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We prove that for superstable T the number is small and for unsuperstable T the number is
large.

0. Introduction
We deal with models of a fixed complete first-order theory 7. We rely on [1].

0.1. Definition. (1) A model M is strongly x-saturated if:

(i) M is strongly k-homogeneous, i.¢., if @, b are sequences of elements of M,
of the same length which is <k, and realizes the same type, then for some
automorphism f of M, f(@) = b; and

(i) M is X,-saturated (= F§x -saturated, see VI Definition 1.1(4), 2.1), i.e.,
every type which is almost over a finite subset of M is realized in M.

(2) Let I’*(4, T) be the number of strongly X,-saturated models of T of power
A up to isomorphism.

We shall compute I*(A, T) for A=2'T". We do not need the new methods
needed for classifying theories (see [2]). Moreover the main dividing line is simply
superstability. So we have gotten a direct characterization of “T is superstable” in
terms of some spectrum function.

More explicitly our results are:

0.2. Theorem. (1) If T is superstable, then for some cardinal nde(T)<2'"' for
every R, =27\, I*(R,, T) <|a|™*D,
(2) If T is not superstable, then for every A=2"T\, I'*(4, T) = 2"

If we change 0.1(1)(i) by demanding &, b realize the same strong type (over )
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the change is immaterial. E.g. expand T by a name for every equivalence class of
each E € FE(0)

Notation. References like V 1.1 are to {1].

1. On superstable T
Hypothesis. T is superstable.

1.1. Claim. Suppose M* is a model of T. If Ac M*, a,beM*, p=tp(b, a) is
stationary and orthogonal to A, q its stationarization over A U a, then dim(p, M*)
and dim(q, M*) are equal or both finite.

Remark. Remember that if B c M*, r € $™(B), then dim(r, M) =Min{|I|:1is a
family of sequences of length m of members of M, realizing p, which is
independent over B, and maximal under the restrictions listed so far}.

If r is regular we can omit the ‘Min’, but even generally for any two such
L, I: |\I| < |, w(r) where w(r) is a natural number (see V 3.13(2)), so if at least
one is infinite they are equal.

Proof. Clearly dim(g, M*)=<dim(p, M*), more exactly, by the remark,
dim(q, M*) <dim(p, M*)" + X,. We can find a maximal I c p(M*) independent
over a such that |{I| = dim(p, M*). We can also find ¢ € A such that tp(@, A) does
not fork over ¢. Now (as x(T)=N,) by I1II13.5(2) for some finite JcI, I —J is
independent over (CUG4, a). As p is orthogonal to A, it is orthogonal to
stp.(A, €) (see Definition V1.1). By V1.5, tp.((U (I —J), a) is orthogonal to
tp+(A, ¢). Remember that stp.(A4,auU<), stp.((J(I—J),auUc) does not fork
over ¢, a resp. Hence (by V1.2(4)) stp.(UI —J), aU?), stp.(A,auUc) are
orthogonal, hence (by V 1.2(1)) tp({_J (I —J), @a U ¢ U A) does not fork over ¢. So

dim(q, M*)= (\I = J))/w(p) = (| - J))/w(p)
= (dim(p, M*) — J|)/w(p),  J finite.

Together with the first sentence of the proof, we finish. [

1.2. Claim. Let A be a set, I independent over A, and N is Fy-prime ove
AUulUL

Then for every a, b € N, if p = tp(b, @) is stationary and orthogonal to A, the;
dim(p, N) = K,.

Proof. By 1.1, dim(p, N) is <R, + dim(p,, N) where p, is the stationarization c
p over AUa. Also for some finite J <1, tp(a, AUJI) does not fork ove
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AUUJ, and by III3.5, dim(p,, N) + X,=dim(p,, N) + R, where p, is the
stationarization of p over A Ua U(JJ. As p is orthogonal to tp(¢, A) and even to
tp(¢, AULJ) for ¢eI—J, by V1.4(1), it is orthogonal to tp.(J (I —J),
A UUJ). Hence every J' c p,(N) independent over A Ua U|_J, is independent
over AUaGUJU (I -J)=AUaUl, hence dim(p,, N) = dim(ps, N) where p; is
the stationarization of p over AUaGUJI. But N is F}-prime over AUUI,
hence (by IV 2.12(3)) over AUaU|\JI, hence (by VI4.9(2)) dim(p;, N) <X,.
So dim(p, N) =< dim(p;, N) + Ry <N, but a is finite hence equality holds as N is
F3 -saturated. O

1.3. Proposition. Suppose N, M* are F3 -saturated, Nc M*, I M* is -inde-
pendent over N, and stp(c, N) is regular for every ¢ € I. Then we can find Nyc M*
F$:-prime over N U\UI such that:

(*) ifa, b eN,, p=tp(b, ) is stationary, regular orthogonal to N, and q is the
stationarization over M* of p, then dim(q [(N U a), M*) = dim(q [N,, M*).

Proof. Let N, be an F} -primary model over NU{JI Let {p;:i<a} be a
maximal family of complete over N,, regular, orthogonal to N, pairwise
orthogonal types. Let {@.:n <w} be independent over N,, @, realizing p; (so
{a,:i<a, n<w} is independent over N,, see V 1.4(2)), and N; be F} -primary
over NyUUJ {@.:i < a, n < w}. Now tp(a, N,) is orthogonal to N.

1.3A. Fact. N, is F -atomic over NU(J L.

Proof. Suppose ¢eN,. Then by IV3.12(2), tp(¢, NoU{a,:i<a,n<w} is
F§ -isolated, so (see IV 2.1) there are finite B ¢ Np, 4 < « and k < w such that

stp(c, BU{@.:ieu,n<k})bFstp(C, NoU {@}:i< &, n < w}).

Clearly it suffices to find b, (i € u, n <k) in N, such that (b’:i e u, n <k) realize
stp({(@,:ieu,n<k), NUIUB) [as then we can find in Ny¢' such that
¢'~(b.:ieu, n<k) realizes stp(c"{(a,:ieu,n<k), IUB); so tp(c, NUI)=
tp(¢’, N UI) hence they are F3 -isolated, remembering that N, is F -atomic over
NUI]. As {a@,:i eu, n <k} is independent over N, (and N U I c N,) it suffices to
prove:

(*), for every finite Ac N, and i < &, n < @, some b € N
realizes stp(a,, NUT U A)

(as then we define b, by induction on i € @ and n < ).

Proof of (*),. W.l.o.g. tp(a,, no) does not fork over A. As N, is Fi saturated
w.l.o.g. tp.(a,, A) is stationary. Also w.lL.o.g. tp(A, N) does not fork over
ANN. Hence tp,(N, A) does not fork over AN N.

Now tp(a’,, N,) is orthogonal to N, hence to A NN hence to tp,.(N, ANN).
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But stp(@,, A), stp«(N, ANN) are parallel to tp(a}, N;) and stp,(N, A) resp.,
hence the latter are orthogonal so stp(a’, A)Fstp(a,, N U A).

For some finite JclI, I—J is independent over (N, NUAUJ); so
w.Lo.g. (Vd e J)(d c A) so similarly stp(a;,, NUA) +stp(a,, NUA U —J)). So
stp(a., A) Fstp(a’, N UI), but the former is realized in N,, as A is finite. So we
have proved (*);, hence Fact 1.3A. O

Continuation of the proof of 1.3. We want to show that N; is F} -prime over
MU\JI By IV 4.18 (and see Definition IV 4, p. 192) it suffices to show that:

1.3B. Fact. For every regular stationary p € S™(N U\UIUb) (for some b € N;),
dlm(p, Nl) = xo.

Proof. If p is orthogonal to No, this follows by Claim 1.2. Suppose p is not
orthogonal to N,.

Let ¢ realize p. W.l.o.g. p does not fork over b, p [b stationary and tp(b, N,)
does not fork over some finite A = N, and p is not orthogonal to A. Choose
b'"¢' € N, realizing stp(b*¢, A). By V3.4, tp(¢’, b') is not orthogonal to p,
and clearly it is regular and stationary and let ¢ € S"(N UI U b’) be the station-
arization of tp(b’,¢’). Let p' e S"(NUIUbUD"), q' e S"(NUIUb Ub') be
stationarizations of p, g resp. By III 3.5,

dim(p, N,) + Ry =dim(p’, N;) + R,
and dim(gq, N,) + R, =dim(q’, N;) + R,.

By V1.14 and V2.7, dim(p’', N,) + Ry = dim(q’, N;) + R,. So it suffices to prove
dim(q’, M) <R,, i.e., wlo.g.beN, By IV49, dim(p, N)<R, Let p'e
S™(N,) be the stationarization of p over N,. By V 1.16(3),

dim(p, N;) = dim(p, N,) + dim(p’, Ny).

Let U be the set of i<« such that p; is orthogonal to p. By V1.13(1),
|la — U|=<1. Now easily tp,( {a.:i € U}, N,) is orthogonal to p. We also know
that there is N’ F3-prime over NoUUJ {@i:ieU,n<w}, and if jea— U,
tp(U {@,:n <o}, No) Ftp(U {@},:n < w}, N'), so w.l.o.g. N, is Fk-prime over
N'uUJ{a,:iea—U, n<w}. Now by V1.16(3),

dim(p, N;) = dim(p, N) + dim(p’, N’) + dim(p”, N,)

where p” is the stationarization of p over N'. By IV 4.9 and 111 3.5, dim(p", MN,) <
Ro. Lastly note that dim(p’, N')=0 because tp,{a,:iev,n<w}, Ny) is or-
thogonal to p (by V 1.4) using V 3.2. Together dim(p”, N;) < R,.

So we have proved Fact 1.3B. [

Continuation of the proof of 3.1. So N, is really Fx -prime over N U I. By the



Sh:225

The number of strongly X, saturated models of power A 283

definition of F} -prime w.l.o.g. N, c M*, replacing, of course, our N, by another
choice.

Now we shall prove that Nj is as required. Let &, b, p, q be as assumed in (*).
By Claim 1.2 (as p is orthogonal to N), dim(q[(NUa), Ny) is <N,. As by
V 1.16(3),

dim(q [(N U a@), M*) = dim(q [(N U @), Ny) + dim(q [ N,, M*),

we are almost finished.
The only non-immediate case is dim(q[N,, M*)<X,. But N; witness
dim(q [Ny, N;) =R, hence

Ro = dim(q [(N U @), M*) = dim(q [ Ny, M*) = dim(g [ Ny, Ny) = Ry,
thus finishing. [

1.4. Claim. Suppose M* is F} -saturated. There is Nyc M* F} -prime over §) such
that:

() ifa, b eN,, p=tp(b, a) is stationary regular, q the stationarization of p over
M?*, then dim(q [a, M) = dim(q | Ny, M*).

Proof. Similar to that of 1.3. O

1.5. Theorem. Suppose M} (I =1, 2) are F} -saturated, and for every a,, b, € M},
p: = tp(a,, a;) regular and stationary (for [ =1, 2):

tp(a@"b,, B) = tp(a,"b,, ¥) implies dim(p,, M}) =dim(p,, M3).

Then MT, M3 are isomorphic.

Remark. Another variant is when we demand stp(a"b,, @) =stp(a,"b,, 8).
We can deduce it from 1.5 by expanding €°? by the individual constants ¢ for all
c e acl@.

Proof. We define by induction on k < w
N, {pra<a)}, (Jia<an,ksm<w) (forl=1,2) and F

such that:

(1) Ny < M/, N is F&-saturated.

(2) E, is an isomorphism from N} onto Nz.

(3) Nic Nis1, B c Foly.

(4) If p e S™(N%) is regular, does not fork over 4, p [a@ stationary, a € N, then
dim(p [a, M}) = dim(p, M;).

(5) {pY:@<ay} is a maximal family of regular, complete over Nj,
orthogonal to Nj_; (when k > 0) pairwise orthogonal types.



Sh:225

284 S. Shelah

6) E maps Pa to p2~.

D) UnseJo5,cMf is a maximal family of sequences realizing p4%,
independent over Ni.

(8) (Jik.:k<m <o) are pairwise disjoint. [JZ% | = [JLE | = T5E] = R

9) J5k, < N,,,+1, E, ., maps J3% onto J%%.

(10) Unmsm)J25 is 1ndependent over (Ni, Niyo) (When k < m(0)).

First Case: k=0.

For I1=1,2, let Noc M be Fi-prime over @, such that for 4, b e Nj if
p =tp(b, @) is stationary and regular, g the stationarization of p over N5, then
dim(p, M;) = dim(q, M}); this is possible by 1.4. Easily (4) holds. As Nj, N are
F} -prime over @, by IV 4.18 there is an isomorphism F, from Ng onto Nj.

Let {p2%:a < a,} be a maximal family of types in ,, S™(Ng), regular and
orthogonal in pairs and p%°= F(pL®. Condition (6) holds and easily also
condition (5). Let J5° ¢ My be a maximal family of sequences, independent over
Ni, realizing pi*. As (4) holds, J%? is infinite, so we can partition J5° to
J50 (m < w) such that [J5°,| = |J%%. Now |J5°% = |J%° by the hypothesis of 1.5
and the choice of NY.

We can check the other conditions.

Second Case: k + 1.

So we have defined already for /=1, 2 and m <k: Ny, Ny™ for « <a,, and
J.... Let N, be F&-prime over N, UUJ {JL5):k(*)<k, a<aywm)}. Then
Ni.1 < M} and w.l.o.g. condition (4) holds; this is possible by 1.3.

By V3.2 condition (10) holds. By conditions (10) and (6) for &' eJyX™,
2 ek, k(*)<k

F(tp(¢*, Ni)) = tp(¢*, N7),

hence by (10), for any n<w, distinct d,...,d,_;€J55*) and distinct
bo, ..., b,_€J%K®

E(tp+(@o" - +"dn-1, Ni)) = tpa(bo"+ - -"bp_1, N3).

As by (8) JLX®, JZK® have the same cardinality, we can extend F, to an
elementary mapping F7 i)« from N; U UJ34® onto Nz U JJZE®,

By condition (5), the types p4*®) (k(*) <k, a <ay,) are pairwise orthog-
nonal, hence by V (1.4(1) (and (10)) also the types

tp (U {J5V: k(1) <k, B < arqry, (k(1), B) # (k(*), @)}, Ni)
and  tp(J555), NY)
are orthogonal (k(*) <k, o < a,(;), hence by V 1.2 weakly orthogonal.
Hence Fi =\ {Fyxe),a:k(*) <k, @ < @y} is an elementary mapping.

As Ni., is Fi-prime over N} UJ {J550: k(*) <k, a < ay), by IV4.18 we
can extend F; to an isomorphism from N, onto Nz, and call it F.,.
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Let {pL**':@ < a;,,} be a maximal family of pairwise orthogonal, complete
over N;.,, orthogonal to Ny, types. Let pZ**' = F . (pL**h).

Now there is no problem to find J55}! (k <m < ) to satisfy condition (7), for
each a < a;;. There is no problem to check the conditions (1)—(10). So we have
carried out the induction.

To finish the proof it suffices to prove that (for I = 1, 2) M} = U<, Nk (as then
Uk<w Fx is an isomorphism from MT onto M3). Suppose M} # | <o N%- As both
models are F3-saturated and i<, Nic M, by V3.5 for some ce M,
tp(c, Uk<o N%) is regular. As T is superstable for some m < w, tp(c, Ui<w Ni)
does not fork over N, hence tp(c, N, is parallel to tp(c, U<, N%) and so is
regular. Let n < m be minimal such that tp(c, U<, N%) is not orthogonal to N...
Using V3.4 we can find a regular type reS(N.,) not orthogonal to
tp(c, Uk<w N%), 0 by V 1.13(2), r is orthogonal to N;,_, (if n > 0) hence for some
a < a,, ris not orthogonal to p%”. By V 1.13, tp(c, U<« N%) is not orthogonal to
ph”, so by V 1.12 some d € M} realizes the stationarization of p%* over U, N%.
But tp(d, N\UUm=ndi) ctp(d, Uk<o Ni) does not fork over N,
contradicting condition (7) in the induction hypothesis. [

2. The non-structure theorem

2.1. Theorem. Suppose T is not superstable.
K ={M:M a strongly F?, -saturated model of T}.

Then for every A > A(T) there are 2* pairwise non-isomorphic models from K of
power A.

Remark. (1) A(T) is the first cardinality such that for M a model of T and finite
A c M, the number of non-equivalent stp(a, A) (in M), ae M, is <A(T). It is
known that A(T)<27' and w.lo.g. |T|<AT) (as |D(T)|<A(T), and if
|ID(T)| <|T|, then T is a definitional extension of some 7' < T, |T’'| <|D(T))).

(2) Note that the proof shows that if T < T; (T a first-order theory), then for
A>|T;| + A(T) there are 2* non-isomorphic models from K of power A which are
reducts of models of T;.

Notation. We identify ““A with the model (A4, <, <i, ..., Py .. )a<w
where <, is the lexicographic order, < is being initial segment and P, = “A. The
slight variation from VII Definition 2.1 is inessential.

Proof. We know (II3.14,9) that there are formulas ¢,(x, y,) (of L(T)) and
a, €€ for n e “w (€ a quite saturated model of T, see [1,p.7]) such that if
n € “w, v €"w, then

(*) Fo.a,, a] if v<ng.
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We now define by induction on n, a}, (v € ““w) and L, such that:

(1) M, is an L,-model, |L,|< A(T).

(2) ate M, and (a’:v e ““w) is indiscernible in M, (for indiscernability with
respect to (“w, <, <y, ..., P, ...) see VII Definitions 2.2, 2.3, 2.4).

(3) L,cL,,, and (M, [L,) is an elementary extension of M, [ L,.

(4) For any vy, ..., v, € ““w, the quantifier free L,-type of a7 " - -*a%*! in

1 k
M, ., is equal to the quantifier free L,-type of a;"---"ay in M,: moreover
Mn < (Mn+1 an)

(5) My=€, a%=a,. .

(6) For n>1, Th(M,) has Skolem functions.

(7) For n>1, and vy, ..., vi € “o, every (Lo, m)-type in M, ., (=the
Skolem Hull of {47, ..., a7} in M,) which is almost over a finite set, is realized

(8) For any m <w, F,, is a (2m + 1)-place function symbol from L,, such that
ifa, beM? ., n=2,a, b realize the same Ly-type in M,, then x— F(x, a, b)
is an automorphism of M, | L, taking a to b.

For the case n =0 there is nothing to do.

Case n + 1: Choose A large enough (e.g., 3((22'”)+). We can find an L,-model
N,, of Th(M,), and b,eN, (ne“A) such that if ny,...,n €“74,
Vi, ..., Vi€ Cw, and (1, ..., N%), {V1, ..., V) realize the same atomic type
in “A, “w resp., then b, *---"b,,, a," - -"a,, realize the same L,-type in
N,, M, resp.

For I ¢ “=A let N7} be the Skolem Hull of {a,:n €1} in N,.

Let N, be an elementary extension of N,, such that (N.[L,) is strongly
||N, || *-saturated. For any &, b € Njo=;y (of length m) realizing the same Ly-type,
the function x — E,,(x, @, b) is an automorphism of N{.=3)[ L. We can extend this
automorphism of N{w=;y[L, to an automorphism of N.[L,. Also if 4, b e N
realize the same Lo-type a"b ¢ N{w=;), we find an automorphism of Nfusj,|L,
taking @ to b. So we can define a model N2, which is like N, but we change the
interpretation of F,, so that:

(a) for x, &, b € Njusyy: FNi(x, a, b) = FN*(x, &, b);

(b) if @, b € N? realize the same L-type, then x— F(x, @, b) is an automorph
ism of N2|L,.

Next for every complete atomic L(“w)-type r realized in ““w, we choose :
tuple say ¥" = (v}, ..., Vi) realizing it in ““, and we choose A(T) complett
(Lo, m)-types over M”", {p?":i <A(T)}, such that any Le-type in N,; 51y (i.e.
its parameters are from it and it is finitely satisfiable there) almost over a finite se
is included in some p?’". Now we define in N2 k-placed functions G** (for eacl
m) such that:

(#*) if vy, ..., vi € “FA, (vq, ..., V) realizes in ““A the complete atomic typ:
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r, then for every L,-term 14, ..., 1, and Lyformulas v:

Yx, 1(@y, ..., a,), ..., Ty, ..., a,))ep’”
iff NZE[GP*@y, ..., a,), 1@y, s 8y), v s T8y, - - - @)

Let N;=(N7, ..., G, .. )<, i<aa) Lastly let N% be an expansion of N
by Skolem functions but still |L(N})|<A(T). Let L,.;=L(N%). Now by
[1, AP2.6] (just as in the proof of VII3.6(1)) there is an L,.,-model N of
Th(N;) and &, € N, (n € ““w) such that:

(i) (¢,:m e ““w) is indiscernible in N},

() I #,,...,me““0, pel,,;, N,Eola,,...,a,], then there are
Vi, o ..., Ve € ““Asuch that {1y, ..., 7)), (vy, ..., v,) realize the same atomic
type in ““w, “7A resp. and N,k ¢[a,, ..., d,]

(iii) N3 is the Skolem Hull of {¢,:n € “ ).

Now by renaming we can assume ¢, =d,, M,cN>[L,. So we can let
M, & N5 Let M* be the limit of the M, (i.e., L(M*)=,L,, M*|L,=
U{(M,,[L,):n<m<w}). So M*, a, (1 € ““w) define ® proper for ““w (see
VII Definition 2.6) such that for any atomic ¢ el J, L,:

EMY(* o, ®)F¢la,,, ..., a,] iff M*E¢la,,...,a,)
As M,[Ly(M,.;[Ly;), and M, has a Skolem function clearly for every

I e K(“"w), (see VII3.1 and the Notation above), EM(I, @) (= EM!(I, ®)|L,)
is a model of T and for n € P, v € PL:

EM(l, ®)F@,la,,a,] iff v<n.
By VIII §2 we get the desired conclusion. [

Remark. Though the theorems there (mainly VIII2.1 for our purpose) speak
about PC(Ty, T), T unsuperstable, they give that for &, L, ¢, as above,
card{EM(I, @)/ = :|I| = A} is 2%, if

A>|L(EEMY“w, ®))| ore.g. A=A%=|L(EM(“w, D).

Remark. (a) Really “A=A(T) + X,” is enough in 2.1.
(b) If we assume a Ramsey cardinal exists above |T|, then by (4) we can
simplify the proof using one stage instead of w.
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