PROOF. Suppose for contradiction that h retracts Hm onto Zz (i.e., h{z) = z). 
Now, for any n, h{pnyn + x — r„z) e Zz is divisible by qu,n for all k. This implies 
that 

h{pnyn +x-r„z) = 0. 

That is, h(x — r„z) e p„Zz. Since h(x) = rz some z e Z, this implies r = r„ = 
{p„ — l ) /2 mod />„. But it impossible for this to happen for infinitely many n so 
Zz is not a direct summand of Ha. ^i.u 

With these two claims we complete the proof of Lemma 3.12. 03.12 

§4. A general construction for amalgamation. Let (K, -<g) be an aec in a rela­
tional language r which admits intersections and is model complete. In this section 
we construct from (K, -<jf) an AEC (A"', -<jf) which satisfies the amalgamation 
property and has the same non-locality properties as K. The construction will 
apply to all AEC which admit intersections. We proceed in three steps; we first 
make a cosmetic change in K to guarantee that it has quantifier free closures (Def­
inition 4.1). Then we establish some important properties of AEC with quantifier 
free closures and finally make the main construction. 

Throughout this section we assume that K admits intersections (Definition 1.2); 
this simplifies the notions of Galois type and extension of Galois type (Lemma 1.3). 

We require some preliminary definitions and a lemma for our main construction. 
Note that throughout we write boldface a for a finite sequence of elements of a 
model and a for a single element. 

DEFINITION 4.1. Suppose (K, ~<g) admits intersections. 

1. K is said to have quantifier-free closure if the satisfaction of 'b 6 C\M {b)' 
depends only on the quantifier free (syntactic) type ofbb. 

2. K is model complete ifN C M and N G K, implies N ~<g M. 
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LEMMA 4.2. For any AEC (K, -<g) which admits intersections there is an associ­

ated AEC (K1, -<j f ) with exactly the same spectrum of models which has quantifier-

free closure. 

PROOF. Add to the language x of K, n + 1-ary relation symbols for each n and 
expand M £ K to M' £ K' by making R„(a,a) hold just if a £ C 1 M ( « ) ; a has 
length n. Let K' be exactly the models of this form and define M' -<%> N' if and 
only if M' \x -<j^ N' \x. The isomorphism of K and K' is immediate and we have 
introduced quantifier-free closure by fiat. CU.2 

We now introduce a property that will be key in establishing amalgamation 
and show that it follows from either model completeness or having quantifier-free 
closure. 

DEFINITION 4.3. A class (K, ~<g), which admits intersections, is said to be nice for 
unions if whenever (M, : i < S) is a continuous increasing chain of K-extensions and 
A is a finite subset of N C Ms with N £ K, there is an N' and an i < d such that 
ACN'^KN andN' <K Mt. 

Note that for A c M\ -<% Mi, C\MX{A) = CIM2(A). Moreover, if A" admits 
intersections for any A C. N £ K, CIN(A) is defined: take direct limits of the 
closures of finite sets. 

LEMMA 4.4. Let (K, ~<g) be an AEC which admits intersections. IfK 

1. is model complete or 
2. has quantifier free closure 

then it is nice for unions. 

PROOF. A S A is finite c\Ms{A) = clji/,(/4) when i = min{j < S: A C Mj}. Thus, 
clMs(A) <K Mt. 

Case 1: model complete 

So as N,Ms £ K,N C Mg we have N -<% Ms so 

dN{A) = clMs(A) ^K Mt. 

Case 2: has quantifier free closure 
Clearly C1AT(^4) = C\M6{A) and as we observed to start the proof 

Now we pass to the main construction. 

DEFINITION 4.5. Let K be an AEC with a relational vocabulary x. The vocabulary 
x' ofK' is obtained by adding one additional binary relation R. We say the domain of 
a x'-structure A is an R-set if R induces a complete graph on A. 

1. The class K' is those x'-structures M such that: 
(a) If the finite subset A of M is an R-set there is a x'-structure MA such that 

ACMACM with \MA\< LS(JT), MA is an R-set, andMA \x £ K. 
(b) IfN C M satisfies the conditions on MA in requirement (1), then MA\x -<j^ 

N\x. 
(c) For each M and A, we denote MA by cl^(^4). 

2. If M\ C Mi are each in K', then M\ -<%> Mi if for each finite R-set A in M\, 
cl^U) = cl^2U). 
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If M c N are r'-structures in K' and M -<£* N then for any finite A c M, 
cl'M{A) = cl'N(A). M -<g> N does not imply M \ x -<g N \ x; indeed N \ x is 
not necessarily in K. 

LEMMA 4.6. Let (K, -<g) be an aec in a relational language which admits inter­
sections and is nice for unions. Then, (K', -<g') is an AEC with amalgamation. 

PROOF. The axioms for an AEC which do not involve unions are easy. For 
example, we show 'coherence' in K'. Suppose M c N -<g> N' are r'-structure 
and also M -<K> N'. Fix any finite A c M. Since Â  -<K> N', d'N(A) = d'N,(A). 
Since M <K* N', c\'M(A) = c\'N,(A). Thus, c\'M(A) = cl'N(A) and M <K> N. 

Suppose (Mi: / < 5) is a continuous increasing chain of if'-extensions. Let 
A be a finite i?-set contained in M<$. Fix the least j < S with A c Mj. Then, 
each i > j , C\M,(A) = CIMJ{A); call this set MA\ it satisfies the conditions of 
Definition 4.5 (1) (a). Consider any other N c Ms which satisfies the conditions 
of Definition 4.5 (1) (a); that is, AT is an R-set containing A and N\x e K. To 
show Ms e K', we must show MA \X -<g N\x. Since K is nice for unions there is 
a k < d and a r-structure N' with A '̂ <K Mk \x, A c N' and N' -<K N\x. We 
don't know whether the x' structure with universe N' is in K'. But MA is an 7?-set; 
MA \X -<g Mk,MA Q N' and N' -<K Mk \x. So, by coherence in K, MA \x -<% N' 
and we know N' <g N \x. By transitivity of -<%, this is exactly what is needed. 

Now we show the second union axiom. Suppose (M,: i < S) is a continuous 
increasing AT'-chain with each M, -<%> M. ThenM^ -<g' M, since we have shown 
for any finite A c Ms there is an / with c l ^ (A) = cl^. (A). 

To show amalgamation suppose Mo -<jf M\,Mi- Without loss of generality 
M\ n Mi = Mi. Now, form the no-edges amalgamation of the underlying graphs of 
M\ and A/2 over Mo. The structure with this domain is in K', as each finite ^-subset 
A of it is in either Mi or M J ; the closure of each such A to satisfy Definition 4.5 is 
easily found. 046 

Since that it is easy to obtain the hypothesis in Lemma 4.6 that K is nice for 
unions by the transformation in Lemma 4.2, we have shown the first part of the 
following theorem. 

THEOREM 4.7. To any AEC (K, -<j[) which admits intersections, we can assign a 
(K1, -<j[>) which has the amalgamation property but so that if K is not (S,X)-local 
then K' is not (3, X)-local. 

PROOF. We now show the 'but'. Let \M\ = X and suppose p,q € ga-S(M), M = 
\Jj<s Mj, p ^ q and M, Mi ?JT. Let M1, M2 be A"-extensions of M and let a e M\ 
realize p and b e M 2 realize #. Now consider the models M,M\,Mi in K' obtained 
by adding a complete R-graph to M, M\,Mi. Then for each i < S, tp(a/Mt, M ) = 
tp(b/Mt,M ). (Witness with the same maps just adding a complete 7?-graph.) But 

tp(a/M, M ) ^ tp(b/M, M ) since any r'-isomorphism taking a and b to the same 
point would restrict to a similar r-isomorphism. CI4.7 

As opposed to Lemma 4.2, this second transformation, a l though preserving non-
tameness, plays havoc with the spectrum function. We spelled out the result for 
locality but non-tameness is preserved in the same way. 
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Recall that we use the adjective 'weakly' for locality phenomena where the larger 
model is required to be saturated. This is an intriguing issue as in [She99] only weak 
tameness rather than tameness is deduced from categoricity. The construction at 
hand does not appear to distinguish 'weak'. More precisely, we now show that at 
least for regular k, if A"' is not (k, A)-local then it is not weakly [k, A)-local. 

DEFINITION 4.8. For any property P which can hold of models, we say that (K, k)-
almost all models ofK satisfy P if Player II has a winning strategy for the following 
game. The game lasts K moves. At each stage each player must choose a model of 
cardinality k extending all the preceding models in the chain. Player II wins if the 
union satisfies P. 

Note that if two properties are satisfied by (K, A)-almost all M, then (K, A)-almost 
all M satisfy both of them. Also when k is regular, if there is a saturated model in 
power k, (k, A)-almost all M are saturated. 

We say a model is, e.g., (/c, A)-compact if every union of types over a decomposi­
tion of the model has a limit. 

LEMMA 4.9. Let K and K' be as in Definition 4.5. 

1. If K is not (K, k)-compact then (K, k)-almost all models of K' are not («, k)-
compact. 

2. IfK is not (K, k)-local then (K, k)-almost all models ofK' are not (K, k)-local. 

PROOF. First we consider compactness. Let {Mi, pi) for ; < K be a continuous 
increasing sequence of r-structures that witnesses the incompactness. Expand MK 

to a %' structure by making it an .R-set. Let {Nt) for i < K, be player I's moves. At 
stage a, let player II choose for his move M'a so that Na -<%' M'a and Ma -<% 
M'a\-c. Let pa = tp{aa/Ma,La). Let L'a be an amalgam of the expansion of 
La to an .R-set with M'a (over M'a_x at successors; take unions at limits.); let 
p'a = tp(aa/Ma,L'a). Now there is no realization of \Jp'a since it would reduct 
to a realization of \Jpa- So Player II wins the game that asks each model to be 
extended to one which witnesses incompactness. For locality, do the same argument 
but choose L so that there are a,b e L such that tp{a/Mt,L) = tp{b/Mi,L) for 
each i < K but tp(a/M, L) ^ tp(b/M, L) and finish as in Theorem 4.7. D4 9 

It is immediate from Lemma 4.9 and the remark before it that 

COROLLARY 4.10. IfK is not {K, k)-compact then K' is not weakly-{n, k)-compact. 

§5. Gaining tameness. We gave in Section 2 an example of an AEC with the 
amalgamation property and Lowenheim-Skolem number Ho which is not No-tame. 
But at least consistently there are arbitrarily large K for which it is not (K, oo)-tame. 
Here, we respond to a question of Grossberg and VanDieren [GV06b] and provide 
an example of an AEC with the amalgamation property and Lowenheim-Skolem 
number Ho which is not Ko-tame but is (2No, oo)-tame. The example is very close to 
that in Section 2 but we bound the size of the image group G. 

Now we use the moreover clause from Fact 2.2: There is a countable subgroup R 
of G such that every element of G/R is divisible by every prime. See [EM90]. 

EXAMPLE5.1. Let Ks be the class of structures M = {G, Z, I, H, R), where each 
of the listed sets is the solution set of one of the unary predicates (G,Z,I,H,R). 
The first four predicates are interpreted exactly as in Example 2.3 but R is interpreted 
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as the subgroup R described above. Crucially, we require that the group G be not 
merely torsion-free but Ni-free. The notion of strong submodel is as before except 
in addition M <K* N implies RM = RN. 

LEMMA 5.2. The class (Ks, -<jf») defined in Definition 5.1 is an AECwhich admits 
intersections. 

PROOF. TO show that (Ks, -<g>) is closed under unions of chains (the interesting 
case is countable unions) apply Pontryagin's criterion. We can construct closures 
exactly as in Lemma 2.5. o52 

Since we have required that G is Ni-free, the amalgamation property is no longer 
true. (The amalgamation of torsion-free groups is torsion-free. But, Shelah had 
observed long ago that even under pure embedding the class of Ni-free groups does 
not have the amalgamation property. The argument will appear in [BCG+00].) But 
we are saved by Section 4. 

THEOREM 5.3. There is an AEC with the amalgamation property in a countable lan­
guage with Lowenheim-Skolem number No which is not (No, tt\)-tame but is (2H°, oo)-
tame. 

PROOF. Since Ks (Example 5.1) admits intersections we can get the desired ex­
ample with the amalgamation property from Corollary 4.7, provided we show 
Example 5.1 is (2No, oo)-tame. Since the source of non-tameness is types over the 
target group G, it suffices to show the cardinality of GM is at most the continuum 
for any M G Ks. But if G is torsion free and for some countable subgroup R, G/R 
is ^-divisible for all p, then \G\ < 2No. For, if G is larger there exist x,y G G which 
realize the same first order type over R. Thus for each p there is an x\ such that 
px\ — x = r G R and a y\ such that py\ — y = r G R. But then x — y is a non-zero 
element of G which is divisible by every prime. By Pontryagin's criterion, there is 
no such element in an Ni-free group. CI5.3 

§6. Conclusion. This paper has several messages. The notion of an AEC admit­
ting intersections is rather natural; it has come u p without being named in investi­
gations of the Hrushovski construction. It simplifies the treatment of Galois-types 
while being much weaker than the amalgamation property; we think it deserves 
further investigation. 

We have shown that 'locality' has several facets. There has been considerable 
work on categoricity transfer for tame A E C [GV06a, GV06c, Les05]; under further 
locality assumptions [HK06] begins a 'geometric stability' theory. This paper shows 
that in general these are real assumptions. But could (LS(AT), oo)-tameness be a 
consequence of categoricity? Let K be the Lowenheim-Skolem number of K and 
let H\ denote 3(2«))+- Analysis of the Hart-Shelah examples [BK] (done after this 
paper) gave examples of an A E C K with the amalgamation property which is 
categorical in small cardinals and fails tameness in a cardinality. In contrast, the 
next question should be quite hard. Shelah proved (see [BalOO] for a short account): 

THEOREM 6.1. [She99] Suppose K has the amalgamation property and arbitrarily 
large models. Suppose K is A4-categorical with X > H\. For each fi < X, K is 
(x, fi)-weakly tame for some x < H\ • 
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QUESTION 6.2. Suppose K has the amalgamation property and arbitrarily large 
models. Suppose K is k+ categorical with X > H\. 

Is there any way to reduce the upper bound on % in Theorem 6.1? 
Can one prove K is (%, fi)-weakly tame for some x < H\l 

Here are questions which naturally arise in extending this work. 

PROBLEM 6.3. Find an example of non-compactness in ZFC. 

QUESTION 6.4. Are the examples in Section 3 (Section 5), (Ni, ^-compact! 

QUESTION 6.5. Find examples of K with the amalgamation property which gain 
lameness as in Section 5 but for inherent algebraic reasons rather than through the 
transformation of Section 4. 
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