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ABSTRACT

Assume a complete countable first order theory is superstable with
NDOP. We know that any Rc-saturated model of the theory is R.-prime
over a non-forking tree of “small” models and its isomorphism type can
be characterized by its Lo, (dimension qualifiers)-theory, or, if you pre-
fer, appropriate cardinal invariants. We go one step further by providing
cardinal invariants which are as finitary as seem reasonable.

0. Introduction

After the main gap theorem was proved (see [Sh:c]), in a discussion, Harrington
expressed a desire for a finer structure — of finitary character (when we have
a structure theorem at all). I point out that the logic Lo, (d.q.) (where
d.q. stands for dimension quantifier) does not suffice: suppose, e.g., for T =
Th(A X “2, E)n<cw where (a,n)E,(B,v) =:n [ n=v ] n and for § C “2 we
define Ms = M | {(a,n) : [n € S = a <wq] and [y € “2\S = a < w]}. Hence,
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it seems to me we should try Ly x, (d.q.) (essentially, in € we can quantify over
sets which are included in the algebraic closure of finite sets, see below 1.1, 1.3),
and Harrington accepts this interpretation. Here the conjecture is proved for
N.-saturated models.

Le., the main theorem is M =g _ , (a.q) N & M = N for R.-saturated models
of a superstable countable (first order) theory T without dop. For this we analyze
further regular types, define a kind of infinitary logic (more exactly, a kind of
type of @ in M), “looking only up” in the definition (when thinking of the de-
composition theorem). Recall that for a N.-saturated model M of a superstable
DNOP theory a N.-decomposition is (M, a, : 7 € T), where

(a) I C¥> ord is nonempty closed under initial segments,

(b} M, < M is X,-saturated,

(c) vanel= M, <M,

(d) if v = n"{a) € I then M, is N.-prime over M, U {a,} and tp(a,, M,) is

orthogonal to M, for p av, and (the last is not essential but clarifies)

(e) (M, : n € I) is nonforking enough: for every v € I the set {a, : 1 €

Sucr(v)} C M is independent over M, .
The point is that if n = v™(a), M, ,a, are chosen, then to a large extent
(My,a, :n<p € I)is determined. But the amount of “to a large extent” which
suffices in [Sh:c] is not sufficient here; we need to find a finer understanding. In
particular, we certainly do not like to “know” (M,,a;,). So we consider a pair
(A,B) where A C M,,AU{a,} C B C M,, stp,(B,A) + stp,(B,M,) and we
try to define the type of such pairs in a way satisfying:

(a) it can be impressed in our logic Lo x, ,

(b) it expresses the essential information in (M,,a, : n<ap € I).

To carry out the isomorphism proof we need: (1.27) the type of the sum is the
sum of types (infinitary types) assuming first order independence. The main
point of the proof is to construct an isomorphism between M; and M, when
My =1, (dq) M2, Th(Mg) = T where T and =L (q.d) are as above. So
by [Sh:c, X] it is enough to construct isomorphic decompositions. The con-
struction of isomorphic decompositions is by w approximations; in stage n, ~ n
levels of the decomposition tree are approximated, i.e. we have I! C "2 Ord

and a”‘e € M, for n € I, ¢ = 1,2 such that tp(a Zé“;‘ﬁ ~--A63’1,@,M) =

tp(a ng“‘:r? --"ap?, 0, My) with @ being e-finite, so in stage n + 1, choos-
ing a?)ﬂ’e we cannot take care of all types d?)-H Z”&Z’l) so the addition theorem

takes care. So though we are thinking on R.-decomposition (i.e. the M,’s are
N.-saturated), we get just a decomposition.
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In the end of section 1 (in 1.37) we point out that the addition theorem holds
in fuller generalization. In the second section we deal with a finer type needed
for shallow T'; in the appendix we discuss how absolute is the isomorphism type.

Of course, we may consider replacing “R.-saturated models of an NDOP
superstable countable 7”7 by “models of an NDOP Rg-stable countable 7. But
the use of c-finite sets seems considerably less justifiable in this context; it seems
more reasonable to use finite sets, i.e., Loo n, (d.q.). But subsequently Hrushovski
and Bouscaren proved that even if T' is Rp-stable, Ly x, (d.q.) is not sufficient
to characterize models of T up to isomorphism. This is not sufficient even if
one considers the class of all N.-saturated models rather than all models. The
first example is Ng-stable shallow of depth 3, and the second one is superstable
(non-Ro-stable), NOTOP, non-multidimensional.

If we deal with N.-saturated models of shallow (superstable NDOP) theories
T, we can bound the depth of the quantification v = DP(T); i.e., Lzo,m suffice.

We assume the reader has a reasonable knowledge of [Sh:c, V,§1,82] and mainly
[Sh:c, V,83] and [Sh:c, X].

Here is a slightly more detailed guide to the paper. In 1.1 we define the logic
Loo,x, and in 1.3 we give a back and forth characterization of equivalence in this
logic which is the operative definition for this paper.

The major tools are defined in 1.7, 1.11. In particular, the notion of tp,, defined
in 1.5 is a kind of a depth « look-ahead type which is actually used in the final
construction. In 1.28 we point out that equivalence in the logic Lo, implies
equivalence with respect to tp, for all a. Proposition 1.14 contains a number of
important concrete assertions which are established by means of Facts 1.16-1.23.
In general, these explain the properties of decompositions over a pair (i). Claim
1.27 (which follows from 1.26) is a key step in the final induction. Definition 1.30
establishes the framework for the proof that two N.-saturated structures that
have the same tp,, are isomorphic. The induction step is carried out in 1.35.

ACKNOWLEDGEMENT: I thank John Baldwin for reading the typescript, point-
ing out needed corrections and writing down some explanations.

0.1 Notation: The notation is from [Sh:c|, with the following additions (or
reminders).

If n = v"(a) then we let n~ = v; for I a set of sequences ordinals we let
Sucp(n) = {v: for some a,v =15 {a) € I'}.

We work in €9 and for simplicity every first order formula is equivalent to a
relation.
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(1) L means orthogonal {so ¢ is L p means q is orthogonal to p), remember
p L A means p orthogonal to A; ie., p L ¢ for every ¢ € S(acf(4)) (in
ceq),

(2) 1, means almost orthogonal.

(3) Ll means weakly orthogonal.

(4) % and a/B means tp(a, B).

(5) 4 or A/B means tp, (4, B).

(6) A+ B means AU B.

)
)
)

(<4

(7) U{Bi:i < a} means {B; :i < a} is independent over A.
A
(8) A C means {A,C} is independent over B.
B

(9) {C;:i < a} is independent over (B, A) means that!

J < a=tp, (C’j, U C; U B) does not fork over A.
i#]
(10) Regular type means stationary regular type p € S(A) for some A.
(11) For p € S(A) regular and C a set of elements realizing p, dim(C, p) is

Max{|I| : I C C is independent over A}.

(12) acl(A) = {c: tp(c, A) is algebraic}.

(13) dcl(A) = {c:tp(c, A) is realized by one and only one element}.

(14) Dp(p) is depth (of a stationary type); see [Sh:c, X, Definition 4.3, p. 528,
Definition 4.4, p. 529].

(15) Cb(p) is the canonical base of a stationary type p (see [Sh:c, III, 6.10,
p. 134)).

(16) B is R.-atomic over A if for every finite sequence b from A, for some finite
A C A we have stp(b, Ao) F stp(b, A), equivalently for some e-finite Ag C
acf(A) we have tp(b, Ag) F tp(b, act(A)).

1. N.-saturated models

We first define our logic, but, as noted in section 0, we shall only use the condition
from 1.4. T is always superstable complete first order theory.

1 Actually, by the nonforking calculus this is equivalent to: {C; : i < a} is inde-
pendent over A, where we let C, = B.
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1.1 Definition: (1) The logic Leo x, is slightly stronger than Ly , ; it consists of
the set of formulas in L, 7+ such that any subformula of ¢ of the form (3z)¢
is actually the form

(32°, % )[ D& N\ iz}, 2°)&(EFN2)0(2,7°) |,

1<Egz!

with z° finite, ' not necessarily finite but of length < |T'|*; so ¢ “says” ! C
acl(z°); note that our final proof of the theorem always uses |T| > Ro.

(2) Lo . (d.q.) is like Lo x, but we have cardinality quantifiers and, moreover,
dimensional quantifiers {as in [Sh:c, XIII, 1.2, p. 624]); see below.

(3) The logic ]L;Yo,m consist of the formulas of Ly », such that ¢ has quantifier
depth < 7 (but we start the inductive definition by defining the quantifier depth
of all first order as zero).

4) Lzo,m (d.q.) is like ]LZO,R‘ but we have cardinality quantifiers and, moreover,
dimensional quantifiers. ‘

1.2 Remark: (1) In fact the dimension quantifier is used in a very restricted way
(see Definition 1.10 and Claim 1.28 + Claim 1.30).

(2) The reader may ignore this logic altogether and use just the characterization
of equivalence in Claim 1.4.

1.3 CoNVENTION: (1) T is a fixed first order complete theory, € is the “mon-
ster” model, as in [Sh:c], so is R-saturated; €*9 is as in [Sh:c, III, 6.2, p. 131]. We
work in €* so M, N vary on elementary submodels of €°9 of cardinality < .
We assume T is superstable with NDOP (countability is used only in the Proof
of 1.5 for bookkeeping, i.e. in the proof of 1.30 (and 1.29)).

Remember a, b, ¢, d denote members of €%9; @, b, ¢, d denote finite sequences of
members of €%9; A, B, C denote subsets of €®9 of cardinality < &.

Remember acf(A) is the algebraic closure of A4, i.e.,

{b: for some first order and n < w, ¢(z,§) and @ C A we have
€9 = p[b, al&(3<"y)p(y, )}

and a denotes Rang(a) in places where it stands for a set (as in acf(a)). We write
a € A instead of a € “”(A).

(2) A is e-finite, if for some a € “”A, A = acl(a). (So for stable theories a
subset of an e-finite set is not necessarily e-finite but, as T is superstable, a
subset of an e-finite set is e-finite as if B C acl(a); b € B is such that tp(a, B)
does not fork over b; then trivially acf(b) C A and, if act(b) # B,tp,(B,a"b)
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forks over B, hence ([Sh:c, III, 0.1]) tp(a, B) forks over b, a contradiction. So if
acl(A) = acf(B), then A is e-finite iff B is e-finite.)

(3) When T is superstable by [Sh:c, IV, Table 1, p. 169] for F = Fg , all the
axioms there hold and we write N, instead of F and may use implicitly the
consequences in [Sh:c, IV, §3].

Instead of Definition 1.1 we may use directly the standard characterization
from 1.4; as actually less is used we state the condition we shall actually use:

1.4 CLAIM: For models M1, My of T we have M, =
Q) there is a non-empty family F such that:
(a) each f € F is an (M, My)-elementary mapping (so Dom(f) C My,
Rang(f) C Ma),
(b) for f € F,Dom(f) is e-finite (see 1.3(2) above),
(c) if f € F,ap € My(¢ = 1,2) then for some g € F we have: f C g and
acf(ay) C Dom(f) and act(az) C Rang(f),
(d) if fU{{a1,a2)} € F and tp(a1,Dom(f)) is stationary and regular
then dim({a} € M, : fU {{a},as)} € F}, M)
= dim({a} € My : fU {{a1,a})} € F}, Ma).

Lo x (d.q.) My if

Our main theorem is

1.5 THEOREM: Suppose T is countable (superstable complete first order theory)
with NDOP. Then:
(1) The Lo x, (d.q.) theory of an R.-saturated model characterizes it up to
isomorphism.
(2) Moreover, if My, M, are R.-saturated models of T (so My < €*4) and
®M0,M1 of 1.4 holds, then M, M2 are isomorphic.

* * *
By 1.4, it suffices to prove part (2).
The proof is broken into a series of claims (some of them do not use NDOP,
almost all do not use countability; but we assume T is superstable complete all
the time (1.3(1))).

1.6 DIsCUSSION: Let us motivate the notation and Definition below.

Recall from the introduction that we are thinking of a triple (M, N, a) which
may appear in R.-decomposition (M, a, : 1 € I) of N, in the sense that for some
n € I\{<>} we have (M,M',a) = (M,-,My,ay,) so M, M’ are X.-saturated,
ap, € M'\M', M’ is R.-prime over M + a and tp(a, M) is regular. But this is
“too large for us”, hence we consider an approximation (A, B) where A C M
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(= M,-),AC BC M(= My,)),a =a, € Band B/M(= B/M,-) does not
fork over A. We would like to define the a-type of (A, B) in N, which tries
to say something on the decomposition above (M, M’,a) = (M,-, My, a,), ie.,
on (M,,a, : n<ap € I). There are two natural “successors” of (4, B) we may
choose in this context: the first, 1.7 below, replaces (A4, B) by (A’, B') such that
ACA CM(=M,),BCB CM(=M,) and (as M’ is R.-prime over M + a)
we have stp, (B’, A’ U B) F stp(B’, M), so tp(B’, A’ U B) is almost orthogonal
to A’; we can think of this as “advancing in the same model”; in other words,
as A, B are e-finite, we have to increase them in order to capture even (M, M’).
This is formalized by <, in Definition 1.7 below.

The second is to pass from (M, -, My, a) to (M,, M,,a,) for some v an im-
mediate successor (in I) of n € I. So the old B is included in the new A’ and
B’ = A'U{a} where tp(a, A’) is regular and is orthogonal to A (as in the decom-
position we require tp(a,, M,-)(M, when v <an7)). This is formalized by <y, in
Definition 1.7 below.

1.7 Definition: (1) T' = {(A4, B) : A C B are e-finite}. Let
I'M)={(A,B)eT:ACBC M}

(2) For members (4, B) of I we may also write (3); if 4 ¢ B we mean (°3%).
3) (gi) <a (52) (usually we omit a) if (both are in I' and) 4, C A,
B1 g BQ,Bl I&U A2 and ﬁﬁ; _La AQ.
1

(4) (Zi) < (fz) if A» = By, Bo\ Ay = b and A% is regular orthogonal to A,.
(5) <* is the transitive closure of <, U <. (So it is a partial order, whereas in
general <, U < and <}, are not.)
(6) We can replace A, B by sequences listing them (we do not always strictly
distinguish).
Remark: The following observation may clarify.
1.8 OBsERvATION: If (§') <* (J2) then we can find (B} : ¢ < n) and
{ce : 1 < £ < n) for some n > 1, satisfying (ii) <p (gi),q € B,’ZH,%‘? reg-
ular, ch}’ 1. B}, Ay =B,,_|,By = Bj,.
Remark: (1) Note that actually <, is transitive. This means that in a sense <y,
is enough, <, inessential. (2) We may in 1.7(4) use b = (c); it does not matter.
Proof: By the definition of <* there are k¥ < w and (ii) for ¢ < k such that:

[4 0 k
(5 <oty (i) for € < k and a(¢) € {a,b} and (5) = (3), (5) = (52) and
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without loss of generality, z(2¢) = a, £(2¢ + 1) = b. Let Ny < € be R -prime
over §) such that A° C Ny, Bo |J Ny and fo = ida,. We choose by induction on
A0

¢ <k,Npi1, feqr such that:
(a) Dom(fe41) = B,
(b) Ny < Nz+1,
(c) if z(£) = b, then fy41 is an extension of f, (which necessarily has domain

Ay, check) with domain B such that f;(Bf) ||) N, and Ngy is R.-prime
fe(A*)
over N, U fo(BY),

(d) if 2(€) = a, then foy, maps A% into Ny—y, B¢ into Ny, and Ny = Ny.
This is straightforward. Now on (N, : £ < k + 1) we repeat the argument (of
choosing (B; : £ < n)) in the proof of 1.14(6) above, i.e., choose B¢ C N, by
downward induction on £ large enough as required. ks

1.9 Definition: (1) We define tpa[(ﬁ),M] (for AC B C M, A and B are e-finite
and «a is an ordinal) and Sa((5), M), Sa(4, M) and S5((5), M), S5(4, M) by
induction on a (we mean simultaneously; of course, we use appropriate variables):
(a) tpo[(ﬁ),M] is the first order type of AU B,
(b) tpas1((5), M] = the triple (Yj:%YM,Yj:aB’M,tpa((‘z),M)) where: Yj:%,M
=: {tpa[(}j:),M] : for some A’, B' we have (5) <. (ﬁ:) € D(M)}, and
Yig = {(X, A} p): T € SL(B, M)} where

N5 = il {7 5 ). 4= 1), B

(c) for & a limit ordinal, tps[(5), M] = (tp,[(5), M] : @ < 8) (this includes
§ = oo, really ||[M||* suffice),
(d) Sa(4,M) = {tp,[(5),M]: for some B such that B C M,
and (§) € T(M)},
(e) Sg((i),M) = {tpa[(Bgc), M] : for some ¢ € M we have
£ L A and § is regular},
(f) Si(A, M) = {tp[(*1°),M]: c € M and & regular}.
(2) We define also tp,[A, M], for A an e-finite subset of M:
(a) tpo[A, M] = first order type of A,
(b) tpa41[4, M]is the triple (Yé e Yj & tpo[A, M]) where 'S, =: So(4; M)
and Y25, =: {{Y,dim{d € M : tp (A1), M]=T}): T € S’(A,M)},
c) tps[A, M] = (tp,(4, M) : a < b).
3) tha[M] = tp,[0, M)
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1.10 DiscussioN: Clearly tp[(ﬁ),M] is intended, on the one hand, to be ex-
pressible by our logic and, on the other hand, to express the isomorphism type
of M “in the direction of (ﬁ)”. To really say it we need to go back to the
R.-decompositions of M, a central notion of [Sh:c, Ch. X].

For the reader’s benefit, at the referee’s request, let us review informally
the proof in [Sh:c, Ch. X]. Let M be an X.-saturated model, and we choose
(M,, : 7 € IN™O0rd),(a, : 7 € I N™'A) by induction on n. For n = 0, of
course, I N%O0rd = {<>}, we let Nc5 < M be R.-prime over @ and let I be a
maximal subset of {c € M : tp(c, N> ) regular} which is independent over N¢5;
let (aca> @ a < |Ics|) list Ics. Similarly forn+1,7€ IN™ Ord, let N, < M
be R.-prime over M, - + a,, let I, be a maximal subset of {c € M : tp(c, M,) is
regular orthogonal to M, -} independent over N,. Lastly, let (c;><a> : & < |I,])
list I, and let IN™'0Ord={n" <a>:n€IN"0rd and a < [I,|}.

To carry this we use the existence of X.-prime models (and the local character
of indpendent). Also, looking at the set U{M, : n € I}, its first order type is
determined by the nonforking caleulus. In fact, for any n € I\{<>}, the sets
U{N, : nav € I} U{N, : =(n < v) and v € I} are independent over N,.
Let N < M be X.-prime over U{N, : n € I}. Now if M = N, we are done
decomposing M; if not, some ¢ € M\N realize a regular type (we use density of
regular types). By NDOP, the tp(c, N) is not orthogonal to some N,. Choose
n of minimal length, hence v an = tp(c, M,) L N,. By properties of regular
types, without loss of generality tp(c, N) does not fork over N,, so we get a
contradiction to the maximality of {a, : ¥ € Sucy(n)} (this explains the role of
P in Definition 1.11(5) below).

We are interested in the possible trees (N, : n<v € I).

Now the tree determines M up to isomorphism, but there are “incidental”
choices, s0 two trees may give isomorphic models (for investigating the number
of non-isomorphic models it is enough to find sufficiently pairwise far trees I).

Here we like to get exact information and in as finitary a way as we can. So we
replace (M, -, M,,a,) by (ﬁ), where A C M,-,A+a, C B C M,, tp(B,M,-)
does not fork over A.

Now for n € I'\{<>} we are interested in the possible trees (N, : nav € I), over
(Nni , Ny, a,). But not only different trees may be equivalent (giving isomorphic
N.-prime models) but the other part of the tree, (N, : v € I but ~(n <4v)), may
apriori cause non-equivalent trees to contribute the same toward understanding
M. This is done in [Sh:c, Ch. XII], but here we have to deal with e-finite A, B.

The following claim 1.11 really does not add to [Sh:c, Ch. X], it just collects



Sh:401

70 S. SHELAH Isr. J. Math.

the relevant information which is proved there, or which follows immediately
(particularly using the parameter (A, B)). We allow here a, /M, to be not regular,
but this is not serious: we can here deal exclusively with this case and we can
omit this requirement in [Sh:e, Ch. X]; however, this does not eliminate the use
of regular types (in the proof that M is R.-prime over every X.-decomposition of
it).

1.11 Definition: (1) (Ny,a,:n € I)is an N -decomposition inside M above (or
over) the pair ( ) (but we may omit the “R, — ") if:
(a) I is a set of finite sequences of ordmals closed under initial segments,
(b) (),(0) € I,n € I\{(}} = (0) I n,let I~ = I\{{}}, really a, is meaningless,
(¢) AC N<>,B - N<0>,N<> LUB and dce(a«) ) C det(B),
)

(d) if v =75 (a) € I then Nl, is Re-primary over N, Ua,, Ny is X.-prime over
A,
(e) for n € I such that k = ¢g(n) > 1 the type a,,/N,,[(k_l) is orthogonal to
Nui(e-2),
(f) nav=>N, <N,
(g) M is R.-saturated and N,y < M for n € I,
(h) if n € I\{()}, then {a, : v € Suc;(n)} is (a set of elements realizing over
N, types orthogonal to N,- and is) an independent set over N,,.
(2) We replace “inside M” by “of M” if, in addition,
(i) in clause (h) the set is maximal.
(3) (Ny,aqn : n € I) is an R.-decomposition inside M if (a), (d), (e), (f), (g), (h)
of part (1) holds and in clause (h) we allow = () (call this (h)T). We add “over
A" it AC Mcs.
(4) (Ny,ay : n € I) is an R.-decomposition of M if in addition to 1.11(3) we have
the stronger version of clause (i) of 1.11(2) by including n = {}, i.e., we have:
(i)t for v € I, the set {a, : 7 € Suc;(v)} is a maximal subset of M independent
over N,,.
We may add “over A” if A C M.
(5) If {Ny,ay : € I) is an R.-decomposition inside M we let

P((Ny,an:n€I),M)={pe S(M): pregular and for some n € I\{()} we
have p is orthogonal to N,- but not to Ny}.

As noted earlier, it is natural to use regular types.
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1.12 Definition: (1) We say that (Np,a, : 7 € I), an R.-decomposition inside
M, is J-regular if J C I and:

for each n € I\J therel is ¢, such that a, € acl(N,; + ¢,),
(x)

;f—" is regular and if  # () then ¥ a—:

Ly Ny
. ncna(n)

(2) We say “(N,,a, :n € I) is a regular R.-decomposition inside M [of M]" if it
is an R.-decomposition inside M [of M] which is @-regular.

(3) We say “(Ny,a, : 7 € I) is a regular X.-decomposition inside M [of M] over
(5)” if it is an X.-decomposition inside M [of M] over () which is {()}-regular.

1.13 CLaM: (1) Every R.-saturated model has an R.-decomposition (i.e., of it).
(2) If M is R-saturated, (N,,ay : 7 € I) is an R.-decomposition inside M, then
for some J, and N, a, for n € J\I we have: I C J and (Ny,a, : n € J) is an
R.-decomposition of M (even a (J\I)-regular one).

(3) If M is R-saturated, (Ny, ay, : ) € I) is an R.-decomposition of M, then M is
Rc-prime and R -minimal* over J,.; Ny; if in addition (Ny,a, : n € {(),(0)}) is
an R-decomposition inside M above (5), then (Ny,a, 11 € I&(n # () — (0) <
n)) is an R -decomposition of M above (5).

(4) If (Ny, ay : € I) is an N.-decomposition inside M above ( ), then it is an
N -decomposition inside M.

(5) If (Ny,a, : 1 € I) is an R,-decomposition inside M [above (5)], n € I,
ne I\N{{)},a=Min{B: 7" (B) ¢ I},v =:n"(a),a, € M\Ny, %"— is orthogonal
to M- if = if # (), N, < M is R-primary over N, + a, and a, LU (U,er No)

(enough to demand {a, : p~ = n and p € I} is independent over al,/N ), then
(N,,a,: p € IU{v}) is an R.-decomposition inside M [over (%)].

(6) Assume (Ny,a, : n € I) is an R.-decomposition of M, if p is regular (sta-
tionary) and is not orthogonal to M (e.g., p € S(M)), then for one and only one
n € I, there is a regular (stationary) ¢ € S(N,) not orthogonal to p such that: if
n~ is well defined (i.e., 1 # ()), then p L N~

(7) Assume I = U,
decomposition inside M [above (ﬁ) ] and for each n € I for every n < w and
ve = n°(By) € I for £ < n, for some a we have: {v; : { < n} C I, (eg., I,
increasing). Then (Ny,ay : 7 € I) is an R.-decomposition inside M [above (ﬁ)]

I,, for each a we have (Ny,a, : n € I,) is an N.-

(8) In (7), if n # () and some vy is not <-maximal in I and %,”—;L is regular, it is

t Wlogc, = ay.
1 Here we use NDOP.
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enough:

b<tr<n= \ [{vo,ve}C L)

a<a(*)
(9) If (N, ay, : 1 € I) is an R.-decomposition inside M, I, I C I are closed under
initial segments and Io = Iy N Iy, then (U,c;, No) W (Upes, No)-
nelp

(10) Assume that for { = 1,2 that (Nf;,a% 1 € I; is an N.-decomposition
inside My, and for n € I the function f, is an isomorphism from N,} onto Ng
andnav = f, C f,. Then Une 1 fn is an elementary mapping; if in addition
(Ng,af, :n € I) is an N.-decomposition of My (for £ = 1,2), then Uner fy can be
extended to an isomorphism from M, onto Ms.
(11) If (N, ay : 0 € I) is an N.-decomposition inside M (above (5)) and M~ <
M is X,-prime over |J,.; Ny, then (N,,a, : n € I) is an R.-decomposition of M
(above (§)).
(12) If (Ny,ay : n € I) in an R.-decomposition inside M/of M (above (5)) and
a, € Ny and Ny is R-prime over N, - +a; forn € I\ {{)} (and ay, = a(q or
at least dcl(a’<0)) C dcl(B)), then (Ny,a, : 1 € I) in an R.-decomposition inside
M/of M (above (%)).

nel

Proof: (1), (2), (3), (5), (6), (9), (10). Repeat the proofs of [Sh:c, X]. (Note
that here a, /N, is not necessarily regular, a minor change.)

(4), (7). Check.

(8) As Dp(p) > 0 = p is trivial, by [Sh:c, Ch. X, 7.2, p. 551] and [Sh:c, Ch. X,
7.3]. | L

We shall prove:

1.14 CLam: (1) If M is R.-saturated, (§) € T(M), then there is (Ny, a, : n € I),
an X.-decomposition of M above (f).

(2) Moreover if (Ny,a, : n € I) satisfies clauses (a) — (h) of Definition 1.11(1),
we can extend it to satisfy clause () of 1.11(2), too.

(3) If (Ny,ay : 7 € I) is an R.-decomposition of M above (ﬁ), M~ < Mis
N -prime over Unel N,, then:

(a) (N, :ne€l)is a X.-decomposition of M,

(b) we can find an X.-decomposition (Ny,a, : 1 € J) of M such that J D I
and [n € J\I & (n # () and -(0) @ n)]; moreover, the last phrase follows
from the previous ones.

(4) If in (3)(b) the set J\I is countable (finite is enough for our applications),
then necessarily M, M~ are isomorphic, even adding all members of an e-finite
subset of M~ as individual constants.
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(5) If (Ny,an : 1 € I) is an Re-decomposition of M above (§),I C J and
(Ny,aq :n € J) is an X,-decomposition of M, M~ < M is R -prlme over U e Ny
and (A) <* (81) and By C M and c € M and %~ L Ay and £ is (statzona,ry
and) regular, then

(@) & L HlNxneAT}

Br No ’

(B) 5 is not orthogonal to some p € P({Ny,ayn:n € I),M~).
(6) If (N, ay : n € I) is an X,-decomposition of M above ( ) and M~ is R.-prime
over U, c; Ny, then the set P = P({N, : n € I), M) depends on ( ) and M only

(and not on (N, : € I) or M~ ), recalling:

P=P(N,:ne€l),M)={pe S(M) :p regular and for some
n € I\{<>}, we have:
p is orthogonal to N, - but not to Ny}.

So let P((5), M) = P((N,, : n € I}, M).

(7) If % is regular of depth zero or just % <a —%, % regular of depth zero and
M is N -saturated and B C M, then

(a) for any a, Welbave tp,((5), M) depenlds just on tpo((5), M)

(b) if (§) <* (5) € T(M) then tp,((%), M) depends just on tpy((5), M)

(and (A, B, A’, B) but not on M ).

(8) For a < B, from tpg((5), M) we can compute tp,((5), M).
(9) If f is an isomorphism from My onto Ms, A; C By are ¢-finite subsets of M;
and f(A1) = Az, f(B1) = Bo, then

%((i) M) = tpa((jj) , M)

(more pedantically tp,((52), M2) = fltp,((5!), M1)] or consider the Ay, By as
indexed sets).

We delay the proof (parts (1), (2), (3) are proved after 1.22, part (4), (6) after
1.23, and after it parts (5), (7), (8)). Part (9) is obvious.

1.15 Definition: (1) If (§) € T(M), M is R-saturated, let Pé‘g) be the set P from

A
Claim 1.14(6) above (by 1.14(6) this is well defined as we shall prove below).
(2) Let ’P(;j) = {p: p is (stationary regular and) parallel to some p’ € ’P(Q;()l }-
A

1.16 Definition: If (NZ a,, : 1 € J) is a decomposition inside € for £ = 1,2 we
say that (N;,a, : 0 € J) <Yieet (N2, an:n € J) if:

1 2
(a) Ny < N<>’
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(b) N2 U {age) : {a) € J},

1
N()

(c) for n € J\{()}, Nz is R.-prime over N, UN?_.
1.17 Cramm: (1) M is R -prime over A iff M is N.-primary over A iff M is
N.-saturated, A C M, M is N.-atomic over A (see 0.1(16)) for every 1 C M
indiscernible over A we have: dim(I, M) < ¥q iff M is N.-saturated, A C M,
M is R.-atomic over A and for every finite B C M and regular (stationary)
p € S(AU B), we have dim(p, M) < Ro.
(2) If N1, N, are X.-prime over A, then they are isomorphic over A.

Proof: By [Sh:c, IV, 4.18] (see Definition [Sh:c, IV, 4.16], noting that we replace
F{, by R, and that part (4) there disappears when we are speaking on F},)-

b6

However, we need more specific information saying that “minor changes” pre-
serve being R.-prime. This is done in 1.18 below; parts of it are essentially done
in [Sh 225] but we give a full proof.

1.18 FacT: (0) If A is countable, N is R.-primary over A then N is R,-primary
over {.

(1) If N is R -prime over §, A countable, N* is X,-prime over N U 4, then Nt
is N -prime over .

(2) If (N, : n < w) is increasing, each N, is R-prime over § or just ¥.-
constructible over § and N,, is R.-prime over | J,, ., Ny, then N, is R.-prime over
0 (note that if each N, is N.-saturated then N, = J, .., Nn).

(2A) If N is R.-prime over C, @b C N, tp(b,a) is regular (stationary) and
orthogonal to C, then dim(tp(b,a), N) < ¥y; also, if ¢ € S(C' Ua) is a nonforking
extension of tp(b,a) then dim(g,C U a) = dim(tp(b,a), N) = Ro.

(2B) If CUa"b C N and @/b s a regular type orthogonal to C and ¢ € S%9(3)(N)
is a nonforking extension of @/b, then dim(p | (C + b),N) < dim(a/b, N)
< dim(p | (C +b), N) 4+ Rg; moreover, dim(p | (C + b), N) < dim(a/b, N) <
dim(p | (C +b),N)* + .

(3) If Ny ||J Ny, each Ny is N-saturated, Ny is R.-prime over Ny U a, and N3

Ny

is N.-prime over Ny U N7, then Nj is R.-prime over N U a.

(4) ¥ Ny < N, are R.-primary over @), then for some R.-saturated Ng < N;
(necessarily R -primary over ) we have: N, N, are isomorphic over Ny.

(5) In part (4), if A C N; is e-finite then we can demand A C No.

(6) If My is R,-saturated, A |J B, M, is R.-primary over MpU A, then M, | B.
Mo MO
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(7) Assume Ny < Ny < No are X-saturated, N; is R.-primary over N1 + a and
o L+ No (and a ¢ Np). If Ny < No, Ny < Ni < Ny, V] 19'] No and N; is R,-

0
primary over Ny U Ni, A7 C Ny, A5 C N, are e-finite and tp, (A%, N1) does not
fork over A}, then we can find a’, N} such that: Nj is R.-saturated, N.-primary
over N +a', N < Nj < No, N; {J Nj and N; is R.-primary over N; U N} and
N

A} C NJ.

(8) Assume Nj < Ny < N; and a € Ny and N; is N-prime over Np + a and
~ = Ng and A§ C Ng, A} € N; are e-finite and tp, (A7, No) does not fork over
AO, then we can find @', N{ such that o’ € N',Nj < N{ < N{, V| LU No, N{ is

R -prime over Nj + a and N; is R.-prime over Ny + Nj and A} C N1

(9) If Ny is N.-prime over ) and A C B C N; and A, B are e-finite, then we can

find Ny such that: 4 C Ny < Ny, Ny is Re-prime over @, A C No, B[} Ny, and
A

N is Re-prime over Ny U B.
(10) If Ny is R.-prime over A and B C Ny is e-finite, then Ny is N-prime over
AU B (and also over A" if A C A" C acl(A)).

1.19 Remark: In the proof of 1.18(1)—(6),(10) we do not use “T" has NDOP”.

Proof: (0) Thereis {a, : @ < a*}, alist of members of N in which every member

of N'\ A appears such that for @ < a(*) we have: tp(a,, AU {ag : f < a}) is

R.-isolated (which means just F§ -isolated).

[Why? By the definition of “N is N.-primary over A”.] Let {b, : n < w} list A

(if A = 0 the conclusion is trivial, so without loss of generality A # 0, hence we

can find such a sequence (b, : n < w)). Now define f* = w + § and b 1o = aqu

for a < a*. So {bg : B < B*} lists the elements of N (possibly with repetition,

remember A C N and check). We claim that tp(bg, {by : v < B}) is F§ -isolated

for g < 3.

[Why? If 8 > w, let ' = f —w (so B < a*); now the statement above means

tp(ag, AU{a, : v < 8'}) is F§ -isolated, which we know. If 3 < w this statement

is trivial.] By the definition of “F§ -primary”, clearly (bs : 8 < w+a) exemplifies

that N is F§ -primary over §.

(1) Note

(x); if N is R.-primary over § and A C N is finite, then N is R.-primary over A
[why? see [Sh:c, IV, 3.12(3), p. 180] (of course, using [Sh:c, IV, Table 1,
p. 169] for F§ |;

(x)o if N is R.-primary over §, A C N is finite and p € S™(N) does not fork
over A and p | A is stationary, then for some {a; : £ < w} we have: @, € N
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realize p, {G; : £ < w} is independent over A and p [ (AU, @) F p
[why? [Sh:c, IV, proof of 4.18] (i.e., by it and [Sh:c, 4.9(3), 4.11]) or let N’
be R.-primary over AUJ, ., ds and note: N’ is R.-primary over A (proof
like the one of 1.18(0)) but also N is R.-primary over A, so by uniqueness
of the R.-primary model N’ is isomorphic to N over A, so without loss of
generality N' = N; and easily N' is as required].

Now we can prove 1.18(1), for any ¢ € “> A, we can find a finite BY C
N such that tp(¢, N) does not fork over B}, let b, € “>N realize stp(a, BL)
and let B; = B! U bz, so tp(¢, N) does not fork over B; and tp(¢, B;) is
stationary, hence we can find (a§ : £ < w} as in ()9 (for tp(¢, Bz)). Let A" =
U{B;: ¢ € AU {al : ¢ € “”A and { < w}, so A' is a countable subset of
N and tp,(A4,A’) F tp(4,N) = stp(4,N). As N is R,-primary over § we can
find a sequence {dy : @ < a*) and (w4 : @ < a*) such that N = {d, : o < a*}
and w, C « is finite and stp(da,{dg : B € wa}) F stp(da,{ds : B < a}) and
B<a=ds#d,.

We can find a countable set W C a* such that A’ C {dy : @« € W} and
a €W = w, CW. Let A” = {a, : @ € W}. By [Sh:c, IV, §2, §3] without loss
of generality W is an initial segment of a*. Easily

a< a*&a ¢ W = stp(da,{ds : 8 € wy) F stp(da, AU{dp : B < a}).

As N* is N,-primary over N U A we can find a list {d, : @ € [a*,a**)} of
N*T\(N U A) such that tp(de, N U AU {ds : 8 € [a*,a**)}) is R.-isolated. So
(do : a ¢ W,a < a**) exemplifies that NT is R.-primary over AU A", hence by
1.18(0) we know that N* is R.-primary over .

(2) We shall use the characterization of “N is F§ -prime over A” in 1.17; more
exactly we use the last condition in 1.17(1 ) for A=0, M = N,. Clearly N, is
R -saturated (as it is N-prime over | Suppose B C N, is finite and
p € S(B) is (stationary and) regular.

n<w )

CASE 1:  p not orthogonal to |, ., Nn

So for some n < w,p is not orthogonal to N,, hence there is a regular p; €
S{Np,) such that p,p; are not orthogonal. Let A; C N, be finite such that p;
does not fork over 4 and p; [ A, is stationary. So by [Sh:c, V, §2] we know
dim(p, N,) = dim(p; | 43, N,), hence it suffices to prove that the latter is No.
Now this holds by [Sh:c, V, 1.16(3), p. 237] or imitate the proof of ()2 above.

CAsE 2:  pis orthogonal to {J,, ., Nn
Note that if each N, is R.-prime, then Un <w Nn is R.-saturated, hence N =
U,.<., NVr hence this case does not arise. Let A ={J,,_, Nn, so dim(p,N) < ¥

n<w
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follows from (2A) below.

Alternatively (and work even if we replace N, by a set A, F§, -constructible
over (), see below.

(2A) By (2B).

(2B) The first inequality is immediate (as T is superstable and a, b are finite), so
let us concentrate on the second. Let B C C be a finite set such that tp, (a"b, C)
does not fork over B and stp,(a"b, B) F stp,(a"b,C). Recall ¢ € S(N) extend
a/b and do not fork over b, let b* € € realize ¢ and let ¢, = stp(b*, BUb) and ¢o =
stp(b*, C Ub). Now by the assumption of our case ¢; is orthogonal to tp, (C, B)
hence (see [Shic, V, §3]) ¢1 F ¢ and let {a, : @ < a*} C (@ | (BU B))(N)
be a maximal set independent over C + b, so |a*| < dim(a/(C + b), N) and
gl (CUbU{a, : a < a*}) F g. Also clearly stp,({a, : a < a*},bUB) F
stp, ({aa : @ < a*},bU C). Together dim(q1, N) < |a*| and as |B| < Ry = &(T)
clearly dim(a/b, N) < Rg + dim(q;, N)T, so we are done.

We can use a different proof for part (2), note:

®1 if & = cf(k) > k. (T) and B, is F2-constructible over A for a < 4,6 < &

and a < § <4 = B, C Bg, then |J, s Ba is Fi-constructible over A.
[Why? See [Sh:c, IV, §3], [Shic, IV, 5.6, p. 207] for such arguments; as-
sume A, = (A,{(a : 1 < iy), (B 1 1 < i4)) is an F2-construction of B,
over A. Without loss of generality ¢ < j < i, = a2 # a2, and choose
by induction on (, (ug : a < §) such that: ug C iq,ud increasing contin-
uous in i,uf = (O,Iua+1\u‘g| < n,u? is Aa-closed and o < 8 < 4 implies
{af :jeuz} C{a; :j€ u?} and tp,({a? : i € u?},AU{a;’ 11 < dg})
does not fork over AU{a¢ : i € u¢}. Now find a list (a; : j < j*) such that
for each ¢, {j : a; € af : i € u2 for some & < §,¢ < ¢} is an initial segment
B¢ of j* and By < Be + &

We use ®; for k = Ro. So each N, is R-constructible over @, hence |J,, ., Nn

is N.-constructible over @) and also N, is R.-constructible over | N, hence

n<w
N, is R.-constructible over §. But N, is N.-saturated, hence N, 1<s N-primary
over (). Alternatively use: if B is F¢-constructible over A, K > k;(7) and I is
indiscernible over A, |I| > « then for some J C I of cardinality < , I\ J is an
indiscernible set over B.

(3) Suppose N is R.-saturated and Ny +a C Nj. As N, is R.-prime over Ny +a
and No+a@ C Ny +a C N3 we can find an elementary embedding fo of N into N
extending idy,+5. By [Sh:c, V, 3.3], the function f; = foUidy, is an elementary
mapping and clearly Dom(f;) = N; U N;. As Nj is R.-prime over N; U N, and
f1 is an elementary mapping from N; U N; into Nj, which is an R.-saturated
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model, there is an elementary embedding f3 of N3 into N; extending f,. So as
for any such Ny there is such f3, clearly N3 is R.-prime over Ny + &, as required.
(4) Let Ny be Ro-prime over § and let {p; : i < a} C S(Ny) be a maximal
family of pairwise orthogonal regular types. Let I; = {@%, : n < w} C € be a
set of elements realizing p; independent over Ny and let I ={J,__ I; and N{ be
F{,-prime over No UL Now

(x) if a,b C Ny and a/b is regular (hence stationary), then dim(a/b, N7) < No.
[Why? If a/b L Ny, then dim(a/b, N]) < X, by part (2A) and the choice of the
p; and I; for i < a. If @/b+ Ny, then for some b'"a’' C Ny realizing stp(ba, #), we
have @’ /b’ £a/b hence dim(a/b, N;) = dim(@'/b’, N]), so without loss of generality
b"a@ C Ny; similarly, without loss of generality there is i(x) < a such that a/b C
Pi(x) and p;,y do not fork over b, now easily dim(a/b, N}) = dim(a/b, Ny) +
dim(p;(«), No) < Ro + Ro = R (see [Shic, V, 1.6(3)]). So we have proved (x).]

Now use 1.17(1) to deduce: Nj is Fy -prime over §§, hence (by uniqueness of
R -prime model, 1.17(2)) Ny = N;.

By renaming, without loss of generality N; = N;. Now

<o

(¥x)(@) (N1,€)ceng, (N2, C)cen, are Re-saturated and
(B) if @ € €,b € Ny,a/b aregular type and a(|J(No +b) (for £ =1 or £ = 2),
b

then dim(a/(bU Np), Ne) = .
[Why? Remember that we work in (€9, ¢)cen,. The “R¢-saturated” follows from
the second statement.
Note: dim(a/(bU Np), N;) < dim(a/b, N;) < Rp (the first inequality by mono-
tonicity, the second inequality by 1.17(1) and the assumption “Np is X -prime over
$”). If @/b is not orthogonal to Ny, then for some i < a weé have p;£(@/b), so easily
(using “Ny is R.-saturated”) we have dim(a/(bU Ny), No) = dim(p;, N) > ||L|| =
No; so together with the previous sentence we get equality. Lastly, if a/b L Ng
by part (2B) of 1.18, we have dim(a/(bU Ny), Np) < Ro = dim(a/b, Ny) < R,
which contradicts the assumption “Ny is R -saturated”.] So we have proved (*x),
hence by 1.17(1) we get “Ny, Ny are isomorphic over N{'” as required.
(5) This is proved similarly, because if N is R.-prime over A and B C N is ¢-
finite, then N is R.-prime over A+ B and also over A" if A+ B C A’ C acl{A+ B);
see part (10).
(6) By [Sh:wc, V, 3.2).
(7) First assume that A5 C N; and a/N; is regular. As N, is N.-prime over
No U N{ and as T has NDOP (i.e., does not have DOP), we know (by [Sh:c, X,
2.1, 2.2, p. 512]) that N; is R.-minimal over Ny U N{ and #; is not orthogonal
to Np or to N{. But a/N; L Ny by an assumption, so a/N; is not orthogonal to
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Nj, hence there is a regular p' € S(N7) not orthogonal to -, hence (by [Sh:c,
V, 1.12, p. 236]) p' is realized say by o’ € N». By [Sh:c, V, 3.3], we know that N
is X -prime over N; +a’. We can find N} which is R.-prime over N + o’ and N/
which is R.-prime over N7 U N3, hence by part (3) of 1.18 we know that Ny is
X.-prime over N; + @, so by uniqueness, i.e., 1.17(1), without loss of generality
NJ = N,, hence we are done.

In general, by induction on a choose N, , such that Nj, is R.-prime over
N{ U A3, N, , is increasing with a and N; LUN2 o Easy for some a, N; , is

defined but not Ny ,,,. Necessarily N3 is N -prlme over N{UNj . Lastly, let
a’ € Nj ,, be such that tp(a, Ny UN, ) dnof over Ny +a'. Easily N; , is R.-prime
over N{ + a’ (by 1.17(1)).
(8) A similar, easier proof.
(9) Let N} be R-prime over A such that B|}J Ng, and let N be R-prime over

A
N{U B. By 1.18(1), we know that Ny is R.-prime over §, and by 1.18(10) below
N/ is R.-prime over AU B; hence by 1.17(2) we know that N, Ny are isomorphic
over AU B, hence without loss of generality N; = N; and so Ny = Ny is as

required.
(10) By [Sh:c, IV, 3.12(3), p. 180]. Bis

1.20 FacT:  Assume (N},ay : 0 € I) <jjeer (Niraq @ 1 € I) (see Definition
1.16) and AC B C Ny, and A, o, N7 < M.
(1) Ifv =n"(a) € I, then N2 LU N} andeven N2 |J (U rer N});andnav el
N1

~ndp
7

implies N2 ||} (U rer N,).

N]' dp
(2) (N,?,a,,7 : n € I) is an N.-decomposition inside M above (ﬁ) iff
N} a, :n € I) is an R.-decomposition inside M above (3).
7N A
3) Similarly, replacing “N.-decomposition inside M above By» by “R,-decom-
A
position of M above (ﬁ)”.

Proof: (1) We prove the first statement by induction on £g(n). If n =<> this is
clause (b) by the Definition 1.16 and clause (d) of Definition 1.11(1) (and {Sh:c,
V, 3.2)). If n #<>, then §= J_ N(,-y (by condition (e) of Definition 1.11(1)).

By the induction hypothes1s U N, and we know N7 is R-primary over
1

(n
n~)
an y U N}; we know this implies that no p € S(N 1) orthogonal to N,
2
realized in N7, hence ,%';r 1 % SO —Ef - 1‘:, hence % Nl . L N‘{‘ hence N} ||} N}

Nl
as required. The other statements hold by the non-forking calculus (remember
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if n = v (@) € I then use tp(U{N, : 7 < p € I}, N}]) is orthogonal to N or see
details in the proof of 1.21(1)(a)).
(2) By Definition 1.16, for £ = 1,2 we have: (Nf},an :n € I is a decomposition
inside € and by assumption A, c; Ny < Nj < M. So for £ = 1,2 we have to
prove “(N,‘;,a,, : 1 € I) is an R.-decomposition inside M for (2)” assuming this
holds for 1 — £. We have to check Definition 1.11(1).
Clauses 1.5(1)(a),(b) for £ hold because they hold for 1 — £.
Clause 1.5(1)(c) holds, as by the assumptions A C B C N1o, < N%,,,AC Nl
and Nio, U NZ,.

1

<>

Clauses 1.5(1)(d),(e),(f),(h) hold as (Nf,a, : 1 € I} is a decomposition inside €
(for £ = 1 given, for £ = 2 easily checked).

Clause 1.5(1)(g) holds as A, Ny < NZ < M is given and M is R -saturated.

(3) First we do the “only if” direction; i.e., prove the maximality of
(N},an : 7 € I) as an R.-decomposition inside M for (8) (i.e., condition (i)
from 1.11(2)), assuming it holds for (N,?,a,, 1y € I, If this fails, then for some
n € I\{<>} and a € M,{ay<a> : 1~ < @ >€ [} U {a} is independent over
Ny and a ¢ {ay (o) : 7"{a) € I} and ﬁ“"r L N}_. Hence, if n"(ae) € I for
¢ < k then @ = (a) " (ay<q,> : £ < k) realizes over N a type orthogonal to N, _,
but N)_ < Nj,N;_. < NZ_ and N, NL1U N? (see 1.20(1), hence (by [Sh:c, V,

2.8]) tp(a, N7) L N2_, hence {a} U {a,,j]m : £ < k} is independent over N7; but
k,n" (o)1 for £ < k were arbitrary, so {a} U {a,(a) : 7" (@) € I} is independent
over N2, contradicting condition (i) from Definition 1.11(2) for (N,?, a, :n€I).

For the other direction use: if the conclusion fails, then for some n € I'\{<>}
and a € M\N2\ {a;(ay : n'{@) € I} the set {a,(a) : (@) € I} U{a} is
independent of N2 and tp(a, N?) is orthogonal to Ng_; let N’ < M be X.-prime
over N2 + a. But N? is R¢-prime over Ny U Ng_ (by the definition of <gjrect)
so by NDOP tp(a, N2) £ N}, hence there is a regular ¢ € S(N;) such that
qg= tp(a,Ng). Hence some a' € N’ realizes ¢; clearly {ay-<a> : 7" < a >
€ I} U {a'} is independent over N; (and o’ & {a}:(,, : 7'{(@) € I}), hence over
(N2,N}) and easily we get a contradiction. 0.2

1.21 FacT:  Assume (N,,a; : 77 € I) is an R.-decomposition inside M.

(1) If N1, < N2, < M,N?is Re-prime over @ and N2, | {al,, :<a>€ [},
N>

then

(@) [N3> U UneINé] and
N>



Sh:401

Vol. 140, 2004 CHARACTERIZING MODELS OF NDOP THEORIES 81

(8) we can find N7(n € I\{<>}) such that N? < M, and
(N HEI) <d1rect< n n UEI)

(2) IfCb %ff C N2, < NL, oratleast N3, < Nl  and %iz:tN2> whenever
< a >€ I, then we can find N) < M and af € N, (for n € I\{<>}) such that
(N, af 1 € I) Sfirecy (Nipraf :n € 1)

(3) In part (2), if in addition we are given (B; : 7 € I) such that B} is an e-finite
subset of Ny, tp,(B;, N,) does not fork over B;_ and BZ, C NC._, then we can
demand in the conclusion that n € I = B; C N).

Proof: (1) For proving (a) let {n; : 1 < i*} list the set I such that n; <n; =
1 < j, 80 ng =<> and, without loss of generality, for some a* we have 7; €
{<a><a>el} &iell,a*). Now we prove by induction on § € [1,i*) that
NZ, EU U{N,lh. :¢ < B}. For § =1 this is assumed. For 8 limit use the local

<>
character of non-forking.

If 3 =v+1 € [1,a*), then by repeated use of [Sh:c, V, 3.2] (as {a,, : j € [1,8)}
is independent over (N1, ,N2.) and N, is N.-saturated and Ny (5 €1,7) is
Rc-prime over N1, +a, ) we know that tp(a,, , N2, U Uicy Vo) does not fork
over N1 . Again by [Sh:c, V 3 2], the type tp, (N, ,N§> U U1<7 ) does not
fork over N1, hence |J LU N2, and use symmetry

z<[3
<>
Lastly, if 8 € v+ 1 € [a*,1"),tp(a,-, Ny, ) is orthogonal to NL. and even to
N ! _ _, so again by non-forking and [Sh:c, V, 3.2] we can do it, so clause ()

ny)
hol&s

For clause (8), we choose N2, for i € [1,i*) by induction on i < * such that
NZ < M is R.-prime over N 2 N,.. By the non-forking calculus we can check
Deﬁmtlon 1.7.

(2) We let {n; : i < i*} be as above. Now we choose N} ,ad,
i € [1,7*) such that:

(*) Ny <N, and N1 U Ny, and N, is R.-prime over Ny, UNl_,
l NO

by induction on

kH

(%) a9 € ND and NY, is N-prime over N0 +ad,
The 1nduct10n step has already been done: 1f Kg(nz) > 1by 1.18(7) and if £g(n;) =
1 by 1.18(8).

(3) Similar. I1_21

1.22 Fact: (1) If (N},ap : n € I) < (NZ,ay : n € I) and both are X.-

dlrect



Sh:401

82 S. SHELAH Isr. J. Math.
decompositions of M above (i), then
P((N;,ay :n € I),M)=P(NZ, a2 :nel)M).

Proof: By Defintion 1.11(5) it suffices to prove, for each n € I\{<>}, that

(+) for regular p € S(M) we have p L N} _&p+ Ny & p L N2 &p+ Ny
Now consider any regular p € S(M): first assume p L N;_ &p + N, where
neI\{()}sop+NZ(as Ny < N2 and p+ N}) and we can find a regular
q € S(N,) such that g+ p; soasp L N} alsogq L N_, now ¢ L N2_ (as
N; NL1U NZ_ and g L N} see [Sh:c, V, 2.8]), hence p L Ng_.

Second, assume p L Ng_&pi N? where n € I'\{()}; remember Né_,Ng, N,
N3 are R.-saturated, N} NL1U Ng_ and N? is R-prime over Nj U Ng_ and T

does not have DOP. Hence N7 is R.-minimal over N; U Ng_ and every regular
g € S(N7) is not orthogonal to N or to N2_. Also, as p£ N} there is a regular
g € S(N?) not orthogonal to p, so as p L NZ_ also g L Nf,_; hence by the
previous sentence ¢ = N, hence p £ N;. Lastly, as p L N, 3_ and N;_ < N2
clearly p L Né_, as required. Lo

At last we start proving 1.14.

Proof of 1.14: (1) Let N° < € be R.-primary over A; without loss of generality
NO | B (but not necessarily N° < M), and let N! be R.-primary over N° U B.

Novxfr‘ by 1.18(0) the model N° is R-primary over § and by 1.18(1) the model N!
is N-primary over @), hence (by 1.18(10)) is R.-primary over B, hence without
loss of generality N' < M. Let Nos =: N® Nos = N1 T = {<>,< 0 >}
and a<o> = B. More exactly a, is such that dcl({a,}) = dcl(B). Clearly
(Np,an :n € I) is an R.-decomposition inside M above (i). Now apply part (2)
of 1.14 proved below.

(2) By 1.13(4) we know (Ny,a, : 7 € I) is an R.-decomposition inside M. By
1.18(2) we then find J D I and Ny, a, for n € J\I such that (N,,a, : n € I) is
an R.-decomposition of M. By 1.18(3), (Np,a, : n € J') is an R,-decomposition
of M above (§) where J' =: {n€ J:n=<> or (0) dne J}.

(3) Part (a) holds by 1.13(2),(3). As for part (b), by 1.13(2) there is
(Np,agp : n € J), an R.-decomposition of M with I C J; easily
[(0)IneJ=>nel] b.141),(2),(3)

1.23 Fact: If (Nf,af : 1) € I*) are R.-decompositions of M above (B),fore=1,2

and N1, = N2, then P((N},a} :n € I'), M) = P((N},a2 : n € I?), M).
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Proof: By 1.14(3)(b) we can find J* 2 I' and N;,a), for 7 € J'\I" such that
(N},ay :n € J') is an R.-decomposition of M and moreover 7 € Jl\I1 en#
()&~({0) <1n) Let J? = I? U (J'\I') and for n € J?\I? let a2 =: a}, N} =: N}.

Easily (N2,a2 : 7 € J?) is an R.-decomposition of M. By 1. 13(6) we know tha,t
for every regular p € S(M) there is (for £ = 1,2) a unique n(p,¢) € J¢ such
that p L Ny &p L Ny - (note ()~ — meaningless). By the uniqueness of
n(p,?), if n(p,1) € J'\I' then as it can serve as n(p,2) clearly it is n(p,2), so
n(p,2) = n(p,1) € JI\I' = J?\I?; similarly n(p,2) € J2\I? = 5(p,1) € J\I*
and n(p,1) = () & n(p,2) = (). So

(*) n(p,1) € I'{(} & n(p,2) € I\{(}.

But
() n(p,0) € IN{()} & p € P((N;,af :n € I), M).
Together we finish. [ IO

We continue proving 1.14.

Proof of 1.14(4): Let A* C M~ be e-finite, so we can find an e-finite B* C
U{N, : 7 € I} such that stp(A*, B*) | stp(A*,U{N,, : € I}). Hence, there is
a finite non-empty I* C I such that <>€ I*, I* is closed under initial segments
and B* C U{N, :n € I*}, so of course

stp, (A", U{Ny, :n € I"}) - stp(A*,U{N,, : n € I}).

We can also find (B, : 7 € I") such that B; is an e-finite subset of N,, By =
acl(By) and B* C U{B; : n € I"},n #<>= a, € B}, and if nav € I* then
B; C B} and tp,(B;, N, ) does not fork over B,;. W.lo.g. B C By

For n € I\I* let B; = B;,, where { < £g(n) is maximal such that o [ £ € I*;
such ¢ exists as {g(n) is finite and <>€ I*.

Let N} = N, and a}, = a, for € I and, without loss of generality, J # I
hence J\I # 0.

Let N2, < M be R.-prime over J, vens N,; letting J\I = {n; : i < i*} be
such that [n; an; = ¢ < j] we can find N2 25 (for 7 < 1*) increasing continuous,
N§>70 = Ngs and N2 ;. is R.-prime over N<>,iUNm, hence over N§>7i+am.
Lastly, wlo.g. N2, ;. = NZ..

By 1.18(1),(2) we know N2 is R.-primary over ) and (using repeatedly 1.18(6)
+ finite character of forking) we have N2, |J a<o>. By 1.18(4) (with N1,

Nl
N2,,B%, D Cb(acs/NL.) here standing fo<r>N1,N2,A there) we can find a

model N2 suchthat aco> () N1, and Cb(acs/NL,)C B:, C NI, N2 <
Nes
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NL_, N2, is R.-primary over § and N1, N2 are isomorphic over N2> By
1. 21(1) we can for n € I choose N2 < M with N} < N2 and (N},a} : 9 € I)

Slirecs (NZ,al = m € I). Slmllarly, by 1.21(2) (here Suc;(<> = {{0)}) we
can choose an R-decomposition (NJ,ad : n € I) with (N2,a9 : 7 € I) <Jieet
(N},a) : n € I). Moreover, we can demand n € I* = B} C NJ using 1.21(3).
By 1.13(12)+1.14(3) we know that (N},a) : 7 € I) is an R.-decomposition of
M~ and easily (N2,a) : 1 € I) is an R.-decomposition of M. Now choose by
induction on 7 € I an isomorphism f, from N] onto N2 over N such that
van=f, C fpandneI* = f, | By = idp;. For n =<> we have chosen
Ny such that N}, N2 are isomorphic over NJ. For the induction step note that
fn=y Uidny is an elementary mapping as N(zn_ ) NOUJ N and f(,-, U idyo can

)

be extended to an isomorphism f, from N} onto N2 as N/ is R.-primary (in fact
even Xc-minimal) over N(Zn_) U Ny for ¢ = 1,2 (which holds easily). If n € I*
there is no problem to add f, | By = idgy. Now by 1. 13(3) the model M~ is R,-
saturated and W.-primary and N, mlmmal over Une J = Uper N, , similarly

M is X, -primary over |J N Now {J, fy is an elementary mapping from

el
Uper Ny onto U, ¢ N2, thce can be extended to an isomorphism f from M~
into M. Moreover, as stp,(A*,U{B; : n € I'}) F stp(A*,{N; : n € I}), b
[Sh:c, Ch. XII, §4] we have tp,(A*,U{B; : n € I*} F tp(A*,U{N} : n € I},
hence tp,(A*,U{B; : n € I*}) has a unique extension as a complete type over
U{N, : n € I}, hence over U{N? : € I}, so without loss of generality f [ A* =
id4+. By the Y.-minimality of M over Unel N, (see 1.13(3)), f is onto M, so f

is as required. B 1409
We delay the proof of 1.14(5).

Proof of 1.14(6): Let (N‘Z :n € I) for £ = 1,2, be N.-decompositions
of M above (8), so dcl(al ) = del(B). Let p € S(M), and assume that p €
P(N;,ap :n € I'), M), ie., forsomen € I'\{<>}, (p, L N,-) and p,=N,,. We
shall prove that the situation is similar for £ = 2,1.e., p € P((N2,a2 : y € I?), M);
by symmetry this suffices.

Let n = £g(n); choose (B, : £ < n) and d such that:

(@) AC By,

(B) BC By,

(v) @nte © Be © Njyy, for £ < m,

(6) Begr UJ i

Bt+1 Beyy
(6) 1 " T 1
ateryy  Naretonyesn’




Sh:401

Vol. 140, 2004 CHARACTERIZING MODELS OF NDOP THEORIES 85

(¢) d € By, T‘\im is regular +p (hence L B,_1),

(n) By is e-finite.
[Why does such (By : £ < n) exist? We prove by induction on n that for any
n € I of length n and e-finite B’ C N, there is (B, : £ < n) satisfying (a) — (€),
(n) such that B’ C By,. Now there is p' € S(N;) regular, not orthogonal to p; let
B C N, be an e-finite set extending Cb(p'). Applying the previous sentence to
n, B! we get (By : £ < n); let d € N, realize p’ | B,

Now as n > 0, tp(d, Bn) L N,-, hence tp(d, B,) L B,_;, hence tp(d, B,) L
tp«(N,-, By), hence as tp(d, B,,) is stationary, by [Sh:c, V,1.2(2), p. 231], the
types tp(d, Byn),tp«(N,-, Br) are weakly orthogonal, so tp(d, By) - tp(d, N,- U

Bntd By +d
Bn), henCe Bn_1+a}, ﬁ};_“‘a}’ .

Now replace B, by B, U {d} and we finish.]
Note that necessarily
()t Bn U Ny, for m <m.
B

[Wh;‘} By the nonforking calculus.]

+ B
&t —Fr—— 1, B,, form < n.
(€) Bty imeyy

[Why? As N1

nim
Choose D* C N§> finite such that mgﬂJr—B does not fork over D* + B.
<>

[Note: We really mean D* C N2, not D* C Ni.]

We can find N2, R -prime over § such that 4 C N3, < N2, and D*(JN2,
A

is N-saturated.]

and N2 is R.-prime over N3, U D* (by 1.18(9)). Hence B, N2, and
A
B, ([ N2, (by the non-forking calculus). As tp,(B,NZ2.) does not fork over
B

A C N2, C NZ, by 1.21(2) we can find N3,ad (for n € I’\{<>}), such
that (N3,a3 : n € I) is an Re-decomposition inside M above (%) and
(N3,a3 : n € I?) <Yreew (NZad 7 € I?) and oy, = aZ,, (remember
dcl(a2ys) = del(B)). By 1.20(2) we know (N2, a3 : n € I?) is an R-decompo-
sition of M above (5).

By 1.22 it is enough to show p € P((N2,a3 : n € I?), M). Let N2, < N2, <
M be R-prime over N2, UBy. Now by the non-forking calculus B [|[J(N2, U Bo).

A

[Why? Because
(a) as said above B, ||J N3, but By C By, so By |[J N2, and
YN YN

b) as B NL. and By C N1 we have B|}) By so By || B,
Wi <> ¢ ¢

hence (by (a)+ (b) as A C B)
(c) mﬁgﬁ does not fork over A,
<>
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also
(d) BIL‘J‘JN2> (as AC N2, C NZ_ and tp(B, NZ.) does not fork over A4);

putting (¢) and (d) together we get
(e) EJ‘J{BO’B’N%},
hence the conclusion.]
Hence B |J Bo,so B l_U N%_ (by 1.18(6)) and so (as N<30> is N.-prime over

Ni) <>
NY, +dcl(a< y) = N}, +dcl(B)) we have N, UJ N2, and by 1.21(1) we can

<>

choose Nj < M (for n € I?\{<>}), such that
(N;,t, a,:ne g ) 2direct <N7I’ 7M€ I2>

So by 1.20(1) (N},a3 : € I?) is an R.-decomposition of M above (5), hence

a(0>/N does not fork over A4 but A C Bg C N ()» S0 a< >/N dnf over By, and

by 1.22 it is enough to prove p € P((N;,a3 : 1 € I?), M). Now as said above

B |y N%i, and BLUN§>, so together B(J N2 ; also we have A C Bo C N%,
N3, A

hence B UJ N%, and 5225 = 5 fa La By (by (€)™ above), but a2 ., LU Ni,

hence —4——“—3— is N.-isolated. Also, letting B, = B,\{d} we have TfT
O

<>+ <0>
is N-isolated and - L Bp (by clause (¢)), and clearly d ||J (N, U B’)
B,
B—; 1 NZ.. Hence we can find (N3,a3 : € I?), an R -decomposition of M

above (5) such that N3, = N2 | dcl( ) = del(ady.), Ba\{d} € N%;, and
d=0a%; > (on d see clause (¢) above), so déU N2

By 1.23 it is enough to show p € P((N;,a : n € I°), M), which holds trivially
as tp(d, B, \{d}) witness. B .14(6)

Proof of 1.14(5): By 1.8, with A, B, A1, By here standing for Al,Bl,A2,Bg

there, there are (B; : £ < n),(c, : 1 < £ < n) as there. By 1.18(9) w

can choose Né> such that By C N<>,N<1> W Bn,N<> is N.-primary over
Bo

0. Then we choose (N;,a; : 7 € {<>,< 0 >,<0,0>,...,<0,...,0>}),
—

n

CN, and€>0=>a1<07”.’0> = ¢; and we
\—v—/

whereN<O 0> <M, By,
\_v_/

choose N, by mductlon on £g(n) being X.-prime over N} U ap, hence a; /N, _
does not fork over Blg( _,, hence N is R.-prime also over N 1oy Blg(n) So
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(N3,at :m € {(),...}) is an R.-decomposition inside M for (ﬁi) Now apply
first 1.14(2) and then 1.14(6).

Proof of 1.14(7): Should be easy. Note that
(¥)1 for no (ﬁ:) do we have (ﬁ) <p (ﬁ:);
why? By the definition of depth zero;
(%) if (i) <q (f{:), then also (ﬁ,’) satisfies the assumption.
Hence
(#) for no (ﬁ:), (ﬁi) do we have

B By B
(4)=(3) = (%)
[Why? As also (ﬁi) satisfies the assumption.]

Now we can prove the statement by induction on « for all pairs (ﬁ) satisfying
the assumption. For o = 0 the statement is a tautology. For a limit ordinal reread
clause (c) of Definition 1.10(1). For a =  + 1, reread clause (b) of Definition
1.10(1): on tpﬁ((ﬁ), M) use the induction hypothesis also for computing Yj:g, M
(and reread the definition of tpy, in Definition 1.10(1), clause (a)). Lastly, YZ:ﬁB, M
is empty by (%) above.

Proof of 1.14(8), (9): Read Definition 1.10. By 14(5),(7),(8),(9)

DiscussionN: In particular, the following Claim 1.26 implies that if
(Ny,an : n € I) is an Re-decomposition of M above (ﬁ) and M~ is R.-prime
over U{N,, : 1) € I}, then (%) has the same tp, in M and M~.

1.24 CrAamM: (1) Assume that My < M, are R.-saturated, (ﬁ) € [(M;). Then
the following are equivalent:
(a) ifp € P((B), M) (see 1.14(6) for definition; so p € S(M,) is regular), then
p is not realized in My;
(b) there is an R.-decomposition of My above (%), which is also an X.-decom-
position of M above (5);
(c) every R.-decomposition of My above (}j) is also an ®.-decomposition of Mo
above (5).
(2) IIan is N.-saturated, (ﬁ:) <* (ﬁi) are both in T'(M), then P((ﬁz),M) C
P((2), M)
(3) The conditions in 1.24(1) above imply
@) pe P((§), Ma) = p+ M,.
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Proof: (1) (c) = (b). By 1.14(1) there is an R,-decomposition of M; above (i).
By clause (c) it is also an X.-decomposition of M above (), just as needed for
clause (b).

(b) = (a). Let (Ny,ay : n € I) be as said in clause (b). By 1.14(3)(b) we
can find J1,I C Ji and Ny,a, (for n € Ji\I) such that (Ny,a, : n € Ji)
is an R.-decomposition of M; and v € J;\I = v(0) > 0. Then we can find
JayJi € Jp and Np,a, (for n € Jo\J1) such that (N, : n € Jy) is an X,-
decomposition of My (by 1.14(2)). By 1.14(3)(b), v € Jo\I = v(0) > 0. So
n € I\{{)} = Sucy,(n) = Suc;(n), hence

(%) if n € I\{()} and g € S(N,) is regular orthogonal to N, -, then the station-

arization of ¢ in S(M;) is not realized in M.
Now if p € P((8), M1), then p € S(M,) is regular and (see 1.14(1), 1.11(5)) for
some n € I\{{)},p L N,-,p=£ Ny, so there is a regular ¢ € S(Ny) not orthogonal
to p. Now no ¢ € M, realizes the stationarization of ¢ over M; (by (x) above),
hence this applies to p, too.

(a) = (c). Let (Ny,a, : 7 € I) be an R.-decomposition of M; above (5).
We can find (N,,a, : 7 € J), an R.-decomposition of M; such that I C J and
v € J\I = v(0) > 0 (by 1.14(3)(b)), so M is R.-prime over U{N,, : 7 € J}. We
should check that (N, : a, : 7 € I) is also an R.-decomposition of M, above
(%), i.e., Definition 1.11(1),(2). Now in 1.11(1), clauses (a)-(h) are immediate,
so let us check clause (i) (in 1.11(2)). Let n € I\{()}; now is {a, () : 0 () € I}
really maximal (among independent over NV, sets of elements of M, realizing a
type from P, = {p € S(NN,) : p orthogonal to N,-})? This should be clear from
clause (a) (and basic properties of dependencies and regular types).

(2) By 1.14(5).
(3) Left to the reader. B o

1.25 CONCLUSION: Assume M; < M, are R.-saturated and (ii) <* (ﬁ;) both
in I'(M;). If clause (a) (equivalently (b) or (c)) of 1.24 holds for (ﬁ:),Ml,Mg
then they hold for (ﬁz),Ml, M,.

Proof: By 1.24(2), clause (a) for (ﬁi),Ml,Mg implies clause (a) for (22),M1,
M. b2

1.26 Cram: If (ﬁi) € I'(M) and (Ny,a, : n € I) is an R.-decomposition of
M above (ﬁi) and M~ C M is X.-saturated and Unel Ny, € M~ and o is an

ordinal, then
o () 1= () ]



Sh:401

Vol. 140, 2004 CHARACTERIZING MODELS OF NDOP THEORIES 89

Proof: We prove this by induction on « (for all B, A,(Ny,an:n € I),I,M and
M~ as above). We can find an R.-decomposition (Np,a, : n € J) of M with
I C J (by 1.13(4)+ 1.13(2)) such that n € J\I & 5 # () and —~(0) <75 and so M
is R-prime over (J, . ; N; and also over M~ U {N, :n € J\ I}.
Case 0: a=0.

Trivial.
CASE 1:  ais a limit ordinal.

Trivial by induction hypothesis (and the definition of tp).

CASE 2: a=f(+1.
We can find M* < M~ which is Re-prime over |, .; Ny, so as equality is
transitive it is enough to prove

S(ESELA(HED
() 20 = () )

By symmetry, this means that it is enough to prove the statement when M~ is

and

Rc-prime over |, ; Ny
Looking at the definition of tps,; and remembering the induction hypothesis
our problems are as follows:
First component of tp,:
Given (5) <a (52), B> C M, it suffices to find (5?) such that:
(x) there is f € AUT(C) such that: f | By = idp,, f(42) = As, f(B2) = Bs
.and B3 C M~ and tpﬁ[(ﬁz),M] = th[(gi),M‘] (pedantically we should
replace By, A; by indexed sets).
We can find J', M’ such that:
() ICJ CJ,|J'\I| < Rg,J closed under initial segments,
(ii) M’ < M is R.-prime over M~ UU{N,, : € J'\I},
(iii) B, C M'".
The induction hypothesis for 3 applies and gives

oo (i) )= () )

By 1.14(4) there is g, an isomorphism from M’ onto M~ such that g [ B; =id.
So clearly g(B2) C M, hence

s [(42) 2] = s (S0 7]
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So (ﬁi) = g(j;;) is as required.

Second component of tp_.:

So we are given T, a tpg type (and we assign the lower part as B), and we have
to prove that the dimension in M and in M~ are the same, i.e., dim(I, M) =
dim(I~, M), where

I={ceM:T :tpﬁ(<gl>,M)} andI"={ce M~: T :tpﬂ((Bcl),M_)}.

Let p be such that: tpﬁ((gl),M) =T = p= §;. Necessarily p L A; and p is
regular (and stationary).
Clearly I~ C I, so without loss of generality I # @, hence p is really well
defined. Now
(%) for every ¢ € I for some k < w,c, € M~ realizing p for £ < k we have c
depends on {cg,c},...,c},_, } over By.
(Why? Clearly p L Nos (as B /&U Nes and p L Ap), hence
1

tp*(U'nEJ\I Np,N<s) L p, hence tp*(U’HEJ\I NpyM™) L p, but M is
N.-prime over M~ U UneJ\I Ny, hence by [Sh:c, V, 3.2, p. 250] for no
c € M\M~ is tp(c, M ™) a stationarization of p, hence by {Sh:c, V, 1.16(3)]
clearly (*) follows.]

If the type p has depth zero, then (by 1.14(7)):

I={ceM:tp(c,B)y=p} and I ={ce M~ :tp(c,B) =p}.

Now we have to prove dim(I, A) = dim(I~, A), as A is e-finite and M, M~ are
R-saturated and I~ C I; clearly Ry < dim(I™, A) < dim(I, A). Now the equality
follows by () above.

So we can assume “p has depth > zero”, hence (by [Sh:c, X, 7.2]) that the type
p is trivial; hence, see [Sh:c, X, 7.3], in (x) without loss of generality k¥ = 1 and
dependency is an equivalence relation, so for “same dimension” it suffices to prove
that every equivalence class (in M, i.e., in I) is representable in M, i.e., in I".
By the remark on (%) in the previous sentence (Vd; € I)(3dy € I7)[~d; || do).

By

So it is enough to prove that:
& if dy,d> € M realize the same type over B;, which is (stationary and)
regular, and are dependent over B; and d; € M, then there is d;, € M~
dy  _ _dy Bi+d _ Bi+d} -
such that 525 = 5%~ and tp(( ‘g’l 2), M] = tpg]( 5. 2}, M~).
Let Mo = Nyy. There are J', My, M; such that

(%)1(i) J' C J is finite (and, of course, closed under initial segments),
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(il ()€ J,(0) ¢ J,
(iii) M; < M is R.-prime over U{N, : n € J'},
(iv) M;" < M is R.-prime over M; UM~ (and M; () M~),
My
(v) do € M1+
Now the triple (? ‘;1 ), My, M satisfies the demand on (ii),M ~, M (because
(ﬁ:) <* (BlB“lez), by 1.25). Hence by the induction hypothesis we know that

ma{(% )] = 0a (P ). 2]

By 1.14(4) there is an isomorphism f from M;" onto M~ which is the identity
on By +dy; let ds = f(ds), so

tpg [(Blgl(b),Mf] = tpg [(Blgld’?),M‘].

s [ ) M] = s [ (P15 %) ],

As {dy,d,} is not independent over By, also {f(d1), f(d2)} = {d1, f(d2)} is not
independent over Bi, hence, as p is regular,

(x) {d2, f(d2)} is not independent over Bs.
Together we have proved €P, hence finishing to prove the equality of the second

Together

component.
Third component: Trivial.
So we have finished the induction step, hence the proof. B2

1.27 CramM: (1) Suppose M is N.-saturated, A

c M,(3) €T,
Nooi[A C Ar C M), A = acb(A), Ay are e-finite, A=A

c
LUAl and BLUAQ
A A

Then tp,[(*17), M] = tpa[(quL:B),M] for any ordinal .
(2) Suppose M is N.-saturated, B C M, (i) € I Ai-1[A C© A, C M],

A = acl(A), B = acl(B), Ay = act(As), Ay is e-finite, 34 = éAz,BE‘UAl,B/qJAQ,

f: A 284, an elementary mapping, f [ A = ids,¢9 O fUidp,g elementary
mapping from By = acf(BU A;) onto By = acf(B U Aj).

Then g(tpa[(ﬁ:),M]) = tpa[(ﬁZ),M] for any ordinal a.
(3) Assume that

(a) A¢ = acl(A¢) C By = acl(Bg) C M* for £ = 1,2,

(b) A¢ C Af Cacl(Af) C Mt for=1,2,
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(c) By LU Af fort=1,2,

(d) f is an elementary mapping from A; onto As,

(e) g is an elementary mapping from A} onto A7,

(6 f gl A,

(g) h is an elementary mapping from Bf = acl(B; U A}) onto B} =
acl(By U A7) extending f and g,

(h) ftpal(3 ) M) = tp,[(} ) My).
I_bﬂ h(tpa[(AT)’Ml]) = tpa[(A-zi-)’MZ]'

Proof: (1) Follows from part (2).

(2) We can find A3 C M such that:

Q) % =%

(i) AsJ(BU Ay U Ay).
A
Hence without loss of generality A; {|J A2 and even |[J{B, 4;, 42}. Now we can
B A

find N.., an XN.-prime model over O,No.» < M,A C N., and
(BUA; UA2) | Nes (eg., choose {AF U AY U B® : a < w} C M indiscernible
A

over A, AY = A1, AY = Ay,BY = B and let No. < M be R -primary over
Un<w (AT U AZ U B™ U A)).
Now find (N, a, : n € J), an X,-decomposition of M with

dcl(aco>) = dcl(B),dcl(aci>) = del(A4r), del(acas ) = del(As).

Let I={nedJ:n=<> o <0>dn}and J =ITU{<1><2>} Let
N2, < M* be R.-prime over Nc1> U Neos. By 1.21 there is (NZ,a, : 7 € I),
an N.-decomposition of M above (ﬁ) such that (Np,ap @ 1 € I) <direct
(N2,ay : n € I). Let M' < M be XN,-prime over UneIN and M~ < M’
be R.-prime over |J So M~ < M' < M and M’ is R.-prime over
M~UN«> UNcs.

Now by 1.26 we have tp,[( 2 ), M| = tpa[( 2 ), M'] for £ = 1,2, hence it suffices
to find an automorphism of M " extending g. Let Bt = acl(N> U B), A} =
acl(B U Ag); let ay list A be such that a; = g(a;). Clearly tp(ag, Bt) does
not fork over A C B and acl(B) = B, and so stp(a;, BT) = stp(as, BT). Also
tp, (A2, BT U A1) does not fork over A, hence tp(az, B+ Ua;) does not fork over
A C B, hence {a;,a2} is independent over B, hence there is an elementary
mapping gt from ac/(B* U a;) onto acl(B* U a;), g D idp+ U g and even
¢ =gt U(¢g")"! is an elementary embedding.

"IEI
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Let &} lists acf(N<> U A1), so clearly &) =: g*(a]) list acl(N<>UA2). Clearly
¢’ | (2] Ua)) is an elementary mapping from aj Uaj onto itself. Now N2 is R,-
primary over N.» UA; UAs and Nes UA; UA; C ajua) C acl(Nes UAUAS),
so by 1.18(10) N2, is R-primary over N()a) U &), hence we can extend
g’ | (a)ua)) to an automorphism he> of N2, so clearly hes | Nos =idn,, .
Let a7 list acf(B* U 4;) and af = g*(af). So tp(a;, N2.) does not fork over
aj(C NZ,) and acf(a}) = Rang(a)) (= GCK(N<>UA1)) and hes @] = g7 [ 2],
hence hos U gt is an elementary embedding. Remember g% is the identity
on Bt = acl(N.> U B), and tp,(N<o>,N2,) does not fork over N¢s, hence
tp,(N<o>, Bt UNZ,) does not fork over B*, so as ac{(B*) = B* necessarily
(he> UgT)Uidn,,, is an elementary embedding. But this mapping has do-
main and range including N<o> U N2, and included in N2, but the latter is
Ne-primary and R.-minimal over the former. Hence (h<> U g*)Uidy_, can be
extended to an automorphism of N2, which we call hos.

Now we define by induction on n € [2,w), for every € I of length n, an
automorphism hy, of Ny 2 extending h,- Uidy, , which exists as Ng is N¢-primary
over Ns_ (and N 2 U_J N,). Now U,76 1 hn is an elementary mapping

(as(N2:npel)isa non—forkmg tree; i.e., 1.13(10)), with domain and range
Uyer Vi, hence can be extended to an automorphism h* of M’ (we can demand
h* | M~ = idy,- but not necessarily). So as h* extends g, the conclusion follows.
(3) Similarly to (2). | Y

1.28 CraiM: (1) For every T = tps[(%), M], and a,b listing A, B respectively,
there is 1 = ¢¥(Za,ZB) € Luo,x, (q.d.) of depth 4 such that:

tpg [(i),M] =T & M [ y[a b

(2) Assume @, s, of 1.4 holds as exemplified by the family F and (§) € T(M:)
and g € F,Dom(g) = B; and o an ordinal. Then

()0 () )
(3) Similarly for tp,([A], M),tp,[M].

Proof: Straightforward (remember we assume that every first order formula is
equivalent to a predicate). | oYY
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1.29 Proof of Theorem 1.2: [The proof does not require that the M*¢ are .-
saturated, but only that 1.27, 1.28 hold except in constructing gu () (see ®14, R15
in 1.30(E)); we could instead use NOTOP.]

So suppose
(x)o M =L, (aq) M? or (at least) @1 pp from 1.4 holds.
We shall prove M! = M2, By 1.28 (i.e., by 1.28(1) if the first possibility in (*)o
holds and by 1.28(2) if the second possibility in (*)o holds)
()1 tPoo[M'] = tpo[M?].
So it suffices to prove:

1.30 CLAM: Assume that T is countable. If MY, M? are N.-saturated models
(of T,T as in 1.5), then:
(*)1 = M= M2

Proof: Let (Wi, W, : k < w) be a partition of w to infinite sets (so pairwise
disjoint).

1.31 ExprLanaTiON: (If it seems opaque, the reader may return to it after
reading parts of the proof.)

We shall now define an approximation to a decomposition. That is, we are
approximating a non-forking tree (N,f,af7 : n € I*) of countable elementary
submodels of M¢ for ¢ = 1,2 and ( fr :m € I") such that £ is an isomorphism
from N} onto N} increasing with 7 such that M* is R-prime over |J, ¢ ;. Nf.

In the approximation Y we have:

(o) I approximating I*

[it will not be I*N"= Ord but we may “discover” more immediate successors
to each i € I; as the approximation to IV, improves we have more regular
types, but some member of I will later be dropped],

(8) Af; approximates N,’; and is e-finite,

) af] is the af, (if n survives, i.e., will not be dropped),

(8) Bf;,bfhm expresses commitments on constructing Af,: we “promise” B$ C
NE and BY is countable; b, for m < w list B (so in the choice B C M*
there is some arbitrariness),

(¢) fy approximate fy,

) pfy’m also expresses commitments on the construction.

Since there are infinitely many commitments that we must meet in a construction
of length w and we would like many chances to meet each of them, the sets Wy, W,
are introduced as a further bookkeeping device. At stage n in the construction
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we will deal, e.g., with the bf;’m for n that are appropriate and for m € Wy, for
some k < n and analogously for pf)ym and the W;.

Note that while the Af, satisfy the independence properties of a decomposition,
the Bﬁ do not and may well intersect non-trivially. Nevertheless, a conflict arises
¢ : T ¢
" <i> falls into B,, since the Qpcis
elements realizing regular types over the model approximated by Af7 but now

ifana are supposed to represent independent

aff <i> 18 in that model. This problem is addressed by pruning " <7 > from
the tree .

1.32 Definition: An approximation Y to an isomorphism consists of:
(a) natural numbers n, k* and index set: I C "2 Ord (and n minimal),
(b) (A%, BL,ab,b,, :m € I and m € Uy . Wi) for £ = 1,2 (this is an
approximated decomposition),
(©) (fyp:nel),
(d) (pﬁwm :neland me U,p Wi),
such that:
(1) I is closed under initial segments,
(2) <>€1,
(3) Af; C Bf) C Me,Afl is e-finite, acé’(Af]) = Af,, Bf, is countable, Bf, =
{bfhm m € Uk(k* Wk}a
(4) AL C Af, ifrvanel,
14
(5) if n € I\{<>}, then K?—"— is a (stationary) regular type and af] € Af,; if,

(=)

[4
in addition, £g(n) > 1, then 7477—”— i A‘(Zn__) (note that we may decide a®
(n7)
be not defined or € 4% .),
Al .
(6) m Lo AL ifneI,L9(n) >0,
(7) if 5 € I, not <-maximal in I, then the set {al : v € Tand v~ =n}isa

maximal family of elements realizing over Af, regular types L Afn_) (when
1~ is defined), independent over (Af]7 Bf,) (and we can add: if v =v;, =17

(ll a,’;
v 2 4 — ¢
y i v then a;, /A, = a;,/4,),

and

(8) fy is an elementary map from A} onto AZ,
(9) fiy-) € fo when n € I,£9(n) >0,
(10) fp(al) = a2,
(11) (o) fn(tpoo[(A(ft'll_)),Ml]) - tpoo[(Agfv_)),Mq when n € I\{<>},

(B) fes(tpoolALs, M) = tpo [AZ 5, M?],
12) BE < M moreover, BY Cpo MY, ie., if @ C NE b € MO\BY and M* E
7 n 7 7
¢(b, @), then for some b’ € B, = ¢(b',a) and b ¢ acl(a) = b’ ¢ acl(4),
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(13) (P, : M € Upre Wy) is a sequence of types over At (so Dom(pf ,,,) may
be a proper subset of A%).

1.33 Notation: We write n = ny = n[Y],I = Iy = I[Y], A% = AL[Y], B =
BEY), fn = Y = folV), 6 = al[Y], 0L = B[Y], k* = k% = k*[Y] and pf ,, =
miV]-

Dy ke

Remark: We may decide to demand: each 927;—?- is strongly regular; also: if
two such types are not orthogonal then they are enqual (or at least have the same
witness ¢ for (¢, 9—'7-—23) regular). This is easy here as the models are R -saturated
(so take p’ £ p, rk(p') minimal).

1.34 OBSERVATION: (x); implies that there is an approximation (see 1.29).

Proof: Let I = {<>},A%, = acf($),k* = 1, and then choose countable B
to satisfy condition (12) and then choose fy,pf, bt ., (for k € W§ and m € Wy)
as required.

1.35 MAIN FacT: For any approximation Y, i € Uk<k; (Wi UW;) and m < ny
and £(*) € {1,2}, we can find an approximation Z such that:
(®)(e) nz = Max{m + 1,ny},Iz N ™2 Ord = Iy N ™2 Ord (we mean m not
ny) and k3 = ky + 1;
(8) (a) if n € Iy,2g(n) < m, then

ArlZ) = Ajl2),
ay[2] = a,[2],
Bt[z) = B[y,

(b) if n € Iy NIz, k < k} and j € W, then pf ;[Z] = pf, (Y],
(c)ifnelyNiz, k<ky and j € Wy, then bfm-[Z] = bfl’j[Y];

(W' if n € Iy,€g(n) = m,k < k} and? i € W}, and the element b € M4*)
satisfies clauses (a), (b) below, then for some such b we have: Ag(*) [Z] =
acZ(Ae(*)[ Y] U {b}), where

(2) by Y] ¢ Ay Y] amd () > 0= i Lo A0V

(b) one of the conditions (i), (ii) listed below holds for b:
(D) b= b2 1Y] and €g(n) > 0 = T L ALY or
(ii) for no b is (i) satisfied (so ﬂg( ) > 0) and b € M
bE i ¥ oy b and Lg(n) > 0= — L, Ay,

2 Recall that i is part of the information given in the main fact, and, of course,
k is uniquely determined by i.
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(7)? if we assume 7 € Iy, Lg(n) = m,k < k} and ¢ € W], then we have
(a) 1fp£( ) is realized by some b € M¥*) such that Rk(—2— A“"[y] ,L,00)

= R(p,.;), L,00) and [£g(n) > 0 = bz Lo A;V([Y], then

for some such b we have A~"[Z] = act(A5 (Y] U {b}),

(b) if the assumption of clause (a) fails but p,; ) is realized by some

b e MU\ ALY such that [¢g(n) > 0 = “.,[Y] L, Af,(_*)[Y]],

then for some such b we have Ae [Z) = acﬁ[Af,( [Y]U {b}];

(0) if n € Iy and €g(n) = m, then BL[Z] = {bf GYl:je Wy k<
k%}} is a countable subset of M* containing {B[Z] : v A nand v €
Yiu B,‘;{Y], with Bf;[Z] < M?: moreover, B,‘é[Z] Cre M ie,ifaC
BL[Z],p(z,7) is first order and (3z € Me\acé(‘)) (z,a) then (Iz €
BE[Z)\acl(a))e(Z,a)) and {an <aslY]: ) € Iy and an <aslY] ¢
Bf; [Z]} is independent over (BE[Z], A [Y]

(e) if p € Iy,€g(n) > m, thenn € Iz & afn(mﬂ)[Y] ¢ Be imlZ];

) if n € Iy N Iz,8g(n) > m, then AL[Z] = act(AL]Y ]UAf”m
BY[Z] = BYIY);

(n) if n € Iz\Iy then n~ € Iy and {g(n) =m + 1;

6) {r52]:i¢ W’,.Z_l} is “rich enough”, e.g., includes all finite types over
Af,;

) {64, :1€ Wy, _1} list B5[Z], each appearing infinitely often.

[Z]) and

Proof: First we choose Af,(*)[Z] for n € I of length m according to condition
(7) = () + (7)2. (Note: One of the clauses (7)!, (7)? necessarily holds trivially
as U, We U, W[ =0.)

Second, we choose (for such 7) an elementary mapping fnZ extending f;’ and
a set AS7)[Z) € M3 satisfying “fZ is from A}[Z] onto A3 (7] such
that

. Allz Allz

(*)2 if m > 0, then fnZ(tpoo((A::i[[J])a Ml)) = tpoo((AfIﬂ_[Dl])a M2)7

()3 if m =0, then f7(tp,, (A}[Z], My)) = tpo, (AZ[Z], M3).

[Why is it possible? If we ask just the equality of tp,, for an ordinal a, this follows
by the first component of tp,, ;. But (overshooting) for & > [(|| M ||+|| Ma||)!T1]F,
equality of tp, implies equality of tp.]

Third, we choose Bf,[Z] for n € Iy, £g(n) = m according to condition (6) (here
we use the countability of the language; you can do it by extending it w times)
on both sides, i.e., for £ =1,2.

Fourth, let I' = {n € I : if £g(n) > m then am(mH)[Y] ¢ BL,.[Z]} (this will
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beyNI Z)‘

Fifth, we choose A%[Z] for n € I': if £g(n) < m, let AL[Z] = AL[Y]; if Lg(n) =
m, this was done; lastly, if £g(n) > m, let AL[Z] = acl(AL[Y]U AL, [2]).

Sixth, by induction on k£ < ny we choose fnZ forn € I' of length k: if £g(n) < m,
let fZ = fY; if £g(n) = m, this was done; lastly, if £g(n) > m, choose an elemen-
tary mapping from A} onto A2 extending f) U fﬂZ_ (possible as fY U f2_ isanel-
ementary mapping and Dom(f,") NDom(fZ.) = Afz(—* ). Dom( ) lL!J) Dom( fnZ_)

Al

n
and Af](_*) = acé(Af;(_* ). Now fZ satisfies clause (11) of Definition 1.32 when
¢g(n) > m by applying 1.27(3).

Seventh, for n € I, of length m < nz, let v, =: {a : n"(a) € I}, and we choose
{a}- coslZ] s 0 € up}, o € uy = 17 (@) ¢ I, a set of elements of M realizing
(stationary) regular types over A%,[Z]7 orthogonal to A,-[Y] when £g(n) > 0,
such that it is independent over (U{a}. _,~[Y]: n"{a) € I'} U B}[Z], A}[Z]) and
maximal under those restrictions. Without loss of generality, sup(v,) < min(uy,)

and, for oy € v, Uu, and oy € u,, we have:
1 1
n”<a1>[Z] 4 a,,-<(,2>[Z]

(%) if (for the given as and ) ¢ is minimal such that z

A3lZ] ATlZl
alA 1“
then -2 ;5:[1;][2] = 25:[2;][2];
()2 if o1 < aglland a}ﬂal)[Z]/A;[Z] = Gy (4y[Z]/A}[Z] and, for some b € M?!
realizing i‘ﬂ%[z#, we have bl 4 2] ailh<a2> and tpo[( 4 b ), M| =
7 772 N <ag>

1
tPoo :gé‘;‘;),M] and o; is minimal (for the given ay and 7), then

1 1
Dol (51 <), M) = (<72 M)
kK 0 <oy

<agz> >

: : : ~ ' a11“<n>[Z] a11‘</1>[Y]
Easily (as in [Sh:c, X]), if « € u, and 0" () € I' then -5 2 L ST
7 7
For o € uy let A}, [Z] = acl(A}[Y] U {a;- .o~ [2]}).
Eighth, by the second component in the definition of tp,,; (see Definition 1.10)
we can choose (for a € ug)al-_,-[Z], A2, [Z] and then fZ <> as required
(see (7) of Definition 1.32).

Ninth, and last, we let
In=T'U{n" <a>nel lg(n)=m<nzand a € u,}

and we choose Bf, for n € Iz\Iy and the pf;’i, bf)’ ; as required (also in the remain-
ing case).
B3

1.36 Finishing the Proof of 1.11: We define by induction on n < w an approxi-
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mation Y, =Y (n). Let Y, be the trivial one (as in observation 1.30(C)).
Y,11 is obtained from Y, as in 1.35 for my,i, < n,fp(x) € {1,2} defined
by reasonable bookkeeping (so i, € |J, <Ky, )(Wk U W;)) such that any triples

appear infinitely often; without loss of generality: if n; < no&n € I¢ N I¢ then
ne nzinl Iy.
Let I* = I[¥] = lim(IZ(n)) =: {n : for every large enough n,n € I,,}; forn € I'*
let A%[%] = U, ey ALIYal, f¥ = Upcy fr ) and BL¥] = U, ., BL[Yx]. Easily
@, <>€I* and I* C“> Ord is closed under initial segments,
P, fornel *,(Bf?[Yn} :n < wandn € I[Y,]) is an increasing sequence of
Cpa-€elementary submodels of M¥¢.
[Why? By clause (12) of Definition 1.32, Main Fact 1.35, clauses (8)(a), (9), (¢).]
Hence
@, for n € I*, Bi[x] Cna ME.
Also
@, vane " = Bi[+] C Bi[+].
[Why? Because for infinitely many n,m, = £¢(n) and clause () of Main Fact
1.35.]
@, UnelY,]nI*,n~ =v and n; <ng, then

AV, ) AllYa,)
Al[Ya,]

[Why? Prove by induction on ngy (using the non-forking calculus); for ny = ng

this is trivial, so assume ny > ny. If mgm,_1) > lg(v) we have A[Y,,]

= A’[Y,,_1] (see 1.35, clause (3)(a) and we have nothing to prove). If M(ny—1)

< fg(v), then we note that A%[Y,,] = acl(A%[Y,,1] U Aﬁrm(nz_”[Ym]) and

Ab[Yn,_1] [ 1] A,{rm(m_“ [Y,,] (as v € I[Y,,], by 1.35 clause (9) last phrase)
vim(n,—1)

and now use clauses (5), (6) of Definition 1.35. Lastly, if m(,,_,) = £g(v) again
use v € I[Y,,] by 1.35, clause (§), last phrase.]
@, IfnellY,|NnI*,n~ =vand ny <ny, then

AL
A+ alp] T

[Why? By clause (6) of Definition 1.32, and orthogonality calculus.]

@ If 7 € I*, then AL[+] C BL[¥] < M*; moreover,

®7 Al [¥] Cha B[+l Coa M.
[Why? The second relation holds by ),. The first relation we prove by induction
on {g(n); clearly Af[+] = acl(AL[%]) because AL[Y,] increases with n by 1.35 and
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AL[Ya] = acl(AL]Yx]) by clause (3) of Definition 1.32. We prove “A; , [¥] Cua
Bg[*}” by induction on m = £g(n), so suppose this is true for every m’ < m,m =
Lg9(n),n € I*, let p(z) be a formula with parameters in Af’[*] realized in M¢ as
above, say, by b € M¢. As (A,‘;[Yn] :n < w,n € Yy,) is increasing with union

AL[%], clearly for some n we have b ||) AL[«].
AglYa)

So {p(x)} = pt ; for some ¢ and for some n' > n defining Y,11 we have used
1.35 with (¢(x),4,m), there being (¢,4,£g(n)) here, hence we consider clause ()2
of 1.35. So the case left is when the assumption of both clauses (a) and (b) of
(7)? fail, in which case we have £g(n) > 0 and

!

b
! £ ! 11 i
b ¢ ALV b € MY o] = y

+ ALY
We can now use the induction hypothesis (and [BeSh 307, 5.3, p. 292]).]
@ Ifn € I* and £ = 1,2, then {af. .. [+] : n"(a) € I*} is a maximal subset
of

{ce M,: regular, ¢ U BZ[*] and fg(n) > 0= ——

AL[¥]

yrim LA [}

A5 [ ]
independent over (Af,[*], Bf;[*])

[Why? Note clause (7) of Definition 1.32 and clause (4) of Main Fact 1.35.]

®, AL (4] = BLS[H).

[Why? By the bookkeeping every b € B% . [#] is considered for addition to A% . [*],

see 1.35, clause (v)!, subclause (b)(i), and for () there is nothing to stop us.]

@10 Ifn e I*\ {()} and p € S(A%[«]) is regular orthogonal to Af]_ [%], then
BE[x
Lo

[Why? If not, as A%[] Cna B[*] by [BeSh 307, Th. B, p. 277] there is ¢ €

BE[#]\ A [¥] such that: T s p Asce BE[*) = Upcy, BEY2), for every n < w

large enough ¢ € BE[Y,], and p does not fork over AL[Y,]. So for some such n

the triple (in, £,,my) is such that ¢, = £,m, = £g(n) and bfm»n = ¢, 8o by clause

(1)} (b)(ii) of 1.35 we have c € A%[V,] C AL[+]]

&®,, Ifn € I",¢ € {1,2}, then {a, <o> : n'{a) € I*} is a maximal subset
of {c € M*: T‘fﬂ regular, 1 Af} _[*] when meaningful} independent over
Ajl].

[Why? If not, then for some ¢ € M, {a,7 (ay : N7 (@) € I"} U {c} is independent

over A%[¥] and tp(c, AL[%]) is regular (and stationary). Hence by ®;0 we have

{af[Yn] : n°(@) € I*} U {c} is independent over (AL[«], B{[x]). Now for large

n<w
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enough n we have ¢ () Af[x] and by ®10 we have ¢ (| B[+], hence

Al (Y] ALY,

cAeU[J] Bi[Y,], {c}U {afma)[Yn] : n°{a) € I[Y,]} is not independent over

(Af,[Yn],Bf;[Yn]), but {aff@[Yn] : n™{a) € I[Y,]} is independent over
(AL[Y,], BE[Y,]). So there is a finite set w of ordinals such that o € w = 0" () €
I[Y;] and {c} U {af. ,[Vs] : & € w} is not independent over (A%[Y], B;[Yn)),
and without loss of generality w is minimal. Let n; € [n,w) be such that
a € w&aff <> € Bf,[*] = af, € Bf;[Ym]; these clearly exist as w is finite and
let = {a € w:al ., ¢ Bi[+]}; clearly @ € u = 7" < a >€ I*. Now
{af,.(a> [*] :n™(a) e I*}U Bg[*] includes {afma) [Yo] : @ € w}; easy contradiction
to the second sentence above.]
D12 1 = Upcw fulYa) (for n € I') is an elementary map from A}[+] onto A%[*]
[Easy.]
®D,s f* = Uy~ fy is an elementary mapping from J,¢;. All¥] onto
Uner- A2[+].
[Clear using ®5 + ®¢ + @32 and non-forking calculus.]
@,, We can find (d’, : @ < a(x)) such that:
(a) d, € MY B < a = df # dE, tp(df;,UnE[[*] Ab[{Ju{d} : B < a})is
N,-isolated and Fﬁo-isolated, and
(b) 9o = Upese f U{{(dg, d2) : @ < a(#))} is an elementary mapping,
(c) a(x) is maximal, i.e., we cannot find d}x(*) such that the demand in
(a) holds for a(x) + 1.
[Why? We can try to choose, by induction on a, a member d. of
M"\U,ergU{dp : B < a} such that tp(dg, U e Abl¥U{dy : B < a}) is
R.-isolated and Fﬁo-isolated. So for some a(x), d}, is well defined iff @ < a(*) (as
B < a=dj#dl, € M"). Now choose, by induction on a < a(x),d% € M?* as
required above, possible by “M? being R.-saturated” (see [Sh:c, XII, 2.1, p. 591],
[Sh:c, IV, 3.10, p. 179] ]
Q.5 Dom(ga(s)), Rang(ga(x)) are universes of elementary submodels of M, M 2
called M{, M; respectively.
[Why? See [Sh:c, XII, 1.2(2), p. 591] and the proof of ®4.
Alternatively, choose a formula ¢(z,a) such that:
(a) @ C Dom(gy(+)) and |= 324H(z,a) but no b € Dom(g,(.)) satisfy ¢(z,a);
(b) under clause (a), Rk(¥(x,a), L7, 00) is minimal (or just has no extension
in S(Dom(gq(s)) forking over @).
Let {@¢(x,7e) : ¢ < w} list that L,7)-formula and we choose by induction on £
as formula ¥, (z, @,) such that:
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a
Uny (-T an+1) F ¢n(x»dn)a
(4

0(‘): aO) (fl),é_l),

Rk(d)nﬂ‘-l (zv&n-{*-l)’ {‘Pn(x’ gn)}; 2) < Rk(z/)’(a", 6)3 {Wn(img)}’ 2) (On this
rank see [Sh:c, II, §2}).
So p = {¥n(z,@y) : n < w} has an extension in S(Dom(g,(«))); call it . Now ¢ is
R.-isolated because ¥(x,a) € ¢ € S(Dom(gqa(x)). For every n,¥n41(2,an) F q [
{pn(z,¥n)} by clause (v) above, s0 as ¥p41(%,a,) € g and this holds for every n
clearly ¢ is Fﬁo—isolated.

&, If M¢ # Mj; then for some d € M\ M, Mi; is regular.
Why? By [BeSh 307, Th. 5.9, p. 298] as N¢ Cya Mf by &,
n 7
®,; If M # Mj, then for some 7 € I*, there is d € M\ M, such that X[dm is

regular,d ||) M, and [¢g(n) > 0= Wd—[;] L AL [4]).
Af [+ !

[Why? By [Sh:c, XII, 1.4, p. 529] every non-algebraic p € S(M,) is not orthogonal
to some A%[#], so by ®1¢ we can choose 7 € I* and d € M*\ M such that Mig is
regular +A%[+]. Without loss of generality £g(n) is minimal; now Af[¥] Cna M*

and by [BeSh 307, 4.5, p. 290] without loss of generality d ELU Myj; the last clause
AL[x

is by “fg(n) minimal”.] o

@18 My = Mtz

[Why? By ,; + D7)

@, There is an isomorphism from M; onto M extending (J, - f5

[Why? By @,, + &, we have M{ = M}, soby @13 wearedone.] HBy3s B30

1.37 LEMMA: Assume B|JC,A = acl(A) = BN C and A, B,C are e-finite,

A

AUBUC C M, M an X.-saturated model of T'. For notational simplicity make
A a set of individual constants.

Then tpy _ , (a.q)(B+C;M) =tpL_, (d.4)(B; M) + tPL,. . (d.q)|C; M] where

1.38 Definition: (1) For any logic L and b a sequence from a model M, let

tp,(b; M) = {p(Z) :M k= ¢[B], ¢ a formula in the vocabulary of M,
from the logic £ (with free variables from
T, where T = (x; : i < Lg(b)))}.
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(2) Replacing b by a set B means we use the variables (x} : b € B).
(3) Saying p; = pe + p3 in 1.37 means that we can compute p; from p, and p;
(and knowledge as to how the variables fit and knowledge of T, of course).

Proof of the Lemma 1.37: It is enough to prove:

1.39 CLAIM: Assume
(a) M, M? are R -saturated and
(b) A% Ul AL fori=1,2,
Ay

(c) A% = acl(A}) and A%, is e-finite for i = 1,2 and m < 3,

(d) form =0,1,2 we have f,, : AL, 2842 is an elementary mapping preserving
tPoo (in M1, M? respectively) and

(e) fo C fi, fo-

Then there is an isomorphism from M* onto M? extending f, U fo.
Aaen g

Proof of 1.39: Repeat the proof of 1.5, but starting with ¥j such that A% [Yp] =
Af, AL Vo] = A, ALy (Vo] = Af, [ = fo, £33 = fr, f&5 = f» and that
(), (0, (1) belong to all I[Yp). During the construction we preserve (0), (1) € I[Y,,]
and for helping to preserve this we add also the demand
®2,m BLL[Yn) UPJ Af U AL

Ag

During the proof, when we have to increase B, we use 1.18(1) + 1.16(1).

&30

DiscussionN: A natural version of 1.39 is the conclusion only that
Al U AL A% U A2
wal () 4 = wal (7% 007
0 0

and to prove this by induction on a. The case @ = 0 and « limit are obvious. If
a = B + 1, for the condition of <,, we use the induction hypothesis and claim
1.27(1). The condition involving <y, is similar but harder. B39

2. Finer types

We shall use here alternative types showing us probably a finer way to manipulate
tp.

2.1 CoNvENTION: T is superstable, NDOP; M, N are R.-saturated < €°9,
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I, = { <§ ) : @ is e-finite, p € S(a) is regular (so stationary)},
D\ . . .
Iy = { ( - ): G is e-finite, p is a regular type of depth > 0,

p £ a (really only the equivalence class p/ £+ matters),

r =r(z,§) € S(a) is such that for (c,b) realizing r,

Q| o

c/(@a+b)isregular & p, and = = (r [ §) L p},

We may add (to I';) superscripts:
(o) fifa (or @d) is finite,
(8) s: forI'g if g is stationary, for I'; if p is stationary which holds always, and
for T'y if 7 is stationary and every automorphism of € over a fixes p/+,
(v) cifa (or a,b) are algebraically closed.

2.3 CramM: Ifp is regular of depth > 0 and p+ @& and @ is e-finite, then for some

a',a C @ C act(a) and for some q we have (‘:_l’,q) eTIs.

Proof: Use, e.g., [Shic, V, 4.11, p. 272]; assume %:i: p- We can define inductively
equivalence relations E,, with parameters from acf(a’),

a‘ =a"(b/Ey)" - "(b/En-1),

such that tp(b/E,,acl(a™)) is semi-regular. By superstability this stops for
some n, hence b C acf(a®). For some first m, tp(b/E,,,acl(@")) is p; by
[Sh:c, X, 7.3(5), p. 552] the type is regular (because p is trivial having depth > 0;
see [Sh:c, X, 7.2, p. 551}). b3

2.4 Definition: We define by induction on an ordinal a the following (simulta-
neously) [note — if a definition of something depends on another which is not
well defined, neither is the something]:

tpl [(Z),M] for (Z) el,aCM,
tp2 [(p;_:),M] for (p;_:) el,aC M,

tpy [(Z)M] for (2) €Ts,achbC M.
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CASE A, a=0: tpi[(g), M] is tp((¢, @), B) for any c realizing p.
2 b, T . - _ B o
2 [( a ),M] is tp((c,b,a), D) for any (c,b) realizing r.
b -
3 . _
tPy [(d),M]IS tp((b,a),0)

(i.e., the type and the division of the variables between the sequences).

CASE B, a=p+1:
() tpA[(2), M] is:

SUBCASE al: If p has depth zero, it is w,(M/a) (the p-weight, equivalently, the
dimension).

SUBCASE a2: If p has depth > 0 (hence is trivial), then it is {{y,A} ) : y}

where

Ay, = dim(I3 [M],a)
where I} [[M] = {c € M : ¢ realizes p and y = tp%[(“ii(f(;}c)), M| where a* lists
acl(a) and ¢* lists acl(@ + c)}; an alternative probably more transparent and

simpler in use is:

Ay, = dim {c € M: c realizes p and

g fact{@a+c) . ,
y—{th[( act(3) ,M]:c € p(M) and ¢ EIJC},
pedantically y = {tp} (< ¢ ;df ¢ ),M ], where

a*lists acl(a) and

¢*lists acl(a + ¢'),c’ € p(M) and ¢’ LIJC}}
a

(b) tp3[(%7), M] is:
tp}l[(céT), M] for any (c, b) realizing r, bt = acf(a+d), i.e., b* lists acl(a+b)
(so not well defined if we get at least two different cases; so remember
c/bt € S(bT)).

() tp3[(3), M1 is {(p, tp2[ ('), M1} : (%) € T3 and p L @}

Case C, a LiMIT: For any ¢ € {1,2,3} and suitable object OB:

tp4[OB, M] = (tp5[0B, M] : B < a).
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2.5 Definition: (1) For (?) € T'; where @ € M, let (remembering 1.14(8)):

P(Ag) = {q € S(M): q regular and : g£p or for some ¢ € p(M) we have q € Péf)}.
(2) For (%") € Tz let

P(Aér) = {q € S(M) : q regular and : ¢+ p or for some (c,b) € r(M),q € 73( }-

(3) For a set P of (stationary) regular types not orthogonal to M, let M; <p M,

a-H))

mean M; < M, and for every p € P and ¢ € My, 35~ L p.

(4) If (in 3)) P = ’P(I‘f)‘ we may write () instead P; similarly, if P = Pé\f ‘T)
may write (%").

2.6 CLAIM:

(1) From tpl[(?), M] we can compute tpl[(?), M] if Dp(p) < a.

(2) From tpa[(’_’ﬁ ), M] we can compute tp2 {(%:9), M] if D_p(p) <a.

(3) From tp3[(%), M] we can compute tp3.[(2), M] if Dp(b/a) < a.

(4) In Definition 2.5(2) we can replace “some (c,b) € r(M)” by “every (c,b) €
r(M)”.

Proof: (1), (2), (3) We prove this by induction on a. By the definition.
(4) Left to the reader.

2.7 OBSERVATION: From tp%(OB,M) we can compute tpf;[OB, M], and
tpf; [OB, M] is well defined if 5 < o and the former is well defined.

2.8 LEMMA: For every ordinal a the following holds:
(1) tpl is well defined.?
(2) tp? is well defined.
(3) tp3 is well defined.
(4) Ifae My, (?) €Ty, My <(z) M2, then tpL((2), My] = tpL[(2), M2).
(5) Ifae My, (%)) €T5, My < <(z) M2, then tp2 (%), Mi] = tp2 (%), Ma].

Q a

(6) Ifa - 6 g M17 (2) € ngMl S(f’) M27 th*e-ﬂ_ tpi[(z)le] = tpg[(g)vMﬂ

Proof: We prove it, by induction on «, simultaneously (for all clauses and
parameters).

If « is zero, they hold trivially by the definition.

If o is limit, they hold trivially by the definition and induction hypothesis. So
for the rest of the proof let « = 5+ 1.

3 lLe., in all the cases we have tried to define it in Definition 2.9.
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Proof of (1),: If p has depth zero — check directly.
If p has depth > 0 — by (3)s (i.e., induction hypothesis) no problem.

Proof of (2),: Like 1.27 (and (4)4).
Proof of (3)s: Like (2),.

)

)
Proof of (4)4: Like 1.26 (and (3)3, (6)s).
Proof of (5)a: By (2)a we can look only at (c,b*) in M, then use (4),.
)

Proof of (6),: By (5)a. ks

2.9 LEMMA: For an ordinal «, restricting ourselves to the cases (the types p,p
being) of depth < a:
(A1) Assume (?) € T1,a C a1 C M,q, is e-finite, & 1 p and p, is the station-
arization of p over ay.
Then from tp}[(?), M] we can compute tpj[(2!), M].
(A2) Under the assumption of (A1) also the inverse computations are O.K.
(A3) Assume (%) €Ty for £=1,2,a C M and p; + ps.
Then from tpl[("!), M] (and tp((a@,ci1,c2),0) where c1,c; realizes pi,p2
respectively, of course) we can compute tp}[(%?), M].
(B1) Assume (””é”) els¢ fort =1,2,a € M and p1 £ ps.
Then (from the first order information on @,pi,p2,71,72, of course, and
tpa[(P57?), M]) we can  compute tp2[(P2"2), M].
(B2) Assumea C a3 C M, 2 L p, (%) € Ts°,r Cry € S(a1),r1 does not fork
over @, (so (;7') € Fz)
Then from tpa[(”a”),M] we can compute tp2[(Pr?), M].

(B3) Under the assumption of (B2), the inverse computation is O.K.
(C1) Assume (}) € T5,aCbhC M,aC al,BLUal,Bl = acl(a; + b).

Then from tp3[(%), M] we can compute tp3[ (2 1), M].
(C2) Under the assumptions of (Cl) the inverse computation is O.K.
(C3) Assume (%) € T3, C b, & — Lo a,0" = acl(b*).
Then from tpa[(d) M] we can compute {tp3[(}),M] : b C ¥ C M and
B o_ b
T
Proof: We prove it, simultaneously, for all clauses and parameters, by induction
on a and the order of the clauses.
For o = 0: easy.
For « limit: very easy.
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So assume o = § + 1.

Proof of (A1),: As p is stationary L %1, for every c € p(M), £ F 3, Which
necessarily is py, hence p(M) = p,(M). Also, the dependency relation on p(M)
is the same over a;, hence dimension. So it suffices to show:

(%) for ¢ € p(M), from tpg[(“ci(c‘z;c)) M] we can compute tp3 [(acf;c%’:c)) M].
But this holds by (Cl1)s.

Proof of (A2),: Similar using (C2),.

Proof of (A3),: If p1 (equivalently p;) has depth zero — the dimensions are
equal. Assume they have depth > 0, hence are trivial, and dependency over @ is
an equivalence relation on p; (M) U p2(M).

Now for ¢ € pi(M), from tpg[(“ﬁz(’gl)),M | we can compute for
every complete type over acf(a + c1) not forking over &, and d realizing r,
tpg[(“cﬁ?éﬁ_g‘)), M] — by (C1)4; then we can compute for each such r,d,

Ca
acl(@+d+c1)

(necessarily ¢, UJJ)}

{t : [<ac€(a+d+c2)

acl(@+ d) Lo (a+d)

),M] iy € p2(M) and

(this by (C3),).

Proof of (B1),: Asin earlier cases we can restrict ourselves to the case Dp(p;) >
0. We can find (cg,by) € re(M bIUJb2,c1b1UJb2 (by [Shic, X, 7.3(6)]). By

2.8(2) (and the definition) from tp? [(”"“) M ] we can compute that it is equal

£ by)
to tph[(*1/a e ) M),

O
By (Al), we can compute tp},[(CIG/Zf(;i;bigf)),M], hence by (A3), we can

2{G+b+b
compute tpé[(”a/:;(a(ializz)g)) L

Now use (A2), to compute tpé[(czlfc‘}iéfgz)),ﬁl] and by 2.8(2), 2.4(2) it is
equal to tp3[(%"), M].

Proof of (B2),: Choose (c,b) € r(M) such that cb|])a;.

o
a
From tpZ[(P7"), M] we can compute tpa[(c/ﬁ’:b)), M] (just see 2.8(2) and

Definition 2.4), from it we can compute tpa[(c{ai‘;it’:;)) M) (by (A1),); from it

we can compute tp3[(%;72), M] (see 2.8(2) and Definition 2.4).
Proof of (B3),,: Let (’%:) € I'},p L a1 be given. So necessarily & + p (this to
enable us to use (B2,3). It suffices to compute tpi[(’g’l’”),M ] and we can discard

the case Dp{p) = 0.
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So p is regular +b;, L @, hence p£b,p L @, and as @ C b,b = acl(h) we
can find r, (P7') € T3, (see 2.3) and we know tp2[(";"), M], and we can find
r9, a complete type over b; extending r; which does not fork over b;. From
tpZ[(P4*), M] we can compute tp3[(%;"?), M] by (B2),,, and from it tp%[(}"), M]
by (B1),.

Proof of (C2),: Similarly, use (B3), instead of (B2),,.

Proof of (C3),,: Without loss of generality %— is semi-regular; let p* be a regular
type not orthogonal to it and, without loss of generality, Dp(p*) > 0 = -bb— regular
(as in 2.3).

If p* has depth zero, then the only p appearing in the definition tpi([%], M)
is p* (up to %) and this is easy. Then tp? is just the dimension and we have no
problem.

So assume p* has depth > 0. We can by (B1),, (B2), compute tpf,[(”;—,’,,ql), M)
when p' £ b, p’ £ p* (regardless of the choice of b*). Next assume p' £p*; by (B1),,,
without loss of generality, ¢’ does not fork over b. As Dp(p*) > 0, it is trivial
(and we assume w,(b*,b) = 1), hence b* /b is regular, so in tpi[(’%‘f’), M] we just
lose a weight 1 for one specific tp% type: the one b* realizes concerning which we
have a free choice. We are left with the cases p’ + b,p’ & p*; well, we know tp}
but we have to add tp3. Use Claim 2.6(3) (and (A1), as we add a parameter).

b
2.10 CLAIM: tp?y[(g),M],tpi[d,M],tp?Y[M] are expressible by formulas in
]LZO,NE_ (d.q.).

By 2.9 we have

2.11 ConcLusioN: If Dp(T) < oo then:
(1) From tp,[(5), M] we can compute tp[(5), M] (the type from §1).
(2) Similarly, from tp3 [A4, M] we can compute tp,,[(4), M].

From 2.6, 2.10, 2.11 and 1.30 we get

2.12 CoRrROLLARY: Ify =Dp(T) and M, N are X.-saturated, then

M 2N & tpi[M] =tp[N] & M =y (4 N
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Appendix

The following clarifies several issues raised by Baldwin. A consequence of
& the existence of nice invariants for characterization up to isomorphism (or
characterization of the models up to isomorphism by their L-theory for
suitable logic L)
naturally give absoluteness, e.g., extending the universe, say, by nice forcing
preserves non-isomorphism. So negative results for
(%) is non-isomorphism (of models of T') preserved by forcing by “nice forcing
notions”?
implies that we cannot characterize models up to isomorphism by their £-theory
when the logic £ is “nice”, i.e., when T'h(M) is preserved by nice forcing notions.
So coding a stationary set by the isomorphism type can be interpreted as strong
evidence of “no nice invariants”; see [Sh 220]. Baldwin, Laskowski and Shelah
[BLSh 464] show that not only for every unsuperstable, but also for some quite
trivial superstable (with NDOP, NOTOP) countable T, there are non-isomorphic
models which can be made isomorphic by some ccc (even o-centered) forcing
notion. This shows that the lack of a really finite characterization is serious.
Can we still get from the characterization in this paper an absoluteness result?
Note that for preserving N.-saturation (for simplicity, for models of countable T')
we need to add no reals,* and in order not to erase distinction of dimensions we
want not to collapse cardinals, so the following questions are natural, for a first
order (countable) complete T
(¥)% Assume vy C vq are transitive models of ZFC with the same cardinals and
reals, the theory T € V;. If the models M;, My are from v, and they are
models of T not isomorphic in v1, must they still be not isomorphic in V5?%
(%)% Like ()}, we assume in addition P(|T|)"* = P(|T|)">.
Of course, for countable T the answer is negative even for R.-saturated models
except for superstable, NDOP, NOTOP theories, so we restrict ourselves to these.
It should be quite transparent that L, x, (¢.d.)-theory is preserved from v, to v,
(as well as the set of sentences in the logic), hence for the class of R-saturated
models (of superstable NDOP, NOTOP theory T') the answer to ()% is: yes.

4 The set of {acl(@) : & € “> M} is absolute but the set of their enumeration and
of the {f | (acf(@)): f € AUT(C), f(a) = a} is not.

5 Note we did not say they have the same w-sequences of ordinals; e.g., if Vo =
Vi¥, P Prikry forcing, then the assumption of (¥)7 holds though a new w-sequence
of ordinals was added. So for Vi C V; as in (%)r, the Lo x,-theory is not
necessarily preserved.
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