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ABSTRACT

We present a necessary and sufficient condition for a family of sets to possess a transversal. Its form
follows that of P. Hall's theorem: a family has a transversal if and only if it does not contain one of a set of
'forbidden' substructures.

1. Introduction

Let J* = {Si', i e /} be a family of subsets of a set S. A transversal of 3F is a set
\x{. i e 1} such that xt e 5,- for every i e / , and xt # Xj when i ^j. In 1935, P. Hall [5]
gave a criterion for deciding whether a finite family of sets possesses a transversal.
Since then it has remained an open problem to do the same for infinite families. The
first progress was made by M. Hall [4], who proved that P. Hall's criterion holds also
for infinite families of finite sets. The problem was next solved for the case of
countable families. Damerell and Milner [3] proved a criterion for deciding whether a
countable family of sets has a transversal, and alternative criteria, also for countable
families, were subsequently obtained by Podewski and StefTens [9] and by Nash-
Williams [8]. Shelah [10] gave a criterion of an inductive nature, which, together
with the criteria proved for countable families, solved the problem for families of
countable sets.

In this paper we complete the solution of the problem, and give a general
characterization of families which possess transversals. This result draws upon ideas
from [9] and [10]. The usefulness of this characterization has already been shown in
[2], where it was used to prove Konig's duality theorem for bipartite graphs of general
cardinality.

2. Notation and definitions

The problem of characterizing the families of sets which possess transversals is
known also as the 'marriage problem' because it can be re-phrased in the terminology
of'marriage in societies'. In this terminology the family of sets is replaced by a set M of
'men', the underlying set S by a set W of 'women', and the relation of an element
belonging to a set by a relation K of 'knowing' between M and W. The notion of a
transversal is transformed into that of monogamous marriage, in which all men are
married to women they know. (Inequitably, it is not demanded that all women should
marry!) We choose here to use this terminology, of which details—together with other
required definitions—are given in the remainder of this section.

If F is a set of ordered pairs, a is any element, and A is any set, then F<a> denotes
{y:(a,y)eF}, F(a) denotes the element of F<a> if |F<a>| = 1, F[/4] denotes
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\J{F(a): ae A}, domF (the domain of F) denotes {a: F(a} # 0 } ,
F~ * = {(y, x): (x, y) e F}, rge F (the range of F) denotes dom F " \ and F |̂  A denotes
F n (.4 x rge F) (i.e. the restriction of F to A). We say that F is a function if | F(a) \ = 1
for every a e dom F, and that F is injective if | F-1<x> | = 1 for every x e rgeF.

A society is a triple (M, W K̂) where M, W are disjoint sets and K ^ M xW.
Elements of M and W are men and women of the society respectively. A man m and
woman w are said to know each other if (m, w) e X. For a society A we denote by
MA, WA,KA the sets such that A = (MA,WA,KA). The symbols M, W,K, when
appearing without subscripts, will be understood to pertain to a given society denoted
byT.

If X £ W then D{X) denotes {a e M: K(a) c X). If we want to specify the society
T in which D{X) is taken, we shall write Dr(X) for D(X). For A e M and X c j ^
F[/4,X] denotes the society ( A J . K n ^ x I ) ) , and |F | , T-A, T-X, and
F - X - X denote, respectively, \M\JW\, T[M\At W], F[M, W\X~], and
r[M\yl, W^X]. A society F' is called a subsociety of F if F' = F[\4, X] for some
z l c M J c ^ . W e then write F ^ F. The society T-A-X is denoted in this case
by F / F . A subsociety IT of F is called saturated if Kr[Mn] g M n̂. We write U <i F for
'IT is a saturated subsociety of F'. If ft = (IT,: i e I) = ((Mh Wh X,): i e /) is a family of
subsocieties of F then the union (J Ft, intersection f] ft, and join V ft of these
subsocieties are the societies

(U M- U w» U^J . r[f|M,-, p) wa = (DMt1 f]whf]Kd,
and

respectively, where \J Mt means \JieiMi and l̂ J Ŵ , l̂ J Kh f] Mh f] Wh f] K{ have
similar meanings. If/ has just two elements a, b then [j Tl, f] ft, V ft may be denoted
by ITa u nfc, na n n6, na v nb respectively.

A society (0 , {u}, 0 ) which contains a single woman and no man is called maidenly
and is denoted by <u>. The society (0 , 0 , 0 ) will be said to be empty.

An espousal of F is an injective function E such that dom E = M and E ^ K. If F
has an espousal then it is called espousable. A subset ,4 of M is called espousable if
F[/4, W~\ is espousable, and an espousal of T\_A, W] may also be called an espousal of
A. A society F is called critical if it is espousable and rge E = W for every espousal E
of F. A subset C of M is called critical if F[C, X[C]] is critical.

Let 0, ¥ be sets of ordinals. A function / : 0 -> ¥ is ascending if /(a) </(/?)
whenever a, /? e <D and a < /?. The orrfer fype ord O of O is the unique ordinal a such
that there exists an ascending bijection of a onto O. A function / : <S> -> ¥ is regressive
if /(a) < a for every a 6 <D\{0}.

Let K be a regular uncountable cardinal. A subset Q of K is closed (in /c) if
supHeQu{ /c} for every non-empty subset S of fi, and is unbounded (in K) if
sup Q = K. A subset O of K is stationary (or K-stationary) if <1> n Q 7̂  0 for every closed
unbounded subset Q of K.

Given a set S and a cardinal A, a X-enumeration of 5 is a function / from X\S\ into S
such that I y*~A<s> | = A for every s e 5. A 1-enumeration is simply called an
enumeration.

In this paper, the word 'sequence' means 'transfinite sequence', i.e. a function whose
domain is an ordinal number or, equivalently, a family of the form (xa: a < () indexed
by the ordinals a less than some ordinal (. (These definitions are equivalent since we
understand a 'family' (x,-: i e /) to be the same thing as the function {(i, x,): i 6 /}.) We
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THE EXISTENCE OF TRANSVERSALS 4 5

shall call xa the ath term of a sequence (xa: a < (). If s denotes this sequence and 9 ^ (
then sg will denote the sequence (xa: a < 9), or, equivalently, s ^ 9.

A sequence of subsocieties of F may often be denoted by a Greek capital letter with
a bar above it, and then the ath term of this sequence will be denoted by the same
Greek capital letter, unbarred, with subscript a. For example, if A is a sequence of
subsocieties of F then Aa is its ath term. Moreover, if A = (Aa: a < 0 and 9 ^ £ then
Ao will denote the sequence (A)0 = (Aa: a < 9). The sequence A will be called non-
descending if Aa ^ Ap whenever a < /? < (; and A will be called continuous if it is non-
descending and (J Ae = A0 for every limit ordinal 9 < (. A (-tower in F is a
continuous non-descending sequence (na: a ^ () of saturated subsocieties of F such
that FT0 is empty. A ^-ladder in F is a sequence A = (Aa: a < 0 of subsocieties of F
such that Aa n Ap is empty whenever a < j5 < ( and VAa o F for every a ^ (. A
sequence of subsocieties of F is a tower (ladder) if it is a (-tower ((-ladder) for some
ordinal (.

If ^ is the set of towers in F and «£? is the set of ladders in F then there is an obvious
bijection /: 2T -> $£ such that

(i) if fl is a C-tower in F then l(U) is the (-ladder (na + 1/ITa: a < 0 ,
(ii) if A is a (-ladder in F then rl{A) is the (-tower (VAa: a ^ ().

We shall call /(Ii) the ladder of U.

The deficiency <5(F) of a society F is

min{|L|: L^ M, F —L is espousable}.

If F is espousable, its surplus a(T) is

sup{ |F | : K c w, F - K i s espousable}.

(Theorem 6.2 below will show that this supremum is in fact a maximum.) We formally
write <j(F) = — S(T) if F is not espousable. The essential size e(F) of F is

min{ | L |: L c M, T-L-Vis critical for some V £ W},

and v(F) will denote

min{ | V\: V £ w, T-L- V\s critical for some L £ M } .

In this paper, small Greek letters will denote ordinals, and in particular K, X, fi, v will
denote cardinals. The letters i, h, k will denote indices which will sometimes be non-
negative integers. The letters F, A, A, II, and £ will denote societies, while other
capital Greek letters will denote sets or classes of ordinals. When considering a society
F = (M, W, K), we shall denote subsets of M and subsets of W by capital letters from
the first and second halves of the alphabet respectively (possibly with subscripts,
superscripts, etc.). The least cardinal greater than K will be denoted by K + . A K-subset
of a set S is a subset of S with cardinality K.

3. Preliminary lemmas

LEMMA 3.1. / / A O IT <I F then A < r .

LEMMA 3.2. / / n o T and K^ F/Il then n v A <i F.

LEMMA 3.3. / / F is critical, F is an espousal of F, and A is a subset of M, then
T\_A, F[/4]] is critical.
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LEMMA 3.4. / / Aa = r[Ma, Wa~] is a critical subsociety of F for every a < ( and
ManMp= Wan Wp = K n(Ma xWp) = 0 whenever a < /? < (

/s critical.

Proof Each Aa has an espousal Ea, and (J {£a: a < (} is an espousal of A. Now let F
be any espousal of A. Suppose that 9 < £ and F [ M J = Ŵ  for every a < 6.
Then F[Me] n ^ = F[M0] n F [ M J = 0 for a < 6, and moreover, for <x > 9,
F[Me] nWa = 0 since /C n (Me x Wa) = 0 . Therefore F[Me] £ w0j and so

= We since A0 is critical. We have now shown by transfinite induction that
Q] = Wo for every 9 < (. Therefore rge F = W±.

COROLLARY 3.4a. / / FT is a critical saturated subsociety of F and FT ^ I ^ F and
S/FI is critical, then Z is critical.

Proof. Since IT is saturated, K n (Mn x PFI/n) = 0 and hence 2 = FT v (Z/FI) is
critical by Lemma 3.4.

COROLLARY 3.4b. If A is a (-ladder in T then

(ii) v(VAK*fv(Aa).

Proof. For each a < (, choose La ^ MAa and Ka e WK such that Aa - La - Ka

is critical and |L a | = e(AJ. Let Aa = MK\La and X a = W ^ \ p ; . Then
F[/4a, X J = Aa —La— 1̂ , which is critical; and, if a < j? < C, then Kn(Aax Xp) = 0
since V Aa + 1 o F. Therefore, by Lemma 3.4, V {F[/4a, XJ: a < Q is critical, that is,
( V A ) - U ( L a : a<Q-[J{Va: a < C} is critical, and so

A similar argument, with La, 1̂  chosen so that \Va\ = v(Aa), proves (ii).

COROLLARY 3.4C. / / A < r then £(F) < £(A) + s(F/A).

Proof Take £ = 2, Ao = A, Aj = F/A in Corollary 3.4b.

Much of the importance of critical societies derives from the next two lemmas.

LEMMA 3.5 [9, Lemma 1]. Every critical subset of M is contained in a maximal
critical set.

If FI, £ are critical saturated subsocieties of F, then it is easy to see that IT ^ £ if and
only if Mn c Mz. Hence from Lemma 3.5 there follows:

COROLLARY 3.5a. Every critical saturated subsociety ofV is contained in a maximal
critical saturated subsociety ofT.
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Since the empty subsociety of any society is obviously critical and saturated, there
follows:

COROLLARY 3.5b. Every society has a maximal critical saturated subsociety.

LEMMA 3.6 [9, Lemmas 1,2]. (i) / / F is espousable then there exists a greatest
critical saturated subsociety of F.

(ii) Let F be espousable, Yl be the greatest critical saturated subsociety of F, and
weW\ Wn. Then T — {w} is espousable.

LEMMA 3.7. Let F be critical and E an espousal ofT. Then there does not exist a
sequence (a{: i < co) of distinct elements ofM such that E(ai+l) e K^a^for every i < co.

Proof. Suppose that (a,: / < co) is a sequence violating the lemma. Define then an
espousal F of F by F(at) = E(ai+1) for every i < co and F(b) = E(b) for every
b e M\{a,-: i < co}. Then E(a0) $ rgei7, contradicting the fact that F is critical.

COROLLARY 3.7a. 7 / F is critical then \{m e M: K(rn) — W) \ < Xo.

Proof. If there exists a sequence (a,: i < co) of distinct elements of M such that
/C<a,-> = W, then this sequence clearly violates Lemma 3.7.

Since the aim of this paper is to characterize espousable societies, and since our
characterization will involve critical societies, it is worth while mentioning that the
structure of critical societies is well understood: in [1, Corollary 2] critical societies
are characterized in terms of the function 'q1 of [8].

LEMMA 3.8. LetJ, L be subsets of M, and let P, N be subsets of W such thatT — J — P
is critical andT-L-N is espousable. Then | J | + | N |

Proof. Let E be an espousal of F — J — P and let G be an espousal ofF — L — N. Since
T — J — P is critical, rge£ = W\P. Let Q) be a directed graph whose set of vertices is
M u Wand whose set of edges is E~l u G. Then each vertex of S> has invalency 0 or 1
and outvalency 0 or 1, and hence each connected component of 2) is a directed path or
a directed circuit. If x e J u N then x has invalency 0 and hence x is the initial vertex
of a directed path 0>x which is a component of Q). The vertices of £PX other than x and
its terminal vertex (if such exists) have invalency 1 and outvalency 1, and so cannot
belong to J u P. Therefore, by Lemma 3.7, 0>x cannot be infinite, and so must have a
terminal vertex g(x). Since g(x) has outvalency 0, it does not belong to
(rge£)u(domG) = ( W \ P ) u ( M \ L ) and so must belong to P u L Hence g is an
injection from J u N into P\j L.

COROLLARY 3.8a. If L is a subset of M and N is a subset of Wsuch that T — L — N
is espousable then v(F) + \L\ ^ \N\.

Proof. There exist J £ M and P £ Wsuch that v(F) = | P | and F — J — P is critical.
Hence v(F) + | L | = | F | + | L | ^ | N | b y Lemma 3.8.

COROLLARY 3.8b. IfJ^M, P £ W, T-J-P is critical, and\P\ <\J\, then F is
inespousable.
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The next two lemmas follow readily from the definitions of S{F) and e(F):

LEMMA 3.9. <5(F) ^ e(r).

LEMMA 3.10. IfU^T then (5(11) ^ <5(F).

LEMMA 3.11. / / A < T then v(r/A) ^ v(r).

Proof. Let II be a critical subsociety of F such that | W\Wn| = v(r), and let F
be an espousal of II. Let Z = r[F-l[Wn\Ws~], Wn\W^. By Lemma 3.3,1 is critical.
Since A is saturated, F'^WXW^] ^ M\MA, and hence Z ^ T/A. Since
I WT/A\ wt I < I w \ wn I, the lemma follows.

The main property of stationary sets which we shall need is given by Fodor's
lemma:

LEMMA 3.12 (see, for example [7, Theorem 22]). Let K be a regular uncountable
cardinal. lf<& is K-stationary and / : O -• K is a regressive function then there exist a K-
stationary subset 4* of O and an ordinal $ < K such that / [ ¥ ] = {/?}; in particular,

4. Impediments and obstructions

Let Y be the class of cardinals K such that either 0 < K < Ko or K is regular. We
shall define by induction on K what is meant by saying that a subsociety IT of F is a 'K-
impediment', for every iceY. First, when 0 < K ^ Ko, a subsociety IT of F is a K-
impediment in F if it is saturated and IT — L is critical for some K-subset L of Mn. Now
assume that K is regular and uncountable and that 7Mmpediment' has been defined
for every n e Y such that pi < K. Let 11 be a /c-tower in F and A be its ladder. We say
that n is a K-fortress if, for each a. < K, Aa is

(1) a ^-impediment in F / n a for some / / e Y n / c , o r
(2) critical, or
(3) maidenly.
We denote by <I>fc(n) the set {a < K: Case (k) holds at a} for k = 1,2, 3. A K-tower fT

is impeding (in F) if it is a K-fortress in F and O^IT) is K-stationary. A subsociety n of F
is a K-impediment in F if Ft = [j ft for some impeding K-tower ft in F.

In fact, the notion of an 'impediment' can be replaced by a simpler one, that of an
'obstruction', to be defined below. The reason for the use of 'impediments' is their
convenience in the proof of our main result (Theorem 5.1). It may, however, be worth
while to try to find a direct proof of Theorem 5.1, using 'obstructions'.

We define the notion of a K-obstruction by induction on K, for every K e Y. For
0 < K ^ Ko a K-obstruction in F is a K-impediment in F. Suppose now that K is regular
and uncountable and that '^-obstruction' has been defined for every /i < K in Y. A K-
tower £ in F, with /(£) = A, will be said to be obstructive if

(a) for each a < K, Aa is either
(1) a ^-obstruction in F/Za for some \i < K or
(2) maidenly, and

(b) ¥(£) = {a < K: Case (1) holds at a} is K-stationary.
A subsociety S of F is called a K-obstruction in F if Z = [j £ for some obstructive K-
tower Z in F.
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A subsociety of F is
(i) an impediment in F if it is a K-impediment in F for some K G Y,
(ii) a ( > ic)-impediment in F if it is a A-impediment in F for some A G Y such that

X> K.

We shall say that F is impeded (K-impeded, (> K)-impeded) if some subsociety of F is an
impediment (a K-impediment, a (> ^-impediment) in F, and unimpeded (K-unimpeded,
(> K)-unimpeded) if not. The expressions (^ K)-impediment, (< K)-impediment, ( < K ) -
obstruction, ( ^ K)-impeded, (< K)-impeded are defined similarly.

Whenever we refer to K-impediments or K-impeded societies or K-obstructions, it
will be understood (whether or not this is explicitly mentioned) that K denotes a
member of T. Likewise, any reference to K-fortresses or impeding K-towers indicates
that K is assumed to be regular and uncountable.

LEMMA 4.1. / / E is a critical saturated subsociety of F and Ft is a K-obstruction in
F/E then E v FI is a K-obstruction in F.

Proof. Suppose first that K ^ Xo. Then F l o F/E and IT —L is critical for some K-
subset L of Mn. Since E <i F, it follows that K n (M^ x Wn) = 0. Therefore
£ v (IT — L) is critical by Lemma 3.4, that is, (Z v FT) — L is critical. Since I < T and
IT<i F /S , it follows that S v IT< F. Hence E v IT is a K-obstruction in F.

Now suppose that K is regular and uncountable, and assume the inductive
hypothesis that the assertion of Lemma 4.1 is true if K is replaced by any element of
Yn/c. Let E, FT be as in the statement of the lemma. Then IT = \J IT for some
obstructive K-tower FT in F/E. This implies that ^(TT) is K-stationary and that Aa is
maidenly or a (< K)-obstruction in (F/E)/ITa for each a < K, where A = /(IT). Let £, be
the least element of ^FT). Let the sequence A = (Aa: a ^ K) be defined by letting
Aa = ITa for a ^ £ and Aa = Z v ITa for £ < a ^ K. Then /(A) = (A^: a < K), where
A'a = Aa for a # t, and A| = E v A,..

Since IT is obstructive in F/E and t, is the least element of ^(IT), it follows that Aa is
maidenly for each a < <!;. Therefore ITa has no men for a ^ £ and so Aa = ITa<] F
trivially when a < £. Moreover, ITa<i F /S for each a < K since ft is a tower in F/E,
and by hypothesis I < F : therefore Aa = E v ITa<] F for £ < a ^ K. Hence A is a K-
tower in F.

Since ^ e ^(FI), it follows that A^ is a (< ^-obstruction in (F/E) /n 4 = (F/FT^/E.
Moreover, Z < F and therefore E o F/FI^ also; and E is by hypothesis critical.
Therefore, by our inductive hypothesis, E v A^ is a (< K)-obstruction in F/n,,, that is,
A^ is a (< K)-obstruction in F/A4. If a G ^(ft) and a # ^ then a > ^ and Aa = Aa,
which is a (< K)-obstruction in (F/E)/FTa = F/Aa. Hence Aa is a (< K)-obstruction in
F/Aa for every a e ^(TT). Therefore ¥(FI) £ ^p(A), and therefore ¥(&) is K-stationary.
If a < K and Aa is not a (< K)-obstruction in F/Aa, then a £ ^(A) and therefore
a £ T(TT) (since T(Fl) £ T(A)) and therefore Aa is maidenly (since FT is obstructive in
T/Y), that is, Aa is maidenly (since a $ ^(FT) and so a # ^ and Aa = Aa). Hence Aa is
either a (< K)-obstruction in F/Aa or maidenly for each a < K.

We have now proved that A is obstructive in F. Therefore (JA = E v F T i s a K -
obstruction in F.

LEMMA 4.2. A subsociety FT of F is a K-obstruction in F if and only if it is a K-

impediment in F.

5388.3.47 D
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Proof From the definition of a K-obstruction and a ^-impediment it clearly follows
by induction on K that a /c-obstruction is a /c-impediment. We have therefore to show
that if IT is a /c-impediment then it is a ^-obstruction. For K ^ Ko this is the definition
of '^-obstruction'. So assume that K is regular and uncountable, and that the assertion
is true for (< /c)-impediments. Let fl be an impeding /c-tower such that [j H = n , and
let A = /(ft). We would like to transform IT to an obstructive /c-tower by 'getting rid'
of the critical rungs Aa, for a e O2(fl). Roughly speaking, this is done by 'pushing
upwards' each such Aa, to join it to A ,̂ where P = min{y 6 Ox: y > a}. A more formal
definition is the following.

For k= 1,2, 3 let Ofc = Ofc(fT). Let / be the unique ascending bijection from
<J>! u O3 onto K, and let g: <£2 -* <I>i be defined by g{<x) = m i n ^ X a ) . We construct a
sequence A = (Aa: a < K) of subsocieties of F by defining A/(a) for every a e 4>x u O3,
according to the following rules:

Case (1): a £ O^ Let A* = V{A/?: p e g'^oc)} and let

A/(a) = AavAa*. (4.1)

Case (2): a e <D3. Let Am = Aa.

Now let £ be the sequence (La: a ^ K), where Sa = V &a for each a ^ /c. We show,
in a sequence of assertions, that £ is an obstructive /c-tower.

ASSERTION 1. Ifae^^ then Y\a = Z/(a) v A* and ITa + 1 = £ / ( a ) + i .

Proof of Assertion 1. Clearly

I / ( a ) = V {A/w: ^ a J e ^ j v V {A/w: 0 < a, j8 e O3}.

Hence, by the definition of Anp),

Z / w = VfA^: jj < a, 0 E OJ v V{A|: ft < a, 0 e O,} v VfA^: P < a, p e O3}.

But, by the definition of A|,

V{A|: fi^nPeQj = V{Ap: p < a, /J e <D2}.

Hence

Z/(a) v Aa* = V{A^: P < a, /? e Ot u O 2 uO 3 } = n a .

By (4.1),

2/(«)+i = Z/(«) v A/(a) = I / ( a ) v Aa v A* = n a v Aa = n a + 1.

ASSERTION 2. £ is a tower.

Proof of Assertion 2. This will be clearly shown if we prove that A/(a) is saturated in
F/Z/ ( a ) for every a e <£x ud>3. For a e O 3 this is trivially true because A/(a) has no
men. For a e <DX it follows from the fact that, by Assertion 1, L/(a) v A/(a) = n a + 1 ,
which is saturated in F.

ASSERTION 3. Let a. e Oj and let Aa be a p-impediment in T/Ua, where p < K. Then
Ay(a) is a p-obstruction in F/Zy(a).
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Proof of Assertion 3. By the inductive hypothesis, Aa is a p-obstruction in F/n a ,
that is (by. Assertion 1), a p-obstruction in (F/Z/(a))/A*. By Lemma 3.4, A* is critical.
Since Ft is a tower, K[MAf~] c WUa for every /? < a, and hence using Assertion 1, we
have K[MAJ] cz Wn, = WI/(j)u WA*. This implies that A* is saturated in F/I / ( a ) . By
(4.1), A/(a) = Aa v A*. Hence, by Lemma 4.1, A/(a) is a p-obstruction in F/E/(a ) .

We can now complete the proof of the lemma. By Assertion 2, £ is a K-tower. By
Assertion 3, £ satisfies Condition (a) in the definition of a K-obstruction, and
¥(£) = / [ O J . Clearly /(a) ^ a for every a e Ot u<l>3, and since / is one-to-one it
follows by Lemma 3.12 that {a e O^ /(a) < a} is not /c-stationary. Hence
O'x = {a e Ox: /(a) = a} is K-stationary. But clearly <t>\ £ /[<!>!] = ¥(£), and hence
*F(I) is K-stationary, which shows that I is obstructive in F. Since (J £ = FI (this
follows, for example, by Assertion 1), n is a K-obstruction in F.

LEMMA 4.3. IfTl is an impediment in F then n<J F.

Proof. This is part of the definition if n is a (^ N0)-impediment. If FT is a (> Ko)-
impediment then FT = (J ft for some impeding tower IT. Since ft is a tower, each term
in it is saturated, and hence so is n .

LEMMA 4.4. Suppose that U ^ F and U ^ A and Kr(m) = KA<m> for every
m E Mn. Then FI is a K-impediment in F if and only if it is a K-impediment in A.

A formal proof can easily be given by transfinite induction on K. In essence, Lemma
4.4 is true because the definition of n being a K-impediment in F depends only on the
sets M n , Wn, and /Cr<m> (m e Mn).

COROLLARY 4.4a. If a saturated subsociety ofT is K-impeded, then so is F.

LEMMA 4.5. If\D(0)\ ^ K and K G Ythen F is K-impeded.

Proof. Let e be an enumeration of a K-subset H of D(0). Then

n = ((*[«], 0 , 0 ) : a < K )

is a /c-tower in F whose ladder is

If /, J are disjoint subsets of / / and 0 < | / | ^ Ko, then A = (1,0,0) is a | / | -
impediment in F —J because A<i F —J and A — / is critical. Therefore (H, 0,0) is a
K-impediment in F if 0 < K ^ No, and, moreover, Aa = ({e(a)}, 0, 0) is a 1-
impediment in F —e[a] = F/naforeacha < K, SO that, if K > Ko, then ft is impeding
and (//, 0 , 0 ) is once again a K-impediment in F.

COROLLARY 4.5a. / / n ^ F and F/TI is unimpeded and m e M\Mn then

By Lemma 4.5, Dr/n(0) = 0 and therefore m £ £rvn(0)> that is,
0 ± Kr/n(m)> = K(m}\Wn.
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LEMMA 4.6. Suppose that
(i) there is no pair A, a such that A is a critical saturated subsociety of Y and

a e M\MA and K(a) c wA,
(ii) F — A is espousable for some countable subset A of M.

Then F is espousable.

This lemma is essentially a combination of Theorem 1 and Lemma 14 of [1]
(because, in the terminology of [1], Theorem 1 shows that 'g-admissibility' can be
replaced by 'c-admissibility' in Lemma 14).

COROLLARY 4.6a. ifT — A is espousable for some countable subset A ofM and F is 1-
unimpeded then F is espousable.

Proof. If there were a critical saturated subsociety A of F and an a e M\M^ such
that K(a} £ WA then F[{a} uM A , W^\ would be a 1-impediment in F. Therefore
there is no such pair A, a and so F is espousable by Lemma 4.6.

LEMMA 4.7. Suppose that n < F and F/IT is K-impeded and v(IT) < K. Then
(i) F is impeded,
(ii) F is K-impeded if K > Ko-

Proof. Choose L ^ M n and V £ Wn such that | V \ = v(U) = n (say) and U-L- V
is critical.

Suppose that K ̂  Ko. Let A be a /c-impediment in F/IT. Then MA has a K-subset J
such that A - J is critical. Since n is saturated, Kn(Mn.L-yxW6i.j) = 0 and
therefore (IT—L— V) v ( A - J ) is critical by Lemma 3.4, that is, I—J— K is critical,
where Z = (II v A) —L. Since | J | = K > v(IT) = | V |, it follows that Z is inespousable
by Corollary 3.8b. Since D — J— V is critical and therefore espousable, it follows that
Z — J is espousable. Since | J | = K ̂  Ko and Z — J is espousable and Z is inespousable,
Z is, by Corollary 4.6a, 1-impeded. Since M£ £ M A u M n , Ŵ  = W^u Wn, W<\ F,
and A<3 F/IT, it is clear that Z < F . Hence, by Corollary 4.4a, F is impeded.

Now suppose that K > Ko (so that /c is regular and uncountable). Let A be an
impeding /c-tower in F / n . Let e be an enumeration of V. Since | V\ = v(FI) = ^ < K
and n < F , it is easily verified that a /c-tower A' in F is obtained by letting
A; = (0 , e [ a ] , 0)for a ^ n, A; + 1 = n - L , A; + 1 + a = (IT-L) v Aafor a < K. If A, A'
are the ladders of A, A' respectively then, for each a < K,

Aa = Aa + 1/Aa = A/i + 1 + a + 1 /A / i + 1 + a = AM + 1 + a (4.2)

and (F/Il)/Aa = (F/A^ + j+J —L. Hence, if Aa is a ( < ^-impediment in (F/n)/Aa then
AJ, + 1 +a is a (< /c)-impediment in (F/A^ + 1 + a ) - L and therefore also, by Lemma 4.4, in

Moreover, if Aa is critical or maidenly, then so is AJ, + 1 + a , by (4.2); and
Aa = <e(a)> is maidenly for a < ^ and Aj, = n — L— V is critical. From these remarks
and the fact that A is a /c-fortress in F/IT, it follows that A' is a /c-fortress in F and that
fi+l+ct € Q>i(A') if a G <J>!(A). Since A is impeding in F / n , it follows that ^ (A) is K-
stationary and therefore { / d l + a i a e ^ f S ) } is /c-stationary and consequently
<t>i(A') is K-stationary. Hence A' is impeding in F and so F is K-impeded.

COROLLARY 4.7a. / /e(r) > v(F) then F is impeded.
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Proof. Select L c M and V c W such that F - L - K is critical and | K| = v(r). Let
n = T - L . Since F - L - K is critical, \L\^ e(T)^ v(T)+. Since D r / n (0 ) = L, it
follows by Lemma 4.5 that F/IT is v(F)+-impeded. Since FT— V = F — L— V is critical,
v(n) < | K| < v(F)+. Therefore, by Lemma 4.7, F is impeded.

COROLLARY 4.7b. IfV^W and \ V\ < K and Y—V is K-impeded then
(i) F is impeded,
(ii) F is K-impeded if K > Xo.

Proof. Take II = (0 , V, 0) in Lemma 4.7.

COROLLARY 4.7C. If II is a critical saturated subsociety ofY and F/IT is impeded then
Y is impeded.

LEMMA 4.8. //IT is a K-impediment in Y then e{U) ̂  K and v(IT) ^ K.

Proof. If K ^ Ko then II —L is critical for some /c-subset L of M n , that is, II — L — V
is critical, where K = 0 g Wn, and so £(IT) ^ \L\ = K, V(U) ^ | V\ = 0 < K. NOW
suppose that K > No, and assume that e(II') ^ /i and v(IY) ^ /i if fi < K and'IT' is a ft-
impediment in a society. Then IT = (J n for some impeding K-tower ft. Let
/(ft) = A. For each a < K, we have that Aa is a ( < K)-impediment in F / n a , in which
case e(Aa) < K and v(Aa) < K by our inductive hypothesis, or Aa is critical,
in which case E(AJ = v(AJ = 0, or Aa is maidenly, in which case e(AJ = 0 and
v(AJ = 1. So, by Corollary 3.4b, £(IT) = e(V A ^ Ja<^e(Aa) ^ K and

COROLLARY 4.8a. //IT is a K-fortress in Y and 9 < K then e(Ue) < K and v(ITe) < K.

Proof. Let /(ft) = A. For each a < 0, we have that Aa is a (< K)-impediment in
F/ITa, in which case e(Aa) < K and v(Aa) < K by Lemma 4.8, or Aa is critical, in which
case e(AJ = v(Aa) = 0, or Aa is maidenly, in which case e(Aa) = 0 and v(Aa) = 1. So, by
Corollary 3.4b, e(U0) ^ Ia<f le(Aa) < K and v(ITe) ^ I a < ev(Aa) < K.

LEMMA 4.9. / / II is a K-impediment in Y then 3(U) ^ K. In particular, IT is
inespousable.

Proof. There exists a <5(IT)-subset L of M n such that IT — L is espousable. Let E be an
espousal of IT —L. If K: ^ Ko then, by the definition of K-impediment, M n has a K-
subset J such that IT —J is critical; and 3(11) = \L\ ^ | J\ = K by Lemma 3.8. Now
suppose that K > No, and assume the inductive hypothesis that d(L) ^ fi if £ is a
ju-impediment in a society and /i < K. By the definition of K-impediment,
IT = (J n for some impeding /c-tower ft in F. Let /(ft) = A and let Aa = F[Ma, WJ
for a < K:. Let T be the set of those a < K for which L n Ma # 0 . If a 6 ^ ( f t ) then
Aa is inespousable by the inductive hypothesis and so E\> Ma is not an espousal
of Aa. Moreover, M a e d o m £ if a £ T. Hence, if a e <I>1(ri)\4

/, we can select
ma e Ma such that £(ma) e W\Wa and therefore E(ma) e Wm for some /(a) < a
since Tla+1<\ Y. Suppose that <5(IT) < K. Then | L | < K and so | T | < K . More-
over, ^^f t ) is K-stationary since ft is impeding, and therefore O^tTjXT is
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K-stationary. Furthermore, / : O 1 (n ) \T -> K is a regressive function. Therefore,
by Lemma 3.12, there exists /? < K such that \f~\p)\ = K. Let A = Up+l and
V= {E(mJ: a e f~l(p)}. If a € f~\P} then a > /(a) = 0 and so ma $ MA but
£(ma)e Wm =Wp^ WA. Therefore V^ WA\£[MJ, and so £ h MA is an espousal
of A —(L n MA)— K Therefore, by Corollary 3.8a,

Since v(A) < K by Corollary 4.8a and | L n M J ^ \L\ < K, the assumption that
<5(IT) < K has led to a contradiction. Therefore <5(TT) ^ /c.

COROLLARY 4.9a. IfU is a K-impediment in F then S(Yl) = e(Yl) = K.

Proof. Lemmas 4.9, 3.9, and 4.8 yield K ̂  5(U) ^ e(n) ^ K.

COROLLARY 4.9b. IfT is K-impeded then 5(T) ^ K. In particular, ifV is espousable
then it is unimpeded.

Proof. This follows from Lemmas 4.9, 4.3, and 3.10.

5. A criterion for espousability

The main aim of this paper is to prove

THEOREM 5.1. A society Y is inespousable if and only if, for some K G T , there exists a
K-obstruction in T.

By Lemma 4.2, this theorem is equivalent to

THEOREM 5.1'. A society is espousable if and only if it is unimpeded.

We shall therefore prove Theorem 5.1'. This proof constitutes the remainder of §5.
Corollary 4.9b shows that an espousable society is unimpeded. We have therefore

to prove that F is espousable if it is unimpeded. This is done by induction on X = e(F).
(Induction on e(F) is appropriate since the addition or removal of a critical society
does not affect the prospects of espousability: hence the name 'essential size'.)

If X ^ No then, by Lemma 3.9, <5(F) ̂  No, and then Corollary 4.6a shows that F is
espousable if it is unimpeded. So assume that A is uncountable and F is unimpeded,
and assume that every unimpeded society of essential size less than k is espousable.
We consider separately the cases in which X is regular and singular.

Case I: X is regular
Select sets L<^ M and V c W such that | L\ = X and V-L- V is critical. Let F

be an espousal of F — L— V.
For each subset A of M select an enumeration eA of A. By induction on a we define

for every a < X a quintuple (Ja, s
a, (p{a), t//(a), Aa), where

Ja is a subset of M,
sa is a ^-enumeration of L u [j {Je: 0 < a},
(p(oi), i/̂ (a) are ordinals,
Aa is a subsociety of F.
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Suppose that a < X and that Je, se, (p(9), \J/(6), and Ad have been defined for 6 < a.
We write

Ja = (J {J9: 9 < a}, fta) = sup{(p(0): 0 < a},

= sup{iA(0): 0 < a}, n a = V {Afl: 0 < a},

We observe that if £ < (j/(a) then ^ < ijj(9) for some 0 < a and so the least ordinal
( ) such that £ < r̂(0(£)) exists and is less than a. If $(a) ^ A, let sa be any A-

enumeration of L u / a . If $(a) < X, let sa be a ^-enumeration of L u Ja such that

s«(£) = s»«>(£) for every £ < #(oc). (5.1)

We define Aa and (p(a) by considering four cases:
(Ci) if r a is impeded, let Aa be an impediment in Fa, and let (p(a) = <p(a);
(C2) if Fa is unimpeded and contains a non-empty critical saturated subsociety, let

Aa be a maximal critical saturated subsociety of Fa (which exists by Corollary
3.5b), and let <p(<x) = <p(a);

(C3) if Fa is unimpeded and has no non-empty critical saturated subsociety and
fa = (saVl[(Lv £ ) \M n J\#x) * 0 , let <p'(a) be the least element of *Fa, let
<p(a) = (p'(a)+ 1, and let Aa = <x> for some x e /C<sa((p'(<x))>\ WUa (such an x
exists by Corollary 4.5a);

(C4) if r a is unimpeded and has no non-empty critical saturated subsociety and
¥ a = 0 , let Aa = ( 0 , 0 , 0 ) and #x) = #x) .

Finally, in all cases, let Ja = F ~ 1 [ H / J \ ( M n a u M A J , and

#x) = max((p(a)+ 1, t(a)),

where i(a) is the least ordinal such that ord(s"(a))"
1<m> ^ a for every

For i = 1,2, 3,4, let E, be the set of those ordinals a < X for which Case (Q) occurs.
Let A be the sequence (Aa: a < X), let II = nA = V A, and let n denote the sequence
(na: a ^ X).

Let us pause here to explain informally the meaning of some of the objects defined
above, and, in passing, describe part of the strategy of proof. In constructing A our
aim is to ensure that F = T[M\F~l[W\W^], Wn] has an espousal G. Once this is
proved, (F ^ (F~i[W\ Wn])) u G is clearly an espousal of F. To achieve espousability
of F', we endeavour to show, for every m e M\F~l{_W\ Wn], that either (a) m e Mn

or (b) | {a: X<m> n WK ^ 0 } | = X. We form a list of men for whom one of these
conditions has to be fulfilled, each such man being listed X times. This list is given at
the ath step by the A-enumeration sa, and it changes at each step. At the (a + l)th step
we add to it X copies of Ja = F~1[WAiJ\Mria+': the elements of Ja are men who are in
M\F~i[W\ Wn] and for whom (a) is not 'yet' fulfilled, in the sense that they are not in
Mna+1- The ordinal \J/(a) tells us at which point in sa we should start interspersing
elements from Ja to form the next version sa + 1 of our list of men.

The steps at which we try to achieve (a) and (b) are those indexed by ordinals in S3:
there we have direct control on the choice of Aa. We then choose Aa as <x>, where
x e /C<m>\W/

ria, and m is the first man after the first <p(oc) terms in sa for which
K<m> £ WUi. This is one step towards fulfilling (b) for m. Thus (p(ot) is a pointer which
indicates the last man who was treated in this way. We choose i/̂ (a) large enough to

Sh:194



5 6 R. AHARONI, C. ST J. A. NASH-WILLIAMS, AND S. SHELAH

ensure that any man m who does not satisfy (a) is encountered X times in this process:
it prevents the intervention of men from subsequent Jp's before m has been
encountered 'enough' times.

Let us now return to the rigorous proof.

LEMMA 5.2. A is a ladder in F and n is a tower in F.

Proof. Trivially n 0 <a F. Suppose that 9 ^ X and that n a <a F for every a < 9.
This clearly implies that [j Tl9 o F, so that ILj o F if 9 is a limit ordinal. If 9 is a
successor ordinal rj + 1 then n , <a F by assumption and A, <3 F^ = F / I l , by (Cx) and
Lemma 4.3 (if r\ e Ht) or by (C2) or (C3) or (C4) (if ( | 6 S 2 u S 3 u H4): this clearly
implies that FT, v A,, o F, that is, FLjO F. We have thus shown by transfinite
induction that Ue <a F for every 0 ^ A, which proves the lemma.

LEMMA 5.3. / / a e Ex £/ien Aa is a (< X)-impediment in Fa.

Proo/ Suppose that the lemma is false, and let a be the least element of Ex such that
Aa is a ( ^ ^-impediment in Fa. Then, for every ^ e S j such that 9 < <x, Ae is a (<A)-
impediment in Fe and therefore v(Ae) < X by Lemma 4.8. Moreover, v(Ae) is obviously
less than X when 0 G H 2 U S 3 U S 4 . Therefore v(IIa) < X by Lemma 5.2 and Corollary
3.4b. Furthermore, n a <: F by Lemma 5.2. Hence, by Lemma 4.7, F is impeded,
contrary to one of our assumptions.

COROLLARY 5.3a. If a < X then e(AJ, v(AJ, e (n j , v(nj are all less than X.

Proof. That e(AJ < X and v(Aa) < X is obvious if a e E2 u H3 u H4 and follows from
Lemmas 5.3 and 4.8 if a € Hx. From this and Lemma 5.2 and Corollary 3.4b, it
follows that e(na) < X and v(ITJ < X.

LEMMA 5.4. | Ja \ < X for every a. < X.

Proof. Since n a + 1 o F by Lemma 5.2, F ^ (Mnii+1\L) is an espousal of
na+1-(Mna+1 nL), and is therefore also, by the definition of Ja, an espousal of
na + i-(Mn[*1nL)-F[./J. Since v(Ua+l)<X by Corollary 5.3a and
| M n +1 nL\ < \L\ = X, it follows by Corollary 3.8a that | F [ J J | < X, and hence

COROLLARY 5.4a. domsa = X for every a < X.

From Corollary 5.4a and the definition of <p(a) follows immediately:

COROLLARY 5.4b. cp{a) < X for every a < X.

COROLLARY 5.4C. If a < X then î (a) < X.

Proof. If m e L u / a then, by Corollary 5.4a, the least ordinal t(a,m) such that
ord((s?(a<m))"

1<m» ^ a is less than X. Therefore

X > sup{t(a, m): me eL[a] u (J {e,fl[a]: 9 < a}} = r(a).

From this and Corollary 5.4b, it follows that ij/(a.) < X.
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Corollary 5.4c implies that $(a) < X for every a < X and so yields the following
further corollary.

COROLLARY 5.4d. Statement (5.1) holds for every a. < X.

LEMMA 5.5. S4 = 0 .

Proof. Suppose that a e H4 for some a < X. Then ( s 3 ) " 1 ^ u Ja)\ MnJ s ^,(a) and
therefore, by Corollary 5.4b, | (s"yl[(L u Ja)\ MnJ | < X. Since sa is a ^-enumeration
of L u Ja, this implies that

c M n , (5.2)
Moreover,

*" ' T O S ^ U Mn, u MAfl c / t u Mn,

for each 0 < a. Therefore F '^W^J £ ( u M ^ : from this and (5.2) it follows that
LvF~x[Wn^ s M n i and therefore F ^ Ma is an espousal of Fa. Therefore, by
Lemma 3.3,° (F-L-K)[Ma, F[MJ] is critical and so e(Fa) = 0. By Corollary
5.3a, e(TTa) < X. By Lemma 5.2, Ila <a F. Hence, by Corollary 3.4c,
e(F) sg e(na) + e(Fa) < X, contradicting the definition of X.

LEMMA 5.6. / / a e E2 then a+1 e S 3 .

Proof. Since a e E2, Aa is a maximal critical saturated subsociety of Fa. By Lemma
5.5, a+ 1 e Hj uH2 u S 3 . If a+1 e Sx then Fa + 1 = Fa/Aa is impeded and therefore
Fa is impeded by Corollary 4.7c, contradicting a e H2. Now suppose that a + 1 e H2.
Then Aa+1 is a non-empty critical saturated subsociety of F a + 1 = Fa/Aa. Therefore
Aa v A1+] < Fa by Lemma 3.2 and, since Aa is a critical saturated subsociety of Fa

and Aa + 1 = (Aa v Aa+1)/Aa is critical, it follows that Aa v Aa+1 is critical by
Corollary 3.4a. This contradicts the maximality of Aa.

LEMMA 5.7. n is a X-fortress in F.

Proof. By Lemma 5.2, n is a A-tower in F. Suppose that a < X. By Lemma 5.5,
a G E{ u H2 u H3. If a e Hx then Aa is a (< A)-impediment in F/FIa by Lemma 5.3. If
a e H2 then Aa is critical and if a e H3 then Aa is maidenly.

LEMMA 5.8. E^ is not X-stationary.

Proof. Since F is unimpeded, U is not an impeding A-tower in F and therefore, by
Lemmas 5.3 and 5.7, Ht is not A-stationary.

LEMMA 5.9. | S 3 | = X.

Proof. By Lemma 5.8, supfAXHJ = X and so | A\EA | = X, that is, by Lemma 5.5,
| H2 u H31 = X. Moreover, | H31 ^ | H21 by Lemma 5.6. Hence | H31 = X.

COROLLARY 5.9a. sup(/>[H3] = X.
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Proof. If a, fi e H3 and a < p then, by (C3), <p(0) > <p'(P) ^ <p(/?) ̂  <p(a). The
corollary follows from this observation and Lemma 5.9 and Corollary 5.4b.

Let J = [) {Je: 9 < X} and / = ( L u J ) \ M n .

LEMMA 5.10.

Proo/ By Lemma 5.2, IT o T and therefore F[Mn] £ wn. Since F [ J J c WAj for
each a < A by the definition of Ja, it follows that F\_J~\ £ ^Fn. Moreover, F[L] = 0 .
Therefore F [ M n u J u L ] c Wn, and hence M n u J u L c M ^ t ^ j g . Now
suppose that m e M\F~i[W\Wn']. If m $ L then F(m) is defined and is in Wn, and
hence F(m) G WAa for some a. < I. This implies, by the definition of Ja, that

. Hence M \ F " ' [ H ^ W n ] g M n u J u L .

In defining sa we observed that if £, < ty(<x), then the least ordinal 6(£) such that
£ < ^(0(€)) exists. In fact, from Corollaries 5.4c and 5.9a and the fact that \j/(a) > (p{ot)
for each a < A, it follows that sup i/̂ [A] = X: therefore d(£) exists and is less than X for
every ^ < X. We can therefore define a sequence s of length X by letting s(£) = s9(?)(^)
for every t, < X.

LEMMA 5.11. If a. < X then s^{a) = sj(a).

Proof. Suppose that ^ < \jj((x). Then either £ < \J/(ot) and consequently
s(£) = se{^) = sa(0 by Corollary 5.4d, or $(<x) ̂  ^ < «A(a), in which case 6{Q = a and
so *(£) e«

LEMMA 5.12. / / ^ e s - 1[7] t̂ ien / = (p'(<x) for some a G H3.

FTOO/ Let a be the least ordinal such that q)(a) > x- (By Corollary 5.9a, a exists.)
Then <p(a) > x ^ ^(a) a n d so a e E3 (because, otherwise the definition of <p(a) would
give (p(<x) = #*))• Therefore <p(a) = (p'(<x)+ 1. Since x < <Ka) < ^(a)> it follows by
Lemma 5.11 that s(x) = sa{x) G rgesa = L u / a . Since s(x) G / it follows that
s(x) i Mn j . Therefore sa(x) = s(x) e ( L u J J \M n a . Moreover, x ^ <p(a) and so x 6 ^a
and therefore x ^ <p'(a)- Since <p'(a)+ 1 = (p(a) > x ^ <P'(a)> ^ follows that # = cp'(a)-

LEMMA 5.13. If m e I then \ {a e H3: X<m> n WK # 0 } | = A.

Proo/ Since m G / it follows that m e L u Jy for some y < X and consequently
w G ez.[^] u U (ei8C^]: ^ < y) ^or s o m e ^ < A by Lemma 5.4. If max{y, <5} < ( < X
then m G eL[C] u Q {eJe[Q: 0 < C} and so

C ^ ord((4))-
1<m» ^ ord((4(0)-

1<rn».

Since this holds for every £ such that max{y, 5} < £ < A, it follows that
ord(s"1<w» = A by Lemma 5.11.

Let x 6 5 " 1 ^ ) - Then x = (P\a) f°r some a G E3 by Lemma 5.12. Since
(p\a) < <p(a) < i/j(ot), it follows from Lemma 5.11 that sa(<p'(a)) = s(<p'(a)) = s(x) = m.
By (C3), Aa = <x> for some x G K<sa(<p'(a))> = X<m> and therefore
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We have thus shown that o r d ^ ' ^ m ) ) = X and that for each i e s~l(m) there
exists a e H3 such that <p'(a) = x a n d K(m} n WAj ^ 0. This proves the lemma.

By Lemma 5.8 there exists a closed unbounded subset 0 of A such that
0 n S t = 0, which implies that 0 c 3 2 u S 3 b y Lemma 5.5. Since F is unimpeded,
0 £ S t and hence we may assume that 0 e 0 . Let | /1 = p., and let (ma: a < p) be an
enumeration of/. By Lemma 5.4, p ^ A. We construct functions / : A -* X, g: ^ -* X
as follows. Let /(0) = 0. If a is a limit ordinal and /(<!;) has been defined for £ < a, let
/(a) = sup/[a]. Now let /(a) be defined for some a < p. By Lemma 5.13 there exists
an ordinal g{<x) such that /(a) < g(a) < X and K<ma> n WAgM ^ 0. Define / ( a + 1) to
be the least element of 0 which is greater than g(u). If p ^ a < X and /(a) has been
defined, define / ( a + 1) to be the least element of 0 which is greater than /(a). For
each a < X define Aa = IT/(a + 1 ) /n / ( a ) .

LEMMA 5.14. / [ l ] c 0 .

Proof. This follows directly from the definition of / and from the fact that 0 is
closed.

LEMMA 5.15. If ot < X then Aa is unimpeded.

Proof. By Lemma 5.14, f(tx)^Z1 and so r / ( a ) is unimpeded. By Lemma 5.2,
Aa <i F/ (a ) . Hence Aa is unimpeded by Corollary 4.4a.

LEMMA 5.16. Aa is espousable for every a < X.

Proof. Let /(a + 1) =/(<*) + (. It is easily inferred from Lemma 5.2 that
(A/(a)+p: p < 0 is a ladder in F/(a ) . Therefore, by Corollaries 3.4b and 5.3a,
X > e(V {A/(a)+p: p < (}) ̂  e(Aa). Since we are assuming that Theorem 5.1' is true for
societies whose essential size is less than X, the lemma follows by Lemma 5.15.

For each a < p. choose an element wa of the non-empty set /C<ma> n WA . Then
wa e WAi since /(a) < g(a) < / ( « + 1).

LEMMA 5.17. If <x < p. then Aa — {wa} is espousable.

Proof. By Lemmas 5.5 and 5.14, /(a) e H2 u S3. We define A to be A/(a) if/(a) e H2

and to be the empty society if /(a) € H3. In both these cases, A is a maximal critical
saturated subsociety of F/(a ) . Since A ̂  Aa <i F/ (a ) by Lemma 5.2, it follows by
Lemma 3.1 that A is also a maximal critical saturated subsociety of Aa. By Lemmas
5.16 and 3.6(i) it follows that A is the greatest critical saturated subsociety of Aa. Since
w

a e WAgw and g(ct) >/(a) and WA £ WAfw, it follows that wa £ WA. The lemma
follows now by Lemmas 5.16 and 3.6(ii).

We can now conclude the proof of Theorem 5.1' when X is regular. Let H be an
espousal of / given by H(ma) = wa. By Lemmas 5.16 and 5.17 we can choose an
espousal £a of Aa for every a < X so that w a £rge£ a when a < p.. Let
E = (J {Ea: a < X}. Finally, let G = H u E. Then rgeG £ wn and, by Lemma 5.10,
domG = M\F-l\_W\W^. Hence G u ( F h {F-i[W\Wn'])) is an espousal of F.
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Case II: X is singular

LEMMA 5.18. / / K < X, A <\ IT, IT is (> K)-unimpeded, 11/A is unimpeded, and A is
espousable, then II is unimpeded.

Proof. Suppose that there exists a ^-impediment A in II. Then n ^ K since II is
(> K)-unimpeded, and hence v(A) ^ K, by Lemma 4.8. Moreover, A n A < A since
A < II, and hence v(A/An A) ^ K by Lemma 3.11. By Lemma 4.3, A <i II and
therefore A/A n A < FI/A, which is unimpeded. Therefore A/A n A is unimpeded by
Corollary 4.4a. By Corollary 4.7a, e ( A / A n A ) < K < l , and therefore, by the
induction hypothesis on Theorem 5.1', A/A n A has an espousal H. Since A o IT and
A has an espousal G (say), it follows that G [̂  MA n A is an espousal of A n A and
therefore H KJ(G ^ M A n J is an espousal of A, which contradicts Lemma 4.9.

REMARK. In a sense, the above proof of the lemma is not satisfactory. One would
like to prove a much stronger result:

LEMMA 5.18'. / / II has unimpeded subsocieties YIt, Tl2
 sucn tnat I ^ v IT2 = II and

ITj n n 2 is empty, then IT is unimpeded.

While Lemma 5.18' is a straightforward corollary of Theorem 5.1 (see Corollary
6.1a below for a strengthening of it), the authors cannot produce a reasonably short
direct proof for it. Compare with [1, Lemma 12], where an analogue of Lemma 5.18'
is proved in which the concept 'unimpeded' is replaced by ' ( ^ N0)-unimpeded'.

The next lemma is a crucial step in the proof for Case II. Its proof follows closely
the proof for Case I. Certain steps in the proof will be virtually identical to their
counterparts in Case I, and we shall state them as 'assertions', referring for proofs to
the corresponding lemmas in the proof for Case I.

LEMMA 5.19. / / X is unimpeded, B £ MT, X £ Wz, and \BuX\ < X, then there
exists a saturated subsociety A o / 2 such that X <^W^, 2[MA KJ B, W^\ is espousable,
and £/A is unimpeded.

Proof. Since Z — Mz is espousable, it follows by Corollary 4.6a that Z is espousable
if Mz is finite and so we can take A = L in this case. We may therefore assume that Mz

is infinite. Let A be an infinite set such that B £ A £ ML and | / 4 |<A. Let
\AKJX\ = K and \X\ = v. Let (xa: a < v) be an enumeration of X and
s = (aa: a < K+) be a K+-enumeration of A.

We construct a K+-tower n in £ by defining its ladder A. The societies Aa are
defined inductively, and along with them we define ordinals ((a) less than K+. Let
Aa = <xa> for a < v and let ((a) = 0 for a ^ v. If a < K+ is a limit ordinal and
C(/?) < K+ is defined for all p < a, we let £(a) = sup{C03): j} < a}. Now let v ̂  a < K+

and suppose that £(a)(</c+) and A^ for all /? < a are defined. Let
n a = V {Ap: p < a} and Sa = £ / n a . We define ((<x +1) and Aa by considering four
cases:

(Ct) if Za is impeded, let Aa be an impediment in Za and ((a+ 1) = ((a);
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(C2) if £a is unimpeded and contains a non-empty critical saturated subsociety, let
Aa then be a maximal such subsociety (which exists by Corollary 3.5b) and let

(C3) if Za is unimpeded and has no non-empty critical saturated subsociety, and
WUa, let 6 be the least ordinal greater than or equal to ((a) such that

£ Wn > choose any element w of K^ae}\Wn , and define Aa = <w>

(C4) if none of the conditions in (CJ, (C2), (C3) hold, define Aa = ( 0 , 0 , 0 ) and

Let II = (J IT, and for k= 1, 2, 3,4 let Ek be the set of ordinals a (v < a < K+) for
which Case (Ck) occurs.

ASSERTION 5.19a (Lemma 5.2). A is a ladder in £ and U. is a tower in Z.

ASSERTION 5.19b. X = Wn.

Proof. This follows directly from the definition of Aa for a < v.

ASSERTION 5.19C (Lemma 5.3). Aa is a (<K+)-impediment in La for every a e El.

From Assertion 5.19c and Lemma 4.8 it follows that v(AJ < K+ for every a e S l s

and this clearly implies:

ASSERTION 5.19d. v(AJ < K+ for every a. < K + .

ASSERTION 5.19e. / / H4 # 0 then setting A = II satisfies the conditions in Lemma
5.19.

Proof. Let a be an element of 5 4 . Then, by (C4), jS e H4 and Ap is empty for
a ^ /? < K + , and hence IT = Tla. By Assertions 5.19a and 5.19d and Corollary 3.4b,
K+ > v(na) = v(IT). By Assertion 5.19a, FT <i E and therefore IT is unimpeded by
Corollary 4.4a. Therefore, by Corollary 4.7a, e(FI) ^ v(II) < K+ < I, and hence by
the inductive hypothesis on Theorem 5.1', FT is espousable. Since a e S 4 it follows that
/CE[/4] £ Wn and E/IT = Za is unimpeded. Since E/TI is unimpeded and
KZ[A~] ^Wn, it follows by Corollary 4.5a that B ^ A ^ Mn and so
E[Mn u B, Wn] = FT which is espousable. Moreover, X = WUv £ wUi = Wn.

By Assertion 5.19e we may assume that

H4 = 0 . (5.3)

By (5.3) and Assertions 5.19a and 5.19c, n is a /c+-fortress.

ASSERTION 5.19f (Lemma 5.8). Ey is not K+-stationary.

ASSERTION 5.19g (Lemma 5.9). | S 3 | = K+.

Let / = A\Mn. The following assertion is parallel to Lemma 5.13, but its proof is
much easier:

ASSERTION 5.19h. If a e I then | {a < K + : Kj;<a> n WK # 0 } | = K+.
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Proof. Let 8 < K+ be any ordinal such that a9 = a. Let 3 = sup {y: £(y) ^ 6}. Since
£(a + 1) > ((a) whenever a e E3, and ((/?) ^ ((a) whenever v ^ a ^ j 3 < / c +

 5 i t follows
by Assertion 5.19g that 3 < K+ and sup([/c+] = K+. Since ((a +1) > ((a) only when
a G H3, it follows that 3 G S3. If T is the first ordinal such that ((<5) ^ T < K+ and
KS<«T> £ Wn, then, by (C3), C(̂  +1) = T + 1, and consequently T + 1 >6 by the
definition of 3, that is, T ^ 0. Since a ^ Mn, clearly a $ MUt. If we had Kz(a) £ Wna

then, by Corollary 4.5a, I.d = Z/IT,, would be impeded, contradicting the fact that
<5 G E3. Thus Kz(a) = Kt(ae} £ M^, and, furthermore, ((<5) ^ 9 because
((<5) = sup{C(y): y < 3} if 3 is a limit ordinal. Therefore T ^ 0 by the definition of T,
and hence T = 0, and consequently ar = a. By (C3), Aa = <w> for some
w G KE<aT> = Kj;<a>, and thus K-^a) n WA< # 0 . Since this argument holds for
each 0 for which ag = a, the assertion follows (because sup ( [ K + ] = K+ and so suitable
choices of 6 will yield K+ distinct values of 3).

By Assertion 5.19f there exists a closed unbounded subset 0 of K+ such that
0 n H j = 0. Since Z is unimpeded, 0 ^ S l 9 and hence we may assume that 0 G 0 .

Enumerate / as {ma: 1 ^ a < /i}, where /* = l + | / | < l + |i4|<K:. We construct
functions / : K+ -* K+ and g: fi\{0} -» K+ as follows. Let /(0) = 0 and let / ( I ) be an
element of© such that / ( I ) > v. If a is a limit ordinal less than K+ and /(£) has been
defined for £ < a, let /(a) = sup/[a] . Now suppose that 1 ^ a < fi and /(a) is
defined. By Assertion 5.19h there exists g(a) such that f(a)<g(a)<K+ and
K(ma) n ^A9(a) ^ 0 - Define / ( a + 1) to be the least element of 0 which is greater than
#(a). If pi ̂  a < K+ and /(a) has been defined, define / ( a + 1) to be the least element of
0 which is greater than /(a). Let Aa = n / ( a + 1 ) /n / ( a ) for each a < K + .

ASSERTION 5.19i (Lemma 5.14). / [ / c + ] £ 0 .

ASSERTION 5.19j (Lemma 5.16). Aa is espousable for every a < K + .

For each a G ̂ \{0} choose an element wa of the non-empty set X<ma> n WAgM.

ASSERTION 5.19k (Lemma 5.17). / / 1 ^ a < /J. then Aa —{wa} is espousable.

By Assertions 5.19j and 5.19k, we can select an espousal Ea of Aa for each a < K: + ,
so that wa $ rge Ea when 1 ^ a < /*. Since | A \ ^ K, there is an ordinal rj such that
max(l, fi) < t\ < K+ and A n Mn ^ Mn/(i)). Let A = Tl/{n). Then

since /4 n Mn s MA. Since 0 is closed, (J {dom£a: a. < rj} = MA. Let

^ = { K , wj : 1 ^ a < /*} u (J {£a: a <>/}.

Then dom £ = MA u / = MA u /4 and so E is an espousal of £[MA u /I, W&], and
therefore £ ^ (MA u fi) is an espousal of I[MA u B, WA]. Moreover, v < / ( I ) ^ f(rj) and
s o l e wf,/(w = WA by Assertion 5.19b.

By Assertion 5.19i, f(rj) $ Ex, and since A = n / ( ^ it follows that S/A is unimpeded.
By Assertion 5.19a, A is saturated. Thus A satisfies all the requirements in the lemma.

LEMMA 5.20. //Ns
0 ^ K < X, S' ^ Z, | H' | ^ K, and Z is unimpeded, then Z has an

espousable subsociety Z" such that Z' ^ Z", |Z" | ^ K, and Z/Z" is unimpeded.
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Proof. Write £' = E[B, X]. Let A be a subsociety of E as in the conclusion of
Lemma 5.19, and let E be an espousal of I [ M 4 u B , W^\. Let M" = BKJE~X[X\

W" = X\JE\B\ S" = I[M", W"l A = 2-M"-W", and II = (£/A)-(fl\MA).
Then E~ *[*] £ dom £ = BuMAand therefore M" u MA = B u MA, so that

M n = (ML\MA)\(B\MA) = MS\(B u MA) = A f A ^ " u AfJ = MA\MA = MA/(AnA).

Moreover, I c R / and £ [ £ ] c rge£ c WA and therefore W" c WA, so that

Therefore A/(A n A) = U = (£/A)-(B\MA), which is unimpeded by Corollary 4.4a
since E/A is unimpeded. If A was ^-impeded for some n > K then £ — W" would be fi-
impeded, by Corollary 4.4a, and so (since \W"\ ^K < n) I, would be impeded by
Corollary 4.7b. Therefore A is (> /c)-unimpeded. Moreover, since A o £ and
£ - i [ l ^ " ] c M", it follows that A n A < A and E ^ MAnA is an espousal of A n A.
Hence, by Lemma 5.18, A is unimpeded, that is, £ / £ " is unimpeded. Moreover,
| £ " | = | B u r 1 [ X ] u X u £ [ B ] K / c since | X u B\ = |Z ' | ^ »c, and I " is es-
pousable since it has an espousal E |̂  M".

COROLLARY 5.20a. / /K o ^ K < A, A ^ IT' ^ IT, n / A is unimpeded, and \Y\'\^K,

then n /ias a subsociety Yl" such that IT ^ IT", II"/A is espousable, \ IT" | ^ K, and
n/IT" is unimpeded.

Proof. Let I = 11/A and I ' = 11'/A. Then, by Lemma 5.20, E has an espousable
subsociety E" such that E' ^ E", | E" | ^ K, and E/E" is unimpeded. If II" = E" v A
then IT = £' v A ^ E" v A = IT and IT/A = (E" v A)/A = E", which is es-
pousable, and | II" | = | E" | +1A | ^ | E" | +1II' | ^ K and

n / r r = (E v A)/(E" v A) = T/rr,
which is unimpeded.

Corollary 5.20a is the culmination of a first stage of the proof of Case II. It will
be the only result from the first stage used in the second stage. This stage follows the
proof of the compactness theorem for singular cardinals [11]. (See [6] for a shorter
proof.)

Since we assume that e(F) = A, there exist L ^ M and V^W such that \L\ = X and
F — L — V is critical, which implies that T — L has an espousal F. Since X is singular, we
can write X = sup{/ca: a < n}, where \i = cf(A) < X, and we may assume that the
sequence (Ka: a < p.) is continuous (that is, sup {K0: 6 < a} = Ka for each limit ordinal
a < n) and ascending, and that Ka > p. for every a < p.. We can now write
L= (J {La: a < /j], where | La \ = /ca.

DEFINITION. By an admissible sequence we shall mean a non-descending sequence
(Aa: a < fi) of subsocieties of F such that | Aa | ^ Ka and r /A a is unimpeded for each
a < fi.

LEMMA 5.21. Let (Aa: a < p) be an admissible sequence. For each a < n let Ha be a
subset of M such that \ Ha \ ^ Ka. Then there exists an admissible sequence (Ea: a < n)
such that Aa ^ Ea and Ha c MIa and Ea/Aa is espousable for each a < p.

Proof Suppose that a < /J. and Efl has been defined for every 9 < a, and suppose
that | £ e | ^ K0, &g ^ E0, Hg £ MTg, rfLg is unimpeded, and Ee/Ae is espousable for
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every 0 < a. Let Aa = Ha u (J {Ml9: 61 < a} and Xa = | J {Wu: 6 < a}. Then, by
Corollary 5.20a (with IT, A, IT, K replaced by F, Aa, Aa v F[/la, XJ, Ka respectively), F
has a subsociety Za such that Aa v F[/4a,XJ ^ I a , S8/Aa is espousable, |E a | ^ Ka,
and F /S a is unimpeded. This defines Za for a < n by induction on a; and the sequence
(La: a < n) is non-descending because T[Aa, XJ < La for each OL < (i.

We can now complete the proof of Theorem 5.1' in the case in which A is singular.
We make the convention that, when a society is denoted by F£, its sets of men and

women will be denoted by M*, W\ respectively.
By taking Aa to be empty for each a < JJL and applying Lemma 5.21, we see that

there exists an admissible sequence (Fa: a < n) such that La £ Ma and Fa is
espousable for each a < p. Let Ga be an espousal of Fa and let ea be an enumeration of
Ma for each a < fi. By Lemma 5.21, there exists an admissible sequence (Fa: a < ^)
such that F j ^ r i and

and F a /F° is espousable for each a < pL. Let e\ be an enumeration of Ma and let G\ be
an espousal of F^/F^ for each tx < fi. By Lemma 5.21, there exists an admissible
sequence (F^: a < fx) such that Fa < Fa and

(Ga°+1 u Ga + 1 u F ) " 1 ^ ] u (J {gj[icj: 0 < ^ S Ma
2

and Fa / f j is espousable for each a< n. Let ea be an enumeration of Ma and let Ga be
an espousal of F a / F a for each a < ii. By Lemma 5.21, there exists an admissible
sequence (F«: a < ̂ ) such that Fj ̂  Fa and

(Ga°+! u Gi+, u Ga
2
+, u f ) " ! [W2] u U W M : 0 < n] s Ma

3

and F a / F a is espousable for each a < fi, etc.
By iterating this procedure, we define Fa, Ga, e\ for every non-negative integer k and

every ordinal a < fi.
Let (J {Fa: /c < co} = Fa = F[Ma, W^ for each a < n, and let

n = (J {r«:« < M) = U ir*-k < ©.a < W-
Since f ^ W * ] e M a

+ 1 £ M n whenever fe < a> and a < /x, it follows that
F - ' T O S Mn and therefore F [ M \ M n ] c W\Wn. Moreover, La^Ma

0<^ Mn for
each a< ii and therefore L c Mn, and therefore M \ M n £ M \ L = domF. Hence
F |̂  (M\Mn) is an espousal of F / n .

For a < n, let Ga+1 = (J{Gj + 1 : fe < ft)}. Then Ga+1 is an espousal of F a + 1 . Let
m G M a + 1 . Then m e M a + 1 \M a ;{ and Ga + 1(m) = Ga + 1(m) e Wa + 1 \ H / a ; } for some
k (with the convention that Mk

a~+\ and H^;} are both 0 if /c = 0). If h< k then
Wa £ PT^"1 £ vya;} and therefore Ga+l(m) $ Wh

a. It follows that if Ga + 1{m) e Wa

then Ga + 1(w) = Ga + i(m) e Wh
a for some h^k and so

m G ( G a ° + 1 u G a
1

+ 1 u . . . u G : + 1 ) - 1 M c M a
+ 1 £ Ma.

Therefore Ga+1 \ (Ma + 1 \Ma) is an espousal of F a + 1 /F a .
If a is a limit ordinal less than \i and m e Ma then m e Ma for some k and

consequently m e e^Kg] s Mk
e
 + l s Mo for some 0 < a. Therefore

for every limit ordinal a < pi. From this and the fact that Ga + 1 (̂  (Ma + 1 \Ma) is an
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espousal of Fa + 1 / F a for each a < /x, it follows that

is an espousal of IT. We have also proved that F [ (M\Mn) is an espousal of F/FI;
and so G u (F ^ (M\Mn)) is an espousal of F.

6. Some applications

A subsociety of F will be called
(i) an obstruction in F if it is a K-obstruction in F for some K e Y.

(ii) a ( ^ K)-obstruction in F if it is a A-obstruction in F for some X e Y such that
X < K,

(iii) a (> K)-obstruction in F if it is a A-obstruction in F for some A € Y such that
X > K.

We shall say that F is obstructed (K-obstructed) if there is an obstruction (a K-
obstruction) in F.

It is possible to deduce from Theorem 5.1a strengthening of itself. For any society
F, define

^(F) = sup{/c: F is K-obstructed}

(and ri(f) = 0 if F is unobstructed).

THEOREM 6.1. <5(F) = ^(F).

Proof. Let n = rj(r). By-Lemma 4.2 and Corollary 4.9b, <5(F) ^ r\, and so it remains
to be proved that d{Y) ^ n. This follows from Theorem 5.1 if rj = 0, and so we assume
that n > 0.

Suppose first that rj is finite. Then there exists an ^-obstruction II in F. It follows
that II — L is critical for some //-subset L of Mn. We will now show that F/Tl is
unobstructed. Suppose, to the contrary, that there is a K-obstruction E in F/IT. If
K ^ No, then I — J is critical for some K-subset J of Mz. By Lemma 3.4,
(FT — L) v (L — J) = (FI v £) — (Lu J) is critical, and moreover I I v Z < r since
F l o F and Z<i F/Tl. Hence IT v I is an (n + K)-obstruction in F, contradicting the
definition of n. If K > Ko then S = (J £ for some obstructive /c-tower £ in F/IT. Since
n < r , a K-tower 2' = (L'a: tx < K) in F is obtained by letting L'o = ( 0 , 0 , 0 ) and
S'1+a = IT v Za for each a < K. From the facts that £ is an obstructive K-tower in
F / n and n is an ^-obstruction in F, it is easy to deduce that £' is an obstructive K-
tower in F and so \J £' = FI v S is a K-obstruction in F, contradicting the fact that
n < No < K- Thus the supposition that F/TT is obstructed leads to a contradiction.
We conclude that F/Tl is unobstructed and therefore, by Theorem 5.1, espousable.
Moreover, II — L is espousable since it is critical. The union of an espousal of F/IT and
one of FT — L is an espousal of F — L, and therefore <5(F) ^ \L\ = rj.

Assume now that rj is infinite. We define a sequence (Aa: a < n+) of subsocieties of
F by induction on a. Assume, for a given a < rj+, that A^ has been defined for all
fi < a. Let n a = [j {Ap: ft < a] and Fa = F/FIa. We consider the following cases:

(Ca) Fa is obstructed; let Aa be any obstruction in Fa;
(Cb) Fa is unobstructed and WUa # W\ let Aa = <w> for some w e W^\H^na;
(Cc) Fa is unobstructed and Wn[ = W; let Aa = ( 0 , 0 , 0 ) .
Then Aa<a Fa for each a <n+: this is obvious in cases (Cb) and (Cc) and follows

from Lemmas 4.2 and 4.3 in Case (CJ. Therefore (Aa: a < r\+) is the ladder of a tower
n = (na:a^+).
5388.3.47 E
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Let us show first that if a < rj+ and (Ca) holds then Aa is a (^^-obstruction in r a .
Suppose that this is not the case, and let a < rj+ be the least ordinal such that Aa is a
(>^-obstruction in Fa. Then, by Lemmas 4.2 and 4.8, v(A0) ^ rj for each 6 < a and
therefore, by Corollary 3.4b, v(na) ̂  rj. Hence, by Lemmas 4.7 and 4.2, there is a
(> ^-obstruction in F, contradicting the definition of n. Hence Aa is a (^ r\)-
obstruction in F in Case (Ca) and therefore e(Aa) ^ rj in this case by Lemmas 4.2 and
4.8. Obviously e(Aa) = 0 in Cases (Cb), (Cc). Hence £(ITa) ^ rj for every a < rj+ by
Corollary 3.4b and consequently, by Lemma 3.9,

<5(nj ^ r] for every a < rj+. (6.1)

If case (Cc) holds for some a < rj+ then, since W= Wn^ and Fa = (M\Mn^, 0, 0) is
unobstructed, Lemmas 4.2 and 4.5 show that M = MUi, and thus F = ITa. This, by
(6.1), implies that <5(F) ^ n. So, we may assume that for each a < n + either (CJ or (Cb)
holds. Since Aa is a (^^-obstruction whenever (Ca) occurs and n is not obstructive,
there exists an a < n + for which Case (Cb) holds. Then Fa is unobstructed, and hence,
by Theorem 5.1, it is espousable. This implies that <5(F) ̂  S(Ua), and hence, by (6.1),
S(T) ^ rj.

COROLLARY 6.1a. Let F = Fl v F 2 , where rlnT2 = (0,0,0). Then
ri(r) ^ ^(FJ + ^F j ) . In particular, ifYx and F2 are unobstructed, then so is F.

Proof. This follows from Theorem 6.1 and the easily proved fact that

Let us repeat a question posed above: can Corollary 6.1a be proved directly from
the definition of 'obstruction'?

THEOREM 6.2. IfT is espousable then
(a) there exists a subset Z of Wsuch that T — Z is espousable and \Z\ = a(T) (that

is, the 'supremuni in the definition of a(F) is a maximum),
(b) <7(F) = v(F).

Proof. Let v = v(F). By Corollary 3.8a,

<x(F) ^ v. (6.2)

Suppose first that v is finite. Then a(F) is finite by (6.2). Therefore (a) is clearly true
and T — Z is critical when Z is as in (a), so that v ̂  \Z\ = a(F), which, with (6.2),
proves (b).

Now suppose that v is infinite. Let D be a set such that \D\ = v and
D n (M u W) = 0, and let F' = (M u D, W, K u (D x W)).

Suppose that there is a /c-impediment IT in F'. Since F is espousable, IT is, by
Corollary 4.9b, not a K-impediment in F, and therefore n ^ F by Lemma 4.4 (with
A = F'). Since IT <i F' and n ^ F, it follows that Wn = W. Since T'-D = F is
espousable, Corollary 4.9b gives K ̂  S(T') ^ | D | = v. Suppose first that K: ^ Ko.
Then Fli = FI — J is critical for some /c-subset J of Mn. Let G be an espousal of n ^
Then Tl^M^XD, G[M n i \D] ] is critical by Lemma 3.3, that is (since
G[M n J = Wni = Wn = W), F - J* - G[MUl n D] is critical for some subset J* of M.
Since | G[Mn, n D ] | = |M n , n D | < No by Corollary 3.7a and v is infinite, this
contradicts the definition of v. Now suppose that K > Ko. Then IT = (J ft for some
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impeding /c-tower n in F'. Since FI ^ F, there is an a < K such that ITa ^ F. From this
and the fact that n a <a P , it follows that WUa = W. If l(U) = A, then v(Afl) < K for
each 6 < K by Lemma 4.8, and therefore v(FIa) < K by Corollary 3.4b. Let L, K be
subsets of Mna,Wn(= W) respectively such that E = ITa — L — V is critical and
v(n j = | V\. Let F°be an espousal of S. Then Y[Mt\D, F^M^Dy] is critical by
Lemma 3.3, that is, F — L* — ( F u F [M £ nD] ) is critical for some subset L* of M.
Since | F[ME n D] | = | Mz n D | < Ko by Corollary 3.7a and | V \ = v(ITa) < K ̂  v,
this contradicts the definition of v.

We conclude that F' is unimpeded, and so has an espousal E by Theorem 5.1'.
Therefore F — E[D'] is espousable and consequently a(r) ^ |£[£>]| = v. From this
and (6.2) it follows that <r(F) = | £[£>] | = v, which proves (a) and (b) (taking Z = £[£>]
in (a)).

REMARK. It is mentioned in [9] that part (a) of this theorem has been proved by M.
Ziegler in an unpublished paper: 'Cotransversals of infinite families'.

It has been mentioned above that the last stage of the proof of Theorem 5.1' when X
is singular followed closely the proof of (the transversals case of) the compactness
theorem for singular cardinals in [11]. In fact, Theorems 5.1 and 5.1' have the
character of a compactness result when X is singular, a fact which can be made explicit
in the following lemma.

LEMMA 6.3. / / e(F) is singular then F is espousable if and only if every saturated
subsociety F' of F with e(F') < e(F) is espousable.

Proof. If F is espousable then clearly every saturated subsociety of F is espousable.
Conversely, if F is inespousable, then, by Theorem 5.1', it contains a /c-impediment IT
for some K E Y. By Corollary 4.9a, g(II) = K. By Corollary 4.9b and Lemma 3.9,
K ^ <5(F) ^ e(F). Therefore, since K G T and e(F) is singular, it follows that K < e(F).
Thus IT is (by Lemma 4.9) an inespousable saturated subsociety of F satisfying
e(n) < e(F).

The compactness theorem for singular cardinals itself follows quite straightfor-
wardly from Theorem 5.1 or Theorem 5.1'. In fact, we shall now deduce a slightly
stronger version of it (Theorem 6.4) from Theorem 5.1'. (Theorem 6.4 can also be
proved directly. It reduces to the compactness theorem for singular cardinals when
L = M.)

THEOREM 6.4. Let Xbe a singular cardinal. Assume that M\Lis espousable for some
X-subset L of M and K < X and | K<m> | ^ K for every m e M. Then F is espousable if
and only if every subset M' of M with \M'\ < X is espousable.

Proof. Clearly, if F is espousable then any subset M' of M is espousable. So,
assume that F is inespousable. By Theorem 5.1' there exists a ̂ -impediment IT in F for
some f.i e T. Since <5(F) ^X, it follows from Corollary 4.9b that n ^ X, and since f.i is
regular or countable, n < X. By Corollary 4.9a, <5(IT) = n, and so IT — A has an
espousal H for some ^-subset A of Mn. We define a sequence (Bk: k < oS) of subsets of
Mn as follows: Bo = A and if Bk is defined then Bk + l = 5 k u H~l[K[Bk']']. Let
B = \J {Bk: k < co}. Since | /C<m> | ^ K for every m e M, | Bk | ^ max(/c, n, Nk

0) for
every k < a>, and hence \B\ < X. Suppose that B has an espousal G. By the definition

Sh:194



68 THE EXISTENCE OF TRANSVERSALS

of B, K[B]n//[Mn\fi] = 0 , and hence (rge G) n (rge tf r; (Mn\B)) = 0 . This
implies that G u ( / / ^ (Mn\J5)) is an espousal of Mn, which by Lemma 4.9 contradicts
the assumption that IT is an impediment in I \ Hence B must be inespousable, and so
M has an inespousable subset M' (= B) with \M'\ < X.
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