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We prove that for superstable T the number is small and for unsuperstable T the number is 
large. 

0. Introduction 

We deal with models of a fixed complete first-order theory T. We rely on [1]. 

0.1. Definition. (1) A model M is strongly r-saturated if: 
(i) M is strongly K-homogeneous, i.e., if ti,/~ are sequences of elements of M, 

of the same length which is <K, and realizes the same type, then for some 
automorphism f of M, f(ti) = b; and 

(ii) M is }~-saturated (=F~0-saturated, see VI Definition 1.1(4), 2.1), i.e., 
every type which is almost over a finite subset of M is realized in M. 

(2) Let pa(z, T) be the number of strongly }~0-saturated models of T of power 
up to isomorphism. 

We shall compute I~(3., T) for 3. I> 2 Irl. We do not need the new methods 
needed for classifying theories (see [2]). Moreover the main dividing line is simply 
superstability. So we have gotten a direct characterization of "T is superstable" in 
terms of some spectrum function. 

More explicitly our results are: 

0.2. Theorem. (1) I f  T is superstable, then for some cardinal nde(T)~< 2 'r' for 
every ~ ,  >- 2 trl, pa(~,,, T) ~< la~l nde(r). 

(2) I f  T is not superstable, then for every )~ >I 2 trl, Pa(Z, T) = 2 x. 

If we change 0.1(1)0) by demanding ~, b realize the same strong type (over 0) 
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280 S. Shelah 

the change is immaterial. E.g. expand T by a name for every equivalence class of 
each E e FE(~t) 

Notation. References like V 1.1 are to [1]. 

1. On superstable T 

Hypothesis. T is superstable. 

1.1. Claim. Suppose M* is a model of  T. I f  A ~_ M*, ?t, b e M*, p = tp(/~, ti) is 
stationary and orthogonal to A,  q its stationarization over A U ~, then dim(p, M*) 
and dim(q, M*) are equal or both finite. 

Remark.  Remember  that if B c M*, r ~ Sm(B) ,  then dim(r, M) = Min{lll : !  is a 
family of sequences of length m of members of M, realizing p, which is 
independent over B, and maximal under the restrictions listed so far}. 

If r is regular we can omit the 'Min', but even generally for any two such 
11, 12: Illl 1121 w(r) where w(r) is a natural number (see V 3.13(2)), so if at least 
one is infinite they are equal. 

Proof. Clearly dim(q, M*) <- dim(p, M*), more exactly, by the remark, 
dim(q, M*) < dim(p, M*) ÷ + b~0. We can find a maximal I c p ( M * )  independent 
over ti such that III = dim(p, M*). We can also find ~ e A such that tp(t], A) does 
not fork over ~. Now (as K ( T ) =  I%) by III 3.5(2) for some finite J c_/, I - J  is 
independent over (~ U ti, ti). As p is orthogonal to A, it is orthogonal to 
stp,(A, ~) (see Definition V 1.1). By V 1.5, t p , ( U  ( I - J ) ,  ~) is orthogonal to 
tp , (A,  ~). Remember  that s tp,(A, t] U~), s t p , ( U  ( I - J ) ,  ~ u ~ )  does not fork 
over c, a resp. Hence (by V 1.2(4)) s t p , ( U ( l - / ) ,  t] u~) ,  s tp,(A, ~ U~) are 
orthogonal, hence (by V 1.2(1)) t p (U  ( I  - J) ,  t] u c" u A) does not fork over t~. So 

dim(q, M*) i> (11 -  J l ) /w(p)  = (111- IJI)/w(p) 

= (dim(p, M*) - I J I ) / w ( p ) ,  J finite. 

Together with the first sentence of the proof, we finish. [] 

1.2. Claim. Let A be a set, I independent over A,  and N is F~o-prime ore 
A U U I .  

Then for every a, b e N, if p = tp(/~, ti) is stationary and orthogonal to A,  theJ 
dim(p, N) = Ro. 

l~moL By 1.1, dim(p, N) is ~<Ro + dim(pl~ N) where Pl is the stationarization c 
p over A U ti. Also for some finite d ~_ L tp(tL A U U I )  does not fork ove 
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The number of strongly Re saturated models of power ;~ 281 

A to U J, and by III 3.5, dim(p1, N) + blo = dim(p2, N) + Ro where P2 is the 
stationarization of p over A to 4 tO U J. As p is orthogonal to tp(g', A) and even to 
t p ( ~ , A U U J )  for ~ • l - J ,  by V1.4(1), it is orthogonal to t p , ( U ( l - J ) ,  
A U U J). Hence every J '  _ pE(N) independent over A to ti U U J, is independent 
over A tO 4 to J U ( I  - J )  = A U 4 to L hence dim(p2, N) = dim(p3, N) where P3 is 
the stationarization of p over A to 4 tO U I. But N is F~o-prime over A U U I, 
hence (by IV 2.12(3)) over A U 4 to U / ,  hence (by VI 4.9(2)) dim(p3, N) ~<1%. 
So dim(p, N) ~< dim(p3, N) + blo ~< No, but 4 is finite hence equality holds as N is 
F~o-Saturated. [] 

1.3. Proposition. Suppose N, M* are F~o-Saturated, N ~_ M*, I ~_ M* is inde- 
pendent over N, and stp(~, N) is regular for every ~ • L Then we can find No c_ M* 
F~o-prime over N U U I such that: 

( . )  if 4, b • No, p = tp(/~, 4) is stationary, regular orthogonal to N, and q is the 
stationarization over M* of  p, then dim(q I(N O ~), M*) = dim(q INo, M*). 

Proof. Let No be an F~o-primary model over N U U L Let {pi ' i  < o~} be a 
maximal family of complete over No, regular, orthogonal to N, pairwise 
orthogonal types. Let {a~:n < to} be independent over No, an -i realizing p~ (so 
{ai,:i < o~, n < to} is independent over No, see V 1.4(2)), and N1 be F~o-primary 
over NotoU {4~:i < c~, n < to}. Now tp(4/~, No) is orthogonal to N. 

1.3A. Fact. N1 is F~o-atomic over N to U L 

Proof. Suppose ~•N1.  Then by IV3.12(2), tp(~,NoU{4~:i<ol,  n < t o }  is 
F~o-isolated, so (see IV 2.1) there are finite B ~_ No, u ~_ o~ and k < to such that 

stp(~, B to {4~-i • u, n < k}) k stp(~, NoU {4~:i < ol, n < to}). 

Clearly it suffices to f ind/~  (i • u, n < k) in No such that (/~/: i ~ u, n < k } realize 
s t p ( ( 4 ~ : i • u , n < k } ,  N U I t 0 B )  [as then we can find in No~' such that 
U ^ ( b i ' i • u , n < k )  realizes s t p ( ~ ^ ( 4 i ' i • u , n < k } ,  / tAB) ;  so t p ( ~ , N U l ) =  
tp(~', N U I )  hence they are F~o-isolated, remembering that No is F~o-atomic over 
N to I]. As {4/" i • u, n < k} is independent over No (and N to I ~_ No) it suffices to 
prove: 

(,)1 for every finite A c_ No and i < tr, n < w, some /~  • No 
realizes stp(4/, N U I U A) 

(as then we def ine /~  by induction on i • w and n < to). 

Proof of ( * )1. W.l.o.g. tp(4/, no) does not fork over A. As No is F~0-saturated 
w.l.o.g, tp,(4~, A) is stationary. Also w.l.o.g, tp(A, N) does not fork over 
A n N. Hence tp,(N, A) does not fork over A n N. 

Now tp(4/, No) is orthogonal to N, hence to A n N hence to tp,(N,  A O N). 
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But stp(ti/, A), stp,(N, A N N )  are parallel to tp(5~, No) and stp,(N, A) resp., 
hence the latter are orthogonal so stp(5/, A) k stp(ti/, N U A). 

For some finite J ~ / ,  l - J  is independent over (N, N U A U J ) ;  so 
w.l.o.g. (Vd eJ)(t7 _ A )  so similarly stp(5~, NUA)ks tp(5  i, N U A  O ( I - 1 ) ) .  So 
stp(5~n, A) t- stp(ti~, N U I), but the former is realized in No, as A is finite. So we 
have proved (*)1, hence Fact 1.3A. [] 

Continuation of the proof of 1.3. We want to show that N1 is F~o-prime over 
M U U / .  By IV 4.18 (and see Definition IV4, p. 192) it suffices to show that: 

1.3B. Fact. For every regular stationary p ~ Sm(N U U I u b) (for some b ~ N1), 
dim(p, N1) ~< No. 

Proof. If p is orthogonal to No, this follows by Claim 1.2. Suppose p is not 
orthogonal to No. 

Let 6 realize p. W.l.o.g. p does not fork over/~, p I/) stationary and tp(/~, No) 
does not fork over some finite A ~_ No, and p is not orthogonal to A. Choose 
/~'^6' e No realizing stp(/~^6, A). By V3.4, tp(6',/~') is not orthogonal to p, 
and clearly it is regular and stationary and let q ~ Sm(N UIU/~')  be the station- 
arization of tp(/~', ~'). Let p' E S m ( N U I U b U b ' ) ,  q' E s m ( ( N U I U b U b  ') be 

stationarizations of p, q resp. By III 3.5, 

dim(p, N1) + No = dim(p', N1) + No 

and dim(q, N1) + No = dim(q', N~) + No. 

By V 1.14 and V 2.7, dim(p', N1) + No = dim(q', N1) + No. So it suffices to prove 
dim(q', 5/1) ~< No, i.e., w.l.o.g./~ e No. By IV 4.9, dim(p, No) ~< No. Let p '  
Sm(No) be the stationarization of p over No. By V 1.16(3), 

dim(p, N1) = dim(p, No) + dim(p', N 0. 

Let U be the set of i < cr such that Pi is orthogonal to p. By V 1.13(1), 
la~ - UI ~< 1. Now easily tp , (U {~/" i e U}, No) is orthogonal to p. We also know 
that there is /V' F~-prime over No U U {ti/:i ~ U, n < to}, and if j ~ a~ - U, 
tp(U {5~:n < to}, No) ktp(U {ti~:n < to}, N'), so w.l.o.g. N1 is F~o-prime over 
N' U U {ti / : i e t r  - U, n < to }. Now by V 1.16(3), 

dim(p, Na) = dim(p, No) + dim(p', N') + dim(p", N1) 

where p" is the stationarization ofp over N'. By IV 4.9 and III 3.5, dim(p", 5/1) ~< 
No. Lastly note that dim(p', N ' ) = 0  because tp ,{5/ ' i  e v, n<to} ,  No) is or- 
thogonal to p (by V 1.4) using V 3.2. Together dim(p", Na) <~ No. 

So we have proved Fact 1.3B. [] 

Continuation of the proof of 3.1. So N1 is really F~o-prime over N U U I. By the 
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definition of F~o-prime w.l.o.g. N1 ~_ M*, replacing, of course, our No by another 
choice. 

Now we shall prove that No is as required. Let a,/~, p, q be as assumed in ( * ). 
By Claim 1.2 (as p is orthogonal to N), dim(q I(Nt.J a), No) is ~<Ro. As by 
V 1.16(3), 

dim(q I(N LI a), M*) = dim(q I(N t_J a), No) + dim(q INo, M*), 

we are almost finished. 
The only non-immediate case is dim(qINo, M*)<<-N o. But N1 witness 

dim(q INo, N1) 1> No hence 

No I> dim(q I(N t_J a), M*) i> dim(q INo, M*) t> dim(q ~No, N1) t> No~ 

thus finishing. [] 

1 .4 .  

that: 

(,) 

Claim. Suppose M* is F~:o-Saturated. There is No ~_ M* F~o-prime over 13 such 

if a,/~ e No, p = tp(/~, a) /s  stationary regular, q the stationarization of  p over 
M*, then dim(q Ia, M*) = dim(q INo, M*). 

Proof. Similar to that of 1.3. [] 

1.5. Theorem. Suppose M~ (l = 1, 2) are F~o-saturated, and for every fit, bl ~- M~, 
Pl = tp(ft, at) regular and stationary (for l = 1, 2): 

tp(fi^/~,, 13) = tp(f2^/~2, 13) implies dim(p,, M~') = dim(p2, M~). 

Then M~, M~ are isomorphic. 

Remark. Another variant is when we demand stp(f^/~,, 13)=stp(f2^/92, t3). 
We can deduce it from 1.5 by expanding ffcq by the individual constants c for all 
c e ac113. 

Proof. We define by induction on k < to 

[ Jl, k Nlk, {pl~k:tr<tek}, , ~,m'tr<trk, k<<-m<to) ( f o r l = l ,  2) and Fk 

such that: 

(1) N~, ~_ M?, N~, is F~0-saturated. 
(2) Fk is an isomorphism from N 1 onto N~,. 

I (3) Ntk ~_ Nk+,, Fk ~_ Fk+l. 
(4) If p e S'(N t) is regular, does not fork over a, p la stationary, a e N/, then 

dim(p If, M~) = dim(p, MT). 
(5) {p~k:~<0Ck} is a maximal family of regular, complete over N~, 

orthogonal to N/_I (when k > 0) pairwise orthogonal types. 
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(6) Fk maps p~k to p~k. 
_ l , k  (7) w m ~ k  [ [ ¢t~,mll'k ~_MI' is a maximal family of sequences realizing p ~ ,  

independent over N/. 
(8) (J~km: k ~< m < to ) are pairwise disjoint. [J~fm[ = IJ , ml = IJ k l >I 

l l ,  k l (9) --~,m ¢ Nm+l, Fm+l maps -I l'k onto I 2,k - -  ~ , t r l  ~ , m "  

(10) Umbra(0)ll'k is independent over (N~, t Nm(o)) (when k ~< m(0)). 

First Case: k = O. 
For l -  1, 2, let N g ~_ M7 be F~-prime over 0, such that for ti,/~ e N g if 

p = tp(/~, ti) is stationary and regular, q the stationarization of p over N g, then 
dim(p, MT') = dim(q, M~'); this is possible by 1.4. Easily (4) holds. As N~, No 2 are 
F~0-pdme over t~, by IV 4.18 there is an isomorphism F0 from N~o onto No 1. 

Let {p~;°'tr < a~0} be a maximal family of types in ~mSm(N~) ,  regular and 
orthogonal in pairs and p~°=Fo(p~°  ). Condition (6) holds and easily also 
condition (5). Let j~o ~_ M~' be a maximal family of sequences, independent over 
N/, realizing p~k. AS (4) holds, j~,o is infinite, so we can partition j~0 to 
j l ,  O z o~,ml, m < to) such that .tJ t'°~,m = IJ~°l. Now IJ~'°l = IJ~;°l by the hypothesis of 1.5 
and the choice of/~k. 

We can check the other conditions. 

Second Case: k + 1. 
So we have defined already for l = 1, 2 and m <~ k: N l, N~ m for ol < C~m and 

J~,~. Let N/+I be F~o-prime over Nlt3(,Jt*~'k(*)'k(*)<~k,~,,iot, k . tr~<a~k(.)}. Then 
N/+I ~_ M7 and w.l.o.g, condition (4) holds; this is possible by 1.3. 

By V3.2 condition (10) holds. By conditions (10) and (6) for ~ e J~;,~ (*), 
~2 e j~,k(.), k( * ) <~ k 

Fk(tp(~ x, N~,)) = tp(~ 2, N~), 

hence by (10), for any n < t o ,  distinct a o , . . .  , & , _ ~ e J ~  (*) and distinct 
& ,  • • • ,  bn_  e 

Fk(tp,(tio ̂ -- "^tic_l, N/)) = tp,(/~o ̂ ' -  "^/~_1, N2). 

As by (8) ,,,~,rX'k(*)k , J~;,kk<*) have the same cardinality, we can extend Fk to an 
elementary mapping * Fk,  k(.),o: from N~ O U rl'k(*) / |12,k(*) -~,k onto N 2 0  ~.,,,~,k • 

By condition (5), the types p~k(*) (k( * ) ~ k, a~ < ~k(*)) are pairwise orthog- 
nonal, hence by V (1.4(1) (and (10)) also the types 

tp.(I,_J {J~kkO): k(1) <~ k, fl < a~k(1), (k(1), fl) 4: (k(*) ,  t~)}, N~) 

and tp.(J~kk (*), N/) 

are orthogonal (k( * ) ~ k, t~ < ~k(1)), hence by V 1.2 weakly orthogonal. 
Hence  F~ = ~_J {Fk, k(.),a: k (  * ) ~ k, ~ < ~k(*)} is an elementary mapping. 
As N~+I is F~0-prime over N~ U U {y~kk(*) : k( * ) ~ k, a~ < a~k(.)}, by IV 4.18 we 

can extend F~ to an isomorphism from N~k+X onto N2+1 and call it Fk+~. 
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Let (p~k+l" O{ < 0lk+l} be a maximal family of pairwise orthogonal, complete 
a over Nk+a, orthogonal to N / types. Let p~k+l _--rk+l~p~'~ , 1,k+~,). 

NOW there is no problem to find F 'k÷l (k < m < to) to satisfy condition (7), for - - t r ,  m 

each c~ < a~k+l. There is no problem to check the conditions (1)-(10). So we have 
carried out the induction. 

To finish the proof it sutfices to prove that (for l = 1, 2) M~' = Uk<~, N / (as then 
Uk<,o Fk is an isomorphism from M~ onto M~). Suppose M~' :/: Uk<o~ N/. As both 
models are F~0-saturated and (..Jk<o,N~k~M~, by V3.5 for some c eM~, 
tp(c, Uk<o, N/) is regular. As T is superstable for some m < to, tp(c, [,-Jk<o, N~) 
does not fork over N / ,  hence tp(c, N / )  is parallel to tp(c, (..Jk<o, N/)  and so is 
regular. Let n ~< m be minimal such that tp(c, Uk<,o N/) is not orthogonal to N~. 
Using V3.4 we can find a regular type r eS (N  l) not orthogonal to 

l (if > 0) hence for some tp(c, Uk<o, N/), so by V 1.13(2), r is orthogonal to Nn_ 1 n 

a~ < a~,,, r is not orthogonal to p~". By V 1.13, tp(c, Uk<to N/) is not orthogonal to 
p l ,  n , so by V 1.12 some a e M7 realizes the stationarization of p ~  over Uk<~, N~. 

l,~ _tp(t t ,  Uk<,oNlk) does not fork over N/,  But tp(a, N~ U Um~../~,m) 
contradicting condition (7) in the induction hypothesis. [] 

2. The  non-structure theorem 

2.1. Theorem. Suppose T is not superstable. 

K = {M :M a strongly F~-saturated model of T}. 

Then for every ~ > ~(T) there are 2 x pairwise non-isomorphic models from K of 
power ~. 

Remark. (1) Z(T) is the first cardinality such that for M a model of T and finite 
A ~_ M, the number of non-equivalent stp(fi, A) (in M), ~ E M, is ~<~.(T). It is 
known that Z(T)<~2 Irl and w.l.o.g. ITI~<Z(T) (as ID(T)I<-Z(T), and if 
ID(T)I < ITI, then T is a definitional extension of some T'  ~ T, IT'I ~< ID(T)I). 

(2) Note that the proof shows that if T ~_ T~ (T~ a first-order theory), then for 
Z > ITd + Z(T) there are 2 x non-isomorphic models from K of power ~ which are 
reducts of models of Tx. 

Notation. We identify ,o~>~. with the model (,o~., < ,  < ~ x , . . .  , P ~ , . . . ) ~ , o  
where <~, is the lexicographic order, < is being initial segment and P= = *~.. The 
slight variation from VII Definition 2.1 is inessential. 

Proof. We know (II3.14, 9) that there are formulas qgn(.~ , Yn) (of L(T)) and 
~in ~ ~ for 7/~ '~to (ff a quite saturated model of T, see [1, p. 7]) such that if 
r/~ ,oto, v ~ "to, then 

( , )  ~W.[,~,,,,~,,] iff v<rl .  
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We now define by induction on n, a~ ( v  • ~"~w) and L~ such that: 
(1) M~ is an L~-model, [L.[ ~< A(T). 
(2) a n •  Mn and (a~: v • °'~>co) is indiscernible in M,, (for indiscernability with 

respect to (,o-~o9, < ,  <L~, • • • ,  P~, • • .) see VII Definitions 2.2, 2.3, 2.4). 
(3) L~ ~_ L.+I ,  and (Mn+l ILo) is an elementary extension of M~ ILo. 
(4) For any v~, , Vk • ~'>~O9, the quantifier free Ln-type of -n+l^ ^ =n+l in • . . / d r 1  • . . ( , / V k  

M~+l is equal to the quantifier free L~-type of a~l^---^t i~ in M~: moreover 
M , , < ( M , , + ~ I L n ) .  

(5) Mo = ~, -o av = av. -~= 
(6) For n > 1, Th(M~) has Skolem functions. 
(7) For n > 1, and Vl,  • • . ,  Vk e ° '~w, every (Lo, m)-type in M~I ..... ~k ( = the 

Skolem Hull of {a~, . . . ,  a~} in M~) which is almost over a finite set, is realized 
i n  ~ n + l  

~ - -  V I , . . . , V  k .  

(8) For any m < o9, Fm is a (2m + 1)-place function symbol from L1, such that 
if a,/~ • M ~  ..... ~, n >I 2, a,/~ realize the same Lo-type in M~, then x---> F ( x ,  a, b )  

is an automorphism of M~ ~Lo taking a to/~. 
For the case n = 0 there is nothing to do. 

Case n + 1: Choose Z large enough (e.g., "1((221rl)+). We can find an L,,-model 
Nn, of Th(Mn), and bn •N~ (r / • ' °~Z)  such that if r / l , . . . ,  ~?k•°'~.,  
Vl, • • • ,  Vk • ">~O9, and ( r h ,  • • • ,  ~Tk), ( V l ,  • • • ,  Vk)  realize the same atomic type 

^- ^ -  ^ . . ^ a  realize the same Ln-type in in ~>~, ,o~o9 resp., then /~n~ "" bnk, av1 • vk 
N,,, M,, resp. 

For I ~ °~;t let N7 be the Skolem Hull of {a n • r / •  I} in N,,. 
Let N~ be an elementary extension of N,,, such that ( N ~ I L o )  is strongl) 

IIN  II +-saturated. For any ti,/~ • N(%,x) (of length m) realizing the same Lo-type: 
the function x--> Fro(x, a, b )  is an automorphism of N(n~x) ILo. We can extend thi, 
automorphism of N~'~x)ILo to an automorphism of N I I L o .  Also if a,/~ • N~ 
realize the same Lo-type a^/~ ~N(%,z), we find an automorphism of N'~,~x)IL, 

taking a to/~. So we can define a model N 2, which is like N~, but we change th~ 
interpretation of Fm so that: 

(a) for x, a,/~ • N(%~x): FNm~(X, a, b )  = FNm~(X, a, /~); 
(b) if a, g • N 2 realize the same L0-type, then x--> F ( x ,  a, b )  is an automorph 

ism of N~ ILo. 
Next for every complete atomic L(~og)- type  r realized in ~o9, we choose 

tuple say ~*= ( v ~ , . . . ,  v~(,)) realizing it in o,~o9, and we choose ~,(T) complet, 
(Lo, m)-types over M " ,  {p ' / '*: i  < A(T)}, such that any Lo-type in N ~  ..... ~} (i.e. 
its parameters are from it and it is finitely satisfiable there) almost over a finite se 
is included in some p~"'. Now we define in N~ k-placed functions G7 "k (for eacl 
m) such that: 

(**) if Vl,  • • • ,  Vk e o,~ Z, ( Vl  , • .  • ,  Vk ) realizes in ,o~. the complete atomic typ, 
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r, then for every L,,-term z ~ , . . . ,  Ln and L0-formulas lp: 

V(x, &3) * p7'" 
iff N 2 ~ ~p[GT'k(gt,,,, . . . , &,,) ,  "q(&,, ,  . . . , &, , ) ,  . . . , 7:,,,(&,,, . . . , ti~,)]. 

Let N ~  = ( N  2, . . . ,  G 7  'k, . . . ) , , ,k<o, ,  i<~(r). Lastly let N~ be an expansion of N 3 
by Skolem functions but still IL (N4) I  <. Z( T ) .  Let L , + I = L ( N ~ ) .  Now by 
[1, AP2.6] (just as in the proof of VII 3.6(1)) there is an Ln+l-model N 5 of 
Th(N~) and cn • N~ (r / •  ~o9) such that: 

(i) (e,7" r / • °"~to } is indiscernible in N 5. 
(ii) If r/l , .  • •, Ok • '°~tO, 9 • L~+~, N 5 ~ q9[~ , , , . . . ,  ti,,], then there are 

vx,  . . . .  , Vk • "%k such that ( r / ~ , . . . ,  7/k), (Vl, • • •, % }  realize the same atomic 
type in °'-~to, o,~. resp. and N 4 ~ qg[ti~l, . . . ,  ~ ] .  

(iii) N 5 is the Skolem Hull of {c,7" ~ • 0,%~}. 
Now by renaming we can assume cn = & 7 ,  M,, ~ _ N ~ I L , , .  So we can let 

M~+1%fN~. Let M* be the limit of the M,, (i.e., L ( M * ) =  1.3,, Ln ,  M *  IL, ,  = 

I . . . J { ( M m I L , , ) : n < ~ m < t o } ) .  So M*, ti, 7 ( r / • ' ° % 0  define ~ proper for °"~to (see 
VII Definition 2.6) such that for any atomic q0 • [.3,, L,,: 

EMI( '°~o9, ~)  ~ t p [ ~ l , . . .  , tiv,] iff M* ~ qg[ti~,, . . . ,  ~,] .  

As M , , I L o ( M , , + I I L o ) ,  and M,, has a Skolem function clearly for every 
I • K(°'~to), (see VII 3.1 and the Notation above), EM(/,  ~)  ( = EMI(/, ~ )  ILo) 
is a model of T and for ~/• P~, v • P~: 

EM(/,q~)~q0n[an,&] iff v<r / .  

By VIII §2 we get the desired conclusion. [] 

Remark. Though the theorems there (mainly VIII 2.1 for our purpose) speak 
about PC(T1, T), T unsuperstable, they give that for ~, L, ~n as above, 
card{EM(/, ~)/---- :1II- Z} is 2 x, if 

~.>IL(EMI( °'~to, ~))1 or e.g. A=Z~°~>IL(EM(~to, @))1- 

Remark. (a) Really "~. >i ~.(T) + RI" is enough in 2.1. 
(b) If we assume a Ramsey cardinal exists above I TI, 

simplify the proof using one stage instead of to. 
then by (4) we can 
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