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KILLING LUZIN AND SIERPINSKI SETS 

H. JUDAH AND S. SHELAH 

(Communicated by Andreas R. Blass) 

ABSTRACT. We will kill the old Luzin and Sierpinski sets in order to build a 
model where U(,#) = U((X) = R and there are neither Luzin nor Sierpinski 
sets. Thus we answer a question of J. Steprans, communicated by S. Todorcevic 
on route from Evans to MSRI. 

In this note we will build a model where there are nonmeasurable sets and 
nonmeager sets of size N, and there are neither Luzin nor Sierpinski sets. All 
our notation is standard and can be found in [Ku, BJ1]. Let us start with the 
basic concept underlying this work. 

Let U(JF) be the minimal cardinal of a nonmeager set. 
Let U(X) be the minimal cardinal of a nonnull set. 
We say that a set of reals X is a Luzin set if X is uncountable and X n M 

is countable for every meager set M. We say that a set X is a Sierpinski set if 
X is uncountable and X n N is countable for every null set N. 

Fact. (a) If there is a Luzin set, then U(,#) = ,. 
(b) If there is a Sierpinski set, then U(X) = I. 
In [Sh] it was proved that if ZF is consistent, then there is a model where 

there are no Luzin sets and U(Af) = R,. In [BGJS] it was proved that if there 
is a Sierpinski set, then there is a nonmeasurable meager filter on Co. It was 
natural to ask if from U(X) = R, we can get such a filter. Clearly it will be 
enough to answer positively the following question. 

(Steprans) Does U(X) = R, imply the existence of a Sierpinski set? 
We give a negative answer to this question by proving the following 

Theorem. Cons(ZF) -- Cons(ZFC + U(Ad) = U(X) = N,+ there are neither 
Luzin nor Sierpinski sets). 

We will prove this theorem by iterating with countable support iteration 
Miller reals (rational perfect forcing). We will use the machinery produced 
by "preservation theorems" to show that the old reals are a nonmeager, non- 
measurable set. We will show that Miller reals kill Luzin and Sierpinski sets 
from the ground model. 
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918 H. JUDAH AND S. SHELAH 

The reader can find a complete analysis of Luzin and Sierpsinki sets in [BJ2]. 

1. Definition. Let P = {T: T C co<w & T is a tree & (Vs E T)(s is increasing) & 
(Vs E T)(3t E T)(300n)(s c tA^(n) E T)}. 

Let < be defined by T < S if and only if S C T. 

(P, <) is called rational perfect forcing [Mi], and if G C P is generic, then 
m = n G E coo is called a Miller real. From our assumption we have that m is 
increasing. 

2. Definition. Let r E cow be increasing. We define the set 

B(r)= U Bj(r) 
j<C 

where 

Bj(r) = {? E 2w: (Vi > j) (?I r [r(i), r(i) + lO(i + 1)) is not identically zero)}. 

3. Fact. g (Bj(r)) > 1- and By(r) is closed. 

Therefore, ,u(B(r)) = 1. 

4. Lemma. Let A be a set of reals such that u* (A) > 0. Let m be the canonical 
name for the Miller real. Then 

1Hp "A - B(m) is uncountable". 

Proof. Let p E P, p HFp "A' = A\B(m) is countable". As P is proper, without 
loss of generality for some countable set A* C A and q > p we have q 1-p 
"A' C A*". Let N < (H((2"o)+), E) be countable, q E N, A E N, A* E N. 
As 4u*(A) > 0 there is ?I E A, ?I random over N. Therefore, ?I 0 A*. Let 
t E q be such that mcq(t) = {n: tA^(n) E q} is infinite. Let us write this set as 
mcq(t) = {ke: e < }, where ke < ke+1 Let i = Itt. For n < co, we define 

Etn= {x E 2w: (V? > n)(x r [k1, k1 + 10(it + 1)) is not identically zero)}. 

5. Fact. ,i(Etn) = 0. 

Therefore, Et = Jn En is null and Et E N; thus, ?I 0 Et. Hence, 

Dt = {ke 
t r [1ct, 1k + 1O(it + 1)) is identically zero} 

is infinite. 
Now using this we can define, inductively, q' > q satisfying 

if t E q' and mcq(t) is infinite, then mcq, (t) = Dt. 

Therefore, q' lHp "?I 0 B(m)", a contradiction. 1 

6. Corollary. If Y E V is a Sierpinski set, then Y is not a Sierpinski set in any 
extension of V containing a Miller real over V. 
7. Remark. The same result can be obtained if you replace Miller real by Laver 
real. 
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KILLING LUZIN AND SIERPINSKI SETS 919 

8. Definition. Let r E cow be increasing. We define the set 

T(r)= U [Tj(r)] 
j<(J) 

where Tj (r) is the tree defined by 

6 E [Tj(r) if and only if ?7 E 20 & (Vi > j)(I (r(i)) = 0). 

We say that for a tree T, [T] is the set of co-branches of T. 

9. Fact. [Tj(r)] is a closed nowhere dense set. 

Therefore, T(r) is a meager set. 

1O. Lemma. Let A be a nonmeager set of reals. Let m be the canonical name 

for the Miller real. Then 

1Hp "A n T(m) is uncountable". 

Proof. Let p E P and let N -< (H((21o)+), E) be countable such that p e N. 
Then there is ?7 E A such that ?7 is Cohen over N. We will find q such that 

p < q E P and q 1Hp "?I E T(m)". 

Clearly this is enough. Let (vp: p eE w'->co) be the list of splitting nodes of p 
such that PI C P2 implies vp1 C vp2. Thus (p/A (n) (IlVpD n < Co) are distinct 
and without loss of generality are strictly increasing, so 

(*) i/pA (n)(l/ppI) > n. 

For each p e w>WCO let 

Ap = {n < co: ?1 r (Range VpA(n)\ Range vtp) is identically zero}. 

11. Fact. For p E c'-c>, Ap is infinite. 

Proof. p E N and let s E 2<w be a condition in Cohen forcing. Then there is 
n, by (*),such that 

dom(s) n (Range Vp^A(,)\Range vtp) = 0. 

Thus we can extend s to t e 2<w such that t [ (Range Vp^A(,)\Range vtp) is 
identically zero. Thus, because ?I is Cohen over N, we have that A,p is infinite. 
C 

Now we define q by 

q = IV, E P: (Ve < ItVl)(Vo [ e = VJpA(n) -+ n e Ap)l 

and q IFp "I e T(m)". O 

12. Corollary. If X E V is a Luzin set, then X is not a Luzin set in any 
extension of V containing a Miller real over V. 

Now we are ready to show the main Theorem. 
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920 H. JUDAH AND S. SHELAH 

13. Theorem. Cons(ZF) implies Cons(ZFC + U(A') = U(Xf) = Nj+ there 
are neither Luzin nor Sierpinski sets). 
Proof. Let us start with V = L. Let PO2 be the countable support iteration of 
P, of length C02. Then the following hold in VPW2 . 

(i) U(v/T) = lI: In [Go] it is proved that the property of being nonmeager is 
preserved by a countable support iteration. It is easy to see that P satisfies the 
covering properties established in [Go, ?6.20]. Therefore, Vn2w is a nonmeager 
set in VPW2 . 

(ii) U(#) = : In [Go] it is proved that the property of being nonnull is 
preserved by countable support iteration. In [BJS] it is proved that P satisfies 
the covering properties established in [Go, ?6.8]. Therefore, Vn2t is a nonnull 
set in VPW2 . 

(iii) There are no Luzin sets in VP02: by Corollary 6. 
(iv) There are no Sierpinski sets in VPW2: by Corollary 12. O 

14. Remark. In the co2-iteration of Laver reals we have that U(X) = t1 
and there are no Sierpinski sets. We do not know if in this model there are 
uncountable strongly meager sets. We know that Miller reals do not kill strong 
measure zero sets. This is a consequence of a Rothberger theorem. See [BJ2]. 
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