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Abstract

We prove that colouring of pairs from R, with strong properties exists. The easiest to state
(and quite a well-known) problem it solves is: there are two topological spaces with cellularity
¥y whose product has cellularity X;; equivalently, we can speak of cellularity of Boolean algebras
or of Boolean algebras satisfying the N;-c.c. whose product fails the R;-c.c. We also deal more
with guessing of clubs.
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0. Introduction

This paper is organized as follows: In Section 1 we prove Pr(R,,R;,R;,Ry) which
is a much stronger result. In Section 2 we define a property implicit in Section 1,
note what the proof in Section 1 gives, and look at the related implications for suc-
cessor of singular non-strong limit and show that Pr| implies Pre. In Section 3 we
improve some results mainly from {7], giving complete proofs. We show that for u
regular uncountable and y < u we can find (C; : 6 < p*,cf(d) = p) and functions
hs, from C; onto x, such that for every club £ of u* for stationarily many ¢ < u~
we have: cf(d) = p and for every y < y for arbitrarily large « € nacc(C;) we have
x € E, hs(a) = y. Also if Cs5 = {a5.. : € < p} (s increasing continuously in &),
we can demand that {¢ < p:as.41 € E (and 25, € E)} is a stationary subset of pu.
In fact, for each y < y, the set {¢ < p:as..1 € E,a5. € E and f(25:41) = 7} is
a stationary subset of u. We also deal with a parallel to the last version stated (but
without /) to the case u is singular and to the case u is inaccessible. In Section 4 we
prove that Pri(A*2,7%2, 42 ) holds for regular /.

For history, references and consequences see [5, AP1] and {5, Ch. III, Section 0].
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1. Retry at X;-c.c. not productive

1.1. Theorem. Prl(Ng, Nz, Nz, No)

1.2. Remark. (1) Is this hard? A posteriori it does not look so, but we have worked
hard on it several times without success (worse: produced several false proofs). We
thank Juhasz and Soukup for pointing out a gap.

(2) Remember that Pr(4, y1, 6,0) means that there is a symmetric two-place function
d from A to 6 such that if (4, : o0 < p) satisfies

uy C 4,
lug| < o,
x < B=uNug=0,
and y < 6 then for some o < f we have
{€uy & Le€uy=d((0)=17.

(3) If we are content with proving that there is a colouring with ®; colours, then we
can simplify somewhat: in stage C we let c(f,«) = dsq(ps, (B,*)) and this shortens
stage D.

Proof.
Stage A: First we define a preliminary colouring.
There is a function dyq : “” (@) — w; such that:
® if 4 € [ and ((pa,vy) : @ € A) is such that p, € “Zwy, vy € “Z oy,
o € Rang(py) N Rang(v,) and y < w; then for some { < ¢ from 4 we
have: if v/,p’ are subsequences of vy, pe, respectively, and { € Rang(V'), ¢ €
Rang (p’) then

dsq(vhpl) =7

Proof of &. Choose pairwise distinct 5, € “2 for o < w;. Let dy : [w1)* — @; be
such that:
(*) ifn < wand ar, < @ for { < wy, £ < n are pairwise distinct and y < wy
then for some { < £ < w; we have £ < n =y =do({og¢, o:,¢}) (exists by
[4, see (2.4), p. 176]; the n there is 2).

Define dg(v) for v € ®”(w;) as follows. If £g(v) < 1 or v is constant then dy(v)
is 0. Otherwise, let

n(v) =: max{£g(nye) N Mwiy) : £ < k < £g(v) and W(¢) # v(k)} < w.

The maximum is on a non-empty set as £g(v) =2 and v is not constant; remember
Ny € “2 were pairwise distinct so v(£) # v(k) = nye) N Mgy € 72 (is the largest
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common initial segment of n,y), nuiy). Let a(v) = {(£,k) : £ < k < £g(v) and
£9(Mwey N Nwxy) = n(v)} so a(v) is non-empty and choose the (lexicographically)
minimal pair (£,,%,) in it. Lastly, let

dsq(v) = dO({v(fv)9 v(kv)} )

So dg is a function with the right domain and range. Now suppose we are given 4 €
[T, ¥ < w; and p,, v, € ®>(w) for & € 4 such that « € Rang(p,) N Rang (v,).
We should find o < B from A4 such that dy(v'"p’) =y for any subsequences v/, p’ of
va, pp, Tespectively, such that « € Rang (V') and f € Rang(p’).

For each o € 4 we can find m, < w such that:

(x)o if £ <k < £g(va"ps) and (va"p)(£) # (Vo ps )(k) then
N pe) | Mo # M)y | ma

Next we can find B € [4]™" such that for all « € B (the point is that the values do not
depend on o) we have:
(a) £9(ve) = m®, £g(ps) = m',
(b) a* = {(£,k): ¢ <k <m®+m' and (vi"p)(¢) = (v P )(K)},
©) bx={f <m’+m'a=("p)*)},
(d) my =m?,
(©) (M) [ma it < m®+m')y = 7%,
(f) (Rang(v,"py): o € B) is a A-system with heart w,
(g) u* = {£: (v pu)(£) EW} (o ux # {£:£ < m®+m'} as « € Rang (v."py)),
(h) of = (vi"pu)(¢) for ¢ € u*,
(i) if « < B € B then supRang(v, p,) < B.
For { € B let Bg = {(v'p)¢) : £ < m’+m',¢ ¢ ux) and apply (*), i.e. the choice
of dy. So for some { < ¢ from B, we have

t<m+m' & ¢¢ur=y=do({(vp L) (v P NO})-

We shall prove that { < ¢ are as required (in ®). So let v/, p’ be subsequences of
ve,pe (so let vV = vy | vy and p’ = ps | v2) such that { € Rang(v'),¢ € Rang(p’)
and we have to prove y = dsg(V"p'). Let T =v"p’, so 1= (v."p¢) I (v1 U (m® + 12))
(in a slight abuse of notation, we look at ¢ as a function with domain v; U (m® + v;)
and also as a member of ®>(w;) where m+ v =: {m+ ¢ : ¢ € v}, of course). By the
definition of dy it is enough to prove the following two things:

(*); n(v'"p") = m? (see clause (d) and (x)o above),
(x); for every £1,/, €y U (m® + v;) we have
£9(Mery N Maer)) € [ME,0) = 7 = do({e(£1), °(£2)})-

Proof of (x);. Let 71 € v; and ¢£; € v, be such that v(¢,) = { and pe(£2) = £. So
clearly ¢, m® + £, € b* (see clause (c)) and #, sy | m* = N0y | M2 = Nyer) [ P
(first equality as {, £ € B and m; =m;=m? (see clauses (d) and (e)), second equality as
Np:(22) = Nv(er) SINCE £, m® + £, € b* (see clause (c)). But ps(¢£2) = & # { = v¢(£1),
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hence #,.z,) # Mv.(z,)» S0 together with the previous sentence we have

m* < LMy NV lpaieny) = €9y N Mumo12y) < O
Hence n(t) = m? as required in (x)].

Proof of (x),. If £/1 < ¢, are from v;, by the choice of m? = my, the proof is easy.
Namely, if (£1,£2) € a(t) then (£1,£2) € a(vy) and £g(n.,) N Nuesy)) = £9(Mve) N
Meey) < mg = m?. Similarly, if £,,¢, € m® + 12, by the choice of m? = mg, it is easy
to show that £g(#.(z,) N Mxesy)) < m?. So it is enough to prove:

(*)3 assume 7y € vy, £3 € vy and £g(y,(¢)Mput2)) € [m?, w) then y = do({ve(41),
pe(£2)}).

Now the third assumption in (*); means #y.(z,) | m* = n,,,) | m* and as {,& € B we
know that 7.z, | m? = #e,) | m?. Together we know that n,.) [ m* =1, | m?,
hence by the choice of m; = m? necessarily Mty = Mox(22) SO that v(£1) = py(£2)
and (see clause (b)) also ve(£1) = pe(£2). So

do({ve(£1), pe(£2)}) = do({v(£1), ve(£1)}).

The latter is the required y provided that /; ¢ w*. Equivalently, v/(£1) # ve(£1) but
otherwise also v;(£1) = p:(£2) 50 £g(Ny.(r,) My (¢2)) = @, contradicting the assumption
of (x)3 that £g(#x¢,) N Neey)) € [M?, ) (so it is not equal to w).

So we finish! proving (%), hence ®.

Stage B: Like Stage A of the proof of [5, Ch. IIL, 4.4, p. 164]. (So for o < f§ < s,
« does not appear in p(f,a)).

Stage C: Defining the colouring:

Remember that &5 = {6 < R, : cf(d) = Ng}.

For ¢ = 1,2 choose ks : w; — w, such that S = 2N h;l({oc}) is stationary for
each « < w,. For o < w,, let 4, Cw; be such that no one is included in the union
of finitely many others.

For & < B < @, let £ =£g, be minimal such that

dsq (P, (B, ) € Ap(paye)

and lastly let

c(B, ) = c(a, B) =: hao((p(B,2)XZ p,o))-

Stage D: Proving that the colouring works:

So assume that » < w, (u, : @ < ) is a sequence of pairwise disjoint subsets
of wy of size n and y(*¥) < w; and we should find @ < B such that ¢ [ (u, x ug)
is constantly y(x). Without loss of generality, « < B = max(u,) < min(ug) and

1'See alternatively Definition 2.2(1) and Claim 4.1.
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min(u,) > « and let £ = {8 : § a limit ordinal < w, and (Va)(a < 6 = u, Cd)}.
Clearly, E is a club of w,. For each d € EN ,V%, there is an oc:s“ < & such that

a€fof,8) & Beus= p(B5)(5) I p(Ba).
Also for 6 € &% let

gy =: Min{s < o :{ € 45 but if « € {J Rang(p(B,8))

BeEus

(so o > J) then ¢ ¢Aa}.

Note that €5 < w; 1s well defined by the choice of the 4,’s. So, by Fodor’s lemma,
for some {* < w; and a* < w, we have that

W=:{6€S8,  af =o* and &5 = £*}

is stationary. Let & be a strictly increasing function from w; into W such that a* <
h(5). By the demand on o* (and W)

D, ox<a<deW & Beus= p(B,0)(s) Jp(Ba)
Hence
P, ox <a<deF? & PEuyy
= Min{¢ : e* € A,paye)} = Min{¢ : p(B,0)¢) = h(d)};
hence
D, *<a<deS} & Peuyy
= hy(p(B, 0)IMIin{Z : e* € Ap(g 5x0)}) = ¥(*).
Let
Ey =: {6 < wy: ¢ a limit ordinal, é € E and
a < &= h(a) < & (hence sup (upa)) < 0)}.

For each § € #? there is an a}* < & such that af* > o* and

a € [of*,0) & P € upsy = p(B,6)(d) < p(B, ).

For each y < @y, 6 — a}* is a regressive function on S; hence for some a**(y) < w;
the set S =: {6 € S} NEy : a)* = a**(y)} is stationary.
Let a*x* = sup{a**(y)+1:y < @} and note that a** < w;,. Let

Ey =: {6 < w, :for every y < w;, 6 =sup(S; NJ) and § > a**},

and note that E, is a club of X, (and as §! C Ey clearly E; C Ey) and choose 6* €
E; OS?Z( "y Then by induction on i < ; choose an ordinal {; such that ({; : i < w) is
strictly increasing with limit 6* and {; € S/\(** +1). We know that o < {; = u, C i
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and « < min(u,); hence for every o; < {; large enough (V8 € uy, }(p(6%,{;)({) <
p(o*, B)).

Choose such «; € (Uj<i {i»¢i). Lastly, for i < w; choose f; € ENS] with f; > 6*.
Now for each i < w; for some &(i) < 6%,

D, x€(E),0*) & BEuyg = p(B,6*)(6*) J p(B,a).

As 0% =, w, Gi» Without loss of generality £(i) = Ly, and ji(i) is (strictly) increasing
with i and let 4 =: {¢ < w; : € a limit ordinal and (Vi < &)(j(i) < ¢)}. Clearly, 4
is a club of w,. Now putting all of this together we have the following:
(¥)1 If i(0) < i(1) are in 4,0 € uy,,,, f € Ui, then p(B,a) = p(B,5*) p(5*,a).
(Why? As j(i(0)) < i(1), see €D;).
(#*) If i < w; then B € uyp)y = i € Rang(py,(B,0*)) (witnessed by B; which
belongs to this set by @, + P,).
(* If i < w; then « € u,, = i € Rang(py, (0*%,a)) (witnessed by {; which
belongs to this set by the choice of «;).
(*)a If i < o) and B € upp) then £ = Min{¢ : &% € A,p %))} is well defined
and hy(p(B,0%)(¢)) = y(x). (Why? By B,).
Now let v;, for i < w;, be the concatenation of {p(B,6*) : B € ug} and p; be the
concatenation of {p(d*,a) : & € uy, }. So we can apply ® of Stage A to (vi,p; 1 i < 1)
and y* (its assumptions hold by (x)}; + (*)2 +(*)3) and get that, for some i < j < w,
we have dsq(v'"p’) = e whenever v is a subsequence of v;, p’ a subsequence of p;
such that i € Rang(v'), j € Rang(p’). Now for f € uyg,), « € u,, we have:
(1) p(B,x) = p(B,0*) p(d*,a) (see (*)1);
(i) p(B,6*) is O.K. as v'. (Why? Because it is a subsequence of v; (see the
choice of v;) and i belongs to Rang(p(B,9*)) by (x),);
(iii) p(6*,a) is OK. as p’. (Why? Because p(6*,a) is a subsequence of p; by the
choice of p; and j belongs to Rang(p(d*,a)) by (*)3).
Now by (x)4 the colour ¢(f, ) is y(*) as required and get the desired conclusion. []

Remark. Can we get Pri(A*2, 172, A*2,)) for A regulars by the above proof? If 1 = A<*
the same proof works (now Dom(dsq) = “>(4*) and v,, py € > (A1)).
See more in Section 2.

2. Larger cardinals: the implicit properties

More generally (than in the remark at the end of Section 1):

2.1. Definition. (1) Prg(4,4,0,0) means that there is a 4 : “>1 — 6 such that: if
((ug,v4) 0 < A) satisfies

umg_w>ls Uaz gw>l’
luy U, < o,

v € u, U, = a € Rang (v),
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and y < 6 and E a club of A then for some a < f from E we have
vEu, & pecuvg=>d(vp)=ry.

(2) Pr8(4,4,0,0) is defined similarly but « < B are required to be in E N S.
Pré(i,2,0,0) means “for some stationary S C{6 < A : cf(8) >t} we have Pré(4,/,
0,0)”. If 7 is omitted, we mean 7 = ¢. Lastly Pr,‘;’acc(/l, 4,0,0) is defined similarly but
demanding «, B € nacc(E) and Prg (4,4,0,0) is defined similarly but £ = A.

2.2. Lemma. (0) If Pre(4,4,0,6) and 6, < 0 and o1 < 6 then Pr¢(4,1,61,01) (and
similar monotonicity properties for Definition (2.1(2)). Without loss of generality
uy, = v, in Definition 2.1.
(1) If Pre(it, 2%, A1, 2), then Pri(A*2, 412,412, Q).
(2) If Pre(At,2%,0,0), so 0 < At then Pri(A*?, %2, A*2, 0) provided that
(x) there is a sequence A = (A, : 0 < A™*) of subsets of 0 such that for every
o € uC At with u of cardinality < a, we have

AU BeuB#a} #0.

(3) If 4 is regular and A = A<* then Pre(A*, A%, %, 4).
(4) In [5, Ch. I, 4.7] we can change the assumption accordingly.

Proof. (0) Clear.

(1) By part (2) choosing 8 = At, ¢ = A as (x) holds as At is regular (so e.g.
choose by induction on o < A**, 4, C AT see unbounded non-stationary with f <
o= A, NA,| <)

(2) Like the proof for Ry, only now {6 < A** : cf(§) = A} plays the role of &?
and let 2y : ATT — 0 and Ay : ATt — AT be such that for every y and ¢ € {1,2}
such that [/ =2=>y < A**]and [/ =1 =y < 0], the set S/ = {a < A*? : cf(a) =
A% and hy(a) = y} is stationary. Finally, if dg exemplifies Pre(At, AT, 6,0), then in
defining ¢ for a given a < f, let £, g be the minimal ¢ such that dg(ps, (o, B)) belongs
to Ay, (4, p)¢) and let c(B, o) = c(a, f) = ha(p(B,%)(£p,+)). Then in stage D, without loss
of generality, |u,] = oy < ¢ for « < A7 and continue as there, but after the definition
of E; and choice of 6* we do not choose {;,o;; instead we first continue choosing
Bi, & for i < A* as there is, without loss of generality, 6* = |J,_,.&(i). Only then
we choose by induction on i < At the ordinal {; such that: {; € S/\(a** + 1), {; >
sup [{&(j) : j <i}U{{; : j < i}] and then choose o; < {; large enough (so no need
of the club 4 of it).

(3) As in the proof of 1.1, Stage A.

(4) Combine the proofs here and those in [5, Ch. III, 4.7] (and not used). [J

This leaves some problems on Pr; open; e.g.
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2.3. Question. (1) If 4 > N, is inaccessible, do we have Pri(At,AT,At, 1) (rather
than with ¢ < 1)?

(2) If 4 > Ry is regular (singular) and A = p*, do we have Pri(At, AT, 1%, u)?
Clearly, yes, for the weaker version: ¢ a symmetric two place function from A" to A*
such that for every y < A* and pairwise disjoint (i, : @ < A*) with u, € [A*]<* we
have

(3a < B)Vi € u,Vj € up(y € Rang pe(j, ).

See more in Section 4. Remember that we know Pr(A+2,A%2, 112, g) for Ro<o < A
by [5, Ch. III, 4.7].

2.4. Claim. Assume that p is singular, A = p*, 2 > p > k =1%,0 = cf(0) > 0 +
cf(p) and Pre(0,0,0,0). Then Pri(ut,ut,6,0).

Proof. Let e = (e, : @ < A) be a club system, SC{é < u* : cf(é) = 0} stationary
such that ¢ id*(e | S) and « € e5 = cf(a) # 8 and

d=sup(dNS) & yx<u
= 6= sup({x € e5: cf(a) > x4+ 6", so a € nacc(es)})

and o € eg NS = e, Cep (exists by [6, 2.10]). Let f = (fy:a < 0), fo:pt —k
be such that every partial function g from u* to x (really, 0 suffices) of cardinality
< 0 is included in some f, (see [2] or [5, AP1.7]).
So for some f = fu4) we have the following:
(*) for every club E of u* for some § € S we have:
(a) esCE
(b) if ¥ < p and y < @ then

0 = sup({a € nacc(es) : f(a) =7y and cf{a) > y}).
This actually proves id,(e | ) is not weakly 6*-saturated.

The rest is by combining the trick of [5, Ch. III, Section 4] (using first d(x) € S
then some suitable « € nacc(es(,))) and the proof for 8,. O

2.5, Fact. Pri(At,A%,0,cf(1)) and cf([A]1<f4,C) = 1 (which is trivial if A = cfl)
implies Pro(i*, 2%, 0,cf(1)).

Remark. This is not totally immediate as in Pr; the sets are required to be pairwise
disjoint.

Proof. Let x = cf(4) and f, € “A for « < A* be such that « < = f; <J. fp. Let
d : [A*]* — 0 exemplifies Pri(A*,A%,0,cf(1)). For v € ®> (i) we define d¥(v) as
follows.

If /g(v) <1 or v is constant, then df(v) = 0. So assume that £g(v) =2 and v is
not constant.
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For a < B < At let s(B,a) =s(a, f) = sup{i+1:i < k and f,(i) = fp(D)},
s(a,a) = 0,

s(v) = max{s(v(£),v(k)) : £,k < £g(v) (so s is symmetric)},

a(v) = {(£,k) : s(W(¢),v(k)) = s(v) and ¢ < k < £g(v)}.

As £g(v) = 2 and v is not constant, clearly a(v) # @ and a(v) is finite, so let (£,,%,)
be the first pair from a(v) in lexicographical ordering.

Lastly, d(v) = d({v(¢,), v(k,)}).

Now we are given y < 8, a stationary S C{d < A" : cf(8) = cf(4)}, (e : 00 < AY)
(remember 2.2(0)), |u,] < cf(4), u, C®> 1 such that « € ({Rang(v): v € u,}. Let
u, = J{Rang(v) : v € u,} and u] = u}\a, and as cf([A]<*,C) = 4 wlog for some
v € [AT]<*, we have a € § = u,Na Cv. Without loss of generality for some stationary
S'CS and yp, f* we have o € §' = yo = min{y + 1 : if f; < B, are in 4/, U v then
fo T Inefd)) < fg | [y,ef(AN} < x and sup(U{u, Na: a € §'}) < p* < it
Now for some y; € (yo,¢f(4)) and stationary §” C 8’ and y* < 1 we have

a €S8 = fuly) = y*.
Lastly, apply the choice of d. O

Remark. Instead x = cf(A4,cf[4]<%,C) = 1 we can use: (x)’ from below. Moreover,
if Pri(At,A*,0,0), cf([A]<°,C) = 4 and ()’ below, then Pré(i*,1*,0,0) where ()
there is 6* </, and a sequence 4 = (4, |a < A*) of unbounded subsets of S* such
that if « € u € [A7]<7, then 4, NUge, (o) 4p is bounded in 6*. The proof is as above.

3. Guessing clubs revisited

3.1. Claim. Assume that 2 = p*, and S C{6 < At : cf(d) = A and o is divisible by
A2} is stationary.

(1) There is a strict club system C = (Cs : 8 € S) such that At ¢ id?(C) and
(o € nacc(Cs) = cf(a) = A); moreover, there are hs : Cs — p such that for every
club E of A*, for stationarily many 6 € S,

A 8 = sup (k7' ({{HNE N nace(Cy)l.

C<u

(2) If C is a strict S-system, A+ ¢ id?(C,J), J5 a A-complete ideal on Cs extending
JE + ace(Cs) (with S,u as above) then the parallel result holds for some h=(hs:
6 € S) where hs is a function from Cs to u, i.e. we have for every club E of 1%,
for stationarily many 6 € SN acc(E) for every y < u the set {a € C5 : hs(a) = v
and o € E} is # () mod Js.
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3.2. Remark. (1) This improves [7, 3.1].
(2) Of course, we can strengthen (1) to:

y<u=d=sup{a € Cs: hs(x)=7y and a€E and o € nacc(Cs)
and sup(a N Cs)EE}.

For example, for every thin enough club E of 4, CE will serve where Cf =CsNE if
d € acc(E) and C§ = Cj, otherwise. For Claim 3.1(2) we get slightly less: for some
club E* : (for every club E C E* for stationary maps 0 € SNarc(E) for every y < p
we have) & = sup{ae € C5 : hs(2) = y and « € E and « € nacc(C;) and sup(a N
Cs N Ex)e E}.

Proof. (1) Let (C; : 6 € S) be such that A* ¢ id?(C) and [¢ € nacc(Cs) =
cf(8) = A] (such a sequence exists by [6, 2.4(3)]). Let J5 = J& + acc(C;). Now apply
part (2).

(2) For each 6 € S let (45 : « € C;5) be a sequence of distinct non-empty subsets
of u to be chosen later. By induction on { < A we try to define E;,(Y¢ : a € §),
(Z{,: o0 € E; and y < p) such that

E; is a club of A*, decreasing in ¢,

for y < g,
Zg,y = {a: a € E; Nnacc(C;) and y € 45},
Yy ={y < u:Z, #0modJs}.

E¢4y is such that

{6eS§: Y§ = Yg“ and J € nacc(E¢yy) and Eryy Nnace(Cs) € J5}

is not stationary and moreover disjoint to E34, hence is empty.

If we succeed to deﬁnf, E;, for each { < 4, then E =: ﬂCdE,; is a club of AT,
and since At ¢ id?(C), we can choose § € S such that & = sup(E N nacc Cj)
and E N nace(Cs) # @ mod Js. Then as UKFZ%QE N nacc(Cs) for each { < A
necessarily (by the requirement on J;) for some y < pu, Zg’y # ( mod J;, hence
Y § # 0 so that (Y, g :{ < A) is a strictly decreasing sequence of subsets of p, and
since 4 < cf(u™) = cf(4), we have a contradiction. So necessarily we will be stuck
(say) for {(x) < A.

We still have the freedom of choosing 45 for « € C;.

Case 1. u regular.
By induction on o € C; we can choose sets A5 such that

(i) A3Cu, |43 =y, (45 :a € Cs,otp(xN Cs) < u) are pairwise disjoint,
(i) for B € CsNa, 42N 45 is bounded in g,
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(iii) if u > Ny then A5 is non-stationary (just to clarify their choice).
There is no problem to carry out the induction.
We shall prove later that
(x) if ECEys) is a club of 47,8 € SNacc(E) and 6 = sup (£ Nnacc Cs) and
E Nnacc(Cs) # @ mod Js then
(*x); for some a5 € E Nnacc(Cs), the following set Bs is unbounded in u:

Bs ={y < pu:{B:B € Ennacc(Cs) and B # as
and y = sup (43’ ﬂAg)} # 0 mod Js}.

Choose the minimal such that a5 = ocf (for other &’s it does not matter, i.e. for those
for which 6 > sup(E N nacc(Cs)) or Ey,) N nacc(Cs) € Js). Clearly, if E' 2 E” and
of ,af" are defined then o«f < «f”. We shall choose a club E* C Ey,) of A*.

Now for any club E of A* for stationarily many é € § Nacc(E* N E), we have

{y < p:{a:a€E*NENEy,)Nnacc(Cs) and y € 45} # O mod J5} = Yg(*)

(this holds by the choice of {(*)). Let the set of such 0 € S Nacc(E* N E) be called
ZE". Now for each & € ZE', the set

Bs[E,E*] =: {y < p: {B: B € ENE* N Eyyy Nnacc(C;s)
and f§ # of " and y = sup (4% N 45)} # 0 mod J5}

is necessarily unbounded in . So in the same way as we have got Ey.) we can find
club E C E* C Ey(. such that for any club E C E* of A*, for stationarily many 6 € ZE*
we, have Bs[E, Ey,)] = Bs[E*,Ey,)] and of = of™ (note the minimality in the choice
of «f so it can change < A-+1 times; more elaborately if (Eg‘ :{ < A) is a decreasing

sequence of clubs and & € ZE., where E* = ;< Ef> then (ocg‘ :{ < A) is increasing
and bounded in C; (by af' ), hence is eventually constant). Define 45 : Cs — u by
hs(B) = otp (Ba[E*,Eg(*)]ﬂsup(Ag" ﬂAg)) if B# as and hs(B) = 0 if § = ay.
Clearly (hs : 6 € §N arc(E*)) is as required.

Why does (*) hold?

If not, let B = E Nnacc(C;s), so otp(B) = A = u* and B #  mod Js, so for every
o € B we can find ¢, < pt and Y, € J; (for € < p) such that if ¢ € B\Y, \{«} and
€ € [eq4, pt) then sup (45 ﬂAg) #e. Now let ¥, =: [ J{Yyc: € € [€x, )} U {a} and note
that Y, € J5. So for some e* < pu, B; =: {a € B: e, =e*} is # 0 mod J;5. For each
a € By choose y, € A2\(e* + 1) (remember |4| = p). So for some y* < u the set
B, =: {0 € By : y, = y*} is # 0 mod Js. Let a* = Min(B;), and for y € [y*, u) we
define B;, = {x € By : y = sup (4% N4%}. So clearly B, = U{By, : y* <y < u},
hence for some y** € [y*, 1) we have By, # () mod Js, hence y** contradicts the
choice of g, = e*.

Case 2: u singular.

Let x = cf(u), so by [5, Ch. II, Section 1] we can find an increasing sequence (4; :
i < k) of regular cardinals > x with limit g such that 1 = u* = tcf(J], <Kl,-/.],fd ),



Sh:572

164 S. Shelah ! Annals of Pure and Applied Logic 84 (1997) 153-174

and? let (f, : « < 4) exemplifying this. Without loss of generality, Uil <
fai) < 4. Let gk x u X kX u— pu be one to one and onto, let fﬁ = Jotp(unc;s) for
o € Cs and let 45 = {g(i, £3(0).J, fU()) ] < K}

If 6 = sup(Eyx) Nnacc(Cs)) and Eyxy N nace(Cs) # @ mod Js then (as Js is
A-complete) choose Y5 € Js such that for each i < kx, € < A4; we have
(*) (3B)IB € Eyx)Mnace(Cs) & B¢ Vs & f3(1) =e]
= {B: B € Eyx) Nnace(C;) & fj(i) = €} # O mod Jj.
Choose i(8) < k such that

B} =: {f§(i(3)) : B € Eyx) Nnacc(Cs) and B ¢ ¥}

is unbounded in /.

Let & = ég be the e-th member of BY, for ¢ < . For each such ¢ < x for
some jo = jo € (i) + 1+ ¢,x) we have B’ =: {f3(jc) : f}(i(8)) = & and
B € Ey4) Nnacc(Cs) and B ¢ Y5} is unbounded in 4.

Let 45, be a one to one function from [Uj <e A,-,z; ) into Bé"s.

Lastly, we define h; as follows:

if BECs e <k, f3(i(6))=2¢ and hso(y) = f3(;2)
(soy € [Uj<5'1j’ A¢)) then hs(B) =7y

and hs(f) = 0 otherwise. The rest is similar to the regular case. [

3.3. Claim. If A = u*, p regular uncountable, and SC{d < A : cf(d) = u} is
stationary, then for some strict S-club system C with Cs = {a5¢ : { < u}, (where
as,¢ Is strictly increasing continuously in {) for every club E C A for stationarily many
dES,

{¢ < u:aseq) € E} is stationary (as a subset of p).

3.4. Remark. (1) If § € I[4] then without loss of generality we can demand (a) or
we can demand (b) (but not necessarily both), where
(a) X, ={CsNa:8 €S, is such that « € nacc(C;)} has cardinality < 4,
(b) a € nace(Cs) = C, = CsNa but the conclusion is weakened to: for every club
E of 2 for stationarily many d € S the set {{ < p: (a5, %5041) NE # 0} is
stationary.
(2) In contrast to [7, 3.4], here we allow u inaccessible.
(3) Clearly Claim 3.1(2) can be applied to the results of Claim 3.3, i.e. with

Js ={ACCs:{{ < A:asr41 & A} is not stationary}.
Proof. We know that for some strict S-club system C° = (C : & € S) we have

A ¢ id,(C?) (see [6, 2.3(1)]). Let CY = {ot‘g :{ < u} (increasing continuously in ).
We shall prove below that for some sequence of functions & = (hs: 6 € S), hs : u — p

2 For the rest of this case “A = u*” is not used; also J84 can be replaced by any larger ideal.
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we have:

(%) for every club E of u* for stationarily many é € S Nacc(E),
the following subset of y is stationary:

Ag’* ={{<u: oc? € E and some ordinal in {a‘g < ESh(D))
belongs to £}.

The proof now breaks into two parts.

Proving (*); suffices. For each club E of 4, let Zz =: {6 € §: 6 = sup(E N
nacc(CY))}, and note that this set is a stationary subset of 4 (by the choice of C°).
For each such E and 6 € Zg let f;5 5 be the partial function from u to u defined by

f5e(0) = Sup{l:{ < &< hs({) and «x‘g € E}.

So if there is no such &, then f, £({) is not well defined (i.e. if the supremum is on
the empty set) but if & = f g({) is well defined then ag € E, & < hs({) (because oc‘g
is increasing continuously in ¢ and E is a club of 1). Let Yz =: {6 € Z¢ : Dom(f5 )
is a stationary subset of u}. So by (x);, we know that

@ for every club E of u* the set Yz is a stationary subset of u*.
Also

®, if E; CE; are clubs of u* then Zy, CZz and Yz, CYg and for § € Yz,
Dom(fs,) CDom(f5s 5 ) and { € Dom(f5£,) = f6.6() < f5£().

We claim that

®, for some club Ey of u* for every club E CEy of u* for stationarily many
o € § we have:
(i) 6 = sup(E Nnacc Cs),
(ii) {¢ < u:{ € Dom(f5s) (hence { € Dom fz, s) and fz 5() = fo,,s(0)} is
a stationary subset of u.

If this fails, then for any club Ey of A there is a club E(Ey) C Ey of A, such that

Ag, ={9: 6 € §,6= sup(E(Eq) Nnacc(Cs)) and for some stationary subset ez, 5
of u we have { € eg, s N Dom(fEy),s) = foE).s(0) = fro,6(0)}

is not a stationary subset of 4 = u*. By obvious monotonicity we can replace E(Ep)
by any club of u* which is a subset of it, so, without loss of generality, 4g, = 0.
By induction on n < @ choose clubs E, of u* such that £y = u* and E,y =
E(E,). Then E, =: (,<,En is a club of ut and, by @ above, ¥z, CS is a sta-
tionary subset of A, so we can choose a 3(*) € Yg,. So fg, s) has domain a sta-
tionary subset of u (see the definition of Yz, ) and by @, we know that n < w =
Dom(fz, s%)) © Dom(fE, sxy). Also there is an eg, sx), 2 club of u, such that

{ € ek, a00) N DOM(fE,,,,60¢)) = [Ep,606)(E) < [E,806(0)
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(see the choice of E,y; = E(E,), i.e. the function E and ®,). So esx) =: [, <, €E..60%)
is a club of u and, as Dom(fg, s+)) is a stationary subset of u, we can find {(x) €
esxy N Dom(fg, 5x)); hence {(x) € (,., Dom(fE, s0x)) N[, <q €E.,60%), SO that
(fE,.000)({(%)) 1 n < w) is a well-defined strictly increasing w-sequence of ordinals —
a contradiction. So ), cannot fail, and this gives the desired conclusion.

Proof of (x); holds for some h. So assume that for no & does (x) ; bold, hence
(by shrinking £) we can assume that for every h= (hs 0 €S8), hs : u— p, for
some club E for every d € S, AZ’* is not stationary (in yu). By induction on n < o,
we define E,, &' = (hj:0€8), & =(ef:0¢€8), with E, a club of A, €} club of
W, h3:p— p as follows.

Let Eg = A, h3(0) = {+1 and €% = p. If Eq,...,En, R ,..., k", &,..., & are defined,
necessarily (x); fails, so for some club E,;1 of A for every 6 € S Nacc(E,41) there

is a club ]! Cacc(e?) of p, such that

Leel = {ad < E<h ()} NEpi) = 0.

Choose h’g“ o u — posuch that (V{ < p)(R3(0) < hg“(C)) and if 6 = sup(E,+ N
nacc(CY)) then { < p=> {af : { < & <HFT({)} N Eny1 # 0. There is no problem to
carry out this inductive definition. By the choice of C°, for some & € ace((), <, En )
we have 6 = sup(d4’), where 4’ =: (acc(),_,, E») Nnacc(CY). Let A C u be such that
A4 = {oczS : { € A} (remember ocgs is increasing with {) and let { be the second member
of (<€} As A’ is unbounded in &, clearly 4 is unbounded in u and (,_, €} is a
club of u as p = cfin) > No. Also as 4’ gnacc(Cg) clearly 4 is a set of successor
ordinals (or zero).

Note that sup(e2n{) is well defined (as min(e}) < min (Ny<wed) < ) and sup(edn
{) < { (as { is a successor ordinal). Now (sup(eSN{):n < ) is non-increasing (as
e5 decreases with n), hence for some n(x) < w we have n > n(x) = sup(ef N {) =
sup(€f™* N {) and call this ordinal ¢ so that & € eﬁ(*m and hg(*)(f) = h:;(*)“(é), s0
we get a contradiction for n(x) + 1.

So (x); holds for some h, which suffices, as indicated above. [I

3.5. Discussion. (1) We can squeeze a little more, but it is not so clear if with much
gain. So assume that
(*)o p is regular uncountable, 1 = p*, SC{é < A : cf(§) = u} stationary, I an
ideal on S, C = (C; : 6 € §) a strict S-club system, J = (J; : & € S) with J;
an ideal on C; extending J& + (acc(Cs)), such that for any club E of 1 we
have {§ € S: ENC; # O mod Js} # B mod 1.
(2) If we imitate the proof of Claim 3.3 we get
(x) if for 6 € §,J;5 is not y-regular (see the definition below) and y < u then we
can find e = (e;:d € S) and § = (g5 : & € §) such that
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()] es is a club of &, e; Cacc(Cs), gs : nacc(Cs)\(min(es)+ 1) — e; is defined by
gs(a) = sup(es Na) and for every club E of A

{6 € § : ENnace(Cs) # 0 mod J5 and
Rang(gs | (E Nnacc(Cs))) is a stationary subset of §} # ( mod L.

(3) An ideal J on a set C is y-regular if there is a set ACC, 4 # @ mod J and
a function £ : 4 — [y suchthat y < y = {x € 4:9 ¢ f(x)} =0 mod J. If
¥ = |C|, we may omit it. (How do we prove (x);? Try yx times E, ( eg 10 €8S) (for
{<0)
(4) We can try to get results like Claim 3.1. Now
(x); assume that A,u,8,7,C,J are as in (%) and &,§ as in (%)} and k < p and
for 6 € S, JJ = {aCe;s: {a € Dom(gs) : g(a) € a} € Js} is weakly normal
and u satisfies the condition from [6, Lemma 2.12]. Then we can find A; :
es — K such that for every club E of 4, {6 € S : for each y < x the set {x €
nacc(C;s) : hs(gs(2)) = 7} is # @ mod J5} # 0 mod /.
(Why? For each & € S, € acc(es) choose a club ds , C es Na such that for no club
d Ces of & do we have (Vy < 8)(3a € acc(es))[d Ny Cds ). Now for every club E
of A let Sg = {8 : E Nnacc(Cs) # 0 mod Js, and g4 (E Nnacc(Cs)) is stationary} and
for § € E and € < pu, we choose by induction on { < k, £(d,¢) as the first £ € e5 such
that: & > U, .. ¢(6,() and {o € Dom(gs) : « € E and the e-th member of dj,g,() is
in the interval [|J, ., ¢(3,(), )]} # @ mod J;.
(5) We deal below with successor of singulars and with inaccessibles, we can do
parallel things.

3.6. Claim. Suppose u is a singular cardinal of cofinality k,k2Re and SC{d <

ut : cf(8) = K} is stationary, and C = (Cs : 6 € ) is an S-club system satisfying

ut ¢ id?(C,JPH) where JOH = (Jgg“] : 86 €S) and Jgg“] =: {4 CCs : for some 6 <

U, we have & > sup{a € A4 : cf(«) > 6 and « € nacc(Cs)}}. Then we can find a

strict A-club system &* = (eJ : 6 < ) such that

(*) for every club E of u*, for stationarily many 6 € S, for every a < 6 and

6 < u for some B we have

(x*)£.p B € nacc(Cs) and f > o and cf(f) > 0 and {y € eg‘ 1y € E and min(eg\(y +
1)) belongs to E} is a stationary subset of .

3.7. Remark. (1) We know that for the given u and S there is C as in the assumption
by [6, Section 2]. Moreover, if k > Ry then there is such nice strict C.

(2) Remember J;’[" I = {4CCs : for some 6 < pand ¢ < 6 we have (Vf €
Ci)B < aV cof(f) < 6V B € nace(Cs))}.

(3) We can worm « € nacc(C;) in the definition of Jgi”] if we weaken f € nacc(Cs)
to f € Cs in (xx)gg.

Proof. Let & = (eg : f < A) be a strict A-club system where eg = {ocf < cf(P)}
is a (strictly) increasing and continuous enumeration of eg (with limit §). Now we
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claim that for some & = (kg : f < A, B limit) with kg a function from eg to eg and

/\aEe,; hﬁ(a) > o, wWe haVe:

(%) for every club E of u*, for stationarily many 6 € SNacc(E), A ¢ Jgg“] where

AS is the set of all B &€ C; such that the following subset of eg is stationary
(in B):
{y €ep:y € E and min(eg\(y + 1)) € E}.

The rest is like the proof of Claim 3.3 repeating x* times instead of w and using
“Jg“] is ( < k)-based”. O

3.8. Claim. Suppose J is inaccessible, S C A is a stationary set of inaccessibles, C
an S-club system such that A ¢ id?(C). Then we can find h = (hs : 6 € S) with
hs . Cs — Cs, such that o < h(a) and

(x) for every club E of A, for stationarily many 8 € S Nacc(E) we have that

{a. € Cs:a € E and h(a) € E} is a stationary subset of 9.

So for some C; = {as; : { < 0} CCs,05¢ increasing continuously in { we have
h(as ) = og r 41

Remark. Under quite mild conditions on A and S there is C as required — see [6,
2.12, p. 134].

Proof. Like the proof of Claim 3.3.

3.9. Claim. Let A = cf(A) > Wo, S C A stationary, D a normal A -saturated filter on
4, § is D-positive (i.e. S € Dt, A\S ¢ D).
(1) Assume that ((Cs,15): 6 € S) is such that
(@) Cs S 6 =sup(Cs),1s S 2(Cs),
(b) for every club E of 4,

{6 € S : for some A € I5 we have 6 > sup(A\E)} € D*.

Then for some stationary Sy C S,Sy € D we have
(b)* for every club E of

{6 €S8 :for no A€l do we have 6 > sup(4\E)} = mod D.

(2) Assume that (Ps: 0 € §) is such that (here really presaturated is enough)
(%) for every D-positive Sy C S for some D-positive S; CSp and ((Cs,15) : § € S)
we have (Cs,15) € Ps,C5 C 6 = sup(Cs),1s CP(Cs) and for every club E of
A {6 €8 : for some 4 € I5,6 > sup(A\E)} # 0 mod D.
Then
(xx) for some {(Cs,I5) : 6 € S) we have (Cs,I5) € P5,C5Cé = sup(Cs), I5C
P(Cs) and for every club E of 7.

{6€S: forno A€ls5,6 > sup(A\E)} = 0 mod D.
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Remark. This is a straightforward generalization of [8, Ch. III, Section 6.2B]. Inde-
pendently, Gitik found related results on generic extensions which were continued in
(1, 31

Proof. The same as the proofs cited above.

3.10. Lemma. Suppose A is regular uncountable and SC{6 < At : cf(d) = A} is
stationary. Then we can find ((Cs,hs,%5): 0 € S) and D such that
(A) D is a normal filter on A*,
(B) Cs is a club of 6, say Cs = {as¢ : { < A}, with ws ¢ increasing continuously
in ¢,
(C) hs is a function from Cs to 35,25 < 4,
D)if A€ Dt (ie ACAT & A™\4 ¢ D) and E is a club of A%, then the
Sfollowing set belongs to D*:

Bp g =:{0:0€4NS, € acc(E) and for each i < y;
{C < A: o541 €E and hs(os,e) =i
(and o5 € E)} is a stationary subset of A}

(hence, for some o« < A% and [ < A, the set Bp 4, = {0 €Bpq: 00 =5} is
in D).
(E) If y < AT and y satisfies one of the conditions listed below, then S, , = {0 €

S :y =min(Cs) and x5 = x} € DT where

() 2=yx",

(B) A is inaccessible not strongly inaccessible, y < A and there is T such that:

(a) T is a tree with < A nodes and a set I of branches, |I'| = A,

(bY if T"CT,T' downward closed and (3*n € I')(n a branch of T') then T’
has an antichain of cardinality = y,

() A is inaccessible, not strongly inaccessible, and 8 = min{0 : for some
x < A we have ¥° > A}, and y = min{y : ¥’ > A and x>0}.

3.11. Remark. (1) We can replace At in Lemma 3.10 by any u = cf(u) > 4, as if
u > At we have even a stronger theorem. (2) We probably can add

(8) x < A and A is strongly inaccessible, not ineffable; i.e. A is Mahlo and we

can find A = (A, : p < A is inaccessible), 4, C p so that for no stationary

I'C{u < A:u inaccessible} and AC A do we have: p€I' = 4, =ANp

Proof. Let for 4 = cf(d) > N,

O=0;, ={y<2:if {6 < it :cf(d) = A} is stationary
then we can find ((Cs,hs) : 6 € S') such that
(a) Cs is a club of & of order type 4,
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(b) hs:Cs—y,

(c) for every club E of A" for stationarily many
8 € 8’ Nace(E) we have:
i<y=>Bg={a€Cs:acEha)=iand

min(Cs\(a + 1)) € E}
is a stationary subset of J}.

In 3.12 we show
@ for each of the cases from clause (E), the y belongs to €.

Proof of sufficiency of ). We can partition S into A* stationary sets so we can
find a partition (S, : x € © and « < A*) of § into stationary sets. Without loss of
generality, o < min(S,,) and let ((C3,A3) : & € S,,) be as guaranteed by “y € ©”
for the stationary set S, ,. Now define Cj,hs for § € § by:

Cs is CQU{a}\a if 6 € S, and a < &,hs(P) is AY(B) if B € C5 N CY and is zero
otherwise. Of course, x5 = x if 6 € S, ,.
Lastly, let

D ={4CAi": for some club E of it, for every
o € SNacc(E)\4 for some i < y;,
the set {f € Cs: B € E,hs(f) =i and min(Cs\(f + 1)) € E}
is not a stationary subset of J}.

So D and {(Cs,hs,x5) : & € S) have been defined, and we have to check clauses
(A)—(E).
Note that & # @ and the proof which appears later does not rely on the intermediate

proofs.
Clause (A): Suppose 4; € D for { < 4, so for each { there is a club E; of AT,

such that
(x) if 6 €8, and 6 € S Nacc(E)\A, then for some i5 < y; we have
{a € Cs:a€ E, min(Cs\(a + 1)) € E and hs(a) = is} is not stationary in J.
Clearly, clubs of A* belong to D. Clearly, 4D A; = A € D (by definition), witnessed
by the same E;. Also 4 = 49N A4, € D as witnessed by £ = Ey N E;. Lastly,
A=Nrc; Ac={o < A* 1@ € [\, 4} belongs to D as witnessed by E = {« <
At o€ (<14} Note that if 6 € S Nacc(E)\4 then for some { < &

d € SNacc(E)N\A; C(S Nacc(E)\AH) U + )

as E/\E is a bounded subset of ¢ included in 1+ {; so from the conclusion of (x) for
0,A4r,Er we get it for {,A4,E.

Lastly, @ ¢ D; otherwise, let £ be a club of At witnessing it, i.e. () holds in this
case. Choose y € © and « = 0 and use on it the choice of (CJ : & € S, ¢) to show
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that for some & € S, o C S contradict the implication in (x).

Clause (B): Trivial.

Clause (C): Trivial.

Clause (D): Note that we can ignore the “o5; € E” as 6 € acc(E) implies that
it holds for a club of {’s. Assume that 4 € D' (for clause (D)) and £ is a club
of AT, which contradicts clause (D), so Bg4 ¢ D*; hence A*\Bg4 € D. Also E
witnessed that A*\(4\Bg4) € D by the definition of D. But by clause (A) we know
that D is a filter on A1, so (A"\Bg4) N (AT\(4\BE 4) belongs to D, but this is the
set AT\Bg 4\(4\Bg.4) which is (as Bg 4 C A by its definition) just A\4. So A\4 € D,
hence 4 ¢ D ~ a contradiction.

Clause (E): By the proof of § ¢ D above, if y € ©, also S, , € DT, and by the
definition of C,C I S, is as required. So it is enough to show

3.12. Claim. If y < A =cf(1) and y satisfies one of the clauses of Claim 3.10, then
x € © (from the proof of Claim 3.10).

Proof.

Case (a): By Claim 3.1.

Case (). Like the proof of Claim 3.1, for more details see [7, Section 3].

Case (y): This is a particular case of case (f). Use T = |J,_, 0. rc?y and we
should check {(b), we do it by cases: if y > 6 and cfy = y, necessarily for some
a < 6,|T' N x| = x. Similarly, if y > 6 and y > cfy aswlogv e I' = |{n eI
v < n}| = A. Lastly, if y<#, then 2<% < 4 and (2<9)f® = 29 50 @ is regular and it
should be clear. [

More generally (see [7]):

3.13. Claim. Let 2 = cf(l) > x. A sufficient condition for y € @, is the existence
of some { < A such that
Q) in the following game of length {, second player has no winning strategy even
for winning for at least one of A boards: in the e-th move first player chooses
a function f; : A — y and second player chooses B, < y. In the end, first
player wins the play if {a < A : for every ¢ < v, fo(a) # B:} is a stationary
subset of A.
(If we weaken the demand in ©; from stationary to unbounded in A, we can weaken
it here too).

4. More on Prg
4.1. Claim. Prg(At,AT,AT, Q) for A regular.

Proof. We can find 4 : A — AT such that for every y < A" the set S, =: {6 < AT :
cf(6) = A and h(8) = y} is stationary, so (S, :y < A) is a partition of § =: {6 < AT :
cf(8) = A}. We can find C? = (Cs : § € S,) such that C; is a club of & of order type
A. For any v € ®>(1%) we define:
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(a) for £ < £g(v), if W(£) € S then let
ar = ay ;= {otp(Cyey N k)Y 1 k < £g(v) and (k) < W(£)},

(b) ¢, is the £ < £g(v) such that
(i) v(£) €8,
(ii) among those with sup (a, ,) is maximal, and
(iii) among those with ¢ minimal,
(c) if £, is well defined let d(v) = A{v(¢,)) otherwise let d(v) = 0.
Now suppose ((uy,0y) : & < AT),y < AT and E are as in Definition 2.1 and we
shall prove the conclusion there. Let
E* = {8 €E:¢is a limit ordinal and &« < § = ¢

> sup [U{Rang(n) : 1 € u, Uvy}1}-
Clearly E* CE is a club of AT.
For each 6 € §, let
Sfo(8) =:sup[6 N [J{Rang(v) : v € us Uvs}].

As cf(d) = A > |u, Uv,| and the sequences are finite, clearly fo(6) < 6. Hence by
Fodor’s lemma for some é*,Syl =: {0 € S, : fo(6) = &*} is a stationary subset of
At (note that y is fixed here). Let &% = |J;_; a,,; where ay; is increasing with i and
laz,i| < 4. So for 6 € S}
fi(6) = Min{i < A:6N | J{Rang(v):v € us Uvs}
is a subset of @, ;}

is a well defined ordinal < A and hence for some i* < A the set
S2=:{6€38, : f1(8)=i*}

is a stationary subset of A*. For 6 € S let
bs =: {otp(Cp Na):a < B €8 and both
are in az ;+ U {0} U|J{Rangv:v e us U U,;}}.

So bs is a subset of 4 of cardinality < A, and hence &5 =: sup(bs) < 4 and hence
for some e*

SV3=Z{(§€SY2:E§=€*}

is a stationary subset of A*. Choose f* such that

(x) B* € S2NE* and f* = sup(B* NS2 N E*).
As Cg. has order type 4 (and is a club of f*), for some a* € f* ﬂSf N E* we have
otp(Cp« Na*) > g*,
We want to show that o*, f* are as required. Obviously, a* < f*,a* € E and p* € E.
So assume that v € u,.,p € vg- and we shall prove that d(v'p) = y, which suffices.
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As h(f*) = vy (as p* € SggSy) it suffices to prove that (V'p)(¢y,) = f*. Now
for some Zo,7; we have v(£y) = a*,p(£1) = P* (as v € uy~,p € vg-) and since
otp(Cpg- Na*) > e*, by the definition of 7, it suffices to prove that
Q if £,k < £g(v'p),(V'p)(¢) € S,(v'p)k) < (V'p)¢) then

(1) otp[Civpyey N (V' p)K)] < e* or

(i) (o)) = .
Assume that £,k satisfy the assumption of ® and we shall show its conclusion.

Case 1. If (v'p)(¢£) and (v"p)(k) belong to

a - U{B*} UJ{Rang(n) : n € ug- Uvpx}
then clause (i) holds because
() otp(Civpxey N (Vp)(k)) € b« (see the definition of bg-) and
(B) sup(bg-) = gp~ (see the definition of £4-) and
() ep- = e* (as B* €S> and see the choice of e* and S?).
Case 2: If (v'p)(¢) and (v"p)(k) belong to

az i~ U U{Rang ()N Eup U sz‘}

then the proof is similar to the proof of the previous case.

Case 3: No previous case.

So (v'p)(¢) and (v'p)(k) are not in ay ;», hence (as {v, p} C(u,» Uvg+), and {a*, f*}
cs2cs)

me{t,k} & m<{Lg(v)= (Vp)m)=vim)=a*,
me{t,k} & mz{lg(v)= (Vp)m)=p(m—£Lg9(v)) > .

As B* € E* and f* > a* clearly sup (Rang(v)) < §*, but also (v'p)k) < (v'p)¢)
(see @).

Together necessarily k& < Zg(v), v(k) € [o*,B*), £ € [£g(v),£g9(v) + £g(p)) and
p(£—£g(v)) € [B*,AT). If p(¢) = B* then clause (ii) of the conclusion holds. Otherwise
necessarily v(£) > f*, hence

otp(Cpye)) N (V' p)(K)) = otp(Cpr—zgvy) N V(K))
< otp(Cprr—rgevy) N B*) < sup (bp-) < g*

so clause (i) of ® holds. O

Remark. Actually we now prove Pro(A*, A%, 1%, 2).

4.2. Conclusion. For A regular, Pri(i*?, 212,212 1) holds.

Proof. By Claim 4.1 and Lemma 2.2(1}. O

4.3. Definition. (1) Let Prg(4,60,0) means that for some =, an unbounded subset of

{tr:1 < 0,7 is a cardinal (finite or infinite)}, there is a d : > (4 x Z) — o such that
if y < @ and 7 € E are given and {((uy,0,): o < 1) satisfies
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() u, C> (A x E)\?Z(A x 8),
(i) v, S (A x E)\*Z (4 x &),
(iii) |ua| = |va] = 7,
(iv) v Eug = v(£g(v) — 1) = (y,7),
(v) peu, = p(0) = <)’, T>,
(vi) n €uy Uv, = (3O)((£) = (o, 7))
then for some o < 8 we have

vEug & peEuv, = (vVp)d(p)l=(y1).
(2) Let Pr¢(A,0) means Prg(4,4,0).

4.4. Fact. Pr¢(A,4,0,0),0 = o implies Prs(A,0,0).

Proof. Let ¢ be a function from ©®> 1 to § exemplifying Prg(4,4,0,0). Let e be a one
to one function from 6 x Z onto 6.
Now we define a function d from > (4 x &) to w:

d(v)y= Min{¢: c({e(v(m)):m < £g(v))) = e(v(£))}. O
4.5. Claim. If Pr¢(2*,0), A regular and ¢ < ). then Pri(A*%,A*2, %2 ).
Proof. Like the proof of Theorem 1.1.

4.6. Remark. Remember that by [6, 4.7], if u > cf(u)+ @, then Pri(u*?, u*?, u*?, o).
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