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Abstract

We prove the consistency of: if B;, B, are Boolean algebras satisfying the c.c.c. and the 2%°-c.c.
respectively then B; x B, satisfies the 2%-c.c. We start with a universe with a Ramsey cardinal
(less suffice).

0. Introduction

We heard the problem from Velickovic who got it from Todorcevic, it says
“are there P, a c.c.c. forcing notion, and Q, a 2™-c.c. forcing, such that P x Q is not
2%.c.c.”” We can phrase it as a problem of cellularity of Boolean algebras or
topological spaces.

We give a negative answer even for 2 regular, this by proving the consistency of
the negation. The proof is close to [2, §3] which continues [1, §2] and is close to [3].
A recent use is [4].

We start with V= “4 is a Ramsey cardinal”, then use c.c.c. forcing blowing the
continuum to A. Originally the paper contained the consistency of e.g. 2% — [N,]3,
2% the first k3-Mahlo (weakly inaccessible; remember k% < w), but the theorem
presented here is (for me) satisfactory. See more in [5]. I thank Mariusz Rabus for
corrections.

What problems do [1-4] and this paper raise? The most important are (we state the
simplest uncovered case for each point):
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A. Question. (1) Can we get e.g. Con(2™ — [X,]3)? More generally, raise u* to higher
cardinals. (See [5].)

(2) Can we get Con(X,, > 2™ — [N ]3)? Generally lower 2% the exact X, seems to
me less exciting.

(3) Can we get e.g. Con(2* > A —[u™]3)?

Also concerning [4]:

B. Question. (1) Can we get the continuity on a nonmeager set for functions
[:¥2 %27

(2) What can we say about the continuity of 2-place functions? (See [7].)

(3) What about n-place functions (after [27)?

C. Question. (1) Can we gete.g. for u = u=* > N, Con(if Pis 2*-c.c., Q is u*-c.c. then
PxQ is 2*-cc.)?

(2) Can we get e.g. Con(if P is 2™-c.c., Q is N,-c.c. then P x Q is 2™-c.c.)?

(3) Can we get e.g. Con(2™ > 1 > N, and if P is A-c.c., Q is N,-c.c. then Px Q is
A-c.c.)?

Preliminaries

0.A. Let < bea well ordering of H(y) = {x: the transitive closure of x has cardinality
<z} agreeing with the usual well ordering of the ordinals.
P (and Q, R) will denote forcing notion(s), i.e., partial order with a minimal element
@ = 0p. A forcing notion P is -closed if every increasing sequence of members of P, of
length less than /, has an upper bound.

0.B. For sets of ordinals, 4 and B, define Hj", as the maximal order preserving
bijection between initial segments of A and B, ie., it is the function with domain
{a e A: otp(an A) < otp(B)} and HS (@)= p if and only if xe A4, fe B and
otp(xn 4) = otp(fn B).

Definition 0.1. 7 > (), holds provided that: whenever F is a function from [1]~°
to 4, F(w) < min(w), C < 4 is a club then there is 4 = C of order type « such that
[wy, wo € [AT"%, |wy| = |wy| = F(wy) = F(w3)]. (See [6, XVII, 4.x].)

0.1A. Remark. (1) If / is a Ramsey cardinal then 1 " (1),°.
(2) If 2=min{A: 2 - () “} then A is regular and A -7 (2),;“.

Definition 0.2. 1 — [a]% ¢ if for every function F from [4]" to k thereis A = 4 of order
type « such that {F(w): we [4]"} has power < 6.
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Definition 0.3. A forcing notion P satisfies the Knaster condition (has property K) if
for any {p; i < w,} < P there is an uncountable A S o, such that the conditions p;
and p; are compatible whenever i, j € 4.

1. Consistency of “c.c.c. x 2%-c.c. = 2%°-c.c.”

The a/s are not really necessary but (hopefully) clarify.

1.1. Definition. (1) %, is the family of Q = (P, Qp, ag: 7 < o, f < a), where
(@) (P, Qs 7 <o, f <) is a finite support iteration:
(b) every~Py, Q, satisfies the c.c.c;
() Qpisa P;-name which depends just on Gp,n P, (see below; hence it is in
I~/[Gp*] and |Qg| < x and its set of members < V (for simplicity);
(d) ﬁla,,l ,uandyea,,:>ayCa,,
(2) For such Q we call a < £g(Q), Q-closed if [f € a = a; < a] and let

pP* = p2 = {pe P, dom(p) < a and for all e dom(p): p(f) eV
(not a name) and p [ a;zIt“p(B) € 05"}

(so we are defining P} by induction on sup(a)) ordered by the order of Py, ).

(3) A} . is the class of § € A,  such that if § <y </g(Q), cf(p) # X, then P,/P;
satisfies the Knaster condition (actually we can use somewhat less). Let 4/ . = 4, .
(4) If defining Q, we omit P, to mean | )<, Py if o is limit, Pg+ Qg if a = f + 1.

(5) We do not lose generality, if we assume Q; < [x] ™ and the orderis < (then
1.2(1)(g) becomes trivial as for closed a and p,~q eP¥*, wehave p<qg=pla<gqla)

1.2. Claim. (1) Assume x € {n, k} and Q =<P,,Qp, a5 f <o,y <o) e X .. Then

(@) for a* <o, Q [a* =(P,, Qp, ag: f < a*, y~< a*> belongs to A

(b) P¥ is a dense subset of P;

(c) for any Q-closed a < a, P¥ < P, (in particular, P} is a dense subset of P,);
moreover, if pe P¥ then placP¥ and [pla<qeP} =r=qupl(x\a)e P}
&p<r&g<r];

(d) for a Q-closed a < a, {(Pk~,, Qp, ag: Bea,yeay belongs to A}, (except
renaming; not used); -

(e) lfQ is a P¥-name of a c.c.c. forcing notion of cardinality < K, each member Oan
zsfrom V, a < o is Q-closed, |a| < p and P,y = P, *Q, and when x =k, Qa
satisfies the Knaster condition or at least cf (o) =R, & (ﬁ <o = P x Qa/PﬁH
satisfies the Knaster condition) then (P,, Qg, ag: B<a+ly<a+1ed

(f) ifn<w,py, ... ,pn€ Py and

(*) for every Pe Uﬂzldom(p/) for some m=mg,e{l, ... ,.n} we have

Pl BIE“pe(B) < g, PmlB) for £€{1, ... ,n}”
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then py, ..., p, has a least common upper bound p which is defined by: dom(p) =
U/ vdom(f), pAp) = pmﬁ/([f , so in particular pe P, and /\;zlp/ ePk
= pe Pa*,
(8) ifps < pand p,e P¥ for £ < n,and ay is Q-closed for k < m then there is p' € P¥,
such that p <p and PXEp,la, <p la for £ <n k <m.
(2) Ifxe{n, k} and 6 < }is a limit ordmal and for o < & we have {P,, Qy, ag: f < ,
y<aye Ay, and Ps =\ ), s P, then {P,, Qp, ag: f < 9,7 < 5) belongs to A ;.

Proof. Straightforward.

Essentially by [3, 2.4(2), p. 176] (which is slightly weaker and its proof is left to the
reader, so we give details here).

1.3. Claim. Assume i -7 (wa*);® (e.g. 2 a Ramsey cardinal, a* = J), y > 2, x € H(}).
(1) There is a strong (y, 4, o*, i, Ng, w)-system for x (see Definition 1.3A).
(2) There is an end extension strong (y, 4, &, i, Ng, w)-system for x if A is Ramsey or
A =min{i: 2 - (wa*);?} (also then the condition holds for every i’ < p).

1.3A. Definition. (1) We say N = (N se[B]“'""> is a (3, 4, «, 0, o, n)-system if:
(a) Ny<(H(y), €) (or of some expansion), § + 1 < Ny, |[Ns|| =0, °~(N,) = (Ny);
(b) B < 4, otp(B) = ;
(c) n < w (equality is allowed but 1 + @ = w so s is always finite);
(d) Ny N, € N, s
() NynB=3s;
(f) if|s| = [|¢]| then Ny = N, say H, , is an isomorphism from N, onto N (necessarily
H; , is unique);
(@ ifs =5t ={xet:@pes)[|fns]|=|ant|]} then H, ,, H, , are compatible
functions; H, , = id, H,, 2 H>, H,, . °H,, ,, = H,, ,, H., = (H, )~}
(h) sup(N,n4) < mm{oc €B: N\esy <t}
(2) We add the adjective “strong” if we strengthen clause (d) by

(d)* Ny N, = N,n, (so in clause (g), Hy , < H,,).
(3) We add the adjective “end extension” if
(1) s<qt = N;nAN,n A (where A<]B means A = Bnmin(B\ 4)).
(4) We add “for x” if x € N, for every se [B]“'*", and H, ,(x) = x.
1.3B. Remark. If 4 is a Ramsey cardinal (or much less, see [6, XVI1I, 4.x] and [3, §4])

then we have if ye snt, smy =tny and ye N, then in (H(y), €, <}) the elements
y and H, () realize the same type over {i: i < y}.

Proof of Claim 1.3. (1) Let C = {J < A: for every o < 6 there is N<(H(y), €, <})
such that u + 1 + o = N and sup(Nn 1) < é}. Clearly C is a club of A.
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Let By ={n: i<wa*} <C (o strictly increasing) be indiscernible in
(H(x), €, <*,x} (see Definition 0.1). Let B = {o;: i < wa* limit}. For se [Bo] ™™ let
N{ = the Skolem hull of su{ii i < u}u{x, 4} under the definable functions of
(H(y), €, <¥) and

Ny = J{N2nNY: 1, e[{op i <wa*}]™™ and s=t,nt,}
Clearly
(x)  INJi<p and {x,i} SN,
Now we shall show

(*), if s € [B] <™, y € N, then for every finite t = B, there is u € [ B;] ™ such that
s S uunt < sand ye N2,

As y e N, there are s, s, € [Bo] “™ such that ye N2 "N and s = 5, ns,. Let s, Us, =
{oigs .-+ 0, ,} (increasing), and let n* = sup{n: for some f, f +ne N;UN,} + 1,
and define for £ < m a function f; with domain s, us,, such that

f(on) = Oi+ne f kZ=m—¢ and i ¢s,
%) = .
7 o, otherwise.

Note that
®1  fors <m filsi=friilsi0rfIs3=fs.11s, (o1 both).
[Why? As iy € 5,\81\s OT is € 5,\$1\S Or I, €5 = 51N S,.]
®, f is order preserving with domain sqUs;, fr | s = the identity.
As ye N2 NN there are terms 1., T, such that
V=000 0 oo dmesy, = T2l s Wiy oo Jmjcsye
Using the indiscernibility of B, we can prove by induction on ¢/ < m that
®3.s =700 S )y o Daes, = T2 S0y - e,

[Why? For ¢ = 0 this is given by the choice of 1, 1,. For / + 1 note that by ®,,
fr+1°f7 " is an order-preserving function from ran(f,) onto ran( f;, ;). By ®5., and
“By is indiscernible” we know (..., fr(%), . e, = T2l oon s fr(&i ) oov Vg cnp- BY
the last two sentences and the indiscernibility of B,

. 3(f/+10f/_1) (ﬁ(aik))’ )ccik s, — TZ( ’(f/+10‘f/_1)(f/(aik))’ )fxik €s5°
But (fy+1°f7 1) (fe(es)) = fr+1(o,) 50
. af/+1(fxik)a )ati,(ss, = TZ( ,f/+1(aik)a )1,‘,(5.\'2'
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But by ®, for some e € {1,2} we have f; [s, =frv1 5080 To( oo, frae 1 (i) - oy e
=To( ..., for(®i) ... )u, e, Dut the latter is equal to y (by the induction hypothesis),
hence the former is so by the last sentence

Y= S @), - Daen = 120 10y - Y enn

So we have carried out the induction on # < m, and for / = m we get ye N3 ), but
by the choice of n* and f,, clearly f,(s;)nt < s, and we have proved (#),.]
Now we can note

(%), if se [B]"™ and yy, ..., y, € N; then for some s,, s, € [Bo]~™ we have:
s=s;ns;and yy, ... ,y, e N N2,

[Why? We can find u,, ... ,u, € [Bo] ™ such that s < u, y,€ Ny, (as y, € N,). Now

by (*); for each /=12, ...,n we can find v,e€[Bo]~™ such that s < v,
s=v({Um=1tn) and y,eNS. Let u={)i-iur, v=Ji=14, Cclearly
Vis oo, Yn€ENJANC and unv = s, as required.]

Now, as we have Skolem functions, (x), implies
()3 N<MHQ). €. <3)
Also trivially
(*%)a N?< N, hence u + 1 < N,,
(*)s s St = N<N,.
(For (x)s, use (x);.) Also
(*)s Ny, AN, = Ny, s, for sy, s;e[B]™.

[Why? The inclusions Ny n,, & Ng, "N, follow from (#)s; for the other direction let
yeN,NN,,. By (¥); as yeN, there is t; such that s; <t;€[Bo]™™,
tin(s;us,)=s, and yeN,. By (%), as yeN, there is f, such that
53 S t, €[Bo]™™, tan(s;us,ut;)=s, and ye Ny. So ye N, nN?, but easily
tiNt; =51MS,.]

()7 sup(N;n4) < min{oe B: /\,es7 < .
[Why? As B, < C and see the definition of C.]

Now check that (a)—(h) of Definition 1.3A hold. Now {(N,: s € [B]“™) is as required.
(2) If 4 is Ramsey, without loss of generality otp(By) = 4 and it is easy to check
1.3A(i). The other case is like [3, §4]. [

1.4. Theorem. Assume Wy < u < x < A =cf(A), 4 strongly inaccessible, A a Ramsey
cardinal, and 5 < ;. o5) = n,) (can be added by a preliminary forcing). Then we have
P such that
(@) P is a c.c.c. forcing of cardinality A adding A reals (so the cardinals and cardinal
arithmetic in V¥ should be clear), in particular in V¥ we have 2% = .
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(b} IFp“M A holds for c.c.c. forcing notions of cardinality < pand < A dense sets (and
even for c.c.c. forcing notions of cardinality < k which are from V[ A] for some
A<

(¢) IFp “if B is a i-c.c. Boolean algebra, x; € B\{0} for i < A then for some Z < 4,
|Z| =N, and {x;: i € Z} generates a proper filter of B (i.e., no finite intersection is
0g)”.

(d) +p “if B; is a c.c.c. Boolean algebra, B, is a A-c.c. Boolean algebra then B, x B, is
a s-c.c. Boolean algebra™.

Proof. Let (A & < 4, ¢f(d) = ¥, ) exemplify the diamond. We choose by induction
onx <4 0°=<(P, Qpay y<af<ayeA™, such that ! <u = 0* = Q*a’.
In limits o« use 1.2(2). Foro = B+ 1, cf(P) # N, take care of (b) by suitable bookkeep-
ing using 1.2(1)e). If « = B + 1, ¢f(B) =N, and A; codes p € Py and Py-names of
a Boolean algebra B; and sequence {x?: i < > of non-zero members of By, and
p forces (I-p,) that there is in V'[Gp,] some c.c.c. forcing notion @ of cardinality < u
addingsome Z < B,|Z| = X, with {x/: i e Z} generating a proper filter of B, then we
choose 0, if pe G,,, as such Q. If p ¢ Gp, or there is no such Q in V[G,,], then Qﬁ 18
e.g. Cohen forcing.

So every Q% is defined, let P = Uv< 1P,. Clearly (a) and (b) hold, and (d) follows
by (¢). So the rest of the proof is dedicated to proving (c).

Solet pe P, plr “B a A-c.c. Boolean algebra, x; € B\{03} for i < A”. Without loss
of generality the set of members of B is A.

Let x =<P,p, B, {xi: i<A)), x=A". By Claim 1.3 there are Ae[i]* and

~

(N s € [A]<™) as there (for k = u + « here standing for u there). Let

C = {0 < A1 ¢ a strong limit cardinal > x + y, [0 < = Q[ ae H(J)],
3 =sup(And),se[And] N = sup(AnN;) < 6,

B'6 a Ps-name, and for i < ¢ we have x; a P;name}.

For some accumulation point é of C, ¢f(d) = N, and A, codes {p, B8, {x;: i < ).
We shall show that for some ¢, p < g € P; and g p, “there is Q as required above™. By
the inductive choice of Q; this suffices.

Let A* € AN, otp(;l*) = @, = sup(4*) and {J;: i < w,) Increasing continu-
ous, & = | Ji<p,8;, ;€ C, A¥N 3o =0, |A* N[5}, 6:11)] = L.

In VP we define:

0= {u: ue[A*]“®, and Bk “) x:i # 0!3”}

icu
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ordered by inclusion. It suffices to prove that some g, p < q € P;, g forces that: Q is
c.c.c. with | )G an uncountable set; now clearly g forces that {x;:i e | JGp) generates
a proper filter of B. )

If not, we can find g¢;, «; such that

p<qePf and qlrp, “u;e Q" (where u; e [A*¥]<™)

and {(gq;, u;): i < w,) are pairwise incompatible in P;* Q.
Let v; be a finite subset of 4* such that: u; = v;, and

(%) [v € A* & v finite & y € (dom ¢;)n N, = y € (domg;)N N,yn,, ]

By Fodor’s Lemma for some stationary S < wy, u*, v*, n* and i(x) we have: fori <
in S,

Uiméi = U* = 61‘(*), U; & (Sp Ivil = n*7
u;No; = u*, i(*) = min(S),
{lymuv)l: v e u;} does not depend on i,

qiréiEP* qz'EP:skj~

Figxy?

Let b; = N,,n/, so b; is necessarily Q°-closed and |b;| = . Let q} = g; | b;, so neces-
sarily ¢/ € P§. (see 2.2(1)(c)). Easily P¥ = N, (though do not belong to it) so ¢/ € N,,..
Let gf = H,,,..(qi). s0 qf € Py, . Let

a7 =(qi 1 dia) U [T [ (N, M AN\i )]

by 1.2(1)(c) we know g7 € P%,.,,+1 and g7 < g7, even without loss of generality
q? < q7 [ bige) As P:‘up(b‘m)ﬂ < P; and P; satisfies the c.c.c. clearly for some i < j from
S, 4, qj are compatible in PJ,,, y+1, 50 let re P3q, . ,+1 be a common upper
bound. So g7 [ (i N biw) <7 [ (Bicey Nbiey) and g5 [ Biey Nbicy) < 71 Bi Vi)
and g7 [ by <7 biy and g7 [y <7 [bigy.

Without loss of generality dom(r) € b;(,) U 0;4 (allowed as b;,, and 6;, are
closed, see 1.2(1)(c)); let r; = H,, o,  (r [ b)) and similarly r; = H,, ., (r [ iy ).

Note that r;e P, rje P5,r;[0;=ri18; =r | &;4. Hence r,ur; e P}.

Case 1: r;ur; do not force (ie. IFp,) that

BIF* [} x,=0g"
aEu;Uu;j
Then there is ¥’ € Ps, r; < 1, r; < ' forcing the negation. So without loss of generality
" € P¥, and (as all parameters appearing in the requirements on 7" are in N, also)
'€ P¥aN,o.)- NOW T, 1, gy, g; have an upper bound r” € P;. [Why? By 1.2(1)(f), we
have to check the condition () there, so let

p € dom(r')udom(r)u dom(g;)u dom(g;).
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Subcase 1a: B € ;4)\Ny, v, Note that Ny, N 0;4) = Nx0 4 = by, (see choice of
the N,’s and definition of the b,’s) but dom(r') = N,,,,,n4, so ¢ dom(r'). Now

410 = qi 1 0iy = qi Oy ST,
4i18;=q; 6y =4} [ 0y <1

Sor[BIkp, “qi(B) < r(B), q;(p) < r(B)” and B ¢ dom(r'). So we have confirmed (*) from
1.2(1)(f) for this subcase.

Subcase 1b: B € 0;4)N Ny,o0;- Exactly as above: Ny, M4y = Npr N A = by, 50
pe Ny, B€dignbis. Also

i T bigey = qi 101 = 47 1 6ica0 = @ 1 Qi Vi) <71 (Biay i)
and

q; Mbiey = 4j 1) = 45 1 icay = 45 1 Gia0 M biga) <7 N Big) b))
and

PG Nbiwy) ST

(as H,, y,,, 1s the identity on d;)Nb;(,). The last three inequalities confirm the
requirement in 1.2(1)(f) (as B € J; )N b;(4), See above).

Subcase 1c: B €(0\0ix)\Ny,uv;- In this case f¢dom(r) (as ¥ e N,.,). Also
Oix) < 0; < 8; < and:

dom(r)\0iy) S (bi sy 0i(x)) \di(s) S [ x)» 04),
dom(g)\Oi(x) S [0:;6;),  dom(g;)\dix) S [6;, 9).

So B belongs to at most one of dom(r’), dom(r), dom(g;), dom(g;) so the requirement
(*) from 1.2(1)(f) holds trivially.

Subcase 1d: f € (6\0;(x)) " Ny, o, Clearly B ¢ dom(r). We know g; [ b; =g/, r; <7,
H,,, 0(a1) = 47 < g [ bi) < rlbjy, hence

q! <H, ) o(rlbiy) = Hy, o, (r Thigy) =1

but r; < ¥, so together ¢/ < r, and similarly g} <. As we have noted § ¢ dom(r) we
have finished confirming condition (*) from 1.2(1)(f)].

So really r, ¥, g;, q; have a least common upper bound, say r’s hence (",
u;wu;) € Ps» Q; exemplified (g;, u;), (g;, u;) are compatible, as required.

Case 2: not Case 1. Let {sg: B < A) be such that:

sp€[AI™™,  v* <=5 [s5\0*] = |v\v¥|,
sup(v¥) < ;) < min(sg\v*),
o < min(sg\v*) (for simplicity),

B <y = max(sg) < min(s,\v*).
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As the truth value of ﬂae,ﬁxa is a P¥-name for some closed a € N, of cardinality < g,
and ‘1:“‘ [B = “maeui Xy # 05”] Clearly,

q} I- [,B = “ﬂzeui Xy # O_B”]-
For f<Alet ¥ = Hy, ,  (rlbyy) and uy = Hy, ,, (i) Let
Y={f<ireGl

Clearly,

r”“—m [BIF* ﬂ xi # 05”7
icup -
Clearly p < * and for some f§ we have r’IF“Y e [A]* (and pe Gp)” and by the
assumption of the case:

plF { ﬂ x: fe Y} is a set of non-zero members of B

ieuy
any two having zero intersection in B”.

This contradicts an assumption on B. []

We can phrase the consistency result as one on colouring.

1.5. Lemma. In 1.4 we can add:
(e) If ¢ is a symmetric function from [2%°]<“ to {0, 1} then at least one of the following
holds:
(x) we can find pairwise disjoint w; < 2™ for i < 2% such that ¢ [[w;] <™ is
constantly zero but

/\ (Qu s wi, I < wy)[c[uvr] =1];

i<j

(B) we can find an unbounded B = 2% such that ¢ [ [B] = is constantly 0.
It is natural to ask:

1.6. Question. Can we replace 2% by 1 < 2™? X, by u < A? What is the consistency
strength of the statements we prove consistent? (see later). Does 4 strongly inaccessible
k3-Mahlo (see [3]) suffice?

1.7. Discussion. Of course, 1.5(e) = 1.4(c) = 1.4(d). Starting with A weakly compact,
seemingly we can get a c.c.c. forcing notion P of cardinality 4, such thatin V¥, 2% = 2
and (e) of 1.5 holds for ¢:[2™]? — {0, 1} (so c(u) = 0 if |u] # 2) and this suffices for the

result. Also we can generalize to higher cardinals. We shall discuss this elsewhere.
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1.8. Theorem. Concerning the consistency strength, in 1.4 it suffices to assume

(*) 4 is strongly inaccessible and for every F: [A]“™ — u and club C we can find
B = C (or just B < 1), otp (B) = w, such that
(a) B is F-indiscernible, i.e., if n < w, u, v € [B]" then F(u) = F(v),
(b) for every n < w there is B' € [C}" such that

ifue[B']" and v e [B]" then F(u) = F(v).

Proof. Let R={Q: Qe H(4), Qe X" .} ordered by Q' < Q? if Q' = Q% /g(Q").
Clause (b) takes care also of “the end extension” clause and for 1.3A(4), clause (b) the
proof is the same.

A somewhat less natural property though suffices. (Note: Clause (b) also helps to get
rid of the club C.)

1.9. Claim. In 1.4 it suffices to assume

(xY if F: [A]=% — u then there is B < A, otp (B) = w, such that
(a) F[[B]"is constant for n < w;
(b) if u<w’ € [B]*™ for ¢ = 1,2 then we can find v, [A]" for i < i, u < v,,
min(v;\u) = i, and i <j = F(v' Uv?) = F(v;uv)).
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