ON THE NUMBER OF STRONGLY $\aleph_{\epsilon}\text{-}SATURATED$ MODELS OF POWER λ

Saharon SHELAH*

Institute of Mathematics, The Hebrew University, Jerusalem, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, USA

Communicated by Y. Gurevich Received 25 May 1985; revised 26 November 1985

We prove that for superstable T the number is small and for unsuperstable T the number is large.

0. Introduction

We deal with models of a fixed complete first-order theory T. We rely on [1].

0.1. Definition. (1) A model M is strongly κ -saturated if:

(i) *M* is strongly κ -homogeneous, i.e., if \bar{a} , \bar{b} are sequences of elements of *M*, of the same length which is $\langle \kappa \rangle$, and realizes the same type, then for some automorphism *f* of *M*, $f(\bar{a}) = \bar{b}$; and

(ii) *M* is \aleph_{ε} -saturated (= $F_{\aleph_0}^{a}$ -saturated, see VI Definition 1.1(4), 2.1), i.e., every type which is almost over a finite subset of *M* is realized in *M*.

(2) Let $I^{sa}(\lambda, T)$ be the number of strongly \aleph_0 -saturated models of T of power λ up to isomorphism.

We shall compute $I^{sa}(\lambda, T)$ for $\lambda \ge 2^{|T|}$. We do not need the new methods needed for classifying theories (see [2]). Moreover the main dividing line is simply superstability. So we have gotten a direct characterization of "T is superstable" in terms of some spectrum function.

More explicitly our results are:

0.2. Theorem. (1) If T is superstable, then for some cardinal $\operatorname{nde}(T) \leq 2^{|T|}$ for every $\aleph_{\alpha} \geq 2^{|T|}$, $I^{\operatorname{sa}}(\aleph_{\alpha}, T) \leq |\alpha|^{\operatorname{nde}(T)}$.

(2) If T is not superstable, then for every $\lambda \ge 2^{|T|}$, $I^{sa}(\lambda, T) = 2^{\lambda}$.

If we change 0.1(1)(i) by demanding \bar{a} , \bar{b} realize the same strong type (over \emptyset)

* The author thanks the United States Israel Binational Science Foundation for partially supporting this research.

0168-0072/87/\$3.50 (C) 1987, Elsevier Science Publishers B.V. (North-Holland)

280

the change is immaterial. E.g. expand T by a name for every equivalence class of each $E \in FE(\emptyset)$

Notation. References like V 1.1 are to [1].

1. On superstable T

Hypothesis. T is superstable.

1.1. Claim. Suppose M^* is a model of T. If $A \subseteq M^*$, $\bar{a}, \bar{b} \in M^*$, $p = tp(\bar{b}, \bar{a})$ is stationary and orthogonal to A, q its stationarization over $A \cup \bar{a}$, then dim (p, M^*) and dim (q, M^*) are equal or both finite.

Remark. Remember that if $B \subseteq M^*$, $r \in S^m(B)$, then dim $(r, M) = Min\{|I|: I \text{ is a family of sequences of length } m$ of members of M, realizing p, which is independent over B, and maximal under the restrictions listed so far $\}$.

If r is regular we can omit the 'Min', but even generally for any two such $I_1, I_2: |I_1| \le |I_2| w(r)$ where w(r) is a natural number (see V 3.13(2)), so if at least one is infinite they are equal.

Proof. Clearly $\dim(q, M^*) \leq \dim(p, M^*)$, more exactly, by the remark, $\dim(q, M^*) < \dim(p, M^*)^+ + \aleph_0$. We can find a maximal $I \subseteq p(M^*)$ independent over \bar{a} such that $|I| = \dim(p, M^*)$. We can also find $\bar{c} \in A$ such that $\operatorname{tp}(\bar{a}, A)$ does not fork over \bar{c} . Now (as $\kappa(T) = \aleph_0$) by III 3.5(2) for some finite $J \subseteq I$, I - J is independent over $(\bar{c} \cup \bar{a}, \bar{a})$. As p is orthogonal to A, it is orthogonal to $\operatorname{stp}_*(A, \bar{c})$ (see Definition V1.1). By V1.5, $\operatorname{tp}_*(\bigcup (I - J), \bar{a})$ is orthogonal to $\operatorname{tp}_*(A, \bar{c})$. Remember that $\operatorname{stp}_*(A, \bar{a} \cup \bar{c})$, $\operatorname{stp}_*(\bigcup (I - J), \bar{a} \cup \bar{c})$ does not fork over \bar{c}, \bar{a} resp. Hence (by V1.2(4)) $\operatorname{stp}_*(\bigcup (I - J), \bar{a} \cup \bar{c})$, $\operatorname{stp}_*(A, \bar{a} \cup \bar{c})$ are orthogonal, hence (by V1.2(1)) $\operatorname{tp}(\bigcup (I - J), \bar{a} \cup \bar{c} \cup A)$ does not fork over \bar{c} . So

$$\dim(q, M^*) \ge (|\mathbf{I} - \mathbf{J}|)/w(p) = (|\mathbf{I}| - |\mathbf{J}|)/w(p)$$
$$= (\dim(p, M^*) - |\mathbf{J}|)/w(p), \qquad \mathbf{J} \text{ finite}$$

Together with the first sentence of the proof, we finish. \Box

1.2. Claim. Let A be a set, I independent over A, and N is $F_{\aleph_0}^a$ -prime ove $A \cup \bigcup I$.

Then for every $\bar{a}, \bar{b} \in N$, if $p = tp(\bar{b}, \bar{a})$ is stationary and orthogonal to A, then dim $(p, N) = \aleph_0$.

Proof. By 1.1, dim(p, N) is $\leq \aleph_0 + \dim(p_1, N)$ where p_1 is the stationarization c p over $A \cup \overline{a}$. Also for some finite $J \subseteq I$, $\operatorname{tp}(\overline{a}, A \cup \bigcup I)$ does not fork ove

 $A \cup \bigcup J$, and by III 3.5, $\dim(p_1, N) + \aleph_0 = \dim(p_2, N) + \aleph_0$ where p_2 is the stationarization of p over $A \cup \bar{a} \cup \bigcup J$. As p is orthogonal to $\operatorname{tp}(\bar{c}, A)$ and even to $\operatorname{tp}(\bar{c}, A \cup \bigcup J)$ for $\bar{c} \in I - J$, by V1.4(1), it is orthogonal to $\operatorname{tp}_*(\bigcup (I - J), A \cup \bigcup J)$. Hence every $J' \subseteq p_2(N)$ independent over $A \cup \bar{a} \cup \bigcup J$, is independent over $A \cup \bar{a} \cup \bigcup J$, is independent over $A \cup \bar{a} \cup \bigcup J$, where p_3 is the stationarization of p over $A \cup \bar{a} \cup \bigcup I$. But N is $F_{\aleph_0}^{\mathfrak{a}}$ -prime over $A \cup \bigcup I$, hence (by IV 2.12(3)) over $A \cup \bar{a} \cup \bigcup I$, hence (by VI 4.9(2)) $\dim(p_3, N) \leq \aleph_0$. So $\dim(p, N) \leq \dim(p_3, N) + \aleph_0 \leq \aleph_0$, but \bar{a} is finite hence equality holds as N is $F_{\aleph_0}^{\mathfrak{a}}$ -saturated. \Box

1.3. Proposition. Suppose N, M^* are $\mathbf{F}^a_{\aleph_0}$ -saturated, $N \subseteq M^*$, $\mathbf{I} \subseteq M^*$ is independent over N, and $\operatorname{stp}(\bar{c}, N)$ is regular for every $\bar{c} \in \mathbf{I}$. Then we can find $N_0 \subseteq M^*$ $\mathbf{F}^a_{\aleph_0}$ -prime over $N \cup \bigcup \mathbf{I}$ such that:

(*) if $\bar{a}, \bar{b} \in N_0$, $p = \operatorname{tp}(\bar{b}, \bar{a})$ is stationary, regular orthogonal to N, and q is the stationarization over M^* of p, then $\dim(q \upharpoonright (N \cup \bar{a}), M^*) = \dim(q \upharpoonright N_0, M^*)$.

Proof. Let N_0 be an $F_{\aleph_0}^{a}$ -primary model over $N \cup \bigcup I$. Let $\{p_i : i < \alpha\}$ be a maximal family of complete over N_0 , regular, orthogonal to N, pairwise orthogonal types. Let $\{\bar{a}_n^i : n < \omega\}$ be independent over N_0 , \bar{a}_n^i realizing p_i (so $\{a_n^i : i < \alpha, n < \omega\}$ is independent over N_0 , see V 1.4(2)), and N_1 be $F_{\aleph_0}^{a}$ -primary over $N_0 \cup \bigcup \{\bar{a}_n^i : i < \alpha, n < \omega\}$. Now tp (\bar{a}_n^i, N_0) is orthogonal to N.

1.3A. Fact. N_1 is $F_{\aleph_0}^a$ -atomic over $N \cup \bigcup I$.

Proof. Suppose $\bar{c} \in N_1$. Then by IV 3.12(2), $\operatorname{tp}(\bar{c}, N_0 \cup \{\bar{a}_n^i : i < \alpha, n < \omega\}$ is $F_{\aleph_0}^a$ -isolated, so (see IV 2.1) there are finite $B \subseteq N_0$, $u \subseteq \alpha$ and $k < \omega$ such that

 $\operatorname{stp}(\bar{c}, B \cup \{\bar{a}_n^i : i \in u, n < k\}) \vdash \operatorname{stp}(\bar{c}, N_0 \cup \{\bar{a}_n^i : i < \alpha, n < \omega\}).$

Clearly it suffices to find \bar{b}_n^i $(i \in u, n < k)$ in N_0 such that $\langle \bar{b}_n^i : i \in u, n < k \rangle$ realize $\operatorname{stp}(\langle \bar{a}_n^i : i \in u, n < k \rangle, N \cup I \cup B)$ [as then we can find in $N_0 \bar{c}'$ such that $\bar{c}'^{\wedge} \langle \bar{b}_n^i : i \in u, n < k \rangle$ realizes $\operatorname{stp}(\bar{c}^{\wedge} \langle \bar{a}_n^i : i \in u, n < k \rangle, I \cup B)$; so $\operatorname{tp}(\bar{c}, N \cup I) =$ $\operatorname{tp}(\bar{c}', N \cup I)$ hence they are $F_{\aleph_0}^a$ -isolated, remembering that N_0 is $F_{\aleph_0}^a$ -atomic over $N \cup I$]. As $\{\bar{a}_n^i : i \in u, n < k\}$ is independent over N_0 (and $N \cup I \subseteq N_0$) it suffices to prove:

(*)₁ for every finite $A \subseteq N_0$ and $i < \alpha$, $n < \omega$, some $\bar{b} \in N_0$ realizes stp $(\bar{a}_n^i, N \cup I \cup A)$

(as then we define \bar{b}_n^i by induction on $i \in \omega$ and $n < \omega$).

Proof of $(*)_1$. W.l.o.g. $tp(\bar{a}_n^i, n_0)$ does not fork over A. As N_0 is $F_{\aleph_0}^a$ -saturated w.l.o.g. $tp_*(\bar{a}_n^i, A)$ is stationary. Also w.l.o.g. tp(A, N) does not fork over $A \cap N$. Hence $tp_*(N, A)$ does not fork over $A \cap N$.

Now tp(\bar{a}_n^i , N_0) is orthogonal to N, hence to $A \cap N$ hence to tp_{*}($N, A \cap N$).

282

But $\operatorname{stp}(\bar{a}_n^i, A)$, $\operatorname{stp}_*(N, A \cap N)$ are parallel to $\operatorname{tp}(\bar{a}_n^i, N_0)$ and $\operatorname{stp}_*(N, A)$ resp., hence the latter are orthogonal so $\operatorname{stp}(\bar{a}_n^i, A) \vdash \operatorname{stp}(\bar{a}_n^i, N \cup A)$.

For some finite $J \subseteq I$, I - J is independent over $(N, N \cup A \cup J)$; so w.l.o.g. $(\forall \bar{d} \in J)(\bar{d} \subseteq A)$ so similarly $\operatorname{stp}(\bar{a}_n^i, N \cup A) \vdash \operatorname{stp}(\bar{a}_n^i, N \cup A \cup (I - J))$. So $\operatorname{stp}(\bar{a}_n^i, A) \vdash \operatorname{stp}(\bar{a}_n^i, N \cup I)$, but the former is realized in N_0 , as A is finite. So we have proved $(*)_1$, hence Fact 1.3A. \Box

Continuation of the proof of 1.3. We want to show that N_1 is $F_{\aleph_0}^a$ -prime over $M \cup \bigcup I$. By IV 4.18 (and see Definition IV 4, p. 192) it suffices to show that:

1.3B. Fact. For every regular stationary $p \in S^m(N \cup \bigcup I \cup \overline{b})$ (for some $\overline{b} \in N_1$), $\dim(p, N_1) \leq \aleph_0$.

Proof. If p is orthogonal to N_0 , this follows by Claim 1.2. Suppose p is not orthogonal to N_0 .

Let \bar{c} realize p. W.l.o.g. p does not fork over $\bar{b}, p \upharpoonright \bar{b}$ stationary and $\operatorname{tp}(\bar{b}, N_0)$ does not fork over some finite $A \subseteq N_0$, and p is not orthogonal to A. Choose $\bar{b}' \land \bar{c}' \in N_0$ realizing $\operatorname{stp}(\bar{b} \land \bar{c}, A)$. By V 3.4, $\operatorname{tp}(\bar{c}', \bar{b}')$ is not orthogonal to p, and clearly it is regular and stationary and let $q \in S^m(N \cup I \cup \bar{b}')$ be the stationarization of $\operatorname{tp}(\bar{b}', \bar{c}')$. Let $p' \in S^m(N \cup I \cup \bar{b} \cup \bar{b}')$, $q' \in S^m((N \cup I \cup \bar{b} \cup \bar{b}'))$ be stationarizations of p, q resp. By III 3.5,

$$\dim(p, N_1) + \aleph_0 = \dim(p', N_1) + \aleph_0$$

and
$$\dim(q, N_1) + \aleph_0 = \dim(q', N_1) + \aleph_0.$$

By V1.14 and V2.7, $\dim(p', N_1) + \aleph_0 = \dim(q', N_1) + \aleph_0$. So it suffices to prove $\dim(q', N_1) \leq \aleph_0$, i.e., w.l.o.g. $\bar{b} \in N_0$. By IV 4.9, $\dim(p, N_0) \leq \aleph_0$. Let $p' \in S^m(N_0)$ be the stationarization of p over N_0 . By V1.16(3),

 $\dim(p, N_1) = \dim(p, N_0) + \dim(p', N_1).$

Let U be the set of $i < \alpha$ such that p_i is orthogonal to p. By V1.13(1), $|\alpha - U| \le 1$. Now easily tp_{*}($\bigcup \{\bar{a}_n^i: i \in U\}, N_0$) is orthogonal to p. We also know that there is $N' F_{\aleph_0}^a$ -prime over $N_0 \cup \bigcup \{\bar{a}_n^i: i \in U, n < \omega\}$, and if $j \in \alpha - U$, tp($\bigcup \{\bar{a}_n^j: n < \omega\}, N_0\} \vdash$ tp($\bigcup \{\bar{a}_n^j: n < \omega\}, N'$), so w.l.o.g. N_1 is $F_{\aleph_0}^a$ -prime over $N' \cup \bigcup \{\bar{a}_n^i: i \in \alpha - U, n < \omega\}$. Now by V1.16(3),

$$\dim(p, N_1) = \dim(p, N_0) + \dim(p', N') + \dim(p'', N_1)$$

where p'' is the stationarization of p over N'. By IV 4.9 and III 3.5, dim $(p'', N_1) \le \aleph_0$. Lastly note that dim(p', N') = 0 because tp_{*}{ $\bar{a}_n^i : i \in v, n < \omega$ }, N_0) is orthogonal to p (by V 1.4) using V 3.2. Together dim $(p'', N_1) \le \aleph_0$.

So we have proved Fact 1.3B. \Box

Continuation of the proof of 3.1. So N_1 is really $F_{\aleph_0}^a$ -prime over $N \cup \bigcup I$. By the

definition of $F_{\aleph_0}^a$ -prime w.l.o.g. $N_1 \subseteq M^*$, replacing, of course, our N_0 by another choice.

Now we shall prove that N_0 is as required. Let \bar{a} , \bar{b} , p, q be as assumed in (*). By Claim 1.2 (as p is orthogonal to N), dim $(q \upharpoonright (N \cup \bar{a}), N_0)$ is $\leq \aleph_0$. As by V 1.16(3),

$$\dim(q \upharpoonright (N \cup \overline{a}), M^*) = \dim(q \upharpoonright (N \cup \overline{a}), N_0) + \dim(q \upharpoonright N_0, M^*),$$

we are almost finished.

The only non-immediate case is $\dim(q \upharpoonright N_0, M^*) \leq \aleph_0$. But N_1 witness $\dim(q \upharpoonright N_0, N_1) \geq \aleph_0$ hence

 $\aleph_0 \ge \dim(q \upharpoonright (N \cup \bar{a}), M^*) \ge \dim(q \upharpoonright N_0, M^*) \ge \dim(q \upharpoonright N_0, N_1) \ge \aleph_0,$

thus finishing. \Box

1.4. Claim. Suppose M^* is $F^a_{\aleph_0}$ -saturated. There is $N_0 \subseteq M^* F^a_{\aleph_0}$ -prime over \emptyset such that:

(*) if $\bar{a}, \bar{b} \in N_0$, $p = \operatorname{tp}(\bar{b}, \bar{a})$ is stationary regular, q the stationarization of p over M^* , then $\dim(q \upharpoonright \bar{a}, M^*) = \dim(q \upharpoonright N_0, M^*)$.

Proof. Similar to that of 1.3. \Box

1.5. Theorem. Suppose M_l^* (l = 1, 2) are $\mathbf{F}_{\aleph_0}^a$ -saturated, and for every \bar{a}_l , $\bar{b}_l \in M_l^*$, $p_l = \operatorname{tp}(\bar{a}_l, \bar{a}_l)$ regular and stationary (for l = 1, 2):

 $\operatorname{tp}(\bar{a}^{\wedge}\bar{b}_{1}, \emptyset) = \operatorname{tp}(\bar{a}_{2}^{\wedge}\bar{b}_{2}, \emptyset) \quad implies \quad \dim(p_{1}, M_{1}^{*}) = \dim(p_{2}, M_{2}^{*}).$

Then M_1^* , M_2^* are isomorphic.

Remark. Another variant is when we demand $stp(\bar{a}^{\wedge}\bar{b}_1, \emptyset) = stp(\bar{a}_2^{\wedge}\bar{b}_2, \emptyset)$. We can deduce it from 1.5 by expanding \mathbb{C}^{eq} by the individual constants c for all $c \in acl \emptyset$.

Proof. We define by induction on $k < \omega$

 N_k^l , $\{p_{\alpha}^{l,k}: \alpha < \alpha_k\}$, $\langle J_{\alpha,m}^{l,k}: \alpha < \alpha_k, k \le m < \omega \rangle$ (for l = 1, 2) and F_k

such that:

(1) $N_k^l \subseteq M_l^*$, N_k^l is $F_{\aleph_0}^a$ -saturated.

- (2) F_k is an isomorphism from N_k^1 onto N_k^2 .
- (3) $N_k^l \subseteq N_{k+1}^l$, $F_k \subseteq F_{k+1}$.

(4) If $p \in S^m(N_k^l)$ is regular, does not fork over $\bar{a}, p \upharpoonright \bar{a}$ stationary, $\bar{a} \in N_k^l$, then $\dim(p \upharpoonright \bar{a}, M_l^*) = \dim(p, M_l^*)$.

(5) $\{p_{\alpha}^{l,k}: \alpha < \alpha_k\}$ is a maximal family of regular, complete over N_k^l , orthogonal to N_{k-1}^l (when k > 0) pairwise orthogonal types.

(6) F_k maps $p_{\alpha}^{1,k}$ to $p_{\alpha}^{2,k}$.

(7) $\bigcup_{m \ge k} J_{\alpha,m}^{l,k} \subseteq M_l^*$ is a maximal family of sequences realizing $p_{\alpha}^{l,k}$, independent over N_k^l .

- (8) $\langle \boldsymbol{J}_{\alpha,m}^{l,k} : k \leq m < \omega \rangle$ are pairwise disjoint. $|\boldsymbol{J}_{\alpha,m}^{2,k}| = |\boldsymbol{J}_{\alpha,m}^{l,k}| = |\boldsymbol{J}_{\alpha,k}^{l,k}| \geq \aleph_0$.
- (9) $\boldsymbol{J}_{\alpha,m}^{l,k} \subseteq N_{m+1}^{l}$, F_{m+1} maps $\boldsymbol{J}_{\alpha,m}^{1,k}$ onto $\boldsymbol{J}_{\alpha,m}^{2,k}$.
- (10) $\bigcup_{m \ge m(0)} J^{l,k}_{\alpha,m}$ is independent over $(N^l_k, N^l_{m(0)})$ (when $k \le m(0)$).

First Case: k = 0.

For l = 1, 2, let $N_0^l \subseteq M_l^*$ be $F_{\aleph_0}^a$ -prime over \emptyset , such that for $\bar{a}, \bar{b} \in N_0^l$ if $p = \operatorname{tp}(\bar{b}, \bar{a})$ is stationary and regular, q the stationarization of p over N_0^l , then $\dim(p, M_l^*) = \dim(q, M_l^*)$; this is possible by 1.4. Easily (4) holds. As N_0^1, N_0^2 are $F_{\aleph_0}^a$ -prime over \emptyset , by IV 4.18 there is an isomorphism F_0 from N_0^0 onto N_0^1 .

Let $\{p_{\alpha}^{1,0}: \alpha < \alpha_0\}$ be a maximal family of types in $\bigcup_m S^m(N_0^1)$, regular and orthogonal in pairs and $p_{\alpha}^{2,0} = F_0(p_{\alpha}^{1,0})$. Condition (6) holds and easily also condition (5). Let $J_{\alpha}^{l,0} \subseteq M_l^n$ be a maximal family of sequences, independent over N_{0}^l , realizing $p_{\alpha}^{l,k}$. As (4) holds, $J_{\alpha}^{l,0}$ is infinite, so we can partition $J_{\alpha}^{l,0}$ to $J_{\alpha,m}^{l,0}(m < \omega)$ such that $|J_{\alpha,m}^{l,0}| = |J_{\alpha}^{l,0}|$. Now $|J_{\alpha}^{1,0}| = |J_{\alpha}^{2,0}|$ by the hypothesis of 1.5 and the choice of N_k^0 .

We can check the other conditions.

Second Case: k + 1.

So we have defined already for l = 1, 2 and $m \le k$: $N_k^l, N_\alpha^{l,m}$ for $\alpha < \alpha_m$ and $J_{\alpha,n}^1$. Let N_{k+1}^l be $F_{\aleph_0}^a$ -prime over $N_k^l \cup \bigcup \{J_{\alpha,k}^{1,k(*)}:k(*) \le k, \alpha \le \alpha_{k(*)}\}$. Then $N_{k+1}^l \subseteq M_l^*$ and w.l.o.g. condition (4) holds; this is possible by 1.3.

By V 3.2 condition (10) holds. By conditions (10) and (6) for $\bar{c}^1 \in J^{1,k(*)}_{\alpha,k}$, $\bar{c}^2 \in J^{2,k(*)}_{\alpha,k}$, $k(*) \leq k$

$$F_k(\operatorname{tp}(\bar{c}^1, N_k^1)) = \operatorname{tp}(\bar{c}^2, N_k^2),$$

hence by (10), for any $n < \omega$, distinct $\bar{a}_0, \ldots, \bar{a}_{n-1} \in J^{1,k(*)}_{\alpha,k}$ and distinct $\bar{b}_0, \ldots, \bar{b}_{n-1} \in J^{2,k(*)}_{\alpha,k}$

$$F_k(tp_*(\bar{a}_0^{\wedge}\cdots^{\wedge}\bar{a}_{n-1},N_k^l)) = tp_*(\bar{b}_0^{\wedge}\cdots^{\wedge}\bar{b}_{n-1},N_k^2).$$

As by (8) $J_{\alpha,k}^{1,k(*)}$, $J_{\alpha,k}^{2,k(*)}$ have the same cardinality, we can extend F_k to an elementary mapping $F_{k,k(*),\alpha}^*$ from $N_k^1 \cup \bigcup J_{\alpha,k}^{1,k(*)}$ onto $N_k^2 \cup \bigcup J_{\alpha,k}^{2,k(*)}$.

By condition (5), the types $p_{\alpha}^{l,k(*)}(k(*) \le k, \alpha < \alpha_{k(*)})$ are pairwise orthognonal, hence by V (1.4(1) (and (10)) also the types

$$tp_{*}(\bigcup \{ J_{\beta,k}^{l,k(1)} : k(1) \le k, \beta < \alpha_{k(1)}, (k(1), \beta) \neq (k(*), \alpha) \}, N_{k}^{l})$$

and $tp_{*}(J_{\alpha,k}^{l,k(*)}, N_{k}^{l})$

are orthogonal $(k(*) \leq k, \alpha < \alpha_{k(1)})$, hence by V 1.2 weakly orthogonal.

Hence $F_k^* = \bigcup \{F_{k,k(*),\alpha}: k(*) \le k, \alpha < \alpha_{k(*)}\}$ is an elementary mapping.

As N_{k+1}^l is $F_{\aleph_0}^a$ -prime over $N_k^l \cup \bigcup \{J_{\alpha,k}^{l,k(*)}:k(*) \le k, \alpha < \alpha_{k(*)}\}$, by IV 4.18 we can extend F_k^* to an isomorphism from N_{k+1}^1 onto N_{k+1}^2 and call it F_{k+1} .

Sh:225

Let $\{p_{\alpha}^{1,k+1}: \alpha < \alpha_{k+1}\}$ be a maximal family of pairwise orthogonal, complete over N_{k+1}^{1} , orthogonal to N_{k}^{l} types. Let $p_{\alpha}^{2,k+1} = F_{k+1}(p_{\alpha}^{1,k+1})$.

Now there is no problem to find $J_{\alpha,m}^{l,k+1}$ ($k < m < \omega$) to satisfy condition (7), for each $\alpha < \alpha_{k+1}$. There is no problem to check the conditions (1)–(10). So we have carried out the induction.

To finish the proof it suffices to prove that (for l = 1, 2) $M_l^* = \bigcup_{k < \omega} N_k^l$ (as then $\bigcup_{k < \omega} F_k$ is an isomorphism from M_1^* onto M_2^*). Suppose $M_l^* \neq \bigcup_{k < \omega} N_k^l$. As both models are $F_{\aleph_0}^a$ -saturated and $\bigcup_{k < \omega} N_k^l \subseteq M_l^*$, by V 3.5 for some $c \in M_l^*$, $\operatorname{tp}(c, \bigcup_{k < \omega} N_k^l)$ is regular. As T is superstable for some $m < \omega$, $\operatorname{tp}(c, \bigcup_{k < \omega} N_k^l)$ does not fork over N_m^l , hence $tp(c, N_m^l)$ is parallel to $tp(c, \bigcup_{k < \omega} N_k^l)$ and so is regular. Let $n \le m$ be minimal such that $\operatorname{tp}(c, \bigcup_{k \le \omega} N_k^l)$ is not orthogonal to N_n^l . Using V 3.4 we can find a regular type $r \in S(N_n^l)$ not orthogonal to $tp(c, \bigcup_{k < \omega} N_k^l)$, so by V 1.13(2), r is orthogonal to N_{n-1}^l (if n > 0) hence for some $\alpha < \alpha_n$, r is not orthogonal to $p_{\alpha}^{l,n}$. By V 1.13, tp $(c, \bigcup_{k < \omega} N_k^l)$ is not orthogonal to $p_{\alpha}^{l,n}$, so by V 1.12 some $\bar{d} \in M_{l}^{*}$ realizes the stationarization of $p_{\alpha}^{l,n}$ over $\bigcup_{k \leq n} N_{k}^{l}$. $\operatorname{tp}(\bar{d}, N_n^l \cup \bigcup_{m \ge n} \boldsymbol{J}_{\alpha,m}^{l,n}) \subseteq \operatorname{tp}(\bar{d}, \bigcup_{k < \omega} N_k^l)$ does N_n^l But not fork over contradicting condition (7) in the induction hypothesis.

2. The non-structure theorem

2.1. Theorem. Suppose T is not superstable.

 $K = \{M : M \text{ a strongly } F^{a}_{\aleph_{0}}\text{-saturated model of } T\}.$

Then for every $\lambda > \lambda(T)$ there are 2^{λ} pairwise non-isomorphic models from K of power λ .

Remark. (1) $\lambda(T)$ is the first cardinality such that for M a model of T and finite $A \subseteq M$, the number of non-equivalent $\operatorname{stp}(\bar{a}, A)$ (in M), $\bar{a} \in M$, is $\leq \lambda(T)$. It is known that $\lambda(T) \leq 2^{|T|}$ and w.l.o.g. $|T| \leq \lambda(T)$ (as $|D(T)| \leq \lambda(T)$, and if |D(T)| < |T|, then T is a definitional extension of some $T' \subseteq T$, $|T'| \leq |D(T)|$).

(2) Note that the proof shows that if $T \subseteq T_1(T_1 \text{ a first-order theory})$, then for $\lambda > |T_1| + \lambda(T)$ there are 2^{λ} non-isomorphic models from K of power λ which are reducts of models of T_1 .

Notation. We identify ${}^{\omega \geq} \lambda$ with the model $({}^{\omega \geq} \lambda, <, <_{lx}, \ldots, P_{\alpha}, \ldots)_{\alpha \leq \omega}$ where $<_{lx}$ is the lexicographic order, < is being initial segment and $P_{\alpha} = {}^{\alpha} \lambda$. The slight variation from VII Definition 2.1 is inessential.

Proof. We know (II 3.14, 9) that there are formulas $\varphi_n(\bar{x}, \bar{y}_n)$ (of L(T)) and $\bar{a}_\eta \in \mathbb{C}$ for $\eta \in {}^{\omega \geq} \omega$ (\mathbb{C} a quite saturated model of T, see [1, p. 7]) such that if $\eta \in {}^{\omega} \omega, v \in {}^{n} \omega$, then

$$(*) \qquad \models \varphi_n[\bar{a}_\eta, \bar{a}_\nu] \quad \text{iff} \quad \nu < \eta.$$

286

S. Shelah

We now define by induction on n, \bar{a}_{ν}^{n} ($\nu \in {}^{\omega \geq} \omega$) and L_{n} such that:

(1) M_n is an L_n -model, $|L_n| \leq \lambda(T)$.

(2) $\bar{a}_{\nu}^{n} \in M_{n}$ and $\langle a_{\nu}^{n} : \nu \in {}^{\omega \geq} \omega \rangle$ is indiscernible in M_{n} (for indiscernability with respect to $({}^{\omega \geq} \omega, <, <_{ix}, \ldots, P_{\alpha}, \ldots)$ see VII Definitions 2.2, 2.3, 2.4).

(3) $L_n \subseteq L_{n+1}$, and $(M_{n+1} \upharpoonright L_0)$ is an elementary extension of $M_n \upharpoonright L_0$.

(4) For any $v_1, \ldots, v_k \in {}^{\omega \geq} \omega$, the quantifier free L_n -type of $\bar{a}_{v_1}^{n+1} \cdots \bar{a}_{v_k}^{n+1}$ in M_{n+1} is equal to the quantifier free L_n -type of $\bar{a}_{v_1}^n \cdots \bar{a}_{v_k}^n$ in M_n : moreover $M_n < (M_{n+1} \upharpoonright L_n)$.

(5) $M_0 = \mathfrak{C}, \ \bar{a}_v^0 = \bar{a}_v.$

(6) For n > 1, Th (M_n) has Skolem functions.

(7) For n > 1, and $v_1, \ldots, v_k \in {}^{\omega \ge} \omega$, every (L_0, m) -type in M_{v_1,\ldots,v_k}^n (= the Skolem Hull of $\{\bar{a}_{v_1}^n, \ldots, \bar{a}_{v_k}^n\}$ in M_n) which is almost over a finite set, is realized in M_{v_1,\ldots,v_k}^{n+1} .

(8) For any $m < \omega$, F_m is a (2m + 1)-place function symbol from L_1 , such that if $\bar{a}, \bar{b} \in M^n_{\nu_1,\dots,\nu_k}, n \ge 2, \bar{a}, \bar{b}$ realize the same L_0 -type in M_n , then $x \to F(x, \bar{a}, \bar{b})$ is an automorphism of $M_n \upharpoonright L_0$ taking \bar{a} to \bar{b} .

For the case n = 0 there is nothing to do.

Case n + 1: Choose λ large enough (e.g., $\Box((2^{2^{|T|}})^+)$). We can find an L_n -model N_n , of Th (M_n) , and $b_\eta \in N_n$ $(\eta \in {}^{\omega \ge} \lambda)$ such that if $\eta_1, \ldots, \eta_k \in {}^{\omega \ge} \lambda$, $v_1, \ldots, v_k \in {}^{\omega \ge} \omega$, and $\langle \eta_1, \ldots, \eta_k \rangle$, $\langle v_1, \ldots, v_k \rangle$ realize the same atomic type in ${}^{\omega \ge} \lambda$, ${}^{\omega \ge} \omega$ resp., then $\bar{b}_{\eta_1} \cdot \cdots \cdot \bar{b}_{\eta_k}$, $\bar{a}_{v_1} \cdot \cdots \cdot \bar{a}_{v_k}$ realize the same L_n -type in N_n , M_n resp.

For $I \subseteq {}^{\omega \geq} \lambda$ let N_I^n be the Skolem Hull of $\{a_\eta : \eta \in I\}$ in N_n .

Let N_n^1 be an elementary extension of N_n , such that $(N_n^1|L_0)$ is strongly $||N_n||^+$ -saturated. For any $\bar{a}, \bar{b} \in N_{(^{\omega >}\lambda)}^n$ (of length *m*) realizing the same L_0 -type, the function $x \to F_m(x, \bar{a}, \bar{b})$ is an automorphism of $N_{(^{\omega >}\lambda)}^n|L_0$. We can extend this automorphism of $N_{(^{\omega >}\lambda)}^n|L_0$ to an automorphism of $N_n^1|L_0$. Also if $\bar{a}, \bar{b} \in N_n^1$ realize the same L_0 -type $\bar{a} \wedge \bar{b} \notin N_{(^{\omega >}\lambda)}^n$, we find an automorphism of $N_{(^{\omega >}\lambda)}^n|L_0$ taking \bar{a} to \bar{b} . So we can define a model N_n^2 , which is like N_n^1 , but we change the interpretation of F_m so that:

(a) for $x, \bar{a}, \bar{b} \in N^n_{(\infty \ge \lambda)}$: $F^{N^2_n}_m(x, \bar{a}, \bar{b}) = F^{N^1_n}_m(x, \bar{a}, \bar{b})$;

(b) if $\bar{a}, \bar{b} \in N_n^2$ realize the same L_0 -type, then $x \to F(x, \bar{a}, \bar{b})$ is an automorph ism of $N_n^2 \upharpoonright L_0$.

Next for every complete atomic $L({}^{\omega \geq} \omega)$ -type *r* realized in ${}^{\omega \geq} \omega$, we choose a tuple say $\bar{v}^r = \langle v_1^r, \ldots, v_{k(r)}^r \rangle$ realizing it in ${}^{\omega \geq} \omega$, and we choose $\lambda(T)$ complete (L_0, m) -types over M^n , $\{p_i^{n,r}: i < \lambda(T)\}$, such that any L_0 -type in $N_{\{v_1^r,\ldots,\bar{v}_k^r\}}^n$ (i.e. its parameters are from it and it is finitely satisfiable there) almost over a finite se is included in some $p_i^{n,r}$. Now we define in N_n^2 k-placed functions $G_i^{n,k}$ (for eacl m) such that:

(**) if
$$v_1, \ldots, v_k \in {}^{\omega \geq} \lambda$$
, $\langle v_1, \ldots, v_k \rangle$ realizes in ${}^{\omega \geq} \lambda$ the complete atomic type

r, then for every L_n -term τ_1, \ldots, τ_m and L_0 -formulas ψ :

$$\psi(x, \tau_1(\bar{a}_{\nu_1}, \ldots, \bar{a}_{\nu_k}), \ldots, \tau_m(\bar{a}_{\nu_1}, \ldots, \bar{a}_{\nu_k})) \in p_i^{n,r}$$

iff $N_n^2 \models \psi[G_i^{n,k}(\bar{a}_{\nu_k}, \ldots, \bar{a}_{\nu_k}), \tau_1(\bar{a}_{\nu_1}, \ldots, \bar{a}_{\nu_k}), \ldots, \tau_m(\bar{a}_{\nu_1}, \ldots, \bar{a}_{\nu_k})].$

Let $N_n^3 = (N_n^2, \ldots, G_i^{n,k}, \ldots)_{n,k < \omega, i < \lambda(T)}$. Lastly let N_n^4 be an expansion of N_n^3 by Skolem functions but still $|L(N_n^4)| \le \lambda(T)$. Let $L_{n+1} = L(N_n^4)$. Now by [1, AP 2.6] (just as in the proof of VII 3.6(1)) there is an L_{n+1} -model N_n^5 of Th (N_n^4) and $\tilde{c}_\eta \in N_n^5$ ($\eta \in {}^{\omega \ge} \omega$) such that:

(i) $\langle \tilde{c}_{\eta} : \eta \in {}^{\omega \geq} \omega \rangle$ is indiscernible in N_n^5 .

(ii) If $\eta_1, \ldots, \eta_k \in {}^{\omega \geq} \omega$, $\varphi \in L_{n+1}$, $N_n^5 \models \varphi[\bar{a}_{\eta_1}, \ldots, \bar{a}_{\eta_k}]$, then there are $v_1, \ldots, v_k \in {}^{\omega \geq} \lambda$ such that $\langle \eta_1, \ldots, \eta_k \rangle$, $\langle v_1, \ldots, v_k \rangle$ realize the same atomic type in ${}^{\omega \geq} \omega$, ${}^{\omega \geq} \lambda$ resp. and $N_n^4 \models \varphi[\bar{a}_{v_1}, \ldots, \bar{a}_{v_k}]$.

(iii) N_n^5 is the Skolem Hull of $\{\bar{c}_\eta : \eta \in {}^{\omega \geq} \omega\}$.

Now by renaming we can assume $\bar{c}_{\eta} = \bar{a}_{\eta}$, $M_n \subseteq N_n^5 \upharpoonright L_n$. So we can let $M_{n+1} \stackrel{\text{def}}{=} N_n^5$. Let M^* be the limit of the M_n (i.e., $L(M^*) = \bigcup_n L_n$, $M^* \upharpoonright L_n = \bigcup \{(M_m \upharpoonright L_n) : n \leq m < \omega\}$). So M^* , \bar{a}_{η} ($\eta \in {}^{\omega \geq} \omega$) define Φ proper for ${}^{\omega \geq} \omega$ (see VII Definition 2.6) such that for any atomic $\varphi \in \bigcup_n L_n$:

 $\mathbf{E}\mathbf{M}^{1}(^{\omega \geq}\omega, \, \boldsymbol{\Phi}) \models \varphi[\bar{a}_{v_{1}}, \ldots, \bar{a}_{v_{k}}] \quad \text{iff} \quad M^{*} \models \varphi[\bar{a}_{v_{1}}, \ldots, \bar{a}_{v_{k}}].$

As $M_n \upharpoonright L_0(M_{n+1} \upharpoonright L_0)$, and M_n has a Skolem function clearly for every $I \in K(^{\omega \ge \omega})$, (see VII 3.1 and the Notation above), $EM(I, \Phi) (= EM^1(I, \Phi) \upharpoonright L_0)$ is a model of T and for $\eta \in P^I_{\omega}$, $v \in P^I_n$:

$$\operatorname{EM}(I, \Phi) \models \varphi_n[\bar{a}_\eta, \bar{a}_\nu] \quad \text{iff} \quad \nu < \eta.$$

By VIII we get the desired conclusion. \Box

Remark. Though the theorems there (mainly VIII 2.1 for our purpose) speak about $PC(T_1, T)$, T unsuperstable, they give that for Φ, L, φ_n as above, $card\{EM(I, \Phi) | \cong : |I| = \lambda\}$ is 2^{λ} , if

$$\lambda > |L(\mathrm{EM}^{1}(^{\omega \geq}\omega, \Phi))|$$
 or e.g. $\lambda = \lambda^{\aleph_{0}} \ge |L(\mathrm{EM}(^{\omega \geq}\omega, \Phi))|$.

Remark. (a) Really " $\lambda \ge \lambda(T) + \aleph_1$ " is enough in 2.1.

(b) If we assume a Ramsey cardinal exists above |T|, then by (4) we can simplify the proof using one stage instead of ω .

References

- [1] S. Shelah, Classification Theory and the Number of Non-isomorphic Models (North-Holland, Amsterdam, 1978).
- [2] S. Shelah, Classification Theory, Completed for Countable Theories (North-Holland, Amsterdam, (in press).
- [3] S. Shelah, Abstracts of A.M.S. (1983).
- [4] R. Grossberg and S. Shelah, A non-structure theorem for an infinitary theory which has the unsuperstability property, Illinois J. Math. (Boone memorial) 30 (1986) 364-390.