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THE THEOREMS OF BETH AND CRAIG 
IN ABSTRACT MODEL THEORY 

II. COMPACT LOGICS* 

J. A .  Makowsky and S. Shelah** 

Abstract 

Various compact logics such as stationary logic, positive logic, logics with various 
cardinality quantifiers and cofinality quantifiers are studied. Counterexamples to 
the theorems of Beth and Craig are given. Back and forth arguments are studied 
for the first two logics, transfer theorems presented for positive logic and a new 
compactness proof for the cofinality quantifiers is given. 

O. Introduction 

This paper is a companion to [21, 22]. We discuss Beth's and Craig's Definability 
theorem for several compact logics known from the literature. For some of them 
new proofs of compactness are given 1. 
In Section 1 we discuss extensions of L(Q 1) (cf. [15]) culminating in Shelah's L(aa) 
(cf. [3]). We present in Section 2 various Ehrenfeucht games mostly due to the first 
author, which give criteria for elementary equivalence for some of the logics 
discussed in the paper. 
In Section 3 we then prove 

Theorem A. Not BETH (L(Q1), Lo~(aa)). 

In Section 4 we study the same for L(Q~) culminating in the first author's L~ using 
Chang's transfer principle (cf. [18]). 
In Section 5 we study extensions of Malitz and Magidor's L(Q <°') (cf. [17]). In 
particular we prove a result of Stavi, that L? (the analogue of L p) is not compact. 
Our main result here is 

Theorem B. Not BETH (L(Q 0, E'). 

In Section 6 we finally discuss a family of quantifiers due to the second author [26] 
and give a new proof of their compactness, which is due to the second author 

* Eingegangen am 13. 6. 1978. 
** Supported by United States Binational Science Foundation Grant No. 1110. 
1 The authors would like to thank the referee and H. D. Ebbinghaus for their comments 
and suggestions, which have been incorporated in this paper. 
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14 J. A. Makowsky and S. Shelah 

alone. Again we have counterexamples to Beth's theorem. For all three counterex- 
amples we use Shelah's construction described in [21, Section 6]. We assume the 
reader is familiar with [21]). 

1. Stationary Logic and its Sublogics 

Let L be a first order language xi(i<e)) countably many individual variables, 
and si(i < e)) countably many relation variables, not in L. 

L(aa) and /Y are the least sets of formulae closed under the formation rules 
(i), (ii) and (iii),, (iii)p respectively: 
(i) L-atomic formulae and si(xj) are in L(aa) (If). 
(ii) L(aa) (L p respectively) is closed under the finitary operations ^ ,  v ,  =~, ~ ,  

3xi, VXr 
(iii)~, L(aa) is closed under aa s i and s ta ts  i i.e. if q~(si) is in L(aa) so are aa sip and 

stat s~o. 
(iii)p L p is closed under 3s~o(si) provided s i does not occur negatively in q~. 
L~(aa), Loo~(aa) etc. are defined in the obvious way. Satisfaction (in N 1- 
interpretation) for L p is defined as usually with the additional clause: 
96~ 3si~0(s~) if there is a countable R CA such that (96, R ) ~  qo(R). 
The N~-interpretation is given by replacing "countable" by "of cardinality less than 

Satisfaction for L(aa) is explained via the cub-filter on P<~,(A): 
96~aas~o(s) if {R~P<s~(A)I(96,R)~p(R)}  contains a closed and unbounded 
family of countable sets 

96~stats~0(s) if 96~--naas~0(s). 

The infinitary cases are defined in the obvious way. 
L(aa) was invented in [26] and extensively studied in [3] . /2 was invented by the 
first author and introduced in [23]. It is extensively studied in [18]. 
The following resumes what is known and needed here on L(aa) and L p. Note that 
L p is a sublogic of L(aa) due to the equivalence of 3s~o(s) and aas~o(s) for 3s~o(s)eL v. 
There are axioms Fp (due to Stavi) and F,, (due to Barwise and Makkai) such that 

Theorem 1.1. Let S, be a countable set of sentences of L(aa) (L p respectively). 
Then the following are equivalent 
(i) N has a model; 

(ii) _r has a model of  cardinatity <=N~ ; 
(iii) every finite subset of  Z, has a model (L(aa) is (o),co)-cornpact) ; 
(iv) SuFa,(SuFp) is consistent. 

Similar theorems [but (iii)] are true for the infinitary case Lo,,o,(aa ) and L~l,0. 
For later use we state here without proofs (cf. [24]). 
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The Theorems of BETH and CRAIG in Abstract Model Theory. II. t5 

Theorem 1.2. Every formula of L(aa) is equivalent to a formula of L(aa) which is in 
prenex normal form. (Similarly for LV). 

A weak structure ~ is quadruple (A, P, E, F )  where A is an L-structure, P is an 
additional sort, E is a binary relation on AxP and F is a family of subsets of P. 
Without loss of generality P can be identified with a family of subsets of A via E 
and then it makes sense to speak of F as a filter on P. Letting the variables s i range 
over P and identifying si(xj) with xiEs ~ we have an obvious interpretation of L(aa) 
and L p formulas on weak structures, taking as "countable sets" the elements of P 
and interpreting aasq~(s) by 

9.I~aasq~(s) iff {X~P:(9X, X)~(o(X)}~F. 

L(aa) is the culmination of the search of extensions of L(Q1) which hopefully satisfy 
the interpolation theorem. 

Our main result is: 

Theorem 1.3. 
(i) Not CRAIG (L(Q~), L~o,(aa ). 

(ii) Assumin9 MAsl and 2 ~ ° > N r  
Not A Int(L(Qx),L~o,(aa)). 

(iii) Not BETH (L(Qx),Lo~,(aa)). 

This improves many theorems for sublogics of L(aa) and solves a problem left 
open in [3]. The proof will be given in Section 3. A presentation of 1.3(i) can also 
be found in [14]. 

Among the sublogics are: 

1. L(Q 0 
Here not A-Int(LQI,LQO is easy and was observed 
BETH(LQ1,LQO was proved by Friedmann [10]. 

by many people. Not 

2. In [23] a quantifier, 

QS("")x 1 .. . . .  x , ,y l  ..... y,,(xl . . . . .  x,,y~ . . . .  ,y,,) 

binding n + m variables, was introduced. 
It's semantics is defined by M QB(""~Yc, ~q~(2, ~) iff there exists a countable set C_c_ A 
such that for every at, . . . ,a,~A there are c 1, ...,cm~C such that if 9.1M3~o(8,p) 
then 21~ (p(8, c-). Obviously this quantifier is expressible in L p. 
Ebbinghaus [8] proved not CRAIG(L(Qt), L[Q B("'"), n, me co]). His example is our 
starting point. 

3. L p 
Though Theorem 1.3 applies to L p there are natural weakened Definability 
theorems which derive from LindstrSm's alternative proof of Craig's theorem via 
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16 J. A. Makowsky and S. Shelah 

his characterizat ion of  L~,,o (cf. [19]). The  same applies for L(Qx) which was first 
proved by Stavi and for L(aa) in [19]. Similar results were also obta ined  by 
Caicedo [6]. 

2. Some Ehrenfeucht Games 

To prove Theorem 1.3 we shall use a Back and For th  criterion for e lementary 
equivalence in L~,(aa) which is taken from [20], and was independently found by 
Weese and Seese as well as Caicedo [6]. A slightly different game was in t roduced 
by Kaufmann  [14]. The Back and For th  arguments described here have several 
ancestors:  the Ehrenfeucht-Fraisse game for predicate calculus, its extension to 
L(Q) due to several authors  among which are Vinner and Slomson, the obser- 
vation that  this can be extended to arbi t rary mono tone  quantifiers as described in 
[24]. This will be put  together  to yield our  criterion for L(aa) and L~,(aa). 
Ziegler [33] designed a Back and For th  argument  for topological logic and its 
dualized version yields our  criterion for L v. 
Let 9AI=(Ai, Pi, E~,Fi) ( i=0 ,  1) be two weak structures. Then 6,(92o, 921) (neo9 + 1) 
is the following game: 
There are two players, I and II. The length of  the game is n. In the k th m o v e  

I chooses i~{0, 1} and either a ~ A  i or f ~ F i .  
II replies with the choice ot-e a lk - ~-e A l - ~ or fkl - i~  F1 _ i respectively. In the first case 
the move is completed and the ou tcome is" a k°, ak~. In the other  case I cont inues with 
the choice OfSk 1 - i e  fk~ -~ and II replies with a choice ~ ~ o OfSk~f ~ and the ou tcome is s k, 

1 
S k • 

After n moves we have an outcome sequence 

x° ,x  °, x ° ~a) according to the 
..... - 1 with i 

x~, x 1,1 ..., x,_l 1 x1 = [s~ type of the move. 

II has won if the map 

o 1 (for ~_  i a k l-->a k X k - - a k )  is an L-isomorphism 

from {a ° . . . . .  a °} onto {ao 1 . . . . .  a~} and 

0 0 1 I 92o~akES i iff 9Al~akEs j 
i i i i • (for Xk=a k and x~=sj and k,j<n). 

The  game o,(~o,  921) is similar but  instead of  f~ I chooses directly s ~ P  i and II 
replies with s~- ~e P~_ ~ and the ou tcome is s k ~+, s k~- in the second type of  the move. 
Here the + ( - ) m a r k s  which set has been choosen by player I(II). In this game II 
has won if the map _ o ~ _ 1  is an L- isomorphism and ~ i 921i~ akEs j implies t2 k t~ k 

1 - i  1 - i  i _  i +  
9"[i-  1 ~ ak  E S j  provided that  x j -  s i . 

+ 
If II has a winning strategy for o,(~o,  ~I1) or o,(gA o, 921) we write ~1 o ~ 1 ( 5 )  or 
9/o w 9-I1(o) respectively. 
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The Theorems of BETH and CRAIG in Abstract Model Theory. II. 17 

In the following we prove our main theorems for L(aa) and ~., the proofs for L v and 
+ 
o. are exactly the same as for topological logic and are verified in [12]. 
Throughout  the rest of this paper we assume L to be finite and relational 
(including individual constants). 

Theorem 2.1. 
(i) 92 0 = Nl(L(aa)) iff for all n~ogN o -~ NI(~ ). 

(ii) N O = Nl(L®~(aa)) iff N O .~ NI(~ ). 
(iii) N o - N I ( L V  ) iff for all n~wNo~Nt(~) .  
(iv) 9 .Io-Nl(L~o,) / f f  9.Io~Nl(a ). 

To prove this we need a few temmata. 

Let ~ be the set of L(aa)-formulae with exactly x 1 .. . . .  Xk,, S 1 . . . . .  Sk2 as its free 
n ,k l , k2  

variables and n - ( k  1 +k2) bound variables. For x:kl--*k 2, let I-I be the set of 
n, k l , z  

LP-formulas with exactly x 1 . . . .  , X k l  , S 1 . . . . .  Sk~ " as its free variables, and n - ( k  1 + k2) 
bound variables; si occurs only positively (negatively) if z(i)= 1 (z(i)= 0). 

Lemma 2.2. ~ and I-[ are, up to Io9ical equivalence, finite. 
n, k t , k2  n, k l ,X  

Proof For n - ( k  1 + k2)=0 the formulae are quantifierfree, so the lemma is true as 
for predicate logic. For  the induction step we use Theorem 1.2. [ ]  

Let us denote by tso 81 sO gl~ + , , , ,k,,k~ a possible outcome of 6k(N o,0.11) (ok(N o,N0) 
. . . . .  i We write 9.Io.~211(0 ) over where k = kl + k2 and a' = a] ..... a~,, P = s' 1 ..... Sk~. 

(80 ,  a l , s - 0 ,  -1S )kt,k:~ if (8o, 81,SO, ~l)/kl,k2 is a winning position for 6.(No, N 0 and 
similarily for @ 

Lemma 2.3. I f  (8 °, 81, -gO, -gl)k,.k2 is a winnin9 position for 5,(No, 921) then for every q) 
in ~ we have 

n ,k l , k2  

No~(8°,sO) /ff N1~o(~1,~1). 

Proof The lemma is proved by induction on n - ( k  1 +k2) and follows closely the 
proof in [9] or [24]. The case n - ( k  1 + k 2 ) = 0  and all the cases for the usual 
connectives are left for the reader. Now assume the lemma proved for m = n - ( k  1 
+k2) and No~aasq~(s,8°,so). By the definition of satisfaction for L(aa) there is 
f s  F o such that for all se f we have N0~ (p(s, 8 °, SO). Let I choose f and let II reply 
with 9s  F1 according to the winning strategy for 6, + 1 (o, 1)- If I now choose t e 9 and 
II replies with s ~ f  then, by induction hypothesis and the winning strategy, we 
have 9.Io~ cp(s, 8 °, s °) iff 9.i I ~ (p(t, 81 , gi). Hence for all te  9 we have 91 i ~ qo(t, 81, gl) 
and 9 C {s :9.I i ~ q~(s, 81, gl)} ~ F1 ' therefore N t ~ aasq~(s, 8 i, gl). The symmetric case 
is similar. [ ]  
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18 J. A. Makowsky and S. Shelah 

Lemma 2.4. I f  9/o, 9/1 and (~o, ~l go ~i~ are such that for cpc ~ ]kl,k2 
n, lcl,k2 

9io~ q~(~o, go)/ff 9/1~ q°( ~l, gx) then 9/0 ~- 9/i(~) over (~o, ~l, -go, -i S )kbk~" 

we have 

Proof Again we restrict ourselves to the only nontrivial step and proceed by 
induction on n - ( k  i +k2). Assume I chooses f s F  o. Put (p~ 

(~s = I1~ { (p~ n,kl,ko2 + i :9/o~CP(S, 8°,go)} and ~v = ~V/ {cp~ : s~ f } . 

By Lemma 2.2 we can assume ~p to be finite. Put f '={sePo:9/o~p(s ,? t° ,go)}.  
f ' s  F o since f~_f ' .  Therefore we have 9/o~aasw(s, ~o, go) and, since aasv2 ~ ~ , 

n,kl,k2 
9/i~aasv2(s,~i,-gl). We now let II choose g = { s s P l  :9/ l~P(s,  a l , s l ) } s F r  If I 
now chooses t s  9 there is an s ' 6 f  such that 9 / ~ q ~ , ( t , ~ , g  l) and we let II 
choose any s e f '  such that 9/o~%,(s, fi°,go). []  

With these and similar lemmata for L' we can prove (i) and (iii) of Theorem 2.1 (ii) 
and (iv) are proved from this in a similar way as Karp's theorem in [2]. 
Note that we did not use more of the properties of F, but that it is a monotone 
family over P. 
Note also that the game for L" functions also for interpretations in other cardinals. 
This will be used in Section 4. 

Let us denote by L p'~ the logic which syntactically looks like L p, but in the 
semantics the sets range over the sets of cardinality < N,. LPL~ is defined similarly. 

+ + 
So LP=L p't and the game ~, is the obvious modification of o=o~. 

Theorem 2.5. 
~.~ + (i) 9 / o - 9 / t ( L  p'~) i f f for  all n~co 9/o-~ 9/1(o~). 

(ii) 9/0 -- 9/ i(LP~)/ff  9/0 ~ 9il(SJ- 

The proof is like the proof of 2.1. As an application of this we get : 

Theorem 2.6. 
(i) I f  9/i =~i(Lp'~) ( i=0,1)  

then [ 9 / o , 9 / i ] - [ ~ o , ~ 1 ]  (/~'~). 
(ii) I f  9 / , -  f~(LPgo~) (i=0, 1) 

then [9/.10, 9/i] - [!~o, ~ i ]  (LV~)" 
(iii) I f  9/0 -9/I(/-f'=) then 

e ( ' ~ o ,  "~ l )~P(~*~o  , 9/1 ) (Lp'a) 

Here P(9/o, 9/1) and/5(9/o, 9/i) is the construction described in Section 3 

In the last section we shall show that the corresponding theorem for L(aa) fails, 
unless one changes the definition of the pair [9.I, ~] .  
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The Theorems of BETH and CRAIG in Abstract Model Theory. II. 

3. P roof  of Theorem 1.31 

19 

In this section we give a p roof  that  bo th  Beth's and Craig 's  definability theorem 
fail for L(aa). The construct ion of the counterexamples  is based on Shelah's 
simplification of [8] and Section 5 of  1-21]. 
Fo r  the rest of  this section trees are part ial ly ordered sets with a root.  They  need 
not  necessarily be wellfounded, but  they satisfy 

Vxyz(x<=z ^ y< z ~ x ~ y  v y< x). 

We now define two classes of  trees of  cardinali ty >co r K~ are the trees with at 
least one col-like b ranch  and  K 2 are the trees where there is an order  preserving 
m a p  from the tree into the rationals.  

Proposition 3.1. Let L consist of < only. K 1 and K 2 a re  both in PC(L(QI) ) and 
disjoint. 

Proof Let R, ~ be new binary relation symbols.  For  K 1 we say:  (I.1) For  every x 
the set R(x, - )  is totally ordered by N. (1.2) There  is an x such that  R(x, - )  is an 
col-like ordering. Clearly (1.1) is expressible in Lo~,o and (1.2) in L(QI). 

For  K z we say: 
(2.1) The range of R is totally ordered by _<. 
(2.2) R is a total function and order  preserving. 
(2.3) The domain  of R is totally ordered by -< and is i somorphic  to the rationals. 
(2.4) The tree is uncountable.  
Clearly (2.1) and (2.2) are expressible in Lo, o, and (2.3), (2.4) in L(Q1). For  (2.3) we 
add a branch to the tree, i.e., we use relativized PC-classes. 
Clearly also, Klc~K 2=0. [] 
Now let us construct  two trees T I, T 2 with Tie K~(i= 1, 2) and T 1 = Tz(L~oo~(aa)). 
Recall that  a tree T is normal if 

(i) every branch is well ordered. 
For  x ~ T  put Yc={y~T:y<x} and o(x) be the order- type of )2. We set o(T) 
= sup{o(x) + 1 : xe  T}. 

(ii) o(T) = e) 1 
Let  ct, fl, 6 be ordinals, U,={xeT:o(x)=c~}. 

(iii) Fo r  each ct < col, U,  is at  mos t  countable,  U o has exactly one element. 
Put  T x = {ye T:y >x} ,  T~ = {ye T:o(y) <e} .  

(iv) For  each xeT ,  o(Tx)=co r 
(v) Each x e  T has exactly N O immedia te  successors. 

(vi) if o(x)=o(y)=6 is limit and 2 = ~  then x=y. 
N o r m a l  trees were in t roduced by Kurepa .  A reference for what  we need is [11]. 

I The first author is endebted to the referee of [20] and D, Giorgetta, for very valuable 
remarks. [20] has been incorporated in this paper. 
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20 J. A. Makowsky and S. Shelah 

Lemma 3.2. Let T, T' be two normal trees. 
(i) For all or<co t there is an isomorphism 9 : T ~  T~. 

(it) I f  ct<fl<co t and 9:T,+~T~+ is an isomorphism then there is an isomorphism 
h : T ~  T~ with hPr =g. 

A proof may be found in 1-11], but it is straightforeward using a Cantor type 
argument. 

Theorem 3.3. I f  T I and T 2 are  two normal trees then T 1 - TZ(L~jaa)). 

Proof. We use Theorem 2.1(it) and prove T I ~  T2(6). Let (21, 31, 22, ~Z)k,k 2 be an 
outcome already played according to a winning strategy. We describe the winning 
strategy inductively over n = k t + k  2. Put X i = ~ u { 5  ~} (i=1,2). W.l.o.g. we can 
assume that Xi~ ~ for some eea~ t and 9~: T~--* T 2 is an isomorphism such that 
9 J2 t )=~  2 and 9 j g t ) = g J g  2) (abusing vectorial notation). If player I now chooses 
ae T~ t II chooses 9ja). If player I chooses as  T~l(fl>ct) we can find #~ extending 
9, as in 3.2(ii) and II chooses 9p(a). If player I chooses in as T 2 we use 9~ -t 
or 9~- 1 respectively. 
If player I chooses f l  e F t, for each s e f t  there is fl(s)s co t such that X 1 u s  s T~ 1. Let 
9p:T~ 1 ~ T~ 2 be an isomorphism extending 9~. Now let II play 

f2 = U fz ~ with f~z={ga(s)~_T~Z:ssf^s~T~}. 

Clearly f2 is in F z. 
If player II now chooses tef2, tC T~ 2, II chooses g~" 1(0. If player I chooses f2 s F 2 
the'argument is similar. [] 

To prove 1.3(i) we only have to construct normal trees T 'eKi( i= 1, 2). 
For T a take any normal Aronszajn-tree which is special. 
For their existence cf. [13]. 
For T 1 we start with 09 t many copies of T z, take their disjoint union, and if 
a~(ct <(.ol) is the root of the copy no. ~ we put a~<aa for ct</~<co 1. Clearly T 1 is 
normal and in K 1. This proves 1.3(i). To prove 1.3(it) we use a result of 
Baumgartner [4] to the effect that MA~I and 2~°>NI imply that K 1 and K 2 are 
complementary if restricted to ranked trees of length cot with countable levels. But 
the latter is clearly PC(L(Qt) ). 
To prove 1.3(iii) we have to work more. In [21] a very general theorem was proved 
which says that subject to a certain hypothesis Beth's theorem implies Craig's 
theorem for compact logics. The hypothesis was a Feferman-Vaught type theorem 
for a rather complicated sumlike operation. The general theorem fails for L(aa), 
but for our special structures ( T  t, < ) and ( T  2, <-) it holds. Therefore we repeat 
the construction of Section 6 of [21] here for the special case. Let T* and T~' be the 
expansions of the trees T t, T 2 to structures as described in Proposition 3.1. 
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Let us redefine ~4/" 1 = P(T l, T 2) and ,4r2 =/5(Ti ,  r 2) for this special case: 
= (Ni, <, -<, R, s, c> is defined by:  

< ,  M are partial orders of N v 
R is a binary relation on N v 

Here __< is the partial order  of  the trees TI*, T2* and K is an order  between elements 
of  T* which wiU serve as the domain  of the function whose graph is R. R together  
with ~( make  the tree into a ranked tree (cf. the p roof  of  3.1). 
s is a function from Ni into N i x N~ [as ternary relation, but  we write for s(x, y, z) 
s(x) = (y, z)] such that  

(i) s(c) = (c, c), s(x) = (x, x) iff x = c. 
(ii) 3xs(x) = (y, z) iff s(y) = s(z) 

Denote  by Ni(a, b) the set {a'e N i :s(a') = (a, b)}. 
(iii) The  structure (Ni(a, b), <, -<, R> is isomorphic to T 7 for s(a) = s(b) and 

I1 if (a,b)eR or a-~b 
J= t~: if (a,b)¢R and not  a-(b.  

(iv) _<, ~(, R on N i are defined as the unions of  the corresponding relations 
induced by the isomorphisms described in (iii). 

(v) (c,c)eR in N i i f f i = l .  
(vi) For  every aeN~ there is a natural  number  n such that s](a)=(c,c) 

with 
sl(a) = b iff s(a) = (b, b') 
sl(a)=si(a) 

s] + i(a) = s 1 (s] (a)). 

To  prove 1.3(iii) it is sufficient to prove the following Proposi t ion 3.4 since by a 
result of [21] both R and M can be defined implicitly. Now if R was definable 
explicitly with a formula O(x,y) then we had ~A/~l~O(c,c) and ,Uz~-aO(c,c ) 
contradicting 3.4. 

Proposition 3.4. ~/'i -= Jff2(L~(aa)) for L = { <, s, c}. 

Proof Call a se tX in N~ large if (i) X is countable, (ii)X is closed under s, i.e. i fa '~X 
and s(a')=(a,b) then a,b~X, and (iii) for all a,b Xc~Ni(a,b) is either empty or of 
the form (Ti) . for some c¢~ col independent  of a, b where Tj ~ Ni(a, b) for L = { < ,  s, 
c}. We put  o(X)= ~ in the latter case and o(q~)= 0. 

Lemma 3.5. The collection of large sets in N i is closed and unbounded. [] 

N o w  the winning strategy is defined similarily as in the proof  of  Theorem 3.3. 
Let  T(~ . )  be the underlying co-tree of W i, i.e. the nodes are the Ni(a, b) for a, be  Jr,- 
and s-1 is the successor function. Clearly T(~F1)~ T(Y2) by an isomorphism, say 
~o, and there is a natural projection rc : ~  T(jVi). Put JVi(X ) = ( N F ' d (  , < ~x, __c ~x> 
for any X =c Ni. This is possible by (vi). 
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22 J. A. Makowsky and S. Shelah 

Lemma 3.6. Let X i ~_ ~ be large (i~ 1, 2), ~p(r~(X 1)) = re(X2) and o(X 0 = o(X2). Then 
there is an isomorphism 9 :~/(Xi)~ ~Ar2(X2). Furthermore if  X i ~_ Yi ~-Ni and Yi large 
q~(n(Y1)=;~(Y2) and o(YO=o(Y2) then there is an isomorphism h:JC'l(Y1)-*jff2(Y2) 
extendin9 9. 

The lemma is easely proved using Lemma 3.2. To prove Proposition 3.4 we 
proceed as in the proof of 3.3 replacing the ~ by large X~ with o(Xi) = fl and using 
¢p. [] 

4. L p in the ~-Interpretat ion 

/Y'~ (/Y in the N~-interpretation) shares many properties of L p in the N~- 
interpretation. Similarly as for L(Q~) (in the N~-interpretation) we have 

T h eorem  4.1 (GCH). L p in the N~+ 1-interpretation is countably compact provided N~ 
is regular. 

The proof uses Chang's Two cardinal theorem as described in [7, Chapter 7]. 
In fact the proof gives that the same axioms Fp give completeness for any N~+ 1 
such that N~ is regular. 
This transfer principle gives us immediately for N~+ t as above 

T h e o r e m  4.2 .  
(i) Not CRAIG (L(Q,+I), LPgo'+t). 

(ii) Not BETH (L(Q,+ 1), L ~  + 1) (usin9 GCH). 

The question now is if this can be proved with fewer or no set theoretical 
assumptions. 

Discussion 4.3. Much of the model theory for L(Q1) (besides compactness) can be 
carried over to the L(Q,) for arbitrary N, without further set theoretic 
assumptions. 
Among them 
- The Back and Forth criteria (due to Lipner [16], Vinner [30], and Slomson 

[29]. 
- Several forms of Feferman-Vaught type theorems, as URP, FVP, FVT (cf. 

Wojciechowska [31]). 
- The counterexample to Craig's theorem or even A-Interpolation. To see this put 

K ~ = { 9 ~ / ~ = ( A ,  = )  where = is an equivalence relation with each class of 
cardinality >N~}. 

K 1 = { 9 I ~ K J -  has <N~ many equivalence classes}. 
K z = {9,IsK~/= has at least N, many equivalence classes}. 
K I u K  z = K,, K~c~K 2 = 0 and K 1, K2 are PC-classes. One easely finds 9,11 E K 1, 
9~2EK 2 such that ~1 ~¢2[2(L~oJ(Qa))" 
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With the technique of [2t ,  Section 6] we get 

not BETH(L(Qt), L~,(Q1)). 

Note that Yasuhara [32] proved that L(Q~) without equality satisfies Craig's 
theorem, provided, N, is singular. For  N, regular the example above works 
without equality. 
Concerning compactness one observes that 4.1 is equivalent to Chang's two 
cardinal theorem, hence all the independence results for the latter carry over 
(cf. [1]). 
A similar situation occurs for L p'~. 
To carry over the argument from the previous section it is sufficient to know of the 
existence of special ~:+-Aronszajn-trees. But Mitchell [25] has shown that they 
need not exist, 

Theorem 4.41. Assume there are special ~c +-Aronszajn-trees and ~: + = N~ + 1. 
Then 
(i) Not CRAIG(LQ,+ 1, L ~ ,  + 1). 

(ii) Not BETH(LQ~+ t, L ~  + 1). 
So let us resume what we have got: Theorem 4.4(i) and (ii) hold under the hypothesis 
of GCH for N~ regular, and V = L  for all N~ (cf [7]). 

Problem 4.5. Find basically new counterexamples for CRAIG(L(Q,), L ~ )  which 
function in ZFC alone. 

The rest of this section is devoted to L P'~ for a limit cardinal. The results here are 
due to Makowsky and Stavi. The main result for L P'~, N~ singular is 

Theorem 4.6. Let N~ be singular. Then 
(i) L(Q,+ I, Q~)<A(If "~) i.e. there are PC-classes KI,  K 2 for I f  '~ with KIosK 2 =0, 

K t w K 2 = a l l  sets, K 1 contains all sets of cardinality <N~, K 2 all sets of 
cardinaIity > N. 

(ii) A(LP")f£ L p''+ I 

Corollary 4.7. Under the assumption of 4.4 
(i) Not A-Int(LQ,+ 1, L~o~). 

(ii) Not BETH(LQ~+ 1, L ~ ) .  

Proof of  Corollary. (i) The counterexample in Discussion 4.3 for L(Q,+ 1) turns out 
to function as well using Theorem 2.5(ii) for N,. 
(ii) This is done as in Section 3. 
To prove the Theorem 4.6 we need a definition and some kemmata. Here it helps 
to be familiar with [23]. 

1 Stavi noted that the result can be extended to Not CRAIG(LQ,+ 1, Lo~+ 1(aa)) using the 
same counterexamples, by a more refined use of Back and Forth techniques. 
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Denote by P<~(A) the set {X_~ A/X < x}. 
The property P(x) holds if for every set A of cardinality x there is a S ~ P< ~(A) with 
card(S)=x and for every X~P<,,(A) there is YeS with X_~ Y [i.e. S is cofinat in 
P <,,(A)]. 

Lemma 4.8. x is sin#ular iff P(x) does not hold. 

Proof Let cf(tc)=N,, and SCP<~(A) be cofinal. Let {s~'}, m<ct, j<~c be an 
enumeration of all members of S such that S~' has cardinality <N,,. Now 

s74:A since its cardinality is <N,.  N m, so there is X~¢ <_U $7. 
j _ < t %  = 

Now put Ao={X~lm<c~, n<~}. 
Obviously there is no XES with A o_~X. 
For the other direction welt order A of order type x and take for S the initial 
segments. [] 

Lemma 4.9. There is a sentence ~o in I f  '~ which has always models of cardinality 
N~+I, but has a model of cardinality N~ iff P(N~) holds. 

Proof Let R be a binary predicate symbol and let cpl be Vx--7 Q1yR(x, y) and cp z be 

-'7 3sVx(3y('7 R(x, y))~ 3y(ye S ^ "-1R(x, y)) 

and q) be ~o 1 a q~2- q~ is clearly in L p'~. Now let °rim q~ and I°d] has cardinatity N~. 
Then S =  {{y:R(x,y)} :xeA} is cofinal and P(N~) holds. Conversely if P(N=) holds 
we easily construct a model of cardinality N~. To construct a model of q~ in N~+ 1 is 
straightforward. [] 

Note that a somewhat weaker logic than L p'" is sufficient. 
Now to prove 4.6 we use 4.9 to make {S:S>N~+ 1} a PC-class. Its complement is 
PC as well taking N,-like orderings and their initial segments. [] 

Problem 4.10. Does L p'~ for N~ inaccessible satisfy any interpolation theorem? 

5. The Magidor-Malitz Quantifier and E 

Magidor and Malitz defined generalized quantifiers Q" (n < co) with the satisfaction 
clause 9.i~Q~x ..... x, cp(x, ...,x,) iff there is a set sglgXl of cardinality >N~ such 
that Va . . . .  , a, eX we have 9.i~ (p(a 1 ..... a,). Parallel to L e it is natural to look at the 
following logic E which is defined as L e but the clause (iii)÷ is replaced by 
(Ill)_ if s occurs only negatively in cp(s)~E then 3scp(s-)~E. 
Satisfaction is defined by 
(Ill)_ 9.1~=3scp(s) iff there is an X__. A of cardinality >N= such that 9.I~ cp(X). 
Magidor-Malitz and Shelah have proved [17, 27] that 
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Theorem 5.1. 
(i) [17] (~e , )  

L<'°=L,o~,[Q"].<,o is countabty compact in the N 1 interpretation. 
(ii) [27] ( ~ e .  and N. regular) L <°~ is countably compact in the N.-interpretation. 

(iii) [27] (N. inaccessible) L ~°' is countably compact in the N.-interpretation. 

Note that / I '  is an extension of L <°~ by 

Q"x . . . .  ,x.q,(x . . . .  ,x.) .~3sVx ..... x.  

. . . .  

The authors conjectured that using ~ one could prove countable compactness of 
~. But Stavi has constructed the following counterexample, which we include 
here with his kindest permission. 

Theorem 5.2 2. (Stavi). There is an ]C-sentence (p with L = ( < ,  P1...Pk) such that 
whenever 9.I~ ~o then 

9.I[Lo~(co . < )  (Lo={<}) ,  

hence ~P is not compact. 

Proof. Let (p be ~Po A q'l A ~0 2 with (Po the conjunction of a finite number of 
axioms or theorems of ZFC comprising what we shall need to know about cot and 
its subsets. ((Po is thus first order.) 
~Pt says that the countable ordinals of the model are cot-like ordered (in the real 
universe). This can be expressed by an L(Q1)-sentence, hence in L". 
q~2 says that every (external) uncountable subset of the countable ordinals of the 
model has an internal uncountable subset, i.e. 

Vs3x[(Vy~s) (y < c o 0 ~ ( x  is a uncountable subset of col and (Vzex)zes))].  
Since s occurs only positively in the above and s is quantified by V this formula is 
in £~. 

Claim. Let 9)1 = (M, e, cox, < )~q~  and ~p(x) say that x is a countable ordinal, and 
Mo={xeM:fOl~tp(x)}  then (M o, < > ~ <cox, > ) .  

Proof By (Pl (Mo, < )  is an cot-like ordering. 

Hence there is a strictly increasing sequence A = (a ,  le <cot)  in (Mo, < ) .  By (P2 
there exists a set b ~ M  such that ff£~"b is an uncountable subset of co~ and b" 
= { x e M I M ~ x e b } C = A .  
It is a theorem of ZFC (which we include in q%) that every uncountable subset of 
co t is isomorphic to cot as an ordered set. Now A is well-ordered (since it is an 

2 Malitz has found another counterexample independently. 
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external set) so b m is well-ordered as well. But b" is a subset of M o and both M o 
and b" are internal, so ( M  o, < ) ~  (b",  < )  inside the model and (Mo, < ) is well- 
ordered and isomorphic to (co t, < )  (externally). [ ]  

That  L <~' did not satisfy even A-interpolation was proved by Makowsky and 
Magidor without set theoretic assumptions. A counterexample to Beth's theorem 
was constructed by Badger [1]. Whether the weak Beth property holds is still 
open. The rest of this section is devoted to a counterexample for 

BETH(L(Q0, g'). 

Let ,~,egm za ~ ~, be the dual equivalence relation of 2I,~ ~3, (n~ co + 1). in [20] it is proved 
that 

Theorem 5.3. 
(i) 92--- ~(~') for L finite and relational iff 21~gf8 for all n < co. 

9_In~g~q (ii) 9.I-= ~E'~o , / f f  _ ~ _ .  

Let K 1 = {(A, < ) [ A  is a dense ordering without first nor last element and 3P (P is 
a countable dense subset of A)}. Let K 2 = {(A, <)[A is a dense ordering without 
first nor last element and 3P (P is an uncountable set of quadrupels coding disjoint 
rectangles on A2)}. 

Proposition 5.4. (Kurepa). 
K 1 and K 2 are complementary disjoint PC-classes of L(Q1). 

Proof. The only non trivial step is to prove that they are complementary. Let Q be 
an uncountable set of disjoint rectangles and assume for contradiction that P is a 
countable dense subset of A. 3 We define a map a:Q~P by a(alazb~bz)=any 
pe(alaz) so there is some poeP with a -  l(p) uncountable. But then the 

{(bib2)/a(alazbl, bz)=p} 

form an uncountable set of disjoint intei'vals on A, since all the (aaazblb2)e Q are 
disjoint. 
Otherwise let Q be a countable maximal set of disjoint rectangles then either nl(Q) 
(first projection) or n2(Q) (second projection) is dense in A. For  suppose not then 
there are (al, a2) , (bt, b2) such that (alaz)nni(Q) and (blb2)nnz(Q) are empty. But 
then (alazblb2) is a rectangle disjoint from all the rectangles in Q, which 
contradicts the maximality of Q. []  

Now put 211 = (I ,  < )  to be the irrational numbers with their natural ordering 
and form also 912=(1-co 1, < ) .  

Proposition 5.5. 
(i) ~IEK1, 9.I2~K 2. 

(ii) ~I x =~Iz(E' ). 

3 W.t.o.g. all rectangles in Q are disjoint from the diagonal. 
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Proof (i) is obvious.  To  prove  (ii) one uses Theorem 3.3(i). The  description of the 
winning strategy is ra ther  involved. The  critical case occurs when the first player  
chooses an uncountable  set in g[1 which intersects any  interval with only 
countably  m a n y  points, i.e. an  uncountable  set S' = A 1 such that  for every x, y e  S', if 
x < y  then there are only countab ly  m a n y  zes" with x < z <y .  The  second player  
then replies with an uncountable  set S s . t :  
1) All previously chosen points  are smaller than any point  in S, 2) if x, y e S  then 
there we infinitely m a n y  z¢S  with x < z < y ,  and 3) there is a z' such that  for all 
x > x'  > z' there is a y e  S with x > y > x'. The  further details are tedious but  straight 
foreward. [ ]  

To  prove our  main  theorem of this section we need a Fe fe rman-Vaugh t  type 
theorem for ~ ' :  

Theorem 5.6. Let I be a set 

~i  - ~i(]2) for all is I 

then [92i, i6I] - [ ~ ,  ieI].  
n e g  

Proof Again we use Theorem 3.3(i). We have to prove that  [Ni, is  I ]  y [~3~, ts  I ]  for 
n n e g  all nso~. Fix n. Let 9~ be a winning strategy for 9.I~ ~ , ~ .  We construct  now 9" for 

~ = [ ~ i ,  " "°g 

Fo r  choices of  points we use the 9~'s. If  player I chooses an uncountable  set S C A 
and for some iSc~A~ is uncountable,  we use 9~' again. If  S~ = S~A~ is countable  for 
all ie  I then for an uncountable  I o ~ I and for all ie IoS ~ 4= 0. Let C be a choice set of  
the S~ for ie  I 0. Put  S' = {xe B lx = 9~(c) for some ce  C} S' is uncountable.  One  easily 
verifies that  9"(S)= S' is a winning strategy. 

Corollary (to the P roof ' )  5.7. In the notation of [21, Section 6], cf. also p. 21 in this 
paper. 

Theorem 5.8. Not B E T H ( L ( Q 0 , £ ' )  

Proof By theorem [21, Section 6] it suffices to prove:  
t) There  are two disjoint PC-classes in L(Q1), K 1, K 2 and structures 9 I i e K 1 ,  

9~[2eK 2 such that  92[ 1 - 9,I2(g'). 
Here  we take those f rom Proposi t ion 5.5. 

2) P(9.I19.I2) _-- /5(21119.I2) (L") which we have from Corol lary  5.7. [ ]  

6. Cofinafity Quantifiers 

In this section we give a simplified p roof  of  the compactness  of  the cofinality 
quantifiers, in t roduced in [26]. The  presentat ion is based on lectures of  S. Shelah, 
held in Berlin in July 1977. 
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Let C be a class of  regular cardinals. Let  QCxy~o(x, y) be a binary quantifier  (as in 
[23]) with the following addit ional  satisfaction clause: 

91~ QCxycp(x, y) [~] iff q~(,") [~] is a linear order  

of its domain  which has cofinality a t  C. 

More  formally put  

D~,(a) : = {a t  1911:911= 3yq)(a, y) [a]} and 

O~,(~): = {(a, b ) t  19112:91~ q,(a, b) [~]}. 

Then O,(~) linearily orders De(~) and cf (D~,(~), O,(8)) t  C. 

Let CI, ..., C.(ntco) be convex classes of  cardinals and L** =L,,o~(Q c', .... QC.) be 
the logic obtained from L,o,o adding the fo.rmation rules for the QC'(i < n) and the 
above satisfaction rules for each C~. We call this the (C I . . . . .  C,)-interpretation for 
L**. 

Th eorem 6.1. L** is (x,e))-compact for each K t C a r d  in every (C t . . . . .  C,)- 
interpretation. 

Let VaI(C~I . . . .  , Ci.) be the set of  valid sentences of L** in the (C] . . . . .  Ci.) - 
interpretation. Let B~. be the Boolean Algebra generated by C~1 . . . . .  C~.(i=0, 1). Let 

¢Po :{ c ° ,  o 1 . . . ,  c , } - - , { c l  . . . . .  c ,  ~ } 

be given by q~o(C °) = C)( j= 1 . . . .  , n) and . o t q~.B, ~ B ,  its natural extension. 

T h e o r e m  6.2.  Va l (C  °, o _ 1 .... C , ) - V a l ( C t ,  ..., CI,) iff ~o is an isomorphism. 

T h e o r e m  6.3. For no (Cx,.. . ,  C,)-interpretation such that L** properly extends Lo, o~ 
does BETH(L**, L**) hold. 

Remarks. 1. W.l.o.g. the C~(i<n) can be assumed to be disjoint. 
2. L** is equivalent to L,o,o if we restrict ourselfs to countable structures. (For  then 
the QC"s can be eliminated.) 
The proofs of 6.1 and 6.2 given here depend on a theorem of Shelah [28].  
Let 9 1 = ( A , P  1 . . . . .  P,, <1 . . . . .  < . . . . .  ) be an L structure where Pi are unary 
predicates and < i  is a linear order  of 1°/. We denote by cf(91)=(2 1 . . . .  ,2,)  the 
n-tuple of the 2 i = cf(Pi, < i). 
By (2 1 . . . . .  2,)~(/~ 1 . . . .  ,#,)  we abreviate the statement:  For  every 9I with cf(91) 
= (2  1 . . . .  ,2.) there is ~3=91(L,o~,) with cf(~3)=(#1,#, ). 

T h e o r e m  6.4. I f  2i(i<n) are regular and distinct and #i(i<n) regular then 
( ;q  . . . . .  2 . ) - - , ( #  1 . . . . .  #.) .  

Proof of 6.1. Let C 1 . . . . .  C, be given. W.l.o.g. C t = [2 t_ 1,21) where 2i(i = 0  . . . . .  n) is 
either a regular cardinal or oe. Let  91 be a L-structure of cardinality > 2,_ t- We 
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define an expansion ~ of N which is an analogue to Skolem expansions for 
classical logic. 

(i) <A is a binary relation not from L which is a well-ordering of A of ordertype 
card(N) + 1. 

This makes 9.I into an ordinal and <.4 can be thought of as a membership relation 
inducing some set theory on 9I. 
(ii) For  every ~oEL**, q)=~0(x~ ..... x.), let Re(~ ........ ) be a new n-ary relation not 

from L u { < }  and put 
R~( ....... ~.) = { ~ A / N ~  pea-]}. 

(iii) Let Reg be a unary predicate not in L u {  <}u{R~:q~EL**} and put 
Rega= {eEcard(N)+ 1 :~  regular}. 

(iv) Let 2i(i = 0  .. . . .  n - I )  constants not from L and 2{ = 2~ and 2. =card(N). Here 
we use that N is of cardinality > 2._ ~. 

(v) Let F., q)=QC'tp(x,y)~t"), be n-ary functions not from L and put Fo(8") 
= cf(Q~(8") if N ~  QC'xytp(x, y, ~") and F~,(8") = 2 otherwise. 

(vi) Let G o, (p=QC'xylp(x,y,~t") be unary functions not from Lu{Fo} with n 
parameters and put 
G~ :cf(O~(.,y,~.))~Dto(~,~,~. ), 1 - 1, orderpreserving and cofinal. 

We denote by ~ the structure 9/expanded by (i)-(vi) and by/~ its language. 

Lemma 6.5. Let 9A be a given expanded structure and Pl . . . . .  #. be regular cardinals. 
Then there is ~3-  ~I(L~) such that whenever 

~ Reg(a) A2~_ 1 --< a--<21(l_--< n) 

then 

cf(({be B :~3~ b < a} < )) = cf(a) ~ = ¢l t . 

(Here we assume [~ to be countable.) 

Proof of 6.1. Let T be a theory in L** of arbitrary cardinality, and { T o :e < [ Z[} an 
enumeration of the finite subsets of T. By assumption each T~ has a model. W.l.o.g. 
each T~ has a model of cardinality > 2,_ ~. For, let 9.1~ T~ and ~c be any cardinal 
> card(N~). Using relativization to a new unary predicate P we can form Tf  and 
embed 9.1~ in @, P . . . .  ) with P = A~. Clearly Tf  has a model iff T~ has a model and 
T e has a model iff T has a model. 
Let now 9]~ be the above described expansion of N~. ~[~ can be assumed to be a 
L~-structure with /~ countable for T~ is finite. So all the 2 i ( i=0  . . . . .  n) in ~ 
are distinct. Take #i(i= 1,. . . ,n) to be distinct regular cardinals such that pl rl 
= pg(i = 1 . . . .  , n). Applying Lemma 6.5 we get ~B~----~(/~o,(o) with the proper ty tha t  
for each qo~L**~3~ QC'xyq~ iff cf(O~ ~) =#~ [using (i)-(vi) of the definition of N~] 4. 
Now let @ be a non-principal uttrafilter on /3=IP<~,(T)I--ITI>No and let 

=1-I 2  
4 We omit the parameters in the notation to facilitate reading. 
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Claim. If ~ Reg(a) ^21_ t < a <_21 then cf(a) = #v Let a = (a, :c~ < ]~)t B. Fo r  almost 
all e there is a sequence (c~:j</2 l) cofinal in {btB,:~,~b<a~},<} and 
~ , ~ < c ~  +1 for J< /h .  N o w  let dtB, ~3~d<a and d=(d , :~< /~ ) .  Then  for 
almost  all e there is j(e) such that  ~,Nd,<c~ ~, so for c=(c~'):c~</~) we have 
~ d < c .  Now since #~.=#t this proves the claim. Now we apply T h e o r e m  6.4 
in the form (#~, . . . , p , )~ (2  o, . . , 2 , _  0 and get a model  ~g= ~3(Lo, o,). 

Claim. cg~ T. 
From the above we have for each cot L**ff~ QC'xycp iff cf(O~) = 2 i_ i. The  rest is by 
induction over the formulas of  L** and using (i)-(vi) of the definition of  93~. This 
ends the p roof  of 6.1. [ ]  

Theorem 6.2 is obvious from the proof  above. One proves that q~t L** has a model  
in the (C o . . . . .  C°)-interpretation iffit has a model in the (C~ . . . . .  C,~)Anterpretation. 
For  this let 91o~¢p in the (C o . . . .  , C°)-interpretation. Expand 91o to 9I o and find 931 
via Theorem 6.4. So 911~q~ in the (CI . . . . .  C,~)-interpretation. [ ]  

Before we prove Theorem 6.3 let us prove first Lemma 6.5. The p roo f  is by 
induction on n. (The number  of  fixed cofinalities.) Let 93 be given. For  n =  1,/21 
= N  O take ~3 to be a countable  elementary submodel of  93, f o r / q  > N  o take a 
proper  elementary chain of  submodels in 93 of  length/2v W.t,o.g. we can assume 93 
to be bigger than any of  the/2~'s. 

Induction Step. Assume the lemma has been proved for n -  1. By Theo rem 6.4 it 
suffices to prove the lemma for some distinct/21, ...,/2,, so w.l.o,g, we can assume 
/2. = N o. 

We define by induction on l<~o submodels ~ t  < 93 such that 
(i) card(~t)  <2 ,=  1. 

(ii) ~ l  < ~31 + 1 < 91. 
(iii) If a t R e g  ~', a<2,~Ll then for all bt[931 such that 93~b<a we have btl~3t[. 
(iv) For  every a t  Reg ~' with a >___2.~L 1 there is b,, l, b , , l t  1~31+ 1[ with ~z+ t ~ b , , t  < a  

(to prevent  wrong cofinality) but  for all ctl~3zl if ~31+i~c<a then 
~l+l~c<b,,v 

It is easy to find ~o  satisfying (i)-(iii). Now we take b~,0tlg~tl for each a s  Reg ~° 
a > 2,_ 1 as in (iv). There  are less than card(~5o) such b,, o, hence less than 2,_ 1 by (i). 
So we choose f13 1 satisfying (i)-(iii) such that  B o ~ { b,, o : a ~ Reg ~°, a >__2, _ t } _c_ B 1. 
Now we put  9,1"= (9,1, P~]~,o where P~ = B~ and apply the induction hypothesis,  i.e. 
the lemma for n - 1  to 9]*. We have 

/ . ¢ 2 ! 2 o = 2 o < 2  1 =2 ]  < . , < 2 , _  1 = 2 , _  1 < , - 1 = ° °  

and/2 1 . . . . .  /2,- i. So there is ,/¢/* = (Jr ' ,  Pi)i~,o = 93* such that  for each ae  Reg ~u* and 
~ , A - / *  I - , A t *  ~_t~a<_xl  cf~*(a)=#l (1=1 . . . . .  n - l ) .  So in jCl* if a e R e g  ~* and a> .2~ ;  1 
cf (a)=/2,_ 1, but we want it to be co. 
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Therefore we define ~ = ( P *  . . . .  ) <,At', the built in elementary submodels. We 
have 

2) if a ~ R e g ~ n ( z ? ~ ¢ ~  and a<2n_ 1 then for some IEa), ae[jg,~t [. 

Hence {bsM:b<a} C=Ml~ ~?o Ml by (iii). 

Put ~/" = ~ ~ and ,4 r is the required model. []  

Proof of 6.3. First we show 

Proposition 6.6. For every (C1, ..., C,)-interpretation of 12" there are Ki~ PC(L** ) 
and 9.1i~Ki(i= 1,2) with K i n K  2 =0 and 921-922(L**) • 

To prove 6.3 we take the construction P(92o, 92-I1) and P(920, 9.1~) from Section 3 and 
observe that P(920,921) -/5(920, 921) (L**). 
The latter will be obvious from Lemma 6.7 below. 
To prove 6.6 put K to be the class of partially ordered structures (A, < )  such that 

(i) Every two elements have a least upper and a greatest lower bound. 
(ii)k Between two elements, which are comparable, there are at least k mutually 

incomparable elements (k~o). 
(iii) There are no extremaI elements. 
(iv) There are no elements comparable to every element. 
A set XC=A is cofinal if for every aeA there is beX with a<b. 
If 92sK has a cofinal chain we can speak of its cofinality and hence of the 
cofinality of 92 (cf (92) -- ~c). 
Now put 

K 1 = {92~K :cf(~I)~ Co} 

K2={92~K:cf(92)~tC~ }, 

where we can assume w.l.o.g, that the C~'s are disjoint and 0 C~ are the regular 
cardinals (by 6.2). i=o 
Clearly K~PC(L**) (i= 1,2), KI~K z =0. 
Let F be the axioms which one obtains from (i), (ii)k , and (iii). F__C Lo~,~. 

Lemma 6.7. F admits elimination of quant~ers. 

Proof For 3 and V this is easily checked. For QC, we observe that for each 
quantifierfree ~o(x 1 .. . . .  x,) and 92sK we have 
~.I~Vx3...x,(-nQC'xlxz~o), since no definable infinite set is a total order [here we 
need (iv)]. []  

To end the proof of 6.6 we take 921sKi(i= 1, 2). []  
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In [26] another quantifier was introduced. Let C be again a class of regular 
cardinals. We define a binary quantifier a~ Qc xy by 
9.I~ Q~xyq~(x, y) [~] iff Ocp(~) linearily orders Dq~(~) and there is a Dedekind cut 
(A 1, A2) of Dq~(8) such that cf(A~, Oq~(fi)) and cf*(A z, O~p(a--)) are both in C. (The C- 
interpretation of Q~¢.) Let L*=Lo, o,[Q c', Qc,]i~,d~ for some (C O .. . . .  C,_I)- 
interpretation. 

Theorem 6.8. For no (C O .... .  C n- t).interpretation does BETH(L*, L*) hold, provided 
L* properly extends Lo~o~. 

The proof uses the same counterexamples as described in Proposition 6.6 and the 
remark immediately after it. For, with the argument in Lemma 6.7 we can even 
eliminate the quantifier Q~. [] 

7. The Feferman-Vaught Theorem for Pairs 

7.1. The Counterexamples 

Let ~c be an ordinal (cardinal) and S~x. We put for isK 

0 s = f l +  q if i~S or i=0  
if i$S and i . 0  

and 

Now we define 

and 

s _  ~1+o9" iES 

M(x, S)= ( ~ ~s, < ) =  Mj 
i < K  

sj,--(z os 

with their natural orderings. 
By a simple cardinality argument we get 

Proposition 7.1. Let L* be a logic such that 2 IL*I < 2 ~÷ for all finite L. Then there are 
stationary sets S 1, S 2 of t¢ + with S1AS 2 stationary and M(~c +, S1)=M(tc +, $2) 
(L*). [] 

Proof There are at most 2 IL*I <2  ~÷ many L*-theories but there are 2 ~* many such 
stationary set. [] 

Sh:101



The Theorems of BETH and CRAIG in Abstract Model Theory. II. 33 

Let [M1, M2"] be the two-sorted structure with universes IMll and [M2I, two binary 
relations (linear orders) < 1, < 2 and where the set variables range over countable 
subsets of IMlluIM21 (the disjoint union). Let the language for such structures be 
denoted by L o. Let ~p be the following sentence: 

tp = aas(3x~o(x, s)¢-3 q~(y, s)) , 

where x is a variable of the first, y of the second sort and q~(x, s) says that x is a first 
element for < x of IM~I-S,  formally 

VXo(X o < x ~ x  o ~ s) 

and similarly for ~o(y, s) 

VYo(Yo < Y=~Yo ~ s). 

Proposition 7.2 (cf. also [14]). 
(i) [Mj, M j ] ~ p  but 

(ii) IMp, Mz] ~ --1 tp. 

The proof will follow in the next section. From this we conclude 

Theorem 7.3. Let L* be a logic such that L* is a set for each finite L and such that 
L(aa) < L*, then FVP(L(aa), L*) fails. 

Proof We have to find structures QJ[1---.~[2--~-~l~-~32(L *) such that [911, 
9-12]- [~i ,  ~B2] (L(aa)). So we put 91 1 =~[2 =~-~ I =M(~, "+, S I) and ~2 = M(/¢+,$2) 
for suitable ~:, S I, S z from 7.1 and 7.2. []  

7.3 leaves two questions open: What about L~o,(aa) and can • be chosen 
to be co~? Let S__Cco I be stationary and costationary and put NI=N(col ,  S ), 
N2 = N(o)I, co 1 - S). 

Proposition 7.4. N t =- N 2(L~,~(aa)). 

Proposition 7.5. 
(i) [NjNj]~tp  but 

(ii) IN, ,  X 2 ] ~  "~ ~p. 

The proofs will follow in the next section. 
Again we conclude 

Theorem 7.6. Not WFVP(L(aa), L~,(aa)). 

7.2. Proofs of  the Propositions 

Here we prove Proposition 7.5 leaving the proof of Proposition 7.2 to the reader. 
Both proofs are entirely analogous. 
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Claim l. [N3,Nj]~V) ( j =  1,2). 
Put  ~o(s )=  (3xcp(x, s}c~3y~p(y, s)). We have to show that  the set C 

C = {s = (u, v) : ue  P_o,(Nj), ve  P=<~o(Nj) and  

(Nj, u)DExrp(x,u) iff (Nj, v)~Eycp(y,v)} 

contains a c.u.b. Clearly C is unbounded  by the definition of Nj. Let  
={s=(u,v):seC and u=v}. Clearly also C o is c.u.b, and CoCC. 

Co 

Claim 2. [N1 ,N2]  = ~ p .  

Consider  the set D =  I(u,v):u=v and v =  Z r/= for some t i eS  1. Clearly D is 
t ~</~ J 

s ta t ionary  so DnC:#O. [] 

Finally to prove  7.4 we apply  the back and forth criteria f rom Section 2. 

7.3. An Alternative Definition of the Pair [91, ~ ]  

Let [[91, ~3]] denote  the s t ructure  of  the same type as [91 ,~] ,  but  where the set 
variables are two sorted as well and range over  subsets of 91 or ~B respectively, but 
we have no set variables for 1911u1~31. Then we get easily with the me thods  of 
Section 2 

Theorem 7.7. I f  91=-91', ~=-~3' in L(aa) then [[91,~3]] [ [ 9 1 ' , ~ ' ] ]  (L(aa)) and 
similarly for L~o~(aa). 
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