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CARDINAL ARITHMETIC FOR SKEPTICS

SAHARON SHELAH

When modern set theory is applied to conventional mathematical problems,

it has a disconcerting tendency to produce independence results rather than

theorems in the usual sense. The resulting preoccupation with "consistency"

rather than "truth" may be felt to give the subject an air of unreality. Even

elementary questions about the basic arithmetical operations of exponentiation

in the context of infinite cardinalities, like the value of 2H°, cannot be settled

on the basis of the usual axioms of set theory (ZFC).

Although much can be said in favor of such independence results, rather

than undertaking to challenge such prejudices, we have a more modest goal; we

wish to point out an area of contemporary set theory in which theorems are

abundant, although the conventional wisdom views the subject as dominated

by independence results, namely, cardinal arithmetic.

To see the subject in this light it will be necessary to carry out a substantial

shift in our point of view. To make a very rough analogy with another gen-

eralization of ordinary arithmetic, the natural response to the loss of unique

factorization caused by moving from Z to other rings of algebraic integers is

to compensate by changing the definitions, rescuing the theorems. Similarly,

after shifting the emphasis in cardinal arithmetic from the usual notion of ex-

ponentiation to a somewhat more subtle variant, a substantial body of results

is uncovered that leads to new theorems in cardinal arithmetic and has appli-
cations in other areas as well. The first shift is from cardinal exponentiation to

the more general notion of an infinite product of infinite cardinals; the second

shift is from cardinality to cofinality; and the final shift is from true cofinality

to potential cofinality (pcf). The first shift is quite minor and will be explained

in §1. The main shift in viewpoint will be presented in §4 after a review of

basics in §1, a brief look at history in §2, and some personal history in §3. The

main results on pcf are presented in §5. Applications to cardinal arithmetic

are described in §6. The limitations on independence proofs are discussed in

§7, and in §8 we discuss the status of two axioms that arise in the new setting.

Applications to other areas are found in §9.

The following result is a typical application of the theory.

Theorem A. // 2N" < Xw for all n then 2N°- < N^ .

The subscript 4 occurring here is admittedly very strange. Our thesis is that

the theorem cannot really be understood in the framework of conventional car-

dinal arithmetic, but that it makes excellent sense as a theorem on pcf. Another

way of putting the matter is that the theory of cardinal arithmetic involves two

quite different aspects, one of which is totally independent of the usual axioms
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198 SAHARON SHELAH

of set theory, while the other is quite amenable to investigation on the basis

of ZFC. Since the usual approach to cardinal arithmetic mixes these two as-

pects, the independence results mask the theorems and the occasional result

that survives this interference then looks quite surprising.

Of course, the most severe skeptics will even deny the mathematical content

of Cantor's theorem ( 2N° > N0 )• To these we have nothing to say at all, beyond

a reasonable request that they refrain from using the countable additivity of

Lebesgue measure.

Most of the results reported here were obtained in the past three years and are

expected to appear in a projected volume to be published by Oxford University

Press.

1. Basics

The reader is assumed to be comfortable with the axiom system ZFC or an

equivalent formulation of axiomatic set theory including the Axiom of Choice,

though knowing naive set theory is enough for reading almost everything . In

particular we have the notions of ordinal, cardinal, and cardinality \A\ of a

set A, the identification of ordinals with sets of ordinals, of cardinals with

"initial" ordinals, and hence also with sets of ordinals. The cofinality cofa of

an ordinal a is min {\A\ : A is an unbounded subset of a} ; we call an infinite

cardinal X regular if cofA = X, otherwise we call it singular. (Note cofNQ+i =

Na+1, cof N0 = N0, cf Hw = N0 , and for limit ordinal ö, cof N¿ = cf S). We
write a, ß, y, ô for ordinals, with ô typically a limit ordinal, and k, X, ß

for cardinals. Na is the ath infinite cardinal . The first cardinal above X is

denoted X+   (N+ = Na+1).

The product of a set of cardinals is the cardinality of their cartesian product

(with each cardinal thought of as a set of ordinals). Exponentiation is treated

as a special case of the infinite product. We recall that for any ordinal a,

cofa is a regular cardinal, and that NQ is singular iff a is a limit ordinal with

cofa < Na. A cardinal A is a limit cardinal [strong limit cardinal] if ß < X

implies ß+ < X[2^ < X]. Throughout our discussion the single most interesting

limit cardinal will be No, as was already illustrated in the introduction.

As has been known from time immemorial, addition and multiplication of

two cardinals trivializes when at least one of them is infinite, so the theory

of cardinal arithmetic begins with cardinal exponentiation, and more generally

with infinite products. In particular, the function X >-+ 2X satisfies the following

two classical laws (the first being entirely trivial):

(1) If ß<X then 2"<2'1.

(2) cof ll > X.

The most basic problem in (conventional) cardinal arithmetic would be

whether this function obeys other laws, and for this one quickly comes to con-

sider the behavior of 2*s for S a limit ordinal (as the historical discussion in

§2 explains). In this case one has various relations of the type

(3a) 2«S = Y[2*°.
a<S
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CARDINAL ARITHMETIC FOR SKEPTICS 199

In particular, if N¿ is a strong limit cardinal - that is, if 2N° < N¿ for all a < S

- we have

(3b) 2s« = N¡ffá.

One of the difficulties in the study of cardinal arithmetic is the preoccupation

with 2l, or more generally with exponentiation of a small base to a large ex-

ponent; the reverse situation is considerably more manageable, and a preoccu-

pation with strong limit cardinals is merely an attempt to trade in one problem

for the other via a relation of type (3b). Maybe this preoccupation is a vestige

of the Generalized Continuum Hypothesis.

We return to the first shift in viewpoint discussed in the introduction. If Nw

is a strong limit cardinal then 2n™ = NWN°, by (3b). In the sample Theorem

A given in the introduction, we explicitly included the hypothesis that N^ is a

strong limit cardinal. In fact, the theorem is cleaner without it:

Theorem A'.  N«"0 < max{K„4, (2*°)+} .

This is clearly a more "robust" statement than the original formulation, in

that fewer extraneous considerations are involved. Unfortunately the meaning

of the statement will still depend on the value of 2K°, the dependence being triv-

ial if 2N° > No, and we will have to work harder, beginning in §4, to eliminate

this feature.

The following ideas belong to modern cardinal arithmetic, though absent

from the classical theory. There is a natural topology on the class of all ordinals,

in which a limit ordinal a is a limit point of any set X of ordinals for which

Ina is unbounded below a. If a is an ordinal of uncountable cofinality,

S?a will denote the filter generated by the closed unbounded subsets of a. This

filter is closed under countable intersections.

A. filter on a set / is a collection of subsets of / closed upward (with respect

to inclusion) and closed under intersection. We require filters to be nontrivial,

that is, the empty set may not be in the filter.

If {Xi : i € 1} is an indexed family of sets and & is any filter on /, then the

reduced product FT, Xi¡!F is the set of functions / e FT,- %i modulo the equiv-

alence relation =& defined by / =&■ g iff {i : f(i) = g(i)} e &~. Similarly, if
the X¡ are linearly ordered, then FT,- -^i is partially ordered by pointwise com-

parison and YljXi/^ is partially ordered by pointwise comparison modulo
&.

A maximal (nontrivial) filter is also called an ultrafilter and the corresponding

reduced products are called ultraproducts. For our purposes, the main point is

that an ultraproduct of linearly ordered sets is again linearly ordered and not
just partially ordered.

We will touch lightly on issues connected with large cardinals and inner mod-

els. The reader who is unfamiliar with these subjects may ignore these remarks.

On the other hand the following comments may be sufficient by way of back-

ground. There are various axioms concerning the existence of "large" cardinals

(bearing names like: strongly inaccessible, measurable, supercompact, huge),

which are easily seen to be unprovable on the basis of ZFC; even their consis-

tency is known to be unprovable on the basis of ZFC, though these axioms are

generally thought to be consistent. Some consistency results have been obtained

only on the basis of the assumed consistency of large cardinal axioms, and the
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200 SAHARON SHELAH

application of "inner models theory" is a method to prove that such consistency

results require large cardinals. As our main concern is with provable theorems,

this takes us rather far afield, but there is a constant interaction between the

search for new theorems and the limitations imposed by independence results,

which one cannot ignore in practice. In any case, when we refer to large cardi-

nals, it is understood in that sense. When we wish to refer to cardinals that are

large in a less problematic sense (bigger than some particular cardinal) we will

refer to them as "moderately large."

2. History

Until 1974, the classical monotonicity and cofinality restrictions (1), (2) given

above exhausted the known properties of the function (X >->■ 2k). Gödel proved

the consistency (with ZFC) of the generalized continuum hypothesis: 2N° =

NQ+i. In 1963 Cohen introduced the notion of forcing, setting off the wave

of independence results that continues to this day, and used it to prove that

2N° can be any cardinal of uncountable cofinality. Easton adapted this method

to show that for any appropriate function f(X) satisfying the monotonicity

and cofinality restrictions, it is consistent to assume 2X = f(X) for all regular

X. In Easton's constructions, for X singular 2X will always be the least value

consistent with (1), (2), and the values of 2^ for ß regular. For example, if

Easton made Nw a strong limit cardinal, then he made 2Nm = N^+i .

Thus the belief grew that cardinal arithmetic lay outside the realm of math-

ematical investigation, and to complete the picture it apparently remained only

to modify Easton's approach to incorporate singular cardinals. Under large car-

dinal hypotheses, progress was made first for large singular cardinals, and then

by Magidor in 1973 for N<y, proving for example that one could have No a

strong limit and 2N<u = ^m+2 ■

So it came as a great surprise in 1974 when Silver produced a new theorem of

cardinal arithmetic: if 2N° = Na+1 for all countable a, then 2N<ui = #Wl+\ ■ At

this point we will leave the later independence results aside (Magidor, Foreman,

Woodin, Gitik, Cummings, and the present author), as well as the complemen-

tary work on inner models and consistency strength (Jensen, Devlin, Dodd,

Mitchell, Gitik), and earlier works (Scott, Solovay and Magidor) and concen-

trate on theorems provable in ZFC. The next section concentrates on singular

cardinals of uncountable cofinality; one can skip over this development and

continue in §4.

3. X*>

In what follows, N i can be replaced by any uncountable regular cardinal, but

not (in this section) by œ.

Answering a question of Silver, Galvin and Hajnal proved

Theorem [GH]. Suppose that ô is a limit ordinal of cofinality Ni, and NQNl < N,$

for a<ô. Then H/' < N(2i*i)+ .

More precisely, if we define / : ô —> â by NQN| = Ny(a), the theorem states

that N¿K' < N||/n, where ||/|| is defined inductively as

sup{||£|| + 1 : g < f mode's}-
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CARDINAL ARITHMETIC FOR SKEPTICS 201

(For notation, cf. §1.) This definition turns out to make sense because the

filter <9¿ is closed under countable intersections. Following Silver, this line

was developed in parallel and subsequent works by Baumgartner, Galvin and

Hajnal, Jech and Prikry, Magidor, and the author.

When I became interested in the subject, I saw a great deal of activity and

suspected I had come into the game too late; shortly thereafter I seemed to

be the only one still interested in getting theorems in ZFC. I believed that the

following thesis would be fruitful.

Thesis. For X of cofinality Ni satisfying

(*) ß*' < X for all ß < X

if X is small in any sense then ANl is small in a related sense.

In practice this means one writes X = F\(a) for Fi some natural function,

and proves a bound XH< < ^(a) where ^(a) = Fi((|a|N')+) or some quite

similar function.

For example,

Theorem [Sh 111]. If X > 22 ' satisfies (*) and is below the first regular un-

countable limit cardinal, then so is XH' . We also get results in this vain for

F\{a) = the ath fix point (i.e., cardinal X equal to N¿).

This uses a rank function similar to Galvin/Hajnal's, with respect to more

(normal) filters, which we show is well defined unless Jensen's work trivializes

the problem.
We got a similar bound in [Sh 256] when X is the first fixed point of order

oj and cofinality Ni in the enumeration of the cardinals, solving a problem

raised by Hajnal following [Sh 111]. There the ranks were with respect to more

complicated objects than normal filters, and in [Sh 333] similar bounds are

obtained for functions defined inductively. We also prove that if the problem

is not trivial then if we collapse 22 ' there is an ultrapower of the old universe

in which for all regular X > 22 ' there is a 2-like element in the ultrapower

(in [Sh 111] this was done for each X seperately). In [Sh 386] X > 22*' was
replaced in the theorem above by X > 2N| . A posteriori the line [Sc, So, Si,

GH, Sh 111, Sh 256, Sh 386] is quite straight. The rest follows a different line.

4. Possible cofinalities

Although Cohen and Easton showed us that powers of regular cardinals are

easily manipulated, we learned from inner model theory that this is not the

case for powers of singular cardinals. Similarly, manipulating XK for X > 2K is

much harder than manipulating 2K ; the same applies to products of relatively

few moderately large cardinals. There were indications [Sh b, Chapter XIII,

§§5, 6] that cofinalities are at work behind the scenes. At a certain point we

began to feel that we could split off the independence results from the hard core

of truth by shifting the focus.
Let a = (A,),6/ be an indexed set of regular cardinals with each X¡ greater

than |/|. Where cardinal arithmetic is concerned with the cardinality of F]a =

F], Xi, we will be concerned with the following cardinal invariants involving

more of the structure of the product.
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202 SAHARON SHELAH

4.1. Definition. 1. A cardinal A is a possible cofinality of FT a if there is an
ultrafilter Jona for which the cofinality of FT aA^~ *s ^ • (Recall that these

ultraproducts are linearly ordered: §1.)
2. pcf a is the set of all possible cofinalities of F] a •

We first used pcf in [Sh 68] in a more structural context, to construct Joñsson

algebras (algebras of a given cardinality with no proper subalgebra of the same

cardinality). In [Sh b, Chapter XIII, §§5,6] we obtained results under the more

restrictive hypothesis A, > 2'al bearing on cardinal arithmetic. An instance of

the main theorem there is the following (note that [GH] did not give information

on cardinals with countable cofinalities, Theorem A is a significant improvement

though formally they are incomparable).

4.2. Theorem B'. // 2H° < Nw then Kwn° < N(2»0)+.

Since there are 22 ultrafilters on /, pcf a could be quite large a priori; this

would restrict heavily its applications to cardinal arithmetic. Fortunately there

are various uniformities present that lead to a useful structure theory for pcf.

4.3. Main Theorem. Let a = (A,);6/ be an indexed set of distinct regular car-

dinals, with each X e a greater than |a|. Then:

1. pcf a contains at most 2l"l cardinals;

2. pcf a has a largest element max pcf a;

3. cof FT a = max pcf a (see remark below) ;

4. For each X e pcf a there is a subset b¿ of a such that

a. X — max pcf b¿, and

b. X <£ pcf(a - bx) ;
5- If ^x is the ideal on I generated by the sets \tß for ß < X, then for each

X e pcf a there are functions ff   (i < X) such that

a. for i < j we have ft < fj mod fx ;
b. for any f e T7a and X e pcf a there is some i < X such that

f< ft mod (A, (*-**)) ■

Remarks. The meaning of clause (3) is that for X = max pcf a, there is a subset

P of FTa °f cardinality X that is cofinal in the sense that every function in

Q a is dominated pointwise by a function in P. For example, the cofinality

of (o x o)\ is a>\ . This does not mean that there is a pointwise nondecreasing

sequence of length w\ that dominates every element of œxa>\ ; there is no such

sequence. When a product actually contains a cofinal pointwise nondecreasing

sequence, we say its cofinality is true, and we write tcf for the cofinality when

it is true.

By clause (5) Y\b^/^_ has true cofinality X.
The following structural principle is also of great practical importance. Note

that we do not know whether | pcf a |<| a|, the following still says that pcf a is

"small," "local," has small density character.

4.4. Localization Theorem. Let a be a set of k distinct regular cardinals with

X > K for all X € a; and suppose b ç pcf a with X >| b | for all X in b. If
ß € pcf b then ß € pcf a, and for some c C b of cardinality at most k we have

X e pcfc.
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CARDINAL ARITHMETIC FOR SKEPTICS 203

Thus pcf defines a canonical closure operation on sets of regular cardinals

with some good properties.

5.  PSEUDOPOWERS

For cof X < k < X we define the pseudopower ppK(A) as follows.

5.1. Definition. 1. ppK(A) is the supremum of the cofinalities of the ultra-

products FT a/i?" associated with a set of at most k regular cardinals below X

and an ultrafilter Jona containing no bounded set bounded below X.

2. pp(A) is PPcooW •
If we have a model of set theory with a very interesting (read: bizarre) cardi-

nal arithmetic, say 2^ = ^m+2 , and we adjust 2N° by Cohen's method, putting

in N^+3 Cohen reals, there is then no nontrivial operation of cardinal arith-

metic that will yield the result N<y+2. Not that the original phenomena have

been erased; they are simply drowned out by static. The operation ppK(A) is

more robust. It will be convenient to call X ^-inaccessible if ßK < X for ß < X.

5.2. Theorem. 1.  ppK(X) < XK ;

2. If cof A < k < X < NA and X is k-inaccessible (i.e., (V/z < X)[ßK < X]),
then ppK(A) = XK .

In this sense, ppK(A) is an antistatic device. If X is k-inaccessible in one

model of set theory and this condition is then destroyed in an extension in a

reasonably subdued manner (i.e., when we make 2K large), ppK(A) continues to

reflect the earlier value of XK . On another level, one can prove results about this

operation by induction on cardinals, which is not possible with the less robust

notions. (The restriction X < N¿ is certainly convenient, but we will discuss its

removal below.)

Let PPK(A) be the set of cofinalities whose supremum was taken to get

ppK(A). This turns out to have the simplest possible structure.

5.3. Convexity Theorem. If k e [cof X, X) then PPK(A) is an interval in the set

of regular cardinals with minimum element X+ .

We can also give a cleaner description of the way a cardinal enters PPK(A)

in some cases.

5.4. First Representation Theorem. Suppose N0 < cof A < k < X and for all

ß e (k , X); if cof ß < cof X then pp(//) < X. Let ¿?o be the filter on cof X
generated by the complements of the bounded sets. Then for any regular cardinal

X* G PP(A), there is an increasing sequence (A,);<cof/i with limit X such that the

product Y[Xi/^ó has true cofinality X*.

In the case X* = X+ there is a better representation.

5.5. Second Representation Theorem. If X is singular of uncountable cofinality,

&Ó is the filter generated by the complements of the bounded subsets of cof A,

and (Xi)i<cofx is increasing, continuous and cofinal in X, then there is a closed

unbounded subset C of cofX suchthat Ylctf/ffi> cofX-C) has true cofinality
X+.

Discussion. Why do we suggest PPK(X) as a replacement to XK ? Maybe we

had better reconsider what we are doing. XK is a measure of the size of the

family of subset X of cardinality < k , i.e., its cardinality. Remember that when
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X < k the independence results do not leave us much to say. When k < X we

shall present various natural measures of this set below. It is useful to prove

that various such measures are equal, as we can then look at them as various

characterizations of the same number each useful in suitable circumstances. We

report reasonable success in this direction below.

5.6. Definition.    For k e [cof A, X) let the k-covering number for X, cov(A, k),

be the minimal cardinality of a family of subsets of X, each of size less than X,

such that every subset of X of size k is contained in one of the specified sets.

Note that, as is well known, for k < X, XK = 2K + "the K-covering of X."

5.7. Theorem. If k e [cofA, A) and X < N¿ then ppK(A) is the K-covering

number for X.

To remove the restriction that A < N¿, define the weak k-covering number

for A as the minimal cardinality of a family of subsets of A, each of size less

than A, such that every subset of A of size k is contained in the union of

countably many of the specified sets.

5.8. Theorem. 1. For k uncountable, the weak K-covering number of X is the

supremum of the true cofinalities of the reduced products FT a/J?~ with a a set

of at most k regular cardinals below X and &~ a filter on a that contains the

complement of every subset of a bounded below X and is closed under countable

intersections.

2. If this cardinal is regular, the indicated supremum is attained.

Thus our problems are connected with the case of cofinality œ. We give

relevant partial information in §8.

We mention two more invariants that we can now prove coincide.

5.9. Theorem. For No < k < X with k regular the following two cardinals

coincide:

1. The minimal cardinality of a family of subsets of X, each of size less than

k , such that any subset of X of cardinality less than k is contained in one of the

specified sets.
2. The minimal cardinality of a stationary subset of the family of subsets of

X of size less than k .   (Stationarity means that for every algebra with set of

elements X and countably many operations, there is a subalgebra B, \B\ < k ,

B n k is a ordinal and B e S.)

6. Cardinal arithmetic revisited

If k = NQ, it will be convenient to call a the index of k ; otherwise our

results tend to live entirely in the land of subscripts. In [Sh b, Chapter XIII,

§§5,6] we showed

The index of Nácof<5 is less than (\ô\coia)+ .

In particular, for ô = œ, the corresponding index is below (2S°)+ (construed

as an ordinal). If N<y is itself below 2N° then this contains no information and

(our usual theme) inessential modifications of the universe can always make this

happen. On the other hand known independence results show that when N^

is a strong limit, the index of (N^)**0 can be any countable successor ordinal,

so in principle one could hope to prove that the true bound is a>i (which we

doubt). Our strongest result is
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CARDINAL ARITHMETIC FOR SKEPTICS 205

6.1. Theorem,  ppíN«,) < KW4 .

6.2. Corollary.  NWN° < max(NW4, (2*°)+).

The more general formulation is

6.3. Theorem. If ö is a limit ordinal, S < Na+<5 then pp(Na+(5) < NQ+|á|+4.

For the proof, one looks carefully at the closure operation induced on œ4 by

the pcf structure on NCU4 (passing to indices) under the assumption that N^

is < PP(Nc). There are conflicts between the main theorem, the localization

theorem and the second representation theorem on the one hand and combi-

natorics of closed unbounded sets inside ft>4 on the other hand, which yield
a contradiction. Ultimately, the pcf structure cannot exist on <y4 because no

such closure operation exists. On W3, there are two questions: does such a

closure operation exist and can it be given by pcf?

Structure of the proof. Assuming (toward a contradiction) that NG)4+1 belongs

to pcf(Nw), for X C a>4 define clX = {/" < CO4 : N,+i e pcf(N7+i);€x} • By the

Convexity Theorem c\(co) = co4 and by the Localization Theorem, if i e clX

then for some countable Y C X we have i e cl Y. By the Second Represen-

tation Theorem, if ô < 0)4 is a limit ordinal of uncountable cofinality then

ô is the maximal element of cl C for some closed unbounded subset of ô as

well as any smaller closed unbounded set. These three properties of the closure

operation (alone) eventually lead to a contradiction.   D

This may indicate that it is interesting to investigate, e.g., the set {Na+] :

Na+i < PPNW} = pcf{N„ : «} with the relation "A e pcfb" and even the se-

quence {bx : X e pcf{N„ : «}) from 4.3 (for which there are theorems saying
"we can choose nicely").

7. For true believers

Naturally our results also give a great deal of information regarding the types

of forcing that are applicable to certain open questions. Any instance of A e

pcf a normally results from some normal ultrafilter "at the time when the large

cardinals were present." Some of this information is in the canonical spot in

[Sh-b, Chapter XIII, §§5,6], and more is in [Sh 282], for example, if pp(Nû,1)
is greater than ttW2 then there are many ordinals ô < wi of cofinality oj for

which pp(N(s) is above N,5+ft)1 .

These considerations also shed some light on the problem of resurrection of

supercompactness. By our 9.6(1)

7.1. Corollary. If in V we have cof(A) < k < X and pp(A) > X+, then there
is no universe extending V in which X+ remains a cardinal while k becomes

supercompact or even compact.

Gitik has proved, for example, that if cof A = œ, /iN° < A for all ß < X,
and pp(A) > A+ , then in Mitchell's inner model o(X) — X++ . By his previous

independence results this settles the consistency strength of 2N° < N,y+1 < N^**0

(using [Sh b]), though it did not settle the consistency strength of the full singular

cardinal hypothesis, as there are fixed points. For this purpose we have proved

7.2. Lemma. If X is singular of cofinality N0, and if pp(ß) < X for all singular

cardinals ß < X of cofinality N0 and pp(ß) = ß+ for every large enough ß < X
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of cofinality Ni, then there is a family of countable subsets of X containing pp(A)

sets, so that every countable subset of X is contained in one of the specified sets.

Thus if ß*0 < X for all ß < X, we find pp(A) = AN°.

Together this yields an equiconsistency result. However Gitik points out that

this result is intrinsically global. For a localized result, we have

7.3. Lemma. If X is singular of cofinality No, and if ß*° < X for ß < X and
pp(A) > AK°, then pp(A) is quite large; there are at least Ni fixed points in the

interval from X+ to pp(A).

This still does not settle the behavior of singular cardinals of cofinality N0 .

The following suggests there are few exceptional values.

7.4. Lemma. If k is a regular uncountable cardinal and (A,),<K is an increas-

ing continuous sequence of cardinals with A? < XK for i < k , then for some

closed unbounded subset C of k we have pp(A,) = Xf on Co {k} .

This has application to the construction of "black boxes."

8. Some hypotheses

8.1. The Strong Hypothesis. For all singular cardinals X, pp(A) = A+ .

This is a replacement for GCH as well as " 0* does not exist" in some cases.

It is weaker than either and is hard to change by forcing, but is consistent with

large cardinals (and indeed holds above any compact cardinal [So] while having

a more combinatorial character than " -i0# ". Of course this will not give, e.g.,

a square sequence on the successor of a singular cardinal.)

8.2. Lemma. The strong hypothesis implies that for any singular cardinal X

and any k < X, XK < A+ + 2K, there are X+ subsets of X, each of cardinality k ,

such that every subset of X of cardinality k is contained in one of the specified

sets; and a Jorisson algebra exists in every successor cardinal.

8.3. The Weak Hypothesis. For any singular cardinal X, there are at most

countably many singular cardinals ß < X with pp(/¿) > A.

In my opinion, it is a major problem to determine whether this follows from

ZFC and is the real problem behind the determination of the true bound on

PP(^) •

8.4. Lemma. The weak hypothesis implies:

• PP(NW) < Nß,, , and more generally if â < Hg then pp(N¿) < N|¿|+.

• pcf a has cardinality at most   a |.

• pp(A) has cofinality at least X+ for X singular.

If we strengthen the weak hypothesis by replacing "countable" by finite, but

only for ß of cofinality No, then Gitik has proved that the stronger version

does not follow from ZFC.

9. Other applications

If the list of applications below does not contain "familiar faces" the reader

will not lose by skipping to the concluding remarks.
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We turn now to results involving more structural information, bearing on

almost free abelian groups, partition problems, failure of preservation of chain

conditions in Boolean algebras under products, existence of Joñsson algebras,

existence of entangled linear orders, equivalently narrow Boolean algebras, and

the existence of L^ ¿-equivalent nonisomorphic models.

9.1. Model theory. If X has cofinality greater than Nj then there are two Lœ r

equivalent nonisomorphic models of cardinality X.

This was known for A regular or A = XH°, and for strong limit A of uncount-

able cofinality, but fails for cofinality No . There is still a small gap.

9.2. Jorisson Algebras. There is a Joñsson algebra of cardinality Hœ+i.

A Joñsson algebra is an algebra in a finite or countable language that has no

proper subalgebra of the same cardinality.

This was known previously under the hypothesis 2N° < Xw+i . We can now

show that if A is singular and there is no Joñsson algebra of cardinality A+ , then

A is quite large, for example, A is a limit of weakly inaccessible cardinals that

do not admit Joñsson algebras (and there is a Joñsson algebra of inaccessible

cardinality ß if ß is not Mahlo, or even not (ß x <y)-Mahlo).

9.3. Chain conditions. For any cardinal X > Nj, there is a boolean algebra that

satisfies the X+-chain condition while its square does not; hence its Stone-Cech

compactification has cellularity X, but its square has cellularity greater than X

Previous References: [Tl, Sh 282] for some singular cases, [Sh 280] for

regular above 2N°, [Sh 327] for regular A > N2.

This really comes from coloring theorems. We give a sample of the latter.

9.4. Coloring Theorem. For A > Nj there is a binary symmetric function c:

(X+)2 —► cof A such that for any sequence (w,-),-<¿ ofpairwise disjoint finite subsets

of A+ and any y < cof A, there is a pair i < j < X with c[w¡ x Wj] = {y}.

9.5. Narrow Boolean algebras. 1. If X is singular and less than 2N°, then there

is a X+-narrow Boolean order algebra of cardinality X+ (see below). The same

holds if K+3 < cof A < A < 2K .
2. The class {X : there is in X+ a X+-narrow Boolean algebra) is not bounded

(really (A, N¿+3+i] is not disjoint to it).

9.5A. Definitions. 1. The boolean order algebra associated to a linear order

L is the boolean algebra of subsets of L generated by the closed-open intervals.

2. A boolean algebra is A-narrow if it has no set of pairwise incomparable

elements of size A (a, b are incomparable if a £ b and b -¿a).

3. A linear order L is entangled if for every n , for all choices of distinct

xmj ïot m <n, i < \L\, and for any subset w of {1, ... , «} , there are i < j

so that for all m < n we have xm>¡ < xmj iff m e w .

For A regular, the boolean order algebra associated to the linear order L of

cardinality A is A-narrow if and only if / is entangled. For background see
[ARSh 153, BoSh 210, T, Sh 345].

The bound A+3 in the theorem above is connected to §6. Note that in addi-

tion we can use a subdivision into various cases, bearing in mind that by [BSh

212, T] there is such an algebra of cardinality cof 2l if there is a linear order of

Sh:400a



208 SAHARON SHELAH

cardinality 2X and density A, and usually the absence of such an order enables

us to use our current method.

9.6. Almost disjoint sets, almost free Abelian groups. 1. If X is singular and

pp(A) > A+, then there is a family of X+ subsets of X, each of cardinality cof A,

such that any X of them admit an injective choice function (called transversal).

Consequently if cof A — N0 then there is a X+-free out not free abelian group.

2. The following are equivalent for X > ß > 2N°.
a. There are X subsets of ß of size Ni such that any two have finite intersec-

tion.
b. For some n, there are regular cardinals A,,m for i < u>\ and m < n,

such that for every infinite subset X of o)\, ß < maxpcf(A¡>m : i e X, m < n).

3. If X is regular, 2<x < 2X, and there is no linear order of cardinality 2X

and density X, then in every regular ß e [2<x, 2X] there is an entangled order.

There are other results on almost disjoint sets and A-free abelian groups and

a topological question of Gretlis, Hajnal, and Szentmiclossy.

Concluding Remarks. The following is not surprising in view of Theorem 6.3,

and part of the argument is similar but requires, at least from the author, con-

siderably more work.

Theorem. If ô < NW4 has cofinality No, then pp(N¿) < N^, and hence the
cofinality of the partially ordered set (S<k0(Rco,)', Q) is N^ (where S#0(X) =

{a : a ç A, \a\ = No}).

Also the state of Tarski conjecture can be clarified, by Jech and Shelah [JeSh

385] and, e.g., if ppiN^,) > N^ then there is a Kurepa tree on a>\.

We conclude with some words of the author. Reflecting on the above it

seems that whereas once we knew a considerable amount about the uncount-

able cofinality case and nothing about the countable cofinality case (I mean

theorems and not consistency results or consistency strength results) , now the

situation has reversed. This is not accurate—the results of Galvin and Hajnal

and those discussed in §3 above, are not superceded by the later results. There

does not seem to be a generalization of ranks to countable cofinality , nor have

we suggested so far anything on fixed points or limits of inaccessibles below

the contiuum. Recently we have succeed in getting some results on this topic,

and they will be reported elsewhere [Sh 420]. See more in Gitik Shelah [GiSh
412] (mainly if A is real valued measurable {2a : a < A} is finite), [Sh 413]
(more on coloring and Jonsson algebras), [Sh 430] (on cf(^N|(A), Ç) < A for

A real valued measurable, and again of existence of trees with k nodes and any

regular A e [k , 2K] k-branches and improvements of 7.3 and on the smallest

values needed for canonization theorems).
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