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Abstract 

We prove that colouring of pairs from N2 with strong properties exists. The easiest to state 
(and quite a well-known) problem it solves is: there are two topological spaces with cellularity 
NI whose product has cellularity Nz; equivalently, we can speak of cellularity of Boolean algebras 
or of Boolean algebras satisfying the N_A.c. whose product fails the &-CC We also deal more 
with guessing of clubs. 
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0. Introduction 

This paper is organized as follows: In Section I we prove P~~(NI,N~,N~,N~) which 

is a much stronger result. In Section 2 we define a property implicit in Section I, 

note what the proof in Section I gives, and look at the related implications for suc- 

cessor of singular non-strong limit and show that Prl implies Prb. In Section 3 we 

improve some results mainly from [7], giving complete proofs. We show that for p 

regular uncountable and % < fi we can find (Ch : d < pf,cf(6) = p) and functions 

hd, from Ch onto x, such that for every club E of JJ+ for stationarily many 6 < p- 

we have: cf(6) = p and for every y < x for arbitrarily large x E nacc(C6) we have 

z E E, h&(r) = i’. Also if CA = (~6,~ : E < p} (ad.[ increasing continuously in E), 

we can demand that {E < ~1 : CQ~+I E E (and ~6.~ E E)} is a stationary subset of p. 

In fact, for each y < p, the set {E < p : LY~,~._ 1 E E, IQ, E E and J(LY~.~+~ ) = r} is 

a stationary subset of p. We also deal with a parallel to the last version stated (but 
without f‘) to the case p is singular and to the case p is inaccessible. In Section 4 we 

prove that Pr,(~+2,j.+2,j.+2,j.) holds for regular i. 
For history, references and consequences see [5, API] and [5, Ch. III, Section 01. 
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1. Retry at &-CC. not productive 

1.1. Theorem. Pq(N2, HZ, Nz, No). 

1.2. Remark. (1) Is this hard? A posteriori it does not look so, but we have worked 

hard on it several times without success (worse: produced several false proofs). We 

thank Juhasz and Soukup for pointing out a gap. 

(2) Remember that Pr, (A, p, 8,~) means that there is a symmetric two-place function 

d from ;i to 0 such that if (ua : a -c ,u) satisfies 

and y < 0 then for some CI < p we have 

i E ua & t E u, * d(i, 5) = Y. 

(3) If we are content with proving that there is a colouring with N1 colours, then we 

can simplify somewhat: in stage C we let c(p,cr) = dsq(ph,@,a)) and this shortens 

stage D. 

Proof. 

Stage A: First we define a preliminary colouring. 

There is a function d,, : w’(ol) ---f 01 such that: 

@ if A E [oI~]~’ and ((p,,v,) : a E A) is such that pa E olol, v, E w’o~, 

CI E Rang (pax> n Rang (v, ) and y < w1 then for some c < 5 from A we 

have: if v’,p’ are subsequences of vc, pc. respectively, and [ E Rang(v’), 5 E 

Rang (p’) then 

dsq(v’*p’) = y. 

Proof of 8. Choose pairwise distinct Q E “2 for CI < 01. Let do : [wI]~ --+ 01 be 

such that: 

(*) if iz < w and UC,! < WI for 5 < 01, / < n are pairwise distinct and y < w1 

then for some c < 5 < 01 we have e < n + y = do({q,~,ag,~}) (exists by 

[4, see (2.4), p. 1761; the n there is 2). 

Define dsq(v) for v E o’(ol) as follows. If /g(v) < 1 or v is constant then dsq(v) 

is 0. Otherwise, let 

n(v) =: max{/g(q,(dj n q”(k)) : L < k < [g(v) and v(e) # v(k)} < w. 

The maximum is on a non-empty set as /g(v) > 2 and v is not constant; remember 

qE E w2 were pairwise distinct so v(L) # v(k) + qvce) n q,,(k) E O’2 (is the largest 
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common initial segment of qv(e), q”(k)). Let a(v) = {(e,k) : L’ < k < tg(v) and 

eg(qV(f) n q”(k)) = n(v)} so a(v) is non-empty and choose the (lexicographically) 

minimal pair (e,, kV) in it. Lastly, let 

&q(v) = do({v(~,),v(k,))). 

So d,, is a function with the right domain and range. Now suppose we are given A E 

[wIN1, Y < w and pa,vr E “‘(w> f or a E A such that c1 E Rang@,) n Rang(v,). 

We should find c1 < p from A such that dsq(v’*p’) = y for any subsequences v’, p’ of 

v,, pg, respectively, such that c1 E Rang(v’) and /3 E Rang(#). 

For each cc E A we can find m, < o such that: 

(*IO if t < k < tg(v,^pd and (vG(*poL)(O # (vaApd@) then 

~b-~,)(0 1 mu # w,-p,)(k) 1 mu. 

Next we can find B E [AIN’ such that for all CI E B (the point is that the values do not 

depend on a) we have: 

(a) eg(v,) = m”, lg(p,) = m’, 
(b) a* = {(t,k) : 8 < k < m” + m* and (vslApa)(e) = (v,*p,)(k)}, 

(c) b* = (8 < m” + m1 : CL = (vN^pa)(f)}, 

(d) m, = m2, 

(4 hz~p,)~~) f mu : e < m” + m’) = ii*, 

(f) (Rang(v,^p,) : CI E B) is a A-system with heart w, 

(g) u* = {G : (VzAPa>(Q E w) ( so u* # {t : t’ < m” + m’} as CI E Rang(v,*p,)), 

(h) c$ = (v~^P~)(~) for e E u*, 

(i) if CI < /II’ B then supRang(v,^p,) < /?. 

For i E B let p =: ((vc*pl)(Q : L’ < m” + m’, 8 6 u*) and apply (*), i.e. the choice 

of do. So for some [ < l from B, we have 

8 < m”+m’ & 8 G u* * Y = do({(vi^pi)(e),(v,“p~)(e))). 

We shall prove that [ < r are as required (in 63). So let v’,p’ be subsequences of 

vi, ps (so let v’ = vc 1 v1 and p’ = pt r ~2) such that [ E Rang(v’),< E Rang(#) 

and we have to prove y = dsq(v’*p’). Let z = v’Ip’, so z = (vj*pt) 1 (~1 U (m” + UZ)) 
(in a slight abuse of notation, we look at z as a function with domain 01 U (m” + ~2) 

and also as a member of “‘(01) w h ere m + u =: {m + L’ : t E u}, of course). By the 

definition of d,, it is enough to prove the following two things: 

(*)I n(v’^p’) B m2 (see clause (d) and (*)a above), 

(*)2 for every et,/2 E v1 U (m” + vz) we have 

eg(v,(e,) n w2)) E [m2, 0) * Y = do({$~l), ~(~2))). 

Proof of (*)I. Let 81 E vr and /2 E v2 be such that vc(/t) = [ and p5([2) = 5. So 

clearly /I, m” + 82 E b* (see clause (c)) and qPg(c2) 1 m2 = qpC(e,) 1 m2 = qv,(e,) 1 m2 
(first equality as [, 5 E B and ml = rnr =m2 (see clauses (d) and (e)), second equality as 

ylpc(~2) = VvC(~,) since 81, m” + 82 E b* (see clause (c)). But pc(/2) = t # [ = vc(Cr), 
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hence qps(e2) # r~,,,(e,), so together with the previous sentence we have 

Hence n(r) 2 m2 as required in ( *)I. 

Proof of (*)2. If et < t?z are from ul, by the choice of m2 = rnc, the proof is easy. 

Namely, if (d1,82) E a(r) then tei,e2) E a(~) and dg(q,(e,) II qr(ez)) = dg(rl+) n 

+v,)) < mi = m 2. Similarly, if ei,e2 E m” + v2, by the choice of m2 = rnt, it is easy 

to show that eg(q7(c,) 0 I) < m2. So it is enough to prove: 

(*)3 assume el E ~1, 82 E ~2 and 8g(rlv;(e,)nrIpc(e,)) E [m2,0) then y = d0({q(81), 

P5(~2)1). 

Now the third assumption in (*)3 means nv;(e,) 1 m2 = qptCd2) r m2 and as [, 5 E B we 

know that rps(ez) r m2 = qpc(dz) t m2. Together we know that q,,;(e,) 1 m2 = qpi(e2) 1 m2, 

hence by the choice of ml = m2 necessarily Q,~((,) = qp;(L1) so that vi(ei) = pc(/z) 

and (see clause (b)) also Q&i) = p,~(&). So 

~O(M~l)>Pd~2n) = dOC{Vd~l), Vd~l )>I. 

The latter is the required y provided that ei $ u *. Equivalently, vc(et) # vr(et) but 

otherwise also vc(/i) = p5(e2) so Lg(q,,(e, )nqPS(e2)) = co, contradicting the assumption 

of (*)s that tg(q+,) n I) E [m2, o) (so it is not equal to 0). 

So we finish ’ proving (*)2, hence $3. 

a 

Stage B: Like Stage A of the proof of [5, Ch. III, 4.4, p. 1641. (So for a < fl < 02, 

does not appear in ~@,a)). 

Stage C: Defining the colouring: 

Remember that 9; = (6 < N, : cf(6) = Ng}. 

For e = 1,2 choose hc : 02 -+ cot such that S,” = 9: n h;‘({tx}) is stationary for 

each c( < oe. For a < ~2, let A, C 01 be such that no one is included in the union 

of finitely many others. 

For a < p < 02, let 4 = eb,a be minimal such that 

&, (oh, (BY a)) E A,(,Q)v) 

and lastly let 

4P, a) = 44 P> =: h2((dP, a)Xff,,)). 

Stage D: Proving that the colouring works: 

So assume that n < o, (ua : a < 02) is a sequence of pairwise disjoint subsets 

of w2 of size 12 and y(*) < 02 and we should find a < /I such that c r (u, x up) 

is constantly y(*). Without loss of generality, a < fi =s max(u,) < min(ug) and 

’ See alternatively Definition 2.2( 1) and Claim 4.1. 
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min(u,) > c1 and let E = (6 : 6 a limit ordinal < 02 and (&)(a < 6 =+ U, C 6)). 
Clearly, E is a club of q. For each 6 E E n 9’f, there is an c$ < 6 such that 

@I E [@) ac p E ug * P(B,&^@) a p(P,a). 

Also for 6 E Y: let 

(so u > S) then E 4 A, 
> 

. 

Note that ~6 < 01 is well defined by the choice of the &‘s. So, by Fodor’s lemma, 
for some [* < WI and CI* < w:, we have that 

w =: (6 E $(*, : a,*=~* and&a=&*} 

is stationary. Let h be a strictly increasing function from 012 into W such that LX* < 
h(6). By the demand on CI* (and W) 

$0 Lx* < CI < 6 E w & p E ug =+ p(B,6)^(6) _a #@,a). 

Hence 

@I c(* < u < 6 E ysp: & BE u,,(S) 

+ Min(8 : E* E A,(p,a)(e)} = Min{/ : p(/?, d)(l) = h(6)); 

hence 

a32 a* < CI < 6 E 9”: & j3 E Q(a) 

* h2W3, @[Min{f : E* E Ap(p,s)(e)H) = 7x*). 

Let 

E. =: (6 -c w2 : 6 a limit ordinal, 6 E E and 

CI < 6 + h(a) < 6 (hence sup(rqa)) < 6)). 

For each 6 E 9’: there is an c$* < 6 such that I$* > a* and 

For each y < WI, 6 I+ I$* is a regressive function on Si ; hence for some m**(y) < 02 
the set S$ =: (6 E ,I$ n EO : ai* = a**(y)} is stationary. 

Let CI** = sup{a**(y) + 1 : y < WI} and note that c(** < 02. Let 

El =: (6 < 02 : for every y < WI, 6 = sup($ n 6) and 6 > a**}, 

and note that El is a club of N2 (and as S; G EO clearly El G Eo) and choose 6* E 

Et ns,:,,,. Then by induction on i < 01 choose an ordinal [i such that ([i : i < 01) is 
strictly increasing with limit 6* and ii E S,‘\(CC **+l). We know that tL < ii + u,c[i 
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and CI < min(u,); hence for every Cli < ii large enough (V/I E u,)(p(li*,&)^(&) g 

p(d*, 8)). 
Choose such CQ E (Uici cj,C). Lastly, for i < 01 choose fii E E fl$ with pi > 6*. 

Now for each i < WI for some t(i) < 6*, 

$3 a E (t(i), a*) & P E uh(&) + p(,6 d* )^(a*) g p(/f a)- 

As 6* = Uico, ii, without loss of generality t(i) = cj(i), and j(i) is (strictly) increasing 
with i and let A =: {E < WI : E a limit ordinal and (Vi < s)(j(i) < s)}. Clearly, A 

is a club of 01. Now putting all of this together we have the following: 

(*)I If i(O) < i(1) are in 4 a E %,,,,,P E uh&,,) then p(P,a) = p(p,6*)^p(6*,a). 
(Why? As j(i(0)) < i(l), see @,). 

(x)2 If i < 01 then /? E uh(A) =+ i E Rang(ph,(j,6*)) (witnessed by pi which 
belongs to this set by $e f $,). 

(*)s If i < 01 then a E ua, =+ i E Rang(ph,(d*,a)) (witnessed by ii which 
belongs to this set by the choice of ai). 

(*)4 If i -c 01 and j? E uh(B) then e = Min{e : E* E A,(~,~*x~)} is well defined 

and ~x(P(P,S*)(~) = Y(*). (Why? BY Cg,). 
Now let vi, for i -c 01, be the concatenation of {p@,J*) : p E up,} and pi be the 
concatenation of {p(6*,a) : a E u,,}. So we can apply 8 of Stage A to (Vi,pi : i < 01) 

and y* (its assumptions hold by (*)I +(*)I +(*)s) and get that, for some i < j < wl, 
we have dsq(v’^p’) = E * whenever v’ is a subsequence of Vi, p’ a subsequence of pj 
such that i E Rang(v’), j E Rang(p’). Now for p E Uh(B,), a E ug we have: 

(i) P(P, a) = P(P, a*)^p(a*, a) (see (*)I ); 

(ii) p(p,6*) is O.K. as v’. (Why? Because it is a subsequence of Vi (see the 
choice of Vi) and i belongs to Rang(p(/?,G*)) by (*)2); 

(iii) p(6*,a) is O.K. as p’. (Why? Because p(d*,a) is a subsequence of pj by the 
choice of pi and j belongs to Rang(p(G*,a)) by (*)j). 

Now by (*)4 the colour c@, a) is y( *) as required and get the desired conclusion. q 

Remark. Can we get Prl (,I+‘, lkt2, 1+2, A) for ;1 regulars by the above proof? If A = A<” 
the same proof works (now Dom(d,,) = w’(nt) and va,pa E “‘(A+)). 
See more in Section 2. 

2. Larger cardinals: the implicit properties 

More generally (than in the remark at the end of Section 1): 

2.1. Definition. (1) Pr6(&1,9,a) means that there is a d : “‘2 --) 8 such that: if 
((u~,v,) : a < 2) satisfies 

ux c_ “‘A, 0,s -1, 

1% U 4 < o, 

vEu,Uv,*aERang(v), 
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and y < 8 and E a club of I then for some a < fi from E we have 

v E 24, & p E u/j * d(v^p) = y. 

(2) P$(& A,& r~) is defined similarly but CI < /? are required to be in E n S. 
Pr,“(A, 1,8, a) means “for some stationary S c (6 < 2 : cf(6) > r} we have P&A, 1, 

8, u)“. If r is omitted, we mean z = G. Lastly P&,,(1,1,, 8,~) is defined similarly but 

demanding M, p E nacc(E) and Pr;(A, 1,0,c) is defined similarly but E = 3,. 

2.2. Lemma. (0) If Prs(J,, I, 8, O) and 81 6 0 and CT] G CJ then Pr6(1,1,01, ol) (and 
similar monotonicity properties for Dejinition (2.1(2)). Without loss of generality 
u, = u, in Definition 2.1. 

(1) rfPrs(i+,1+,3,+,1), then Pr1(1+~,;1+*,1+~,1). 
(2) If Pre(A+, A+, 8, a), so 6’ G A+ then Pr1(;1+*, Lf2, J+2, a) provided that 

(*) there is a sequence d = (A a : tl < A++) of subsets of 8 such that for every 

t( E u C Ai+ with u of cardinality < CJ, we have 

(3) Zf 1 is regular and ,? = ;I<’ then Pr,j(A+, 1+, A+, A). 
(4) In [5, Ch. III, 4.71 we can change the assumption accordingly. 

Proof. (0) Clear. 

(1) By part (2) choosing 0 = 1+, CT = 1 as (*) holds as A+ is regular (so e.g. 

choose by induction on CI < ;l++, A, & A+ see unbounded non-stationary with fi < 

cc =-G- IA, n A,[ d lb). 
(2) Like the proof for Hz, only now { 6 < A++ : cf(6) = A+} plays the role of 9’; 

and let hl : A++ --f 8 and h2 : A++ -+ A++ be such that for every y and e E { 1,2} 

such that [/ = 2 j y < A++] and [8 = 1 j y < 01, the set Sy” = {U < 1+2 : cf(a) = 

;I+ and he(m) = y} is stationary. Finally, if dq exemplifies Pre(;l+,L+,e,a), then in 

defining c for a given c( < j?, let ea,p be the minimal / such that dq(ph,(a,/?)) belongs 

to A,,, (x,b)(~) and let c@, a) = c(a, /?) = hz(p(/?, cr)(e~,~)). Then in stage D, without loss 

of generality, Iu,( = cri < G for a < 1+ and continue as there, but after the definition 

of El and choice of 6* we do not choose ci,ai; instead we first continue choosing 

pi, ti for i < 1+ as there is, without loss of generality, 6* = UiCA+Qi). Only then 

we choose by induction on i < if the ordinal ii such that: ii E S,‘\(N** + I), [i > 

sup [{t(j) : j < i} U {[j : j < i}] and then choose Cli < ii large enough (SO no need 

of the club A of A+). 

(3) As in the proof of 1.1, Stage A. 

(4) Combine the proofs here and those in [5, Ch. III, 4.71 (and not used). 0 

This leaves some problems on Prl open; e.g. 
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2.3. Question. (1) If A > No is inaccessible, do we have Pri(A+, A+, A+,A) (rather 

than with cr < A)? 

(2) If p > No is regular (singular) and A = p”+, do we have Pri(I+, A+,A+,p)? 

Clearly, yes, for the weaker version: c a symmetric two place function from A+ to I+ 

such that for every y < A+ and pairwise disjoint (u, : c( < A+) with U, E [A’]<’ we 

have 

(3 < p)Vi E ua Vj E u&y E Rang p&, i)). 

See more in Section 4. Remember that we know Pq(l+*,l+*, ;lf2, C) for No Go < 1 

by [5, Ch. III, 4.71. 

2.4. Claim. Assume that p is singular, A = p+, 2” > p > rc = rc*, B = cf(0) > cr + 

cf( p) and Pq(0, 6, 0, a). Then Pq(p+, p”+, 0,~). 

Proof. Let 2 = (e, : M < A) be a club system, S C{ 6 < p+ : cf(6) = 6) stationary 

such that A 4 id”( Z 1 S) and c( E es =+ cf(cr) # 0 and 

6=sup(6nS) & x<p 

* 6 = sup({cc E e6 : cf(a) > I+ a’, so 01 E nacc(ea)}) 

and c1 E ep n S + e, C eg (exists by [6, 2.101). Let f = ( fa : a < O), fOL : pL+ --) K 

be such that every partial function g from p+ to K (really, 8 suffices) of cardinality 

6 8 is included in some fa (see [2] or [5, AP1.71). 

So for some f = fa(*) we have the following: 

(*) for every club E of pLf for some 6 E S we have: 

(a) esCE 
(b) if x < p and y < 0 then 

6 = sup({cc E nacc(eg) : f(u) = y and cf(a) > x}). 

This actually proves id,( Z r S) is not weakly 8+-saturated. 

The rest is by combining the trick of [5, Ch. III, Section 41 (using first 6(*) E S 

then some suitable CI E nacc(es(,))) and the proof for HZ. 0 

2.5. Fact. Pri(A+,A’,8,cf(A)) and cf([A]<CfA,&) = A (which is trivial if L = cfA) 

imphes Pr6(i+, I+, 8, cf(n)). 

Remark. This is not totally immediate as in Prl the sets are required to be pairwise 

disjoint. 

Proof. Let K = cf(A) and fa E “1 for c( < A” be such that TV < p + f <& fi. Let 

d : [A+]* + 8 exemplifies Prl(2+,;1+,8,cf(l)). For v E ,‘(A’) we define h&(v) as 

follows. 

If /g(v) < 1 or v is constant, then d&(v) = 0. So assume that /g(v) 2 2 and v is 

not constant. 
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For CI < j3 < I+ let s(/?, a) = s(or,B) = sup{i + 1 : i < K and fa(i) 3 fs(i)}, 

s(cr,a) = 0, 

s(v) = max{s(v(Q,v(k)) : e,k < eg(v) (so s is symmetric)}, 

a(v) = {(e,k) : s(v(t),v(k)) = s(v) and / < k < {g(v)}. 

As eg(v) > 2 and v is not constant, clearly a(v) # 0 and a(v) is finite, so let (e,, k,) 
be the first pair from a(v) in lexicographical ordering. 

Lastly, d,*,(v) = d({v(e,), v(k)}). 

Now we are given y c 8, a stationary S G{ 6 < ,I+ : cf( S) >/ cf(n)}, (u, : ct < if) 

(remember 2.2(O)), Iu,I < cf(n), u, c O’I such that a E n{Rang(v) : v E u,}. Let 
u: = U{Rang(v) : v E u,} and uf = $\a, and as cf([l]<K,C) = 1 wlog for some 
u E [A+]-, we have tl E S + U~IILY C v. Without loss of generality for some stationary 
S’GSandys,fi* wehaveaES’+ye=min{y+l:iffir <j?zareinuiUvthen 

&, t [Y?Cf(A)) < f/h t bYCf(A))l < K and sup(IJ{u~ n u : a E S’}) < j?* < ,I+. 

Now for some yr E (ys,cf(A)) and stationary S” G S’ and y* < 1 we have 

o! E S” * f&J,) = y*. 

Lastly, apply the choice of d. 0 

Remark. Instead K = cf(l,cf[il]<“,G) = I we can use: (*)’ from below. Moreover, 
if ~r,f~+,I.+,B,o), cf([,I]‘“,G) = ,I, and (*)’ below, then P/‘(I+,P,B,o) where (*)’ 
there is 6* <A, and a sequence 1 = (A, 1 tl < A+) of unbounded subsets of S* such 

that if o! E u E [A+] <O, then A, n U BEu,(ccj Ag is bounded in 6*. The proof is as above. 

3. Guessing clubs revisited 

3.1. Claim. Assume that ,I = p+, and S G{ 6 < A+ : cf(6) = A and 6 is divisible by 

n2} is stationary. 
(1) There is a strict club system C = (Cs : 6 E S) such that A+ $ idp(C) and 

(a E nacc(C6) + cf(cr) = A); moreover, there are hs : Ca + p such that for every 
club E of A’, for stationarily many 6 E S, 

A 6 = sup [hb’({[}) rl E fl nacc(Cs)]. 
i<P 

(2) If C is a strict S-system, 1+ $ idp(C,j), Js a &complete ideal on Cs extending 
Jif + acc(C6) (with S, ,u as above) then the parallel result holds for some h = (ha : 
6 E S) where ha is a function from Cs to u, i.e. we have for every club E of A+, 

for stationarily many 6 E S n act(E) for every y < u the set {a E Cd : ha(a) = y 
anduEE} is#0modJs. 
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3.2. Remark. (1) This improves [7, 3.11. 
(2) Of course, we can strengthen (1) to: 

y<~~6=sup{a~C~:h~(a)=yanda~Eanda~nacc(C~) 

and sup (a n CS) EE}. 

For example, for every thin enough club E of I, CE will serve where Cf = Cs n E if 
6 E act(E) and Cf = Cs, otherwise. For Claim 3.1(2) we get slightly less: for some 
club E* : (for every club E C E* for stationary maps 6 E S II arc(E) for every y < ,u 
we have) 6 = sup{a E Ca : Ad(a) = y and a E E and a E nacc(C6) and sup(cr fl 

Cs fl E*) E E}. 

Proof. (1) Let (Cs : 6 E S) be such that A+ $ idp(C) and [CI E nacc(Cs) j 
cf(6) = A] (such a sequence exists by [6, 2.4(3)]). Let J6 = J,!t +acc(Cs). Now apply 

Part (2). 
(2) For each 6 E S let (Ai : a E Cs) be a sequence of distinct non-empty subsets 

of p to be chosen later. By induction on 1: < il we try to define El, (Y,i : a E S), 

(ZL, ‘I : cc E El and y < p) such that 

Et is a club of Ai, decreasing in c, 

Zi,, = {a : ct E El f~ nacc(C6) and y E A:}, 

Y,‘={r <~:Z~,y#OmodJ~}. 

EC+, is such that 

(6 E s : Y,i = Yj-tl and 6 E nacc(Eg+t) and E~+I n nacc(C6) 4 Jh} 

is not stationary and moreover disjoint to Es+t, hence is empty. 

If we succeed to define El, for each [ < I, then E =: nic2Ec is a club of I+, 
and since ;1+ @ idp(C), we can choose 6 E S such that 6 = sup(E n nacc CS) 
and E n nacc( Cd) # 0 mod Js. Then as U y.,,Zj,, > E n nacc(Cs) for each i < il 

necessarily (by the requirement on Js) for some y < ,u, Zi, # 0 mod Ja, hence 

Yj # 8 so that (Yj : (’ < A) is a strictly decreasing sequence of subsets of p, and 
since p < cf(p+) = cf(A), we have a contradiction. So necessarily we will be stuck 
(say) for [(*) < 1. 

We still have the freedom of choosing AZ for a E Cs. 

Case 1: p regular. 
By induction on a E Ca we can choose sets AZ such that 

(i) A; c p, &I = K (AZ : a E Ca,otp(cl n CS) < p) are pairwise disjoint, 

(ii) for p E Cd n ~1, A$ n Ai is bounded in ~1, 
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(iii) if p > No then Ai is non-stationary (just to clarify their choice). 
There is no problem to carry out the induction. 

We shall prove later that 

(*) if E C E,YY*) is a club of A+, 6 E S n act(E) and 6 = sup (E II nacc Ca) and 
E n nacc(Cs) # 0 mod J6 then 

(**)s for some CQ E E fl nacc(Ca), the following set Ba is unbounded in ~1: 

Bb = {y < p : {fi : j? E En nacc(C6) and B # ~16 

and y = sup (A? n A:)} # 8 mod Ja}. 

Choose the minimal such that ag = a: (for other 6’s it does not matter, i.e. for those 
for which 6 > sup(E n nacc(Cs)) or El(*) n nacc(C6) E Jb). Clearly, if E’ 2 E” and 

u;‘, a6 E” are defined then a:’ < af”. We shall choose a club E* G EC(,) of A+. 
Now for any club E of A+ for stationarily many 6 E S n acc(E* n E), we have 

{y < p : {a : M E E* fl E n EC(,) rl nacc(C6) and y E A$} # 8 mod Js} = Yji(*) 

(this holds by the choice of c(*)). Let the set of such 6 E S n acc(E* n E) be called 
Zi* . Now for each 6 E Zi* , the set 

Bs[E,E*] =: {y < p : {/I : /3 E En E* n El(+) n nacc(Cs) 

and B # 4’ and y = sup (A: n A;)} # 0 mod Ja} 

is necessarily unbounded in ,u. So in the same way as we have got El(*) we can find 
clubECE*GEy(,) such that for any club E C E* of A+, for stationarily many 6 E Zi*, 
we, have Bg[E,Ey(,)] = Bs[E*,Ec(.+..] and af = a:* (note the minimality in the choice 
of a: so it can change G A+ 1 times; more elaborately if (ET : i < A) is a decreasing 

sequence of clubs and 6 E Z$ , where E* = n, <A ET, then (a? : i < A) is increasing 

and bounded in Ca (by a;‘), hence is eventually constant). Define ha : CS -+ p by 

Aa(/?) = otp (B6[E*,Eic,,] n sup@ n A{)) if p # cl6 and h&9) = 0 if B = ad. 

Clearly (hb : 6 E Sfl arc(E*)) is as required. 
Why does (*) hold? 
If not, let B = E n nacc(Ca), so otp(B) = ;1 = pL+ and B # 0 mod Js, so for every 

a E B we can find Ed < ,u and Y,,, E JS (for E < p) such that if 5 E B\Y,,,\{a} and 
E E [E,,P) then sup(A; n A:) # E. Now let Y, =: U{Yo(,, : E E [up)} U {a} and note 
that Y, E Ja. So for some E* < ~1, BI =: {a E B : ccc = E*} is # 0 mod Jb. For each 
CI E B1 choose ycc E A:\(&* + 1) (remember [AlI = p). So for some y* < p the set 
B2=:{aEBt:y,=y*}is#0modJa.Leta * = Min(Bz), and for y E [y*,p) we 

define B;,, = {a E B2 : y = sup(A;* n&}. So clearly BZ = U{Bc,? : y* 6 y < ,u}, 
hence for some y** E [y*,p) we have By,,.. # 0 mod J6, hence y** contradicts the 
choice of E,* = E*. 

Case 2: p singular. 
Let K = cf@), so by [5, Ch. II, Section l] we can find an increasing sequence (& : 

i < JC) of regular cardinals > K with limit p such that ;1 = p+ = tcf(niiK li/J,bd), 
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and2 let (fa : a < A) exemplifying this. Without loss of generality, Ujci Aj < 

fl(i) < Ai. Let g : K x p x JC x p -+ p be one to one and onto, let fi = j&,(anca) for 
CI E Cs and let Ai = {g(i,ft(i),j,ft(j)) : i,j < K}. 

If 6 = sup(Eg(*) n nacc(C6)) and EC(*) n nacc(C6) # 0 mod JS then (as JS is 

A-complete) choose YJ E Js such that for each i < K, E < Ai we have 

(*) (%)[P E EC(*) rlnacc(C6) & p $! YS & f:(i) = E] 

+ {/I : j3 E I+) fl nacc(Cs) & f;(i) = E} # 0 mod Js. 

Choose i(6) < K such that 

Bi =: {_&i(s)) : /I E El(*) n nacc(C6) and p $! Ys} 

is unbounded in li. 
Let 5, = rf be the e-th member of Z3!, for E < K. For each such E < rc for 

some j, = j,” E (i(S) + 1 + E,K) we have B$6 =: {f$j,) : @i(d)) = <f and 
fi E El(,) n nacc(Cs) and /3 $ Ys} is unbounded in 3Lj~. 

Let & be a one to one function from [lJj<, A.j, A,) into B:T~. 

Lastly, we define hb as follows: 

if B E Ca, e < G &i(Q) = <f and kr,&) = $(j,“) 

(so Y E [Uj<,lj,&)) then h&O = Y 

and h&I) = 0 otherwise. The rest is similar to the regular case. 0 

3.3. Claim. If i = p+, p regular uncountable, and S 2{6 < ;1 : cf(6) = ZJ} is 
stationary, then for some strict S-club system c with Cd = {ag,c : [ < p}, (where 
as,c is strictly increasing continuously in [) for every club E C 1 for stationarily many 

6 E s, 

{i < P : as,<+1 E El is stationary (as a subset of p). 

3.4. Remark. (1) If S E I[,?] then without loss of generality we can demand (a) or 
we can demand (b) (but not necessarily both), where 

(a) X, = {Ch n a : 6 E S, is such that a E nacc(C6)) has cardinality < I, 
(b) a E nacc(C6) + C, = Ca n a but the conclusion is weakened to: for every club 

E of A for stationarily many 6 E S the set { [ < ~1 : (as,i, as,<+1 ) n E # 0) is 
stationary. 

(2) In contrast to [7, 3.41, here we allow p inaccessible. 
(3) Clearly Claim 3.1(2) can be applied to the results of Claim 3.3, i.e. with 

JS = {A 5 C6 : {( < A : aa,c+l 6 A} is not stationary}. 

Proof. We know that for some strict S-club system Co = (C,” : 6 E S) we have 
il $ id,(C”) (see [6, 2.3(l)]). Let Cj = {at : [ < p} (increasing continuously in 5). 

We shall prove below that for some sequence of functions i; = (hs : 6 E S), ha : p + p 

’ For the rest of this case “A = p+” is not used; also J,” can be replaced by any larger ideal. 
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we have: 

(*)i for every club E of pf for stationarily many 6 E S n act(E), 

the following subset of p is stationary: 

s AE’* =: {i < ,u : at E E and some ordinal in {M; : < < t 6 IQ([)} 

belongs to E}. 

The proof now breaks into two parts. 

Proving (*)i suftkes. For each club E of 1, let Z, =: (6 E S : 6 = sup (E n 
nacc(Cf))}, and note that this set is a stationary subset of I (by the choice of co). 

For each such E and 6 E ZE let f 6,~ be the partial function from p to p defined by 

fa,~(i) = Sup{S : i < t d kdi) and ai E E). 

So if there is no such 5, then f&c) is not well defined (i.e. if the supremum is on 

the empty set) but if t = f&i) is well defined then c$ E E, 5 d ha(c) (because U: 

is increasing continuously in l and E is a club of 2). Let YE =: (6 E Z, : Dom(fb,E) 

is a stationary subset of p}. So by (*)I;, we know that 

@ for every club E of pLf the set YE is a stationary subset of p+. 

Also 

@I if E2 C El are clubs of p + then ZE, & ZE, and YE* C YE, and for 6 E YE*, 

Dom(fs,E2) C Dom (~s,E, ) and 5 E Dom (_I&) * fa,&O G f&El (6’). 

We claim that 

@j2 for some club EO of p+ for every club EC EO of pf for stationarily many 

6 E S we have: 

(i) 6 = sup(E n nacc Ch), 

(ii) {i < P : i E Dom(h6) (hence C E Dom.h,,,6) and _&,s(O = hi,,s<O~ is 
a stationary subset of p. 

If this fails, then for any club EO of A there is a club E(Eo) g EO of 1, such that 

AE~ = (6 : 6 E S, 6 = sup(E(Eo) rl nacc(C6)) and for some stationary subset eEO,a 

of P we have i E eEo,d n Dom(_fE(Eo),6) * .h~~~),dO = _&di)) 

is not a stationary subset of I = ~1 +. By obvious monotonicity we can replace E(Eo) 

by any club of p”+ which is a subset of it, so, without loss of generality, A, = 8. 

By induction on n < o choose clubs E,, of p+ such that EO = p+ and En+1 = 

I?(&). Then E, =: n,,, E, is a club of /J+ and, by $ above, YE<,, &S is a sta- 

tionary subset of 1, so we can choose a 6(*) E YES. So f ~,,a(*) has domain a sta- 

tionary subset of p (see the definition of YES) and by @)I we know that n < w ==s 

Dom(f~,,,,w)) _ C Dorn(fE”,a(*)). Also there is an e&,6(*), a club of p, such that 

i (5 eE”,s(*) n Dom(&+,,a(*)) =+ f‘%+,,ac*,(O < fE”,ac*,(i) 
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(see the choice of E,,+I = E(E,), i.e. the function E and Q). So ea(*) =: nn_,eEn,d(*) 

is a club of p and, as Dom(fEa,s(*)) is a stationary subset of ~1, we can find [(*) E 

eb(*) n Dom(fEo,s(*)); hence CO E n,,, Dom(fE”,b(*)) n n,,,eE.,b(+ so that 
(f~,,h(*)(c(*)) : n < co) is a well-defined strictly increasing o-sequence of ordinals - 
a contradiction. So B2 cannot fail, and this gives the desired conclusion. 

Proof of (*)x holds f or some i. So assume that for no i does (*)I; hold, hence 

(by shrinking E) we can assume that for every 8 = (hs : 6 E S), hs : p -+ p, for 
some club E for every 6 E S, A$* is not stationary (in cl). By induction on n < w, 

we define En, in = (h”, : 6 E S), 2’ = (ei : 6 E S), with E,, a club of I, ei club of 

,n, h; : p -+ p as follows. 

Let EO = ,I, hi( 0 = c+ 1 and ez = p. If Ee, . . . , E,,, i*, . . . , h”, Co,. . . , 2” are defined, 
necessarily (*) A” fails, so for some club E n+l of A for every 6 E S rl acc(E,+i) there 

is a club ei+’ G acc(ez) of p, such that 

Choose hgf’ : p -+ p such that (Vi < p)(h”,([) < hi+‘([)) and if 6 = sup(E,+r n 
nacc(Cj’)) then [ < p + {$ : (I < tf < h!+‘(C)} n En+1 # 0. There is no problem to 

carry out this inductive definition. By the choice of Co, for some 6 E acc(n,,,E,), 
we have 6 = sup (A’), where A’ =: (act n,,, E,) n nacc(Cj). Let A C p be such that 
A’ = {cc! : 5 E A} (remember I$ is increasing with [) and let c be the second member 

of n n<w ez. As A’ is unbounded in S, clearly A is unbounded in p and n,,, 6 is a 
club of p as p = cf(p) > No. Also as A’Gnacc(Cf) clearly A is a set of successor 
ordinals (or zero). 

Note that sup(e,bnc) is well defined (as min(e,6) < min(n,,, ei) < i) and sup(e$l 

i) < C (as i is a successor ordinal). Now (sup(e,d n 5) : n < co) is non-increasing (as 
ei decreases with n), hence for some n(*) < o we have n > n(*) 3 sup(ei n 5) = 
sup(e, ‘(*I n i) and call this ordinal 5 so that r E e$,j+l and hi(*)({) = h:‘*‘+‘(5), so 

we get a contradiction for n(*) + 1. 
So (*)I; holds for some &, which suffices, as indicated above. q 

3.5. Discussion. (1) We can squeeze a little more, but it is not so clear if with much 
gain. So assume that 

(*)o p is regular uncountable, I = I_L +, S C{S < I : cf(6) = p} stationary, I an 
ideal on S, C = (Ca : 6 E S) a strict S-club system, j = (Ja : 6 E S) with Ja 

an ideal on Cs extending Jtf + (acc(Cd)), such that for any club E of il we 
have {6ES:EnCg#@modJ~}#0modZ. 

(2) If we imitate the proof of Claim 3.3 we get 
(*)I if for 6 E S, Jb is not X-regular (see the definition below) and x < p then we 

can find Z = (es : 6 E S) and 0 = (gb : 6 E S) such that 
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(*)‘, .q is a club of 6, ea G acc(Cs), gs : nacc(Cs)\(min(es)+ 1) -+ eg is defined by 

gs(a) = sup(ea n rx) and for every club E of II 

(6 E S : E I-T nacc(C6) # 0 mod JS and 

Rang (gs r (E n nacc( C’s))) is a stationary subset of 6) # 0 mod I. 

(3) An ideal J on a set C is x-regular if there is a set A C C, A # 0 mod J and 

a function f : A -+ [xleNo such that y < x =+ {x E A : y q! f(x)} = 0 mod J. If 

x = ICI, we may omit it. (How do we prove (*){? Try x times El, ( ej : 6 E S) (for 

i < x)). 
(4) We can try to get results like Claim 3.1. Now 

(*)z assume that n,p,S,I,c,f are as in (*k, and Z,g as in (*)‘, and IC < p and 

for 6 E S, Jj =: {u c es : {a E Dom (ga) : g(cr) E u} E Ja} is weakly normal 

and p satisfies the condition from [6, Lemma 2.121. Then we can find h6 : 

es + K such that for every club E of R, (6 E S : for each y < K the set {a E 

nacc(G) : Mga(~)) = Y} is f0modJ~)fQ)modZ. 

(Why? For each 6 E S, CI E acc(e6) choose a club ds+ c es n c( such that for no club 

d ces of 6 do we have (V’y < S)(3a E acc(es))[d n ~&ds,~). Now for every club E 

of ;1 let SE = (6 : E n nacc(Cs) # 0 mod Js, and gt(E n nacc(Cs)) is stationary} and 

for 6 E E and E < ,u, we choose by induction on c -=z K, [(S, E) as the first 5 E es such 

that: r > UrcE &S,{) and {a E Dom(ga) : CI E E and the E-th member of dg,96(,) is 

in the interval [lJccE &a, 001) # 0 mod Ja. 
(5) We deal below with successor of singulars and with inaccessibles, we can do 

parallel things. 

3.6. Claim. Suppose p is a singular cardinal of cojkality IC, K > No and S c(6 < 
p+ : cf(6) = K} is stationary, and (? = (Cd : 6 E S) is an S-club system satisfying 
pLf $! idP(C Jblpl) where .Wl = (Jlr’ : 6 E S) and J 

p, we have’6 > sup {N E A 

$I =: {A & Cs : for some 0 < 
: cf(a) > B and c( E nacc(Ca)}}. Then we can find a 

strict 3,-club system Z* = (e,T : 6 < A) such that 
(*) for every club E of p+, for stationarily many 6 E S, for every CI < S and 

l3 < p for some p we have 
(**)Q /? E nacc(Cs) and p > c( and cf@) > 0 and {y E eg* : y E E and min(e,*\(y+ 

1)) belongs to E} is a stationary subset of p. 

3.7. Remark. ( 1) We know that for the given p and S there is C as in the assumption 

by [6, Section 21. Moreover, if K > No then there is such nice strict C. 

(2) Remember Jiw = {A 2 Ca : for some 8 < ,u and CI < 6 we have (V/3 E 

CS)@ < CI V cf(p) < 0 V p E nacc(Ca))}. 

(3) We can worm a E nacc(C6) in the definition of J,!:’ if we weaken /? E nacc(Ca) 

to j3 E Cd in (**)E,B. 

Proof. Let Z = (es : j3 < A) be a strict &club system where eg = {c$ : < < cf(/?)} 

is a (strictly) increasing and continuous enumeration of ep (with limit 8). Now we 
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claim that for some i = (i, : fl < A, p limit) with hg a function from ep to eg and 

/\NEe,c IIS(LX) > LX, we have: 

(*) Z, for every club E of ZA+, for stationarily many 6 E S nacc(E), Ai $ Jirl where 
Ai is the set of all p E Ca such that the following subset of eb is stationary 
(in /?): 

{y E eg : y E E and min(eg\(y + 1)) E E}. 

The rest is like the proof of Claim 3.3 repeating K+ times instead of o and using 
“.Ziy’ is ( G rc)-based”. 0 

3.8. Claim. Suppose 1 is inaccessible, S C E, is a stationary set of inaccessibles, C 

an S-club system such that A $! idp(C). Then we can find h = (ha : 6 E S) with 
hs : Cs -+ Cd, such that a < h(a) and 

(*) for every club E of I, for stationarily many 6 E S n act(E) we have that 

{tx E CS : a E E and h(a) E E} is a stationary subset of 6. 

So for some Ci = (as,i : i < 6) & Cg, ag,c increasing continuously in [ we have 

h(as,i) = aa,c+l. 

Remark. Under quite mild conditions on R and S there is C as required - see [6, 
2.12, p. 1341. 

Proof. Like the proof of Claim 3.3. 

3.9. Claim. Let I = cf(1) > No, S 2 I. stationary, D a normal A+-saturated jilter on 
2, S is D-positive (i.e. S E D+, n\S q! D). 

(1) Assume that ((Cs,Zs) : 6 E S) is such that 

(a> G E 6 = sup(G),Z,~ C_ y(G), 
(b) for every club E of I., 

(6 E S : for some A E Zs we have 6 > sup(A\E)} E D’. 

Then for some stationary So c S, So E D+ we have 

(b)+ for every club E of ,I 

(6 E S : for no A E Is do we have 6 > sup (A\E)} = 0 mod D. 

(2) Assume that (9s : 6 E S) is such that (here really presaturated is enough) 
(*) for every D-positive So 2 S for some D-positive & C_ SO and ((Ca,Z6) : 6 E S) 

we have (Cs,Za) E Ps,Ca C 6 = sup(C~),Z6 G P(G) and for every club E of 
2 (6 E SI : for some A E IS, 6 > sup (A\E)} # 0 mod D. 

Then 

(**) for some ((Cs,Zs) : 6 E S) we have (GZs) E SS,CS G 6 = sup, la 2 
P’(G) and for every club E of 2 

(6~s: fornoAEZs,o>sup(A\E)}=0modD. 
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Remark. This is a straightforward generalization of [8, Ch. III, Section 6.2B]. Inde- 

pendently, Gitik found related results on generic extensions which were continued in 

[l, 31. 

Proof. The same as the proofs cited above. 

3.10. Lemma. Suppose 1 is regular uncountable and S G(6 < I,+ : cf(6) = A} is 

stationary. Then we can find ((Cs, hb, ~6) : 6 E S) and D such that 
(A) D is a normal jilter on EL+, 

(B) Cd is a club of& say Cd = {CQJ : [ < A}, with aa,~ increasing continuously 

in i, 
(C) hb is a function from Cd to ~6,~s < I,, 
(D) if A E Df (i.e. A CL+ & L+\A 4 D) and E is a club of ,I+, then the 

following set belongs to D+: 

BE,A =: (6 : 6 E A (‘IS, 6 E act(E) and for each i < ~6 

{i < I : CG,~+~ E E and ha(ab,c) = i 

(and cls,~ E E)} is a stationary subset of I.} 

(hence, for some a < 1’ and [ < i, the set BE,A,~ =: (6 E BE,A : M = CQJ} is 
in 0’). 

(E) rf y < A+ and x satisfies one of the conditions listed below, then S,,, = (6 E 

S : y = min (Ca) and 2~ = x} E D+ where 

(a) A = x+, 
(B) L is inaccessible not strongly inaccessible, x < 1 and there is T such that: 

(a) T is a tree with < 1 nodes and a set r of branches, jr/ = 1, 
(b)’ if T’ G T, T’ downward closed and (3’n E T)(n a branch of T’) then T’ 

has an antichain of cardinality > 2, 

(y) 3, is inaccessible, not strongly inaccessible, and 8 = min (0 : for some 
x < I we have x8 >, IL}, and x = min{x : x0 21 and x > 6). 

3.11. Remark. (1) We can replace 1+ in Lemma 3.10 by any p = cf(p) > I, as if 

p > A+ we have even a stronger theorem. (2) We probably can add 

(6) x < ;1 and ;1 is strongly inaccessible, not ineflable; i.e. L is Mahlo and we 
can find 2 = (A, : p < ;1 is inaccessible), A,, g p so that for no stationary 
r c{p < 2 : p inaccessible} and A C 2 do we have: p E r + A, = A n u. 

Proof. Let for 2 = cf(1) > No, 

0 = On = {x < il : if S’ c(6 < A+ : cf(6) = A} is stationary 

then we can find ((CJ, ha) : 6 E 8’) such that 

(a) CA is a club of 6 of order type A, 
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(b) hs : Ca -+ x, 
(c) for every club E of A+ for stationarily many 

6 E S’ n act(E) we have: 

i < X~BE={C(EC~:ccEE,h(a)=i and 

min(G\(a + 1)) E E} 

is a stationary subset of 6). 

In 3.12 we show 

@ for each of the cases from clause (E), the x belongs to 0. 

Proof of sufficiency of 8. We can partition S into J.+ stationary sets so we can 

find a partition (S,,, : x E 0 and CI < A+) of S into stationary sets. Without loss of 

generality, LX d min (Sx,m) and let (( Cf, hj) : 6 E S,,,) be as guaranteed by “x E 0” 

for the stationary set S,,,. Now define Cd, h6 for 6 E S by: 

C6 is C,O U {ci}\ct if 6 E S,,, and c( < 6, hh(/?) is hi(B) if /3 E CS n Cd” and is zero 

otherwise. Of course, ~6 = x if 6 E S,,,. 

Lastly, let 

D = {A & I_+ : for some club E of I’, for every 

6 E S n acc(E)\A for some i < ~6, 

the set {/3 E Ca : j3 E E,h&Q = i and min(Cd\@ + 1)) E E} 

is not a stationary subset of 6). 

So D and ((Ch, hg, ~6) : 6 E S) have been defined, and we have to check clauses 

(A)-(E). 
Note that 0 # 0 and the proof which appears later does not rely on the intermediate 

proofs. 
Clause (A): Suppose Ai E D for [ < A, so for each [ there is a club EC of 1+, 

such that 

(*) if 6 E S,,, and 6 E S n acc(E)\Ay then for some is < ~6 we have 

{U E C’s : CI E E, min(Ca\(a + 1)) E E and hs(a) = ia} is not stationary in 6. 

Clearly, clubs of If belong to D. Clearly, A 2 Ag a A E D (by definition), witnessed 

by the same EC. Also A’ = A0 n Al E D as witnessed by E = E. n El. Lastly, 

A = A,,;. Ai = {u < A+ : cI E n,<l+a AC} belongs to D as witnessed by E = {LX < 

IL+ : CI E n,, ,+,Ey}. Note that if 6 E S f? acc(E)\A then for some i < 6 

6 E s n acc(E)\Ay C(S n acc(EO\AO U (1 + i) 

as Ec\E is a bounded subset of 6 included in 1 + [; so from the conclusion of (*) for 

G,Ac,Ec we get it for I,A,E. 

Lastly, 0 $! D; otherwise, let E be a club of ,4+ witnessing it, i.e. (*) holds in this 

case. Choose x E 0 and CI = 0 and use on it the choice of (C,” : 6 E S,,O) to show 
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that for some 6 f &a G S contradict the implication in (*). 

Clause (B): Trivial. 

Clause (C): Trivial. 

Clause (D): Note that we can ignore the “CQC E E” as 6 E act(E) implies that 

it holds for a club of [‘s. Assume that A E Df (for clause (D)) and E is a club 

of R+, which contradicts clause (D), so BE,A $ Df; hence n+\B,,, E D. Also E 
witnessed that ~+\(A\B,A) E D by the definition of D. But by clause (A) we know 

that D is a filter on ,I+, so (~L+\B,Q) tl (,~+\(A\B~,A) belongs to D, but this is the 

set ~‘\BE,A\(A\BE,~) which is (as B E,A CA by its definition) just n\A. So n\A E D, 
hence A @ D+ - a contradiction. 

Clause (E): By the proof of 0 $! D above, if 2 E 0, also Sx9, E D+, and by the 

definition of c’, c 1 S,,, is as required. So it is enough to show 

3.12. Claim. If x < i = cf(1) and x satisfies one of the clauses of Claim 3.10, then 
x E 0 (from the proof of Claim 3.10). 

Proof. 

Case (g): By Claim 3.1. 

Case (B): Like the proof of Claim 3.1, for more details see [7, Section 31. 

Case (7): This is a particular case of case (/I). Use T = Ulx<B~x, r&0x and we 

should check (b)‘, we do it by cases: if x > 8 and cfx = x, necessarily for some 

a < 8, IT’ 17 ~1 = x. Similarly, if x > 0 and x > cfx as wlog u E T’ j j{n E r : 
u < n}I = i. Lastly, if x<tI, then 2<’ < 1 and (2<‘)cf(‘) = 2’ so 6 is regular and it 

should be clear. 0 

More generally (see [7]): 

3.13. Claim. Let A = cf(n) > x. A suficient condition for 1 E O,J is the existence 
of some [ < 1+ such that 

@ in the following game of length [, second player has no winning strategy even 

for winning for at least one of J. boards: in the E-th move$rst player chooses 

a function f; : I + x and second player chooses BE < x. In the end, first 

player wins the play if {a < 2 : for every E < y, fE(a) # &} is a stationary 

subset of 1. 
(If we weaken the demand in 0~ from stationary to unbounded in A, we can weaken 

it here too). 

4. More on Prs 

4.1. Claim. Pr6(l+,l+,3,+, A) for A regular. 

Proof. We can find h : A+ --+ II+ such that for every y < ;i+ the set S, =: (6 < I,+ : 

cf(6) = ,I and h(6) = y} is stationary, so (S, : y -c A) is a partition of S =: (6 < A+ : 

cf(6) = 2). We can find @ = (CS : 6 E S,) such that CS is a club of 6 of order type 

A. For any v E ,‘(,I+) we define: 
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(a) for e < [g(v), if v(d) E S then let 

at = a,,[ = {otp(Qe, n v(k)) : k < /g(v) and v(k) < v(e)}, 

(b) eV is the 4 < [g(v) such that 

(i) v(e) E & 
(ii) among those with sup(a,~) is maximal, and 

(iii) among those with e minimal, 

(c) if k’” is well defined let d(v) = h(v(e,)) otherwise let d(v) = 0. 

Now suppose ((uc(,u,) : CI < A+), y -c i+ and E are as in Definition 2.1 and we 

shall prove the conclusion there. Let 

E* = (6 E E : 6 is a limit ordinal and a < 6 + 6 

> sup [U{Rang(vl) : YI E u, U GlI. 

Clearly E* C E is a club of A+ 

For each 6 E S, let 

fa(6) =: sup [6 fl U{Rang(v) : v E ug U US}]. 

As cf(6) = 1 > Iu, U u,] and the sequences are finite, clearly f*(6) < 6. Hence by 

Fodor’s lemma for some t*,S; =: (6 E S, : fo(6) = <*} is a stationary subset of 

If (note that y is fixed here). Let <* = Uicla2,i where a2,i is increasing with i and 

lU2,il < 1. SO for 6 E 15: 

fi(S) = Min{i < 1:6flU{Rang(v):vEusUus} 

is a subset of a2,i) 

is a well defined ordinal < ,I and hence for some i* -c 3, the set 

Sy” =: (6 E Si : fl(h) = i*} 

is a stationary subset of A+. For 6 E S.; let 

ba =: otp(Cp n a) : CI < /? E S and both 

are in ~2,~’ U (6) U U{Rangv : v E ug U ug} 
> 

. 

So bs is a subset of 1 of cardinality < A, and hence ~6 =: sup(bs) < 1 and hence 

for some e* 

Sy’ =: (6 E Sy’ : Eg = &*} 

is a stationary subset of Ilf. Choose p* such that 

(*) p* E S; fl E* and /I* = sup (p* fl S; fl E*). 

As Cb. has order type i, (and is a club of p*), for some c1* E fi* f~ Sy’ n E* we 

0tp(+ n a*) > E*. 
We want to show that u*,fi* are as required. Obviously, a* < p*,u* E E and j?* E E. 

So assume that v E u,+,p E up* and we shall prove that d(v^p) = y, which suEices. 
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As h(P*) = y (as fi* E Sz C_S,) it suffices to prove that (v^p)(e,-,) = /?*. Now 

for some /s,Ll we have v(~o) = cr*,p(ei) = fl* (as v E u,*,p E up- ) and since 

otp(Cg* n Lx*> > E *, by the definition of e,,~~ it suffices to prove that 

8 if e, k < dg(v^p), (v^p)(G E 8, (v^p)(k) < (v*p)(d) then 

(i) otp[+,)(c) n (v^p)(k)l < E* or 
(ii) (v*p)(Q = /?*. 

Assume that L, k satisfy the assumption of @ and we shall show its conclusion. 

Case 1: If (v-p)(e) and (v^p)(k) belong to 

Q,i* U @*I U U{Rang (VI) : ? E up U ug* ) 

then clause (i) holds because 

(a) otp(Cc,-,)(d) n (v-p)(k)) E bp (see the definition of bp) and 

(p) sup (bp ) = EP* (see the definition of EB* ) and 

(y) EP- = E* (as /?* E S; and see the choice of E* and S,‘). 

Case 2: If (v^p)(e) and (v*p)(k) belong to 

U2,i* U lJ{Rang(q) : q E u,- U v,*} 

then the proof is similar to the proof of the previous case. 

Case 3: No previous case. 

So (v-p)(e) and (v-p)(k) are not in a~,;*, hence (as {v,p} C(u,* Uvp), and {a*,/I*} 

CS; C$> 

m E {/,k} & m < /g(v) + (v^p)(m) = v(m) 2 19, 

m E {&,k} & m k [g(v) + (v-p)(m) = p(m - tg(v)) 2 /I*. 

As /3* E E* and /?* > c1* clearly sup(Rang(v)) < /?*, but also (v^p)(k) < (v^p)(t) 

(see 0). 
Together necessarily k < [g(v), v(k) E [a*, p* ), 6’ E [[g(v), [g(v) + es(p)) and 

p(&[g(v)) E [#?*, A+). If p(e) = fi* then clause (ii) of the conclusion holds. Otherwise 

necessarily v(e) > /?*, hence 

otp(Q,)(e)) n (v-p)(k)) = otp(Cp(e-es(v)) n v(k)) 

d otp(Cp(e-eg(v)) n B*) G sup (bg* ) 6 E* 

so clause (i) of @ holds. q 

Remark. Actually we now prove Pr6(if,A+,l+,l). 

4.2. Conclusion. For 1 regular, Pq (lf2, 1+2, A+2, i) holds. 

Proof. By Claim 4.1 and Lemma 2.2( 1). ci 

4.3. Definition. (1) Let &(A, 8,~) means that for some 3, an unbounded subset of 

{r : T < 0, z is a cardinal (finite or infinite)}, there is a d : OJ’ (A x S) + o such that 

if y < 0 and r E B are given and ((u,, u,) : CI < A) satisfies 

Sh:572



174 S. Shelahl Annals of Pure and Applied Logic 84 (1997) 153-174 

(i) u, c”‘(1 x E)“)\‘>(A x 2), 

(ii) 0, C “‘(2 x E)\*“(J x 3), 

(iii) Iu,I = ]u,I = z, 

(iv) v E UP * v(ag(v) - 1) = (y,r), 

(v) P E % =+ P(0) = (y,r), 

(vi) v E u, U u, * W)(q(O = (u,r)) 
then for some CL < /I we have 

v E up & P E vu =+ (v*p)[4v^p)l = (Y,4. 

(2) Let Prg(J, a) means &(A, 3,, 6). 

4.4. Fact. Pr6(L,,l, 0, o), 0 > G implies Prg(A, 0, ts). 

Proof. Let c be a function from @‘A to e exemplifying Pq(& 1, e, 6). Let e be a one 

to one function from e x 5 onto 8. 

Now we define a function d from ,‘(A x E) to CO: 

d(v) = Min (8 : c((e(v(m)) : m < /g(v))) = e(v(f))}. 17 

4.5. Claim. If &(A+, CJ), i regular and CT d i then Pr1(1+2, jl+*, A+*, a). 

Proof. Like the proof of Theorem 1.1. 

4.6. Remark. Remember that by [6, 4.71, if /J > cf(p) + C, then Pr1(p+2, pf2, pc+‘, a). 

Acknowledgements 

I would like to thank Alice Leonhardt for the beautiful typing and Zoran Spasojevic 

for helping to proof read it. 

This research was partially supported by the Basic Research Fund, Israeli Academy. 

References 

[l] M. Diamonja and S. Shelah, On squares, outside guessing of clubs and I,,[l], Fund. Math., accepted. 

[2] R. Engelking and M. Karlowicz, Some theorems of set theory and their topological consequences, Fund. 

Math. 57 (1965) 275-285. 

[3] M. Gitik and S. Shelah, Less saturated ideals, Proc. Amer. Math. Sot., accepted. 

[4] S. Shelah, A graph which embeds all small graphs on any large set of vertices, Ann. Pure Appl. Logic 

38 (1988) 171-183. 

[S] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides, Vol. 29 (Oxford University Press, Oxford, 1994). 

[6] S. Shelah, There are Jonsson algebras in many inaccessible cardinals, in: Cardinal Arithmetic, Oxford 

Logic Guides, Vol. 29, Chapter III (Oxford University Press, Oxford, 1994). 

[7] S. Shelah, More Jonsson algebras and colourings, Arch. Math. Logic, accepted. 

[S] S. Shelah, Non-Structure Theory (Oxford University Press, Oxford), in press. 

Sh:572


