

Annals of Pure and Applied Logic 78 (1996) 259-269

Was Sierpiński right? III Can continuum-c.c. times c.c.c. be continuum-c.c.?

Saharon Shelah*

Institute of Mathematics, The Hebrew University, Jerusalem, Israel Rutgers University, Department of Mathematics, New Brunswick, NJ, USA

Received 22 March 1994; communicated by A. Nerode

Abstract

We prove the consistency of: if B_1 , B_2 are Boolean algebras satisfying the c.c.c. and the 2^{\aleph_0} -c.c. respectively then $B_1 \times B_2$ satisfies the 2^{\aleph_0} -c.c. We start with a universe with a Ramsey cardinal (less suffice).

0. Introduction

We heard the problem from Velickovic who got it from Todorcevic, it says "are there P, a c.c.c. forcing notion, and Q, a 2^{\aleph_0} -c.c. forcing, such that $P \times Q$ is not 2^{\aleph_0} -c.c.?" We can phrase it as a problem of cellularity of Boolean algebras or topological spaces.

We give a negative answer even for 2^{\aleph_0} regular, this by proving the consistency of the negation. The proof is close to [2, §3] which continues [1, §2] and is close to [3]. A recent use is [4].

We start with $V \models ``\lambda$ is a Ramsey cardinal", then use c.c.c. forcing blowing the continuum to λ . Originally the paper contained the consistency of e.g. $2^{\aleph_0} \rightarrow [\aleph_2]_3^2$, 2^{\aleph_0} the first k_2^2 -Mahlo (weakly inaccessible; remember $k_2^2 < \omega$), but the theorem presented here is (for me) satisfactory. See more in [5]. I thank Mariusz Rabus for corrections.

What problems do [1-4] and this paper raise? The most important are (we state the simplest uncovered case for each point):

^{*} Partially supported by the Basic Research Fund, Israeli Academy of Sciences. Publication no. Sh481. I thank Alice Leonhardt for the beautiful typing.

A. Question. (1) Can we get e.g. $Con(2^{\aleph_0} \to \lceil \aleph_2 \rceil_3^2)$? More generally, raise μ^+ to higher cardinals. (See [5].)

(2) Can we get $Con(\aleph_{\omega} > 2^{\aleph_0} \rightarrow [\aleph_1]_3^2)$? Generally lower 2^{μ} ; the exact \aleph_n seems to me less exciting.

(3) Can we get e.g. $Con(2^{\mu} > \lambda \rightarrow \lceil \mu^+ \rceil_3^2)$?

Also concerning [4]:

B. Question. (1) Can we get the continuity on a nonmeager set for functions $f: \kappa^2 \rightarrow \kappa^2?$

(2) What can we say about the continuity of 2-place functions? (See [7].)

(3) What about *n*-place functions (after [2])?

C. Question. (1) Can we get e.g. for $\mu = \mu^{<\mu} > \aleph_0$, Con(if P is 2^{μ} -c.c., Q is μ^+ -c.c. then $P \times Q$ is 2^{μ} -c.c.)?

(2) Can we get e.g. Con(if P is 2^{\aleph_0} -c.c., Q is \aleph_2 -c.c. then $P \times Q$ is 2^{\aleph_0} -c.c.)?

(3) Can we get e.g. $Con(2^{\aleph_0} > \lambda > \aleph_0)$, and if P is λ -c.c., Q is \aleph_2 -c.c. then $P \times Q$ is *λ*-c.c.)?

Preliminaries

0.A. Let $<_{\chi}^{*}$ be a well ordering of $H(\chi) = \{x: \text{ the transitive closure of } x \text{ has cardinality } x \}$ $\langle \chi \rangle$ agreeing with the usual well ordering of the ordinals.

P (and Q, R) will denote forcing notion(s), i.e., partial order with a minimal element $\phi = \phi_P$. A forcing notion P is λ -closed if every increasing sequence of members of P, of length less than λ , has an upper bound.

0.B. For sets of ordinals, A and B, define $H_{B,A}^{OP}$ as the maximal order preserving bijection between initial segments of A and B, i.e., it is the function with domain $\{\alpha \in A: \operatorname{otp}(\alpha \cap A) < \operatorname{otp}(B)\}$ and $H_{A,B}^{OP}(\alpha) = \beta$ if and only if $\alpha \in A$, $\beta \in B$ and $otp(\alpha \cap A) = otp(\beta \cap B).$

Definition 0.1. $\hat{\lambda} \rightarrow^+ (\alpha)_{\mu}^{<\omega}$ holds provided that: whenever F is a function from $[\lambda]^{<\omega}$ to λ , $F(w) < \min(w)$, $C \subseteq \lambda$ is a club then there is $A \subseteq C$ of order type α such that $[w_1, w_2 \in [A]^{<\omega}, |w_1| = |w_2| \Rightarrow F(w_1) = F(w_2)].$ (See [6, XVII, 4.x].)

0.1A. Remark. (1) If λ is a Ramsey cardinal then $\lambda \to^+ (\lambda)_{\mu}^{<\omega}$. (2) If $\lambda = \min \{\lambda : \lambda \to (\alpha)_{\mu}^{<\omega}\}$ then λ is regular and $\lambda \to^+ (\alpha)_{\mu}^{<\omega}$.

Definition 0.2. $\lambda \to [\alpha]_{\kappa,\theta}^n$ if for every function F from $[\lambda]^n$ to κ there is $A \subseteq \lambda$ of order type α such that $\{F(w): w \in [A]^n\}$ has power $\leq \theta$.

Sh:481

Definition 0.3. A forcing notion P satisfies the Knaster condition (has property K) if for any $\{p_i: i < \omega_1\} \subseteq P$ there is an uncountable $A \subseteq \omega_1$ such that the conditions p_i and p_i are compatible whenever $i, j \in A$.

1. Consistency of "c.c.c. $\times 2^{\aleph_0}$ -c.c. $= 2^{\aleph_0}$ -c.c."

The a_i 's are not really necessary but (hopefully) clarify.

- **1.1. Definition.** (1) $\mathscr{K}_{\mu,\kappa}$ is the family of $\overline{Q} = \langle P_{\gamma}, Q_{\beta}, a_{\beta}: \gamma \leq \alpha, \beta < \alpha \rangle$, where
 - (a) $\langle P_{\gamma}, Q_{\beta}; \gamma \leq \alpha, \beta < \alpha \rangle$ is a finite support iteration;
 - (b) every P_{γ} , Q_{γ} satisfies the c.c.c.;
 - (c) Q_{β} is a P_{β} -name which depends just on $G_{P_{\beta}} \cap P_{a_{\beta}}^{*}$ (see below; hence it is in $\widetilde{V}[G_{P_{a}^{*}}]$), and $|Q_{\beta}| \leq \kappa$ and its set of members $\subseteq V$ (for simplicity);
 - (d) $a_{\beta} \subseteq \mathring{\beta}, |a_{\beta}| \leq \mu$ and $\gamma \in a_{\beta} \Rightarrow a_{\gamma} \subseteq a_{\beta}$.
 - (2) For such \overline{Q} we call $a \subseteq \ell g(\overline{Q})$, \overline{Q} -closed if $[\beta \in a \Rightarrow a_{\beta} \subseteq a]$ and let

$$P_a^* = P_a^{\overline{Q}} = \{p \in P_a: \operatorname{dom}(p) \subseteq a \text{ and for all } \beta \in \operatorname{dom}(p): p(\beta) \in V\}$$

(not a name) and $p \upharpoonright a_{\beta} \Vdash "p(\beta) \in Q_{\beta}"$ }

(so we are defining P_a^* by induction on $\sup(a)$) ordered by the order of $P_{\sup(a)}$.

(3) $\mathscr{K}_{\mu,\kappa}^{k}$ is the class of $\overline{Q} \in \mathscr{K}_{\mu,\kappa}$ such that if $\beta < \gamma \leq \ell g(\overline{Q}), cf(\beta) \neq \aleph_{1}$ then P_{γ}/P_{β} satisfies the Knaster condition (actually we can use somewhat less). Let $\mathscr{K}_{\mu,\kappa}^{n} = \mathscr{K}_{\mu,\kappa}$.

(4) If defining \overline{Q} , we omit P_{α} to mean $\bigcup_{\beta < \alpha} P_{\beta}$ if α is limit, $P_{\beta} * Q_{\beta}$ if $\alpha = \beta + 1$.

(5) We do not lose generality, if we assume $Q_{\beta} \subseteq [\kappa]^{<\aleph_0}$ and the order is \subseteq (then 1.2(1)(g) becomes trivial as for closed a and $p, q \in P_j^*$, we have $p \leq q \Rightarrow p \upharpoonright a \leq q \upharpoonright a$).

1.2. Claim. (1) Assume $x \in \{n, k\}$ and $\overline{Q} = \langle P_{\gamma}, Q_{\beta}, a_{\beta}: \beta < \alpha, \gamma \leq \alpha \rangle \in \mathscr{K}^{x}_{\mu,\kappa}$. Then

- (a) for $\alpha^* < \alpha$, $\bar{Q} \upharpoonright \alpha^* = \langle P_{\gamma}, Q_{\beta}, a_{\beta} : \beta < \alpha^*, \gamma \leq \alpha^* \rangle$ belongs to $\mathscr{K}^x_{\mu,\kappa}$;
- (b) P^*_{α} is a dense subset of P_{α} ;
- (c) for any Q̄-closed a ⊆ α, P^{*}_a < P_α (in particular, P^{*}_α is a dense subset of P_α); moreover, if p ∈ P^{*}_α then p ↾ a ∈ P^{*}_a and [p ↾ a ≤ q ∈ P^{*}_a ⇒ r ≕ q ∪ p ↾ (α \ a) ∈ P^{*}_α & p ≤ r & q ≤ r];
- (d) for a \overline{Q} -closed $a \subseteq \alpha$, $\langle P_{a \cap \gamma}^*, Q_{\beta}, a_{\beta}: \beta \in a, \gamma \in a \rangle$ belongs to $\mathscr{K}_{\mu,\lambda}^x$ (except renaming; not used);
- (e) if Q_α is a P^{*}_a-name of a c.c.c. forcing notion of cardinality ≤ κ, each member of Q_α is from V, a ⊆ α is Q̄-closed, |a| ≤ μ and P_{α+1} = P_α * Q_α and when x = k, Q̃_α satisfies the Knaster condition or at least cf(α) = ℵ₁ & (β < α ⇒ P_α * Q_α/P_{β+1} satisfies the Knaster condition) then ⟨P_γ, Q_β, a_β: β < α + 1, γ ≤ α + 1⟩ ∈ ℋ^x_{μ,λ};
- (f) if $n < \omega, p_1, \ldots, p_n \in P_{\alpha^*}$ and
 - (*) for every $\beta \in \bigcup_{\ell=1}^{n} dom(p_{\ell})$ for some $m = m_{\beta,\ell} \in \{1, ..., n\}$ we have $p_m \upharpoonright \beta \Vdash "p_{\ell}(\beta) \leq Q_{\beta} p_m(\beta)$ for $\ell \in \{1, ..., n\}$ "

262

then p_1, \ldots, p_n has a least common upper bound p which is defined by: $dom(p) = \bigcup_{\ell=1}^{n} dom(f), p_{\ell}(\beta) = p_{m_{\beta,\ell}}(\beta), \text{ so in particular } p \in P_{\alpha^*} \text{ and } \bigwedge_{\ell=1}^{n} p_{\ell} \in P_{\alpha^*}^*$ $\Rightarrow p \in P_{\alpha^*}^*;$

- (g) if $p_{\ell} \leq p$ and $p_{\ell} \in P_{\gamma}^{*}$ for $\ell < n$, and a_{k} is \overline{Q} -closed for k < m then there is $p' \in P_{\gamma}^{*}$, such that $p \leq p'$ and $P_{a_{k}}^{*} \models p_{\ell} \upharpoonright a_{k} \leq p' \upharpoonright a_{k}$ for $\ell < n, k < m$.
- (2) If $x \in \{n, k\}$ and $\delta < \lambda$ is a limit ordinal, and for $\alpha < \delta$ we have $\langle P_{\gamma}, Q_{\beta}, a_{\beta}: \beta < \alpha$, $\gamma \leq \alpha \rangle \in \mathscr{K}^{x}_{\mu,\lambda}$ and $P_{\delta} = \bigcup_{\gamma < \delta} P_{\gamma}$ then $\langle P_{\gamma}, Q_{\beta}, a_{\beta}: \beta < \delta, \gamma \leq \delta \rangle$ belongs to $\mathscr{K}^{x}_{\mu,\lambda}$.

Proof. Straightforward.

Essentially by [3, 2.4(2), p. 176] (which is slightly weaker and its proof is left to the reader, so we give details here).

1.3. Claim. Assume $\lambda \to^+ (\omega \alpha^*)_{\mu}^{<\omega}$ (e.g. λ a Ramsey cardinal, $\alpha^* = \lambda$), $\chi > \lambda$, $x \in H(\chi)$. (1) There is a strong $(\chi, \lambda, \alpha^*, \mu, \aleph_0, \omega)$ -system for x (see Definition 1.3A).

(2) There is an end extension strong $(\chi, \lambda, \alpha, \mu, \aleph_0, \omega)$ -system for x if λ is Ramsey or $\lambda = \min\{\lambda: \lambda \to (\omega\alpha^*)_{\mu}^{<\omega}\}$ (also then the condition holds for every $\mu' < \mu$).

1.3A. Definition. (1) We say $\overline{N} = \langle N_s : s \in [B]^{<1+n} \rangle$ is a $(\chi, \lambda, \alpha, \theta, \sigma, n)$ -system if:

- (a) $N_s \prec (H(\chi), \in)$ (or of some expansion), $\theta + 1 \subseteq N_s$, $||N_s|| = \theta$, $\sigma^>(N_s) \subseteq (N_s)$;
- (b) $B \subseteq \lambda$, $otp(B) = \alpha$;
- (c) $n \leq \omega$ (equality is allowed but $1 + \omega = \omega$ so s is always finite);
- (d) $N_s \cap N_t \subseteq N_{s \cap t}$;
- (e) $N_s \cap B = s;$
- (f) if |s| = |t| then $N_s \cong N_t$ say $H_{s,t}$ is an isomorphism from N_t onto N_s (necessarily $H_{s,t}$ is unique);
- (g) if $s' \subseteq s$, $t' = \{ \alpha \in t: (\exists \beta \in s') [|\beta \cap s'| = |\alpha \cap t|] \}$ then $H_{s',t'}$, $H_{s,t}$ are compatible functions; $H_{s,s} = id$, $H_{s,t} \supseteq H_{s,t}^{OP}$, $H_{s_0,s_1} \circ H_{s_1,s_2} = H_{s_0,s_2}$, $H_{t,s} = (H_{s,t})^{-1}$;
- (h) $\sup(N_s \cap \lambda) < \min\{\alpha \in B: \bigwedge_{\gamma \in s} \gamma < \alpha\}.$
- (2) We add the adjective "strong" if we strengthen clause (d) by
- (d)⁺ $N_s \cap N_t = N_{s \cap t}$ (so in clause (g), $H_{s',t'} \subseteq H_{s,t}$).
- (3) We add the adjective "end extension" if
- (i) $s \triangleleft t \Rightarrow N_s \cap \lambda \triangleleft N_t \cap \lambda$ (where $A \triangleleft B$ means $A = B \cap \min(B \setminus A)$).
- (4) We add "for x" if $x \in N_s$ for every $s \in [B]^{<1+n}$, and $H_{s,t}(x) = x$.

1.3B. Remark. If λ is a Ramsey cardinal (or much less, see [6, XVII, 4.x] and [3, §4]) then we have if $\gamma \in s \cap t$, $s \cap \gamma = t \cap \gamma$ and $y \in N_s$ then in $(H(\chi), \in, <_{\chi})$ the elements y and $H_{t,s}(y)$ realize the same type over $\{i: i < \gamma\}$.

Proof of Claim 1.3. (1) Let $C = \{\delta < \lambda : \text{ for every } \alpha < \delta \text{ there is } N \prec (H(\chi), \in, <^*_{\chi}) \text{ such that } \mu + 1 + \alpha \subseteq N \text{ and } \sup(N \cap \lambda) < \delta \}.$ Clearly C is a club of λ .

Let $B_0 = \{\alpha_i: i < \omega \alpha^*\} \subseteq C$ (α_i strictly increasing) be indiscernible in $(H(\chi), \epsilon, <_{\chi}^*, x)$ (see Definition 0.1). Let $B = \{\alpha_i: i < \omega \alpha^* \text{ limit}\}$. For $s \in [B_0]^{<\aleph_0}$ let N_s^0 = the Skolem hull of $s \cup \{i: i \leq \mu\} \cup \{x, \lambda\}$ under the definable functions of $(H(\chi), \epsilon, <_{\chi}^*)$ and

$$N_s = \bigcup \{ N_{t_1}^0 \cap N_{t_2}^0; t_1, t_2 \in [\{\alpha_i: i < \omega \alpha^*\}]^{<\aleph_0} \text{ and } s = t_1 \cap t_2 \}.$$

Clearly

(*) $||N_s|| \leq \mu$ and $\{x, \lambda\} \subseteq N_s$.

Now we shall show

(*)₁ if $s \in [B]^{<\aleph_0}$, $y \in N_s$ then for every finite $t \subseteq B_0$ there is $u \in [B_0]^{<\aleph_0}$ such that $s \subseteq u, u \cap t \subseteq s$ and $y \in N_u^0$.

As $y \in N_s$ there are $s_1, s_2 \in [B_0]^{<\aleph_0}$ such that $y \in N_{s_1}^0 \cap N_{s_2}^0$ and $s = s_1 \cap s_2$. Let $s_1 \cup s_2 = \{\alpha_{i_0}, \ldots, \alpha_{i_{m-1}}\}$ (increasing), and let $n^* = \sup\{n: \text{ for some } \beta, \beta + n \in N_1 \cup N_2\} + 1$, and define for $\ell \leq m$ a function f_ℓ with domain $s_1 \cup s_2$, such that

$$f_{\ell}(\alpha_{i_k}) = \begin{cases} \alpha_{i_k + n^*} & \text{if } k \ge m - \ell \text{ and } i_k \notin s, \\ \alpha_{i_k} & \text{otherwise.} \end{cases}$$

Note that

$$\otimes_1$$
 for $\ell < m$, $f_\ell \upharpoonright s_1 = f_{\ell+1} \upharpoonright s_1$ or $f_\ell \upharpoonright s_2 = f_{\ell+1} \upharpoonright s_2$ (or both).

[Why? As $i_{\ell} \in s_2 \setminus s_1 \setminus s$ or $i_{\ell} \in s_2 \setminus s_1 \setminus s$ or $i_{\ell} \in s = s_1 \cap s_2$.]

 $\otimes_2 = f_\ell$ is order preserving with domain $s_0 \cup s_1, f_\ell \upharpoonright s =$ the identity.

As $y \in N_{s_1}^0 \cap N_{s_2}^0$ there are terms τ_1, τ_2 such that

 $y = \tau_1(\ldots, \alpha_{i_k}, \ldots)_{\alpha_{i_k} \in s_1} = \tau_2(\ldots, \alpha_{i_k}, \ldots)_{\alpha_{i_k} \in s_2}.$

Using the indiscernibility of B_0 we can prove by induction on $\ell \leq m$ that

$$\otimes_{3,\ell} \qquad y = \tau_1(\ldots,f_\ell(\alpha_{i_k}),\ldots)_{\alpha_{i_k}\in s_1} = \tau_2(\ldots,f_\ell(\alpha_{i_k}),\ldots)_{\alpha_{i_k}\in s_2}.$$

[Why? For $\ell = 0$ this is given by the choice of τ_1, τ_2 . For $\ell + 1$ note that by \bigotimes_2 , $f_{\ell+1} \circ f_{\ell}^{-1}$ is an order-preserving function from $\operatorname{ran}(f_{\ell})$ onto $\operatorname{ran}(f_{\ell+1})$. By $\bigotimes_{3,\ell}$ and "B₀ is indiscernible" we know $\tau_1(\ldots, f_{\ell}(\alpha_{i_k}), \ldots)_{\alpha_{i_k} \in s_1} = \tau_2(\ldots, f_{\ell}(\alpha_{i_k}), \ldots)_{\alpha_{i_k} \in s_2}$. By the last two sentences and the indiscernibility of B₀

$$\tau_1(\ldots,(f_{\ell+1}\circ f_{\ell}^{-1})(f_{\ell}(\alpha_{i_k})),\ldots)_{\alpha_{i_k}\in s_1}=\tau_2(\ldots,(f_{\ell+1}\circ f_{\ell}^{-1})(f_{\ell}(\alpha_{i_k})),\ldots)_{\alpha_{i_k}\in s_2}$$

But $(f_{\ell+1} \circ f_{\ell}^{-1}) (f_{\ell}(\alpha_{i_k})) = f_{\ell+1}(\alpha_{i_k})$ so

$$\tau_1(\ldots,f_{\ell+1}(\alpha_{i_k}),\ldots)_{\alpha_{i_k}\in s_1}=\tau_2(\ldots,f_{\ell+1}(\alpha_{i_k}),\ldots)_{\alpha_{i_k}\in s_2}.$$

264

Sh:481

But by \otimes_1 for some $e \in \{1, 2\}$ we have $f_{\ell} \upharpoonright s_e = f_{\ell+1} \upharpoonright s_e$, so $\tau_e(\ldots, f_{\ell+1}(\alpha_{i_k}), \ldots)_{\alpha_{i_k} \in s_e}$ = $\tau_e(\ldots, f_{\ell}(\alpha_{i_k}), \ldots)_{\alpha_{i_k} \in s_e}$ but the latter is equal to y (by the induction hypothesis), hence the former is so by the last sentence

$$y = \tau_1(\ldots, f_{\ell+1}(\alpha_{i_k}), \ldots)_{\alpha_{i_k} \in s_1} = \tau_2(\ldots, f_{\ell+1}(\alpha_{i_k}), \ldots)_{\alpha_{i_k} \in s_2}$$

So we have carried out the induction on $\ell \leq m$, and for $\ell = m$ we get $y \in N_{f_m(s_1)}^0$, but by the choice of n^* and f_m clearly $f_m(s_1) \cap t \subseteq s$, and we have proved $(*)_1$.]

Now we can note

(*)₂ if
$$s \in [B]^{<\aleph_0}$$
 and $y_1, \ldots, y_n \in N_s$ then for some $s_1, s_2 \in [B_0]^{<\aleph_0}$ we have:
 $s = s_1 \cap s_2$ and $y_1, \ldots, y_n \in N_{s_1}^0 \cap N_{s_2}^0$.

[Why? We can find $u_1, \ldots, u_n \in [B_0]^{<\aleph_0}$ such that $s \subseteq u_\ell, y_\ell \in N_{u_\ell}^0$ (as $y_\ell \in N_s$). Now by $(*)_1$ for each $\ell = 1, 2, \ldots, n$ we can find $v_\ell \in [B_0]^{<\aleph_0}$ such that $s \subseteq v_\ell$, $s = v_\ell \cap (\bigcup_{m=1}^n u_m)$ and $y_\ell \in N_{v_\ell}^0$. Let $u = \bigcup_{i=1}^n u_\ell$, $v = \bigcup_{\ell=1}^n u_\ell$, clearly $y_1, \ldots, y_n \in N_u^0 \cap N_v^0$ and $u \cap v = s$, as required.]

Now, as we have Skolem functions, $(*)_2$ implies

$$(*)_3 \qquad N_s \prec (H(\chi), \, \epsilon, \, <^*_{\chi}).$$

Also trivially

 $(*)_4 \qquad N_s^0 \prec N_s \text{ hence } \mu + 1 \subseteq N_s,$

$$(*)_5 \qquad s \subseteq t \Rightarrow N_s \prec N_t.$$

(For $(*)_5$, use $(*)_1$.) Also

$$(*)_6 \qquad N_{s_1} \cap N_{s_2} = N_{s_1 \cap s_2} \quad \text{for } s_1, s_2 \in [B]^{<\aleph_0}.$$

[Why? The inclusions $N_{s_1 \cap s_2} \subseteq N_{s_1} \cap N_{s_2}$ follow from (*)₅; for the other direction let $y \in N_{s_1} \cap N_{s_2}$. By (*)₁ as $y \in N_{s_1}$ there is t_1 such that $s_1 \subseteq t_1 \in [B_0]^{<\aleph_0}$, $t_1 \cap (s_1 \cup s_2) = s_1$ and $y \in N_{t_1}^0$. By (*)₁, as $y \in N_{s_2}$ there is t_2 such that $s_2 \subseteq t_2 \in [B_0]^{<\aleph_0}$, $t_2 \cap (s_1 \cup s_2 \cup t_1) = s_2$ and $y \in N_{t_2}^0$. So $y \in N_{t_1}^0 \cap N_{t_2}^0$, but easily $t_1 \cap t_2 = s_1 \cap s_2$.]

$$(*)_{\gamma} \qquad \sup(N_{s} \cap \lambda) < \min\{\alpha \in B: \bigwedge_{\gamma \in s} \gamma < \alpha\}.$$

[Why? As $B_0 \subseteq C$ and see the definition of C.]

Now check that (a)–(h) of Definition 1.3A hold. Now $\langle N_s : s \in [B]^{\langle N_0 \rangle}$ is as required.

(2) If λ is Ramsey, without loss of generality $otp(B_0) = \lambda$ and it is easy to check 1.3A(i). The other case is like [3, §4]. \Box

1.4. Theorem. Assume $\aleph_0 < \mu \le \kappa < \lambda = cf(\lambda)$, λ strongly inaccessible, λ a Ramsey cardinal, and $\diamondsuit_{\{\delta < \lambda: cf(\delta) = \aleph_1\}}$ (can be added by a preliminary forcing). Then we have P such that

(a) *P* is a c.c.c. forcing of cardinality λ adding λ reals (so the cardinals and cardinal arithmetic in V^P should be clear), in particular in V^P we have $2^{\aleph_0} = \lambda$.

- (b) *H_P* "MA holds for c.c.c. forcing notions of cardinality ≤ μ and < λ dense sets (and even for c.c.c. forcing notions of cardinality ≤ κ which are from V [A] for some A ⊆ μ)".</p>
- (c) \Vdash_P "if B is a λ -c.c. Boolean algebra, $x_i \in B \setminus \{0\}$ for $i < \lambda$ then for some $Z \subseteq \lambda$, $|Z| = \aleph_1$ and $\{x_i : i \in Z\}$ generates a proper filter of B (i.e., no finite intersection is 0_B)".
- (d) \Vdash_P "if B_1 is a c.c.c. Boolean algebra, B_2 is a λ -c.c. Boolean algebra then $B_1 \times B_2$ is a λ -c.c. Boolean algebra".

Proof. Let $\langle A_{\delta}: \delta < \lambda, cf(\delta) = \aleph_1 \rangle$ exemplify the diamond. We choose by induction on $\alpha < \lambda$, $\bar{Q}^{\alpha} = \langle P_{\gamma}, Q_{\beta}, a_{\beta}: \gamma \leq \alpha, \beta < \alpha \rangle \in \mathscr{H}^{n}_{\mu,\kappa}$ such that $\alpha^1 < \alpha \Rightarrow \bar{Q}^{\alpha^1} = \bar{Q}^{\alpha} \upharpoonright \alpha^1$. In limits α use 1.2(2). For $\alpha = \beta + 1$, $cf(\beta) \neq \aleph_1$ take care of (b) by suitable bookkeeping using 1.2(1)(e). If $\alpha = \beta + 1$, $cf(\beta) = \aleph_1$ and A_{β} codes $p \in P_{\beta}$ and P_{β} -names of a Boolean algebra \mathcal{B}_{β} and sequence $\langle \chi_i^{\beta}: i < \beta \rangle$ of non-zero members of \mathcal{B}_{β} , and p forces ($\Vdash_{P_{\beta}}$) that there is in $V[\mathcal{G}_{P_{\beta}}]$ some c.c.c. forcing notion Q of cardinality $\leq \mu$ adding some $Z \subseteq \beta, |Z| = \aleph_1$ with $\{\chi_i^{\beta}: i \in Z\}$ generating a proper filter of \mathcal{B}_{β} then we choose Q_{β} , if $p \in \mathcal{G}_{P_{\beta}}$, as such Q. If $p \notin \mathcal{G}_{P_{\beta}}$ or there is no such Q in $V[\mathcal{G}_{P_{\beta}}]$, then Q_{β} is e.g. Cohen forcing.

So every \overline{Q}^{α} is defined, let $P = \bigcup_{\gamma < \lambda} P_{\gamma}$. Clearly (a) and (b) hold, and (d) follows by (c). So the rest of the proof is dedicated to proving (c).

So let $p \in P$, $p \Vdash "B$ a λ -c.c. Boolean algebra, $x_i \in B \setminus \{0_B\}$ for $i < \lambda$ ". Without loss of generality the set of members of B is λ .

Let $x = \langle P, p, \underline{B}, \langle \underline{x}_i: i < \lambda \rangle \rangle$, $\chi = \lambda^+$. By Claim 1.3 there are $A \in [\lambda]^{\lambda}$ and $\langle N_s: s \in [A]^{<\aleph_0} \rangle$ as there (for $\kappa = \mu + \kappa$ here standing for μ there). Let

 $C = \{\delta < \lambda: \delta \text{ a strong limit cardinal} > \kappa + \mu, [\alpha < \delta \Rightarrow \overline{Q} \upharpoonright \alpha \in H(\delta)], \\\delta = \sup(A \cap \delta), s \in [A \cap \delta]^{<\aleph_0} \Rightarrow \sup(\lambda \cap N_s) < \delta, \\\underline{B} \upharpoonright \delta \text{ a } P_{\delta}\text{-name, and for } i < \delta \text{ we have } \underline{x}_i \text{ a } P_{\delta}\text{-name}\}.$

For some accumulation point δ of C, $cf(\delta) = \aleph_1$ and A_δ codes $\langle p, \underline{B} \upharpoonright \delta, \langle \underline{x}_i: i < \delta \rangle \rangle$. We shall show that for some $q, p \leq q \in P_\delta$ and $q \Vdash_{P_\delta}$ "there is Q as required above". By the inductive choice of Q_δ this suffices.

Let $A^* \subseteq A \cap \delta$, $\operatorname{otp}(\tilde{A}^*) = \omega_1$, $\delta = \sup(A^*)$ and $\langle \delta_i : i < \omega_1 \rangle$ increasing continuous, $\delta = \bigcup_{i < \omega_1} \delta_i$, $\delta_i \in C$, $A^* \cap \delta_0 = \emptyset$, $|A^* \cap [\delta_i, \delta_{i+1})| = 1$. In $U^{P_{\delta}}$ we define:

In $V^{P_{\delta}}$ we define:

$$Q = \left\{ u: u \in [A^*]^{<\aleph_0}, \text{ and } B \vDash \bigcap_{i \in u} x_i \neq 0_B \right\}$$

ordered by inclusion. It suffices to prove that some $q, p \leq q \in P_{\delta}$, q forces that: Q is c.c.c. with $\bigcup Q_Q$ an uncountable set; now clearly q forces that $\{x_i: i \in \bigcup Q_Q\}$ generates a proper filter of \underline{B} .

If not, we can find q_i , u_i such that

$$p \leq q_i \in P^*_{\delta}$$
 and $q_i \Vdash_{P_{\delta}} ``u_i \in Q''$ (where $u_i \in [A^*]^{<\aleph_0}$)

and $\langle (q_i, u_i): i < \omega_1 \rangle$ are pairwise incompatible in $P_{\delta} * Q$.

Let v_i be a finite subset of A^* such that: $u_i \subseteq v_i$, and

(*)
$$[v \subseteq A^* \& v \text{ finite } \& \gamma \in (\operatorname{dom} q_i) \cap N_v \Rightarrow \gamma \in (\operatorname{dom} q_i) \cap N_{v \cap v_i}].$$

By Fodor's Lemma for some stationary $S \subseteq \omega_1, u^*, v^*, n^*$ and i(*) we have: for i < j in S,

$$v_i \cap \delta_i = v^* \subseteq \delta_{i(*)}, \quad v_i \subseteq \delta_j, \quad |v_i| = n^*,$$
$$u_i \cap \delta_i = u^*, \quad i(*) = \min(S),$$

 $\{|\gamma \cap v_i\rangle |: \gamma \in u_i\}$ does not depend on *i*,

 $q_i \upharpoonright \delta_i \in P^*_{\delta_{i(*)}}, \qquad q_i \in P^*_{\delta_i}.$

Let $b_i =: N_{v_i} \cap \lambda$, so b_i is necessarily \overline{Q}^{δ} -closed and $|b_i| = \kappa$. Let $q_i^1 = q_i \upharpoonright b_i$, so necessarily $q_i^1 \in P_{b_i}^*$ (see 2.2(1)(c)). Easily $P_{b_i}^* \subseteq N_{v_i}$ (though do not belong to it) so $q_i^1 \in N_{v_i}$. Let $q_i^2 =: H_{v_i \in V}v_i(q_i^1)$, so $q_i^2 \in P_{b_i \in V}^*$. Let

 $q_i^3 \coloneqq (q_i \upharpoonright \delta_{i(*)}) \cup \lceil q_1^2 \upharpoonright (N_{v(i)} \cap \lambda \setminus \delta_{i(*)}) \rceil,$

by 1.2(1)(c) we know $q_i^3 \in P_{\sup(b_{i(*)})+1}^*$ and $q_i^2 \leq q_i^3$, even without loss of generality $q_i^2 \leq q_i^3 \upharpoonright b_{i(*)}$. As $P_{\sup(b_{i(*)})+1}^* < P_{\delta}$ and P_{δ} satisfies the c.c.c. clearly for some i < j from S, q_i^3, q_j^3 are compatible in $P_{\sup(b_{i(*)})+1}^*$, so let $r \in P_{\sup(b_{i(*)})+1}^*$ be a common upper bound. So $q_i^3 \upharpoonright (\delta_{i(*)} \cap b_{i(*)}) \leq r \upharpoonright (\delta_{i(*)} \cap b_{i(*)})$ and $q_j^3 \upharpoonright (\delta_{i(*)} \cap b_{i(*)}) \leq r \upharpoonright (\delta_{i(*)} \cap b_{i(*)})$ and $q_j^3 \upharpoonright (\delta_{i(*)} \cap b_{i(*)}) \leq r \upharpoonright (\delta_{i(*)} \cap b_{i(*)})$.

Without loss of generality dom(r) $\subseteq b_{i(*)} \cup \delta_{i(*)}$ (allowed as $b_{i(*)}$ and $\delta_{i(*)}$ are closed, see 1.2(1)(c)); let $r_i = H_{v_i, v_{i(*)}}(r \upharpoonright b_{i(*)})$ and similarly $r_j = H_{v_j, v_{i(*)}}(r \upharpoonright b_{i(*)})$.

Note that $r_i \in P_{\delta_j}^*, r_j \in P_{\delta}^*, r_j \upharpoonright \delta_j = r_i \upharpoonright \delta_i = r \upharpoonright \delta_{i(*)}$. Hence $r_i \cup r_j \in P_{\delta}^*$.

Case 1: $r_i \cup r_j$ do not force (i.e. \Vdash_{P_δ}) that

$$\underline{\mathcal{B}}\Vdash ``\bigcap_{\alpha\in u_i\cup u_j}\underline{x}_{\alpha}=0_{\underline{\mathcal{B}}}".$$

Then there is $r' \in P_{\delta}$, $r_i \leq r'$, $r_j \leq r'$ forcing the negation. So without loss of generality $r' \in P_{\delta}^*$, and (as all parameters appearing in the requirements on r' are in $N_{v_i \cup v_j}$ also) $r' \in P_{\delta \cap (N_{v_i \cup v_j})}^*$. Now r', r, q_i , q_j have an upper bound $r'' \in P_{\delta}$. [Why? By 1.2(1)(f), we have to check the condition (*) there, so let

 $\beta \in \operatorname{dom}(r') \cup \operatorname{dom}(r) \cup \operatorname{dom}(q_i) \cup \operatorname{dom}(q_j).$

Subcase 1a: $\beta \in \delta_{i(*)} \setminus N_{v_i \cup v_j}$. Note that $N_{v_i \cup v_j} \cap \delta_{i(*)} = N_{v^*} \cap \lambda = b_{i(*)}$ (see choice of the N_u 's and definition of the b_v 's) but dom $(r') \subseteq N_{v_i \cup v_j} \cap \lambda$, so $\beta \notin \text{dom}(r')$. Now

$$q_i \upharpoonright \delta_i = q_i \upharpoonright \delta_{i(*)} = q_i^3 \upharpoonright \delta_{i(*)} \leqslant r,$$
$$q_j \upharpoonright \delta_j = q_j \upharpoonright \delta_{i(*)} = q_j^3 \upharpoonright \delta_{i(*)} \leqslant r.$$

So $r \upharpoonright \beta \Vdash_{P_{\beta}} "q_i(\beta) \leq r(\beta), q_j(\beta) \leq r(\beta)$ " and $\beta \notin \text{dom}(r')$. So we have confirmed (*) from 1.2(1)(f) for this subcase.

Subcase 1b: $\beta \in \delta_{i(*)} \cap N_{v_i \cup v_j}$. Exactly as above: $N_{v_i \cup v_j} \cap \delta_{i(*)} = N_{v^*} \cap \lambda = b_{i(*)}$, so $\beta \in N_{v^*}$, $\beta \in \delta_{i(*)} \cap b_{i(*)}$. Also

$$q_i \upharpoonright b_{i(*)} = q_i^1 \upharpoonright \delta_{i(*)} = q_i^2 \upharpoonright \delta_{i(*)} = q_i^3 \upharpoonright (\delta_{i(*)} \cap b_{i(*)}) \leq r \upharpoonright (\delta_{i(*)} \cap b_{i(*)})$$

and

$$q_j \upharpoonright b_{i(*)} = q_j^1 \upharpoonright \delta_{i(*)} = q_j^2 \upharpoonright \delta_{i(*)} = q_j^3 \upharpoonright (\delta_{i(*)} \cap b_{i(*)}) \leq r \upharpoonright (\delta_{i(*)} \cap b_{i(*)})$$

and

$$r \restriction (\delta_{i(*)} \cap b_{i(*)}) \leqslant r'$$

(as $H_{v_i,v_{i(*)}}$ is the identity on $\delta_{i(*)} \cap b_{i(*)}$). The last three inequalities confirm the requirement in 1.2(1)(f) (as $\beta \in \delta_{i(*)} \cap b_{i(*)}$, see above).

Subcase 1c: $\beta \in (\delta \setminus \delta_{i(*)}) \setminus N_{v_i \cup v_j}$. In this case $\beta \notin \operatorname{dom}(r')$ (as $r' \in N_{v_i \cup v_j}$). Also $\delta_{i(*)} < \delta_i < \delta_j < \delta$ and:

$$dom(r) \setminus \delta_{i(*)} \subseteq (b_{i(*)} \cup \delta_{i(*)}) \setminus \delta_{i(*)} \subseteq [\delta_{i(*)}, \delta_i),$$

$$dom(q_i) \setminus \delta_{i(*)} \subseteq [\delta_i, \delta_j), \qquad dom(q_j) \setminus \delta_{i(*)} \subseteq [\delta_j, \delta).$$

So β belongs to at most one of dom(r'), dom(r), dom(q_i), dom(q_j) so the requirement (*) from 1.2(1)(f) holds trivially.

Subcase 1d: $\beta \in (\delta \setminus \delta_{i(*)}) \cap N_{v_i \cup v_j}$. Clearly $\beta \notin \text{dom}(r)$. We know $q_i \upharpoonright b_i = q_i^1, r_i \leq r'$, $H_{v_{i(*)}, v_i}(q_i^1) = q_i^2 \leq q_i^3 \upharpoonright b_{i(*)} \leq r \upharpoonright b_{i(*)}$ hence

$$q_{i}^{1} \leq H_{v_{i(*)},v_{i}}^{-1}(r \upharpoonright b_{i(*)}) = H_{v_{i},v_{i(*)}}(r \upharpoonright b_{i(*)}) = r_{i}$$

but $r_i \leq r'$, so together $q_i^1 \leq r'$, and similarly $q_j^1 \leq r'$. As we have noted $\beta \notin \text{dom}(r)$ we have finished confirming condition (*) from 1.2(1)(f)].

So really r, r', q_i , q_j have a least common upper bound, say r''s hence $(r'', u_i \cup u_j) \in P_{\delta} * Q$; exemplified (q_i, u_i) , (q_j, u_j) are compatible, as required.

Case 2: not Case 1. Let $\langle s_{\beta} : \beta < \lambda \rangle$ be such that:

$$\begin{split} s_{\beta} \in [A]^{<\aleph_{0}}, & v^{*} \subseteq s_{\beta}, & |s_{\beta} \setminus v^{*}| = |v_{i} \setminus v^{*}|, \\ \sup(v^{*}) < \delta_{i(*)} < \min(s_{\beta} \setminus v^{*}), \\ \delta < \min(s_{\beta} \setminus v^{*}) & \text{(for simplicity)}, \\ \beta < \gamma \Rightarrow \max(s_{\beta}) < \min(s_{\gamma} \setminus v^{*}). \end{split}$$

S. Shelah / Annals of Pure and Applied Logic 78 (1996) 259-269

As the truth value of $\bigcap_{x \in u_i} x_a$ is a P_a^* -name for some closed $a \in N_{v_i}$ of cardinality $\leq \mu$, and $q_i \Vdash [\mathcal{B} \vDash \bigcap_{a \in u_i} x_a \neq 0_{\mathcal{B}}]$ clearly,

$$q_i^1 \Vdash [\underline{\mathcal{B}} \vDash "\bigcap_{\alpha \in u_i} x_\alpha \neq 0_{\underline{\mathcal{B}}}"].$$

For $\beta < \lambda$ let $r^{\beta} = H_{s_{\theta}, v_{i(*)}}(r \upharpoonright b_{i(*)})$, and $u'_{\beta} = H_{s_{\theta}, v_{i(*)}}(u_{i(*)})$. Let

$$\underline{Y} = \{\beta < \lambda \colon r^{\beta} \in \underline{G}_{P}\}.$$

Clearly,

268

$$r^{\beta} \Vdash_{P_{\lambda}} [\underline{\mathcal{B}} \Vdash `` \bigcap_{i \in u'_{\beta}} x_i \neq 0_{\underline{\beta}} "`].$$

Clearly $p \leq r^{\beta}$ and for some β we have $r^{\beta} \Vdash "Y \in [\lambda]^{\lambda}$ (and $p \in G_P$)" and by the assumption of the case:

$$p \Vdash ``\left\{ \bigcap_{i \in u_{\beta}'} x_i: \beta \in Y \right\} \text{ is a set of non-zero members of } \mathcal{B}$$

any two having zero intersection in $\underline{B}^{"}$.

This contradicts an assumption on B.

We can phrase the consistency result as one on colouring.

1.5. Lemma. In 1.4 we can add:

- (e) If c is a symmetric function from [2[∞]₀]^{< ∞} to {0, 1} then at least one of the following holds:
 - (a) we can find pairwise disjoint $w_i \subseteq 2^{\aleph_0}$ for $i < 2^{\aleph_0}$ such that $c \upharpoonright [w_i]^{<\aleph_0}$ is constantly zero but

$$\bigwedge_{i < j} (\exists u \subseteq w_i, \exists v \subseteq w_j) [c[u \cup v] = 1];$$

(β) we can find an unbounded $B \subseteq 2^{\aleph_0}$ such that $c \upharpoonright [B]^{<\omega}$ is constantly 0.

It is natural to ask:

1.6. Question. Can we replace 2^{\aleph_0} by $\lambda < 2^{\aleph_0}$? \aleph_1 by $\mu < \lambda$? What is the consistency strength of the statements we prove consistent? (see later). Does λ strongly inaccessible k_2^2 -Mahlo (see [3]) suffice?

1.7. Discussion. Of course, $1.5(e) \Rightarrow 1.4(c) \Rightarrow 1.4(d)$. Starting with λ weakly compact, seemingly we can get a c.c.c. forcing notion P of cardinality λ , such that in V^P , $2^{\aleph_0} = \lambda$ and (e) of 1.5 holds for $c : [2^{\aleph_0}]^2 \to \{0, 1\}$ (so c(u) = 0 if $|u| \neq 2$) and this suffices for the result. Also we can generalize to higher cardinals. We shall discuss this elsewhere.

1.8. Theorem. Concerning the consistency strength, in 1.4 it suffices to assume

(*) λ is strongly inaccessible and for every F: [λ]^{<∞}→ μ and club C we can find B ⊆ C (or just B ⊆ λ), otp (B) = ω₁ such that
(a) B is F-indiscernible, i.e., if n < ω, u, v ∈ [B]ⁿ then F(u) = F(v);
(b) for every n < ω there is B' ∈ [C]^λ such that

if $u \in [B']^n$ and $v \in [B]^n$ then F(u) = F(v).

Proof. Let $R = \{\overline{Q}: \overline{Q} \in H(\lambda), \overline{Q} \in \mathscr{K}^n_{\mu,\kappa}\}$ ordered by $\overline{Q}^1 < \overline{Q}^2$ if $\overline{Q}^1 = \overline{Q}^2 \upharpoonright \ell g(\overline{Q}^1)$. Clause (b) takes care also of "the end extension" clause and for 1.3A(4), clause (b) the proof is the same.

A somewhat less natural property though suffices. (Note: Clause (b) also helps to get rid of the club C.)

1.9. Claim. In 1.4 it suffices to assume

(*)' if
$$F: [\lambda]^{<\aleph_0} \to \mu$$
 then there is $B \subseteq \lambda$, otp $(B) = \omega_1$ such that
(a) $F \upharpoonright [B]^n$ is constant for $n < \omega$;

(b) if $u \triangleleft v^{\ell} \in [B]^{<\aleph_0}$ for $\ell = 1, 2$ then we can find $v_i \in [\lambda]^n$ for $i < \lambda, u \subseteq v_i$, $\min(v_i \setminus u) \ge i$, and $i < j \Rightarrow F(v^1 \cup v^2) = F(v_i \cup v_i)$.

References

- [1] S. Shelah, Was Sierpiński right? I, Israel J. Math. 62 (1988) 355-380. [Sh 276]
- [2] S. Shelah, Was Sierpiński right? II, Strong partition relations below the power set: consistency, in: G. Halász et al., eds., Sets, Graphs nad Numbers (North-Holland, Amsterdam, 1992). [Sh 288]
- [3] S. Shelah, Consistency of positive partition theorems for graphs and models, in: J. Steprans and S. Watson, eds., Set Theory and Its Applications, Lecture Notes in Math. 1401 (Springer, Berlin, 1989) 167–193. [Sh 289]
- [4] S. Shelah, Possibly every real function is continuous on a nonmeager set, Publ. Inst. Math. (Beograd) N.S.), to appear. [Sh 473]
- [5] S. Shelah, Was Sierpiński right? IV, in preparation. [Sh 546]
- [6] S. Shelah, Proper and Improper Forcing (Springer, Berlin), accepted. [Sh f]
- [7] M. Rabus and S. Shelah, in preparation.