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ABSTRACT

In the literature two notions of the word problem for a variety occur. A variety has a decidable
word problem if every finitely presented algebra in the variety has a decidable word problem. It has a
uniformly decidable word problem if there is an algorithm which given a finite presentation produces
an algorithm for solving the word problem of the algebra so presented. A variety is given with finitely
many axioms having a decidable, but not uniformly decidable, word problem. Other related examples
are given as well.

0. Introduction

The following two options occur in the literature for what is meant by the
solvability of the word problem for a variety V:

(1) there is an algorithm which, given a finite presentation 9* in finitely many
generators and relations, solves the word problem for 9 relative to the
variety V;

(2) for each finite presentation 0* in finitely many generators and relations,
there is an algorithm which solves the word problem for 9 relative to the
variety V.

We say that V has uniformly solvable word problem if (1) holds. It is the first
notion that is studied by Evans in [2, 3], where it is called just the word problem
for V, and the second coincides with the terminology of Burris and Sankapann-
avar in [1]. Benjamin Wells has informed us that Tarski was interested in the
existence of varieties with solvable but not uniformly solvable word problem.

Varieties with uniformly solvable word problem include commutative semi-
groups and abelian groups (each of these are equivalent to the existence of an
algorithm for solving systems of linear equations over the integers which is due to
Aryabhata, see Chapter 5 of [10]), any finitely based locally finite or residually
finite variety, and the variety of all algebras of a given finite type (see [4]).

The examples which appear in the literature, of varieties with unsolvable word
problem, all provide a finite presentation 9* for which the word problem for 9*
relative to that variety is unsolvable. These include semigroups [9], groups [8],
and modular lattices [5].

Here, we present a finitely based variety V of finite type which does not have a
uniformly solvable word problem, but which nevertheless has solvable word
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problem. We also present a recursively based variety of finite type, which is
defined by laws involving only constants (i.e., no variables), with solvable but not
uniformly solvable word problem. This second result is the best possible one can
provide for varieties defined by laws involving no variables: every finitely based
such variety has uniformly solvable word problem. If one were satisfied with
varieties with infinitely many operations, then it would be relatively easy to
produce an example of a recursively based variety with solvable but not uniformly
solvable word problem; we present such an example, essentially due to B. Wells
[11], at the end of the paper.

Our proof uses the iinsolvability of the halting problem for the universal Turing
machine, and the laws defining the variety precisely allow us to model the action
of the universal Turing machine in the variety. In the usual proofs that the variety
of semigroups has an undecidable word problem, a finitely presented congruence
is given such that for any initial Turing machine configuration, the instantaneous
descriptions of the Turing machine calculations all lie in the same congruence
class. Then laws are added which make the halting state a right and left zero. So,
the undecidability of the word problem in this algebra comes from not being able
to decide whether a given word (initial configuration) is congruent to the halting
state. This algebra contains all possible Turing machine calculations. In our
variety each calculation will be modelled by a single algebra.

Our approach is based on a different picture of a Turing machine calculation
than the sequence of instantaneous descriptions used in semigroups. We view a
Turing machine calculation as taking place on a Z x co grid, where the copy of Z
with second coordinate n represents the Turing machine tape at time n. To
understand the calculation, we must know the alphabet content of each square,
which square the head is reading for each time n, and the state the machine is in
at time n. There are various possible ways to formalize this insight, so that each
Turing machine calculation corresponds to a finitely presented algebra.

To ensure that the word problem does not have a uniform solution, we
introduce a function which has value 1 when applied to any state the machine
reaches and value 0 on the halting state. Then a decision procedure which, given
a finite presentation, determines whether 1 is congruent to 0 would solve the
halting problem. There are considerable technical difficulties in implementing this
idea in such a way that we can prove that each finitely presented algebra in the
variety has a decidable word problem.

It seems to us that there are two interesting directions that research can follow
in the light of the results in this paper. There remains the question of whether a
finitely based variety of unary algebras with solvable word problem has uniformly
solvable word problem. Another direction research could take is to consider
subvarieties of interesting natural varieties. This could either be understood as
varieties of X where A' is a favourite class of algebras or, say, congruence
modular varieties. This second problem was suggested to us by the persistent
question of everyone to whom we told the result, namely 'Is there a natural
example?'

The research for this paper was begun while the latter two authors were visitors
at the Department of Mathematics and Statistics at Simon Fraser University. We
gratefully acknowledge financial support from the Natural Science and Engineer-
ing Research Council of Canada. This is paper #291 on Shelah's publication list.
We also wish to thank the referee for a thorough job of reading the paper.
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A VARIETY WITH SOLVABLE WORD PROBLEM 227

1. Definitions

We assume 2 is some finitary type of algebra (with possibly infinitely many
operations). A presentation is a pair 9> = (X, R) consisting of a set X (of
generators) and a set R c FX x FX (of relations), where FX is the (absolutely)
free 2-algebra over X. A finite presentation is a presentation 9> = (X, R) where
both X and R are finite.

Given a variety V and a presentation ^ = (X, R), there are an algebra A e V
and a homomorphism h: FX—>A with /? cKer(/i), such that any homomorph-
ism g: FX—*B with S e V and i? c Ker(g) factors uniquely through h. The
algebra A is unique up to isomorphism, and is called the algebra given by the
presentation 0* relative to the variety V.

The word problem for 0* relative to the variety V is to determine, given
s, t e FX, whether (s, t) e Ker(ft). Note that Ker(/i) is the congruence on FX
generated by R U 6V, where 6V consists of all equations in variables from X
satisfied by the variety V; equivalently, 6V is the kernel of the unique
homomorphism from FX to the V-free algebra on X mapping the elements of X
identically.

Next, we introduce the notion of a partial subalgebra, and state one result
which will be proved and used in § 6. The proof bears a familial resemblance to
the more complicated proof in § 5.

DEFINITION. A partial subalgebra is a pair (A, =A) where A is a subset of FX
which is closed under formation of subterms, and =A is an equivalence relation
on A which is a partial congruence, that is, has the property that for each
operation a of arity n, if a,=A bt for l^i^n and o(au ..., an), o(bu ..., bn) eA
then

o{au ...,an)=Ao(bu ..., bn).

PROPOSITION 1.1. If for a partial subalgebra (A, =A),
(1) membership in A is decidable {for elements of FX),
(2) membership in =A is decidable (for pairs of elements of FX),

(3) there is an algorithm which, given an operation o of arity n and
ax,..., aneA, determines whether there exist bx, ..., bneA for which
ai=A bifor H / ^ n and o(bi, ..., bn) eA,

then =, the congruence on FX generated by =A, is decidable. Further, this
decision procedure is uniform in the algorithms for deciding (1), (2), (3).

REMARK. The conclusion of this result says that there is a solution to the word
problem for the presentation (X, =A) relative to the variety of all algebras of the
given type.

DEFINITION. A partial subalgebra satisfying the hypotheses of Proposition 1.1 is
called decidable.

We delay the proof of Proposition 1.1 until the end of § 6.

COROLLARY 1.2 (Evans). Let V be the variety of all algebras in some finite
language. Then V has uniformly decidable word problem.
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Proof. Suppose we are given some finite presentation. Let A be the finite set
consisting of the terms appearing in the presentation and their subterms. By brute
search through the finitely many possibilities, we can find =A, the smallest partial
congruence on A containing all the relations in the presentation. Now we can
apply Proposition 1.1.

Corollary 1.2 implies that any variety in a finite language which is defined by
finitely many laws involving only constants has a uniformly decidable word
problem. Any presentation can be viewed as a new presentation in the variety
without the laws, by viewing each law as a relation in the new presentation.

2. The finitely based variety

2.1. Modification of the universal Turing machine
Suppose that we are given a universal Turing machine with a unique halting

state h which, at each move, prints some letter on the scanned square, moves one
square either left or right (denoted respectively by - 1 or 1) and enters a new (or
the same) state. We are first going to adjust the machine by adding right and left
end markers eR and eL (as new members of the alphabet), and adding, for each
state, two new states qL and qR, and appropriate instructions so that the adjusted
machine does the following: if it is scanning eR in state q, it prints B (blank),
moves right (into state qR), prints eR and then moves left and returns to state q; if
it is scanning eL in state q, it prints B, moves left, prints eL, and moves right and
returns to state q. That is, to the Turing flow chart we add the following:

eL : B : - 1 eR : B : 1 ^
4L < 1 > q < ' qn-

B : eL : 1 B : eR : - 1
The resulting machine, if started on a finite tape inscription with the left and

right endmarkers at the appropriate ends, and the rest of the tape blank, does
what the original machine would have done if placed on that inscription with the
rest of the tape blank, except that whenever the adjusted machine hits an
endmarker it first moves it out one square, leaving behind a blank square.

Suppose that the resulting machine has state set Q and alphabet 2, and that its
action is given by the functions o, n, and a operating on Q x 2, which specify the
next state, the motion (either left or right), and the print instruction, so that

a: QxZ^Q,
H-. Q x 2 - * { - l , 1},
a: Qx2-*2.

For simplicity we will assume o, JW, and a are total functions and so defined
even if we reach the 'halting state'.

2.2. Definition of the variety
Our variety V has the following operations:
Constants: c, all elements of Q US, 0, 1, 0F) lF;
Unary: T, S, S~\ H, P, Cx, CQ, U, E;
Binary: F, R, K, K*, C*\
Ternary: NH, NQ> N?.
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A VARIETY WITH SOLVABLE WORD PROBLEM 229

The elements of the range of P will be the space-time elements (in the intended
interpretation they represent the tape squares); the action of S and S"1 represents
stepping right and left respectively through space, of T represents moving ahead
one time period, and of H represents moving to the head position; C^ gives the
letter in the square and CQ gives the state the machine is in while scanning the
square. The action of the ternary operation NH gives head position at the next
time instant, while N2 gives the letter in the square scanned by the head at the
next time position and NQ gives the state at the next time.

The intended interpretations of F(x, v) and R(x, v) are 'y follows x' and 'y is to
the right of x\ The functions K and K* are comparison functions, and if is a
modified addition by 1. The intended interpretation is explained more fully in
parenthetical comments below and in the proof of Theorem 3.1.

The laws defining our variety are the following.

I. PP(x)~P(x),
PT(x)~TP(x)~T(x),
PS(x)~SP(x)~S(x),
PS-x(x)-S-lP(x)-S-1(x),
PH{x)~HP{x)~H{x),
PNH(x, y, z) ~ NH(x, y, P{z)) « NH(x, y, z),
PK(x,y)~K(x,P(y))~K(x,y);

HS(x)« HS~l(x) « HH(x)« H(x),
HTH{x)~HT{x),
TS(x) - ST(x),

NH{x,ytH{z))~NH{x,y,z),
HNH(x,y,z)~HT(z).

II. NQ{q, a, H{x)) « o{q, a) for all q e Q, a e 2,
Nx(q, a, H(x)) - a(q, a) for all 4 e Q, a e 2,
NH(q, a, H(x)) ~S^ a ) TH(x) for all 9 6 Q - QLR\
NQ{qL, C*H{x), H{x))~q~NQ{qR, C*H{x), H{x)

NH(qL) C*H{x), H(x)) - S~lTH(x),
NH{qR, C*H{x), H(x))~STH(x);

III. * ( ) ^ { Q ) *{) ())
CQTH{x)~NQ{CQH(x), C^H{x), //(*)),
Hn)N(CH() C / / ( ) H())

IV. CQP(x)~CQH(x)~CQ(x),
( ) (

i * C*{P(x), R(P(x), //(*))),
i«C*(P(x),/?(#(*), P(x))),

CsP(x)~C*(P(x),l).
(The symbol C* ensures that the symbol in a square, which is either to the 'right'
or to the 'left' of the square being scanned, remains unchanged at the next time.)
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V. R(x,y)~R(P(x),P(y)),
F{x,y)~F{Px,Py),
R(P(x),P(x))~0,
R(P(x), SP(y))~ UR(P(x),

F(P{x),P(y))*>F(H{x),H(y)),
F(P(x),P{x))~0F,
F(P(x), TP(y))~ UF(P(x),

U(0F)~U(lF)~lF.
VI. For all operations / except T, S, S~\ H, P, K, and NH, Pf is constant

with value P(c).

VII. (i) K(0,P(x))**P(x),
K(l,P(x))*>P(c),
K(0F,P(x))~P(x),
K(lF,P(x))~P(c).

(Thus K ensures that if 0 = 1 or 0F = \F in an algebra then all the space time
elements are identical or, in other words, that space-time is degenerate.)

(ii) K*(d,d)^0 for all constants d,
K*{d, e)~l for all constants d, e with di=e,
K*(P(x), d) = 1 for all constants d ±c,
K*(CxP(x), d)~\ for all constants d $2,
K*(CQP(x), </) = 1 for all constants d $ Q,
K*(R(P(x), P{y)), d) - 1 for all constants d * 0, 1,
K*(F(P(x), P(y)), d) * 1 for all constants d ± 0F, 1F,
K*(t, 0 = 0 and K*(s, t)« 1 for all s ± t where both s, t belong to

{/>(*,), CxP(x2), CQP(x3), R(P(x4), P(y4)), F(P(x5), P(y5))}.

(Thus K* ensures that space-time is degenerate if there are any undesired
equalities between constants or if there is a non-empty intersection between the
ranges of certain operations.)

VIII. ECQP(x)**l,

(Thus E ensures that space-time is degenerate if the halting state is reached.)

2.3. Normal form for space-time elements
The terms which are in the image of the operations P, S, S~\ T, H, NH and K

are called space-time terms. For each such term t, P(t) is equivalent, modulo the
laws of our variety, to t. For all terms t in the images of the other operations, P(t)
is equivalent, modulo the laws of our variety, to P(c). Thus a term Ms a
space-time term if and only if t and P(t) are equivalent, modulo the laws of our
variety.

We are going to develop a normal-form representation for space-time terms.
First, for a space-time t define

A, = {5Tm(0l m, n €Z, m ^0} U {S"TmHTk(t)\ n,m,keZ,m,k^0}

U {S"TmNH(s, u, Tk{t))\ n,m,keZ,m,k^0, s, u arbitrary terms}.
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A VARIETY WITH SOLVABLE WORD PROBLEM 231

Now, define the set G of generating space-time terms as follows:

( i )P(c)eG;
(ii) P(x) e G for each variable x;

(iii) for each term t, and each g eG, and A e Ag, the term K(t, A) e G;

(iv) G is the smallest set of terms satisfying (i), (ii), and (iii).

Further, define

A = UAg (geG).

The members of Ag for g e G are called the space-time terms in normal form
with respect to g and Ag is called the space-time component of g, in particular,
geAg.

For space-time terms in normal form with respect to g, we define the g-time
prefix, g-time coordinate and g-space coordinate as follows:

term in A g-time prefix g-time coordinate g-space coordinate

S"Tm(g) Tm(g) m n
SnTmHTk(g) TmHTk(g) m + k n
S"TmNH(s,t,Tk(g)) TmNH(s,t,Tk(g)) m + k + l n

PROPOSITION 2.1. There is an effective procedure which, given a space-time term
s, produces a term t e A (that is, in normal form) such that the laws I entail s « / .

Proof. The procedure is described inductively on the complexity of terms. To
begin, of course, the normal form of g e G is g. If t = P(s) for some normal form
space-time term s eAg then the normal form for t is the same as that of 5.

If t = H(s) or T(s), for some normal form space-time term s e Ag, then the
normal form t' for t is given in the following table:

s //(*) T(s)

S"Tm(g) HTm(g) S"Tm+l(g)
S"TmHTk(g) HTm+k(g) SnTm+xHTk{g)
S"TmNH(tl> t2, Tk(g)) HTm+k+l(g) S"Tm+lNH(tx, t2, Tk(g))

If t = S(s) or S~l(s) for some normal form space-time term 5 then the
normal form for t is obtained from s by, respectively, adding 1 to or
subtracting 1 from the space component.

If t = NH(s1,s2,s) for a normal form space-time term s, then the normal
form t' for t is given in the following table:

S'
S'
S'

t*pn
"(8)
"HT
nNH\

s

k(g)
ituh,Tk(g)

NH(s
iyH\s

i) NH(s

t'

\,s2, T"
c T"

1» ^ 2 ' '
\,s2, T"

"(8))

M + i t + l
' ) )
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If t = K(sly s) for a normal form space-time term 5 then t is in normal form.
This completes the description of the procedure.

REMARK. In the ensuing development, we will always deal only with space-time
elements in normal form, and when we write //(A), S(A), etc. for A e A, we will
mean the normal form of //(A), etc.

PROPOSITION 2.2. For terms s, t e Ag with time coordinates m, n respectively, if
m<n then the laws V entail F(s, t)~ 1F.

PROPOSITION 2.3. For terms s, t e Ag with the same time prefix but different space
coordinates, the laws V entail either R(s, t) ~ 1 or R(t, s) ~ 1.

3. Non-uniform solvability of the word problem

This section is devoted to a proof of the following theorem.

THEOREM 3.1. The variety V does not have uniformly solvable word problem.

Proof. For any initial tape configuration

• • • I eL 1 a0 I ax \ a2 | • •• | ak \ eR \ • • •
t

(where | indicates head position) for the universal Turing machine, there is a
corresponding finite presentation:

0>: CQ(c)~q0 and C2(5~l(c))«e^ and Cx(c)~a0

and ... Cx(S
k(c)) ~ak and C2(5*+I(c)) ~eR.

We claim that the universal Turing machine, started on that configuration,
eventually halts if and only if E(q0) == h (equivalently, 0=1) follows from the
presentation 0* in the variety V. Thus, since there is no algorithm which
determines, given an initial tape configuration, whether or not the universal
Turing machine will halt, this establishes the fact that V does not have uniformly
solvable word problem.

(—») This direction is clear; 9* together with the equations defining V entail the
analogous information at each successive configuration. If the machine halts at
time n then we obtain A e AP(c) such that CG(A) = h and so the relations

follow from ^ in the variety V.
(<—) Suppose the machine, started on the above configuration, never halts.

Then we produce a model A e V satisfying all the equations in 0\ in which 0 =£ 1.
The set of elements of A is

{*} U 2 U Q U {SnTm(c)\ neZ,meN}U{n\ n e

U {nF\ neZ and n
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The operations are defined in A as follows:

(i) T, S, S"1 are defined on elements of the form SnTm(c) according to
equations I so as to yield elements again of this form; for other elements
v, T(y) = T(c), S(y) = S(c), S~l(y) = S-\c);

(ii) P maps all elements of the form SnTm(c) identically and all other
elements to c, in particular, P(c) = c;

(iii) U(n) = (n + 1) and U(nF) = {n + 1)F for n *z 0, U{1) = 1, U(1F) = 1F, U
maps all other elements to *;

(iv) E(q) = 1 for all q e Q with q^h, E{h) = 0, E maps all other elements
to *;

if k > n,
(v)

R(x, y) = R(P(x), P(y)) otherwise;

(vi) F{SnTm{c), SkP(c)) = \)F liJ>m>

l(y — m)F ify^/7z,
F(x, y) = F{P{x), P{y)) otherwise;

(vii) K(0, SnTm(c)) = S"Tm(c) = K(0F, SnTm(c)),
K(l, SnTm{c)) = c = K(1F, S"Tm(c)),
K(x, y) = c otherwise;

(viii) K*(d, d) = 0 for all d e {0, 1, 0F, lF> c} U Q U 2,
K*{d, e) = l for all d, e as above with d =t e,
K*(k,d) = \ for all k e {n\ n^l}, aWd^O, 1,
K*{k, d) = 1 for all k e {nF\ n ^ 1}, all d * 0F, 1̂ -,
K*(SnTm(c), d) = \ for all constants d=tc (including all n and nF, with

K*(x, y)-* else.
The values of H{x), C-^x), CQ{x), N^{q, a, H{x)), NQ{q, a, H(x)), and

NH(q, a, H(x)) for x e {SnTm(c)\ n e Z, m eN} are defined by induction on m:
define

H(c) = HSn(c) = c,
CQ(c) = CQSn{c) = q0)

Cx(Sn(c)) as in 9 for - 1 ^ n =s k + 1,
Cz(Sn(c)) = B for all other values of n,
NQ(q, a, c), NH(q, a, c) and N2(<7, a, c) as in equations II (note that c = H(c)).

Suppose we have already defined, for all n eZ,
H(SnTm(c)) = H(Tm(c)) = SkTmc for some k,
CQ{SnTm{c)) = CQ(Tm(c)) e Q,
C2(5Tm(c))e2, and
NH> NQ> NZ for all triples (q, a, HTm{c)), with appropriate values, that is,

im(A^) c 2, etc.
Then define, for all n eZ,

H(S"Tm+*(c)) = NH(CQ(HTm(c)), Cx(THm(c)), HTm{c)),
CQ{SnTm+\c)) = NQ(CQ(HTm(c)), C^{HTm{c)), HTm{c)),
Cx(THTm{c)) = Nx(CQ(HTm(c)), Cx(HTm(c)), HTm(c)),
Cx(SnTHTm(c)) = Cx{SnHTm(c)) for all n #0 ,
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and then define NQ, Nx, NH for all triples (q, a, HTm+1(c)) according to the rules
II. This completes the inductive definition.

Define NH(x, y, z) = NH(x, y, P{z)) if the latter has already been defined.
Define NH and H on all other elements to have value c.
Define CQ{y) = CQ{c) = q0 for all v not of the form SnTm(c), C2( v) = Cx(c) =

a0, for all v not of the form SnTm(c), NQ(x, v, z) = Nx(x, v, z) = * for all values
not defined above.

Define

C*(SnTm(c),n) = ll

•Cz(5TM(c)) if n = l,

C*(x, y) = * otherwise.

Then the resulting algebra A satisfies all the laws of the variety and the
equations of the presentation 9>, and 0=£ 1 in A.

4. Solvable word problem in the degenerate case

This section and the next are devoted to proving that V has solvable word
problem.

Let 9 be a finite presentation on a generating set X = {xu ..., xn} and let 6&
be the congruence on FX generated by the relations of & together with the
substitution instances of the laws defining our variety V. We must prove that B9 is
decidable.

DEFINITION. The presentation 0* has degenerate space-time if P(t) Q& P(c) for
all terms /. Note that, by the laws of V, if 9 has degenerate space-time then
0 Q9 1 and 0F 6g> \F. In fact, the laws of V allow this conclusion to be drawn from
any failure of the operations S, T to behave without loops. Also the laws of VII
imply that if either 0 d& 1 or 0F 6g> \F, then space-time is degenerate.

We first prove the following.

THEOREM 4.1. / / ^ has degenerate space-time then the word problem for &
relative to our variety V is decidable.

Proof. In this case, in the presented algebra F{X)I6&, all the operations P, T,
S, S~\ H, and NH are constant with value P(c). Moreover, R and F are constant,
with value 0 and 0F respectively, CQ is constant with value CQP(c), and C2 is
constant with value C^P(c).

Now, consider the type obtained from the one with which we are working, by
deleting the operations P, T, S, S~l, H, NH, R, F, CQ, C2, and adding three
constants cx, c2, and c3, which will stand for P(c), CQP(c), and C^P(c),
respectively. Then there is an effective procedure which, given a term of the
larger type, produces a term of the smaller type which is equivalent to it modulo
the laws for our variety, and the equations 0 ~ 1, 0F = 1F, c, = P(c), c2 == CQP{c),
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A VARIETY WITH SOLVABLE WORD PROBLEM 235

Now we consider the variety V of this reduced type defined by the following
equations:

equations II for NQ and Nx, with space-time terms, and terms in the image of
CQ and C2, replaced by cx, c2, c3 respectively;

U(pF)~U(lF)~lF;
equations VII, where P(x) is replaced by clt CQP(x) by c2, C%P(x) by C3, and

R(P(x), P(y)) and F(P(x), P(y)) by 0;

= 0.
Then, if the terms in the presentation 9* are replaced by their equivalents in the
new type, we obtain a presentation &' which, relative to the variety described
above, is equivalent to & relative to the original variety. Here by 'equivalent' we
mean that there is an effective translation between terms such that 0*' entails
s' ~ t' relative to the variety V if and only if 9* entails s ~ t relative to the variety
V. Since 0*' is a presentation considered relative to a variety defined by finitely
many laws which involve no variables, by Corollary 1.2 this word problem is
solvable, which shows that the word problem for & relative to our variety is
solvable too.

5. Solvable word problem in the non-degenerate case

5.1. Plan of the proof
In this section we prove the following theorem.

THEOREM 5.1. If 9* has non-degenerate space-time then the word problem for &
relative to our variety V is decidable.

Proof. The proof is presented in the remaining subsections of this section. In
the remainder of this subsection we will describe the strategy of the proof. We
will define by induction an increasing sequence of partial subalgebras (An, =AJ-
There are three points to be verified. First, for all n every instance of the laws of
the variety and the relations of 0* with elements of An is validated by =„. Second,
for a, b e An, ifa=nb then the laws of the variety and *3> imply a Q9 b. The set of
terms will, apart from passing to normal forms, equal [jAn. Hence Q9 will
essentially equal U — „• Third, the construction of the An and the =n is uniformly
effective and hence U =n and 6$, are decidable. We will give a careful definition
of the An and =„, but we will leave it to the reader to verify the three points
mentioned above. One other point which is worth mentioning is that before
constructing (Ao, =0) we will demand more information about Q9 other than its
being non-degenerate. We first define two auxiliary sets A and B.

5.2. Definition of A
Let Bg, consist of all terms appearing in the presentation 9* and all their

subterms and all constants of the variety V. Let G9 consist of P(c), P(x) for each
generator x of the presentation, and all terms of the form K(s, t)e B&; thus G& is
finite.

Sh:291



236 ALAN H. MEKLER, EVELYN NELSON, AND SAHARON SHELAH

For each g e G&, we let Tg>g, be the set of all terms built from g using the unary
operations P, S, S~l, T, H, and NH(s, t, - ) where s, t e B&. Further, let Ag & be
the set of members of Ygt& which are in normal form with respect to g, and let

Now, we define A as follows: it contains

(1) the terms in G& and all constants;

(2) the terms in A®,

(3) £/(d)ford = 0, 1 , 0 * 1 , ;

(4) R(k, y), F(A, y), UR(X, y), UF(k, y) for A, y e A9;
(5) NQ(q, a, HT"{g)),

N^q, a, HTn{g)),
NH(q, a, HTn(g)) for all g e G9, q e Q, a e 2,
NQ(qL, CzHT"(g), HT"(g)),
NQ(qR, C*HTn{g), HTn(g)) for all g e G&, all ? e Q - QLR, all n ̂ 0 ;

(6) C2(A), CQ(y), for all A, y e A^;

(7) Nz(CQHTn(g), CzHT"(g), HT"(g)),
NQ{CQHTn{g), C2/ /r(g), / / r (£)) ,
NH(CQHTn(g), C^HTn{g), HT\g)) for all g e G9, all n ̂ 0 ;

(8) C*(A, /?(A, //A)),
C*(A, i?(/fA, A)),
C*(A, 1) for A e A^;

(9) K*(d, d) for constants fi,
K*(d, e) for all constants d, e with d ̂ e ,
all substitution instances of terms in laws VII (i) and (ii) where P(x) and
P(y) are replaced by arbitrary A, y G Ag»;

(10) ECQ{X), for all A e A& and E{h).

Note that membership in A is decidable.

5.3. Definition of B
Before we can define B, we need some preliminary results.

LEMMA 5.2. For any A G Ag g», {ye A ^ l y Q&X) is finite.

Proof. If A, yeAg9p and KQ9y then it follows from laws of V and the
non-degeneracy of 0* that A and y have the same time coordinate. (For example,
SnTkgdg>SmTHTrg implies HTkg = H(S"Tkg) da, H(SmT'HTrg) = HTi+rg and
this yields A: = / + r.) Moreover, two terms in Ag9> with the same time prefix and
different space coordinates cannot be congruent modulo 6&. Since there are only
finitely many time prefixes with the same time coordinate as A, this establishes the
result.

COROLLARY 5.3. For any term t, {A e A&\ A Q& t) is finite.

DEFINITION. For a finite F c Kg,, the maximum time vector of F is {mg)geG(f,
where mg is the maximum g-time coordinate of elements of F D Ag (or 0 if F D Ag

is empty). We also make an ad hoc definition and say a space-time term s is a
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right subterm of a space-time t by induction on the construction of t. If t is Hu,
Su, or 5- 1M for a space-time term u then s is a right subterm of f if it is either t or
a right subterm of u. If f is Nw(w, v, u) where w is a space-time term then s is a
right subterm of t if it is either t or a right subterm of w.

LEMMA 5.4. For any finite subset F<^Ag> with maximum time vector (mg)geGs>

there is a finite F c A ^ with the same maximum time vector, such that

(i) FcF,
(ii) if A e Aap is a right subterm of y e F then A e F,

(iii) if A e A^ and XQ9y for y € F then A 6 F,

(iv) if A e A,? and f/ie normal form of TX belongs to F then XeF.

Proof. We may assume that for each geGg>, Pg e F for all / ^ mg.

Now, let geG& and consider the set F 8 g A s ^ n F which consists of all
elements of Ag^C\F whose time coordinate relative to g is mg. Let F* c.AgS>
consist of all those A e Ag%9 for which there exists y e Fg with A dg, y. By Lemma
5.2, F* is finite.

Let kx and k2 be the maximum and minimum, respectively, of the space
coordinate of members of F*. Note that, since Tmg(g) e F, we have k2 ^ 0 =s kx.

Let F' consist of those members of Ae which are the normal forms of all terms
of the form S (A) where —kl^k^—k2, and XeF*. Then F'g is finite and
contains Fg. We will show that

(a) y 6 F'g, A e Ag, y Q9 A implies A e Fg,
(b) y e i7^, A e Ag a right subterm of y with time coordinate mg relative to g

implies A e F'g.

re (a): Suppose y is the normal form of Sk(d) where —ki^k^—k2 and
<5 e F*. Then S~ky Q9 6 and hence S~kX 6$, 6 and so the normal form of S~kX
belongs to F*. Thus A, which is the normal form of SkS~kk, belongs to F'g.

re (b): Suppose yeF'g; then y is the normal form of a term Sk(d) where
-kx^k^:-k2 and S eF*. Let the space coordinate of 6 be n and the time prefix
of d be r; then y = S"+kT. Moreover, all terms of the form S'r for n — kx =ss / =s
n — k2 belong to F'g. Since n — ki^O^n — k2, it follows that if / is any number
between n + k and 0, then S'z e F'g. Now, any normal form subterm of y with the
same time component has the same time prefix and hence this shows that every
right subterm of y with the same time component belongs to F'g.

Let F' = U F'g (g e Gg)\ then F' is finite, F c F ' , and F' satisfies (ii) and (iii)
for any A e Ag with g-time coordinate mg. Add to F' each term A G Ag with g-time
coordinate mg — 1 such that the normal form of Tk belongs to Fg. The result is
still finite. Now repeat the procedure for elements of g-time coordinate mg — 1,
etc. to obtain eventually the desired set F. This completes the proof.

DEFINITION. Define B as follows.
Recall that B9 consists of all terms appearing in the presentation 9* and all

subterms thereof, and all constants of our variety V.
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Enlarge B& as follows.

(i) For each b eB9, if there exists a eA with a d& b, add one such a, and
choose a e K9 whenever possible.

(ii) For each g e G&, let mg be the maximum time coordinate of all the
elements of Ag that we have so far, and add all g-time prefixes up to time
mg.

(iii) Let F consist of all elements of K9 that we have so far. Add the set F 3 F
given in the above lemma.

(iv) For all A, yeF, add Ce(A), C2(A), R{k, y), F(A, y), U(R(\, y)),
U{F{X, y)).

The resulting set B is finite, is closed under taking subterms, and for A, y e A&,
if yeB and A B9 y then AeB.

Let =B = Og\B; then =B is finite and hence decidable. Also =B contains the
relations of 9*.

5.4. Definition ofA0

Now, define Ao = A U B; then membership in Ao is decidable. We are going to
define a partial congruence relation =0 on Ao so that the pair (Ao, =0) is a partial
subalgebra such that membership in =0 as well as Ao is decidable. In fact, =0 will
be 6g> restricted to Ao, but we will define =0 by induction on the complexity of
terms and the size of the time coordinate for members of A&.

For a, b e B, a=ob if and only if a =B b.
For a eA, b e B, a=ob if and only if there exists c € A D B with a =0 c (as

described below) and c =0 b, that is, c=Bb. Since B is finite, we decide whether
a =0 b by searching through all c eA D B and checking the latter two conditions.
Thus it is enough to describe =0 between pairs of elements of A.

There are some members of A that we can essentially ignore, because we know
they must be in the relation =0 to other elements that we have to deal with
anyway.

Thus, to begin, we decree that:

and for all A, y e Ap)

UR(k, y) =0R(X, y') where y' is the normal form of S(y),
UF{X, y) =0 F(A, y') where y' is the normal form of T(y),

and so we may ignore, for the purposes of defining =0 between elements of A, all
those elements of A which are in the range of U.

Similarly, using the appropriate terms given in laws II and III we may ignore
the elements of A in the range of N? or NQ, by making them =0 congruent to
elements in Q or the range of CQ, and 2 or the range of C2, respectively.

We dispose in the same way of the elements of A that are in the range of C*, K
or K*.

Thus we need only define =0 between pairs of elements of A that are either
constants, A-elements, or in the range of the operations C2, CQ, F, and R.
Moreover, since 9*. is non-degenerate, we know by laws VIII that the interpreted
images of these latter four operations are disjoint from one another and from all
the interpretations of A-elements in F(X)/6g>. In addition, all the constants are
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pairwise distinct in F{X)IQg>, and ^-elements in the range of C£, CQ, F, and R
can be ^-congruent to constants only if they belong to 2, Q, {0, 1}, {0F, 1F},
respectively.

5.5. Definition of =0for elements with small time component
We begin by describing =0 for elements A, C2(A), CQ{X), R(X, y), and F(X, y)

for A, y e Ay with time coordinate less than or equal to the maximum occurring
in B, relative to whatever space-time component A and y are in.

(1) For A, y € Ay with time coordinate less than or equal to the maximum in
B, define k=Qy if and only if S~nX =m S~ny, where n is the space coordinate
of A.

Note that S~nXeB, and hence if A 0y y then S~nX6g>S~ny and hence
S~nX =B S~ny. The converse is also true, of course. The point about the
definition is that, given A, we know its space coordinate and so we can decide
A =0 y because =B is decidable. Moreover (and we will need this later), given A,
we can calculate all (there are only finitely many) y € Ay with A =0 y.

(2) For A, y e Ay with time coordinates less than or equal to the maximum
in B,

(i) R(X, y) =00 if and only if either X=oy as in (1) above or X, y e B and
K(A, y) =B 0,

(ii) R(X, y) =0 1 if and only if either there exists n > 0 with y =0 S
nX or there

exists SeAgpDB and nS^O with y=0S"d and R(X, <5)=B0, or there
exists 6 e Ay D 5 and n > 0 with y =0 S"<5, and /?(A, d) =B 1.

Note that this is decidable: for example, to check whether there exists n > 0 with
y =o S"X, it is enough to determine whether there exists n > 0 with
^"'"y =B S"~mX where m is the space coordinate of y, and the latter is decidable
because B is finite.

(iii) R(Xlt yi) =0 ^(A2, y2) if and only if either both are congruent to 0 or 1 by
(i) or (ii), or Xx =0 A2 and yx =0 y2, or there exist <5j and 62 and n ^ 0 with

62) and y, ^ 0 5"6,, y2 ̂ 0 S"62.

REMARK. From the above definition, we have R(X, A) =00 for all Ae Ay with
time coordinate less than or equal to the maximum in B, and moreover, if
R(X, y) =00 o r 1 t n e n #(A, S(y)) =0 1, and so the laws V for R and these values
of P(x), P(y), are satisfied.

(3) For A, y, A', y' e Ay with time coordinate less than or equal to the
maximum in B, define

F(X, y) =0 OF if and only if F(HX, Hy) =B tiF,
F{X, y) =0 IF if and only if F(Hy, H6) =B 1F,
F(X, y) =0 F{X', y') if and only if F{HX, Hy) =B F(HX', Hy').
(4) For A, y € Ay with time coordinate less than or equal to the maximum in

B, define
Ce(A) =oq eQ if and only if CQ(HX) =Bq,
CQ{X) =0 CQ(y) if and only if either both are =0 the same q eQ or

CQ{HX) - B CQ{Hy).
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(5) The description of when C2(A) =0 C^(y) is somewhat more complicated.
First, for space-time elements A, ye A, define A f y to mean y=Tk and either
R(k, Hk) =01 or R(Hk, A) = 0 1 . Further, define A | y to mean y\k.

Note that if A j y | 6 then A = 6, and if A | y =0 <5 | § then A =0 £.
Now define Af* y if and only if there is a finite sequence of f-moves from

A to y, that is, if and only if there exist A,, A2,..., kk such that A =
^i t ^21 ^31 ••• t A-k = y. Similarly define J,*.

Now, define
C2(A) -o Cx(y)

if and only if there exist natural numbers k =s=n and A,, A2,..., XneKp with time
coordinates less than or equal to the maximum in B such that

(i) A = A,, or C2(A) =fl C^A,), and
(ii) A, |* A,+, for i odd and / «s k, A, J,* A/+1 for / odd and / > k, A, =0 A,+1 for i

even,

(iii) kn = y or C2(AJ ^f l C^(y).

Note that if such a sequence exists then the length of the shortest possible such
sequence (including the lengths of the sequences involved in the f * and J,* parts)
is bounded above by twice the sum of the maximum time coordinates of elements
in B. Hence we can decide, given A and y, whether such a sequence exists.

Further, define
C2(A)=oaeZ

if and only if there exists y e B with C2(A) =„ C-z(y) as above and C^(y) =Ba.
With this definition, the congruence =0 (up to the maximum time coordinate in

B) satisfies the laws IV. The identities implied by laws II and III for C2 are also
satisfied because they only involve C2//(A), and all the H(k) belong to B.

5.6. Completion of the definition of =0

Now, we complete the definition of =0 for elements of A which are, or which
involve, space-time elements with time coordinate larger than the maximum in B,
by induction on the time coordinate.

Suppose we have described =0 as above for pairs (A, y), (R(k, y), R(k', y')),
etc. whenever the A^-elements A, y, etc. in the space-time coordinate of g have
time coordinate less than or equal to kg. The following describes =0 for those
elements in the space-time coordinate of g involving time coordinate kg + 1.

(l)(i) For A, y eA, in the same space-time component, say that of g, with time
coordinate kg + 1, define A =0 y if and only if

either k= y,
or A = Tk', y = Ty', and A' =0 Y,
ork = SnHTk*+l(g) and

either there exist qeQ, a ell, with CQHTk*(g) =0 q and CxHTk*(g) =0 a,
and y = SnTy' for y' =0 Sfxiqa)HTk*(g),
or there exists qeQ, with CQHTkg(g) =0 qL, and y = S"Ty' for
y o H g )
or there exists qeQ, with CQHTkg(g) =0 <Z/?>

 a°d y = S"Ty' for
y'=0SHTkig),
or y = SnNH(s, t, T\g)) and s ̂ 0 CQTk*{g) and t=0 C^T'ig),
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or A = SnNH{tu t2, Tk*(g)), y = SnNH(su s2, Tk*{g)), and tx =B su t2 =B s2,
or vice-versa (with A, y switched).
(ii) For A, y in different space-time components, say A in the space-time

component of g and y in the space-time component of y, with time coordinates
kg + 1 and less than or equal to ky + 1 respectively, define A =0 y if and only if
one of the following holds.

Case 1: A = SnTkg+1(g) and there exists y' in the space-time component of y
with y' =o Tkg(g) and y =0 S

nTy' by the preceding description for 'the same
space-time component'.

Case 2: A = S"Tm+lHTk(g) and there exists y' in the space-time component of
y with y' =0 TmHTk{g) and y =0 STy ' .

Case 3: A = SnHTkg+1(g) and there exists y' in the space-time component of y
with y' =o r*«(g) and y =0 S"#7y.

Case 4: k = NH(t1, t2, Tkg(g)) and there exists y' in the space-time component
of y with y' ^ 0 7*(g) and y ̂ 0 NH(tu t2, y').

Case 5: A = SnTm+lNH(tu t2, Tk{g)) and there exists y' in the space-time
component of y with y' =0 T

mNH{tx, t2, Tk{g)) and y =0 STy ' .
(2)(i) Define R(k, y) =o0 where A has time coordinate kg + 1 relative to g and

y has time coordinate less than or equal to ky + 1 relative to y (or vice-versa) if
and only if A =0 Y

 a s m 1-
(ii) Define R(k, y) =0 1 for A, y as in (i) if and only if there exist n > 0 and

6 e Ag> with y =0 S
nd and fl(A, 6) =0 0 (that is, A =0 <5)-

(Note that we can find all possible values for <5 and hence can decide whether
these conditions are satisfied.)

(iii) Define R{X, y) =0 ^(A', y') (where all of A, y, A', y' have time coordinate
less than or equal to the relevant kg + 1 and one of them has that time
coordinate) if and only if either both R{X, y) and R(k', y') are =0 0 or both are
=0 1 by (i) or (ii) respectively, or A =0 A' and y =0 y'.

(3) For A, y as in (2) we define F(A, y) =0 0F if and only if Hk =0 Hy.
Further, we will define F(A, y) = 0 1 F if and only if F{HX, Hy) =0 lF> so it is

enough to consider A = HTk(g), y = HTm(y).
If k^kg and m = ky +1 then define F(A, y) =() 1F if and only if

F(Tk(g),Tk>(y))=Q0ForlF.
If k = kg + 1 and m^ky + l then define F(A, y) =0 1F if and only if there exists

n with 0 < n ^ m and //7*(g) =0 HTm-"(y).
Finally, define F{k, y) =0 F{k', y') if and only if either both are =0 to 0F or

both are =0 to 1F by the above, or A =0 A' and y=oy'y or both A and A' have
time coordinate less than the induction step, and there exists n 2= 0 with
Hy = HTn+p{g), Hy' = HTn+m(y) and F(k, HTp(g)) =0 F{y', HTm(y)).

(4) For A in the space-time component of g with time coordinate kg 4-1, we
define Ce(A) =oq e Q if and only if CQ(Hk) =oq e Q, and for Hk, which is just
HTkg+l(g), we define CQ(Hk) =oqeQ if and only if either CQHTkg{g) =0 qR or
<7L, or there exist q'eQ, a el. with o(q',a) = q and CQHTkg{g)=oq' and

(g)
Then, define CQ(A) =0 CG(y) if and only if either Hk =G Hy or both CG(A) and

CQ(y) are =0 to some q e Q by the preceding paragraph.
(5) Now, for A in the space-time component of g with time coordinate kg + l,

we define C^(k) = a el, if and only if the following hold.
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Case 1: A = THTkg(g) and either there exist q eQ, b e 2 with a(q, b) = a and

k
o b and CQ(HTkig))=oq,

or a = eR and there exists q eQ with CQ(HTkg(g)) =0<?/?> or a = eL and there
exists q e Q with C9(HTk'(g)) =0 qL.

Case 2: there exists y with A = Ty and either R(y, Hy) =01 or R{Hy, y) =01
and in addition C^(y) =0 a.

Case 3: there exists y in another space-time component with C^{y) =0
 a by the

above two cases and A =0 y.
Finally, we define C2(A) =0 C2(y) if and only if either both are =0 some a e 2

by the preceding definition, or A =̂0 y, or, if A is in the space-time component of g
with time coordinate kg + 1 and y is in the space-time component of y with time
coordinate less than or equal to ky and there exists 5 with A = T6, and either
R(6, Hd) or R(H6, d) =01 and in addition Cz(d) =0 C^(y) (or vice-versa with
the roles of A and 6 reversed).

This completes the definition of (Ao, =0). As the notation suggests =0 is an
equivalence relation, in fact a partial congruence. In particular, transitivity is
taken care of in the inductive construction. Furthermore, it should be noted that
=0 is decidable.

5.7. Definition of (A'n,='n)
Now, suppose we have defined, for each m «sn, a decidable partial subalgebra

(Am, =m) such that AmcAm+l, =m = =m+i\Am, =m is a partial congruence, the
laws of our variety are contained in =m insofar as they apply to the elements of
Am, and in addition

(i) Am is closed under P, H, S, S~l, T (modulo normal form) and for all
a eAm and any operation among P, C2, CQ, R, F, if a is =n-equivalent to
an element in the image of the operation then it is ^-equivalent to an
element in the image of that operation.

Further, we construct by induction algorithms which
(ii) given space-time elements A, yeAm) determine whether there exists k

with A s m Sky,

(iii) given space-time elements A, yeAm, determine whether there exists k >0
with A =m Tky,

(iv) given a space-time element A e Am determine whether it is =m to some
element of Ao, and if so, produces such an element A',

(v) given an element aeAm and an operation among P, C2, CQ, R, F,
determine whether a is =m to an element in the range of the operation.

The base case of the construction is n = 0. Note that (Ao, =0) has the first four
of these five properties.

(i) This follows from the definition of Ao and the fact that P(c) e Ao.
(ii) This is seen as follows, for A, y eA0: we can effectively list as At, ..., Xn,

the finitely many elements in Ao to which A is =0- For some k, A ==0 SkY if a°d
only if for some /, A,, and y have the same time prefix. The latter condition can
be effectively checked.
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(iii) Let klt..., kn be as above. Then there is k such that A =0 Tky if and only if
some A, is in the space-time component of y, k0 is the difference of the time
coordinates of A, and y, and A, =0 T

k°y.

(iv) This is trivial for Ao.

Property (v) is a bit trickier. Since an element a is =„-equivalent to an element
in the range of P if and only if a =„ P(a), only the other operations present any
problems. Below we will state an inductive hypothesis on the equivalence =„.
The inductive hypothesis will have two uses. First, it will allow us to verify
property (v) and the second part of (i) by giving a complete description of which
elements are =„-equivalent to an element in the range of a non-space-time
operation. Second, the hypothesis will determine ='„, the restriction of =n+i to
A'n (defined below). In the remarks after the inductive hypothesis for elements in
the image of R, we will expand on these points. The reader will be able to
observe that the inductive hypotheses hold for the case n = 0 and so (v) holds as
well.

Let A'n be An together with the image of all the elements of An under the
operations R, F, U, CQ, NQ, Cs, Ns, C*, E, K*.

Extend =„ to a partial congruence ='n on A'n by considering each operation in
turn. First extend it to An together with the image of R by letting it be the unique
symmetric relation extending =n which satisfies the inductive hypothesis. Con-
tinuing, given an operation we define ='n on the image of that operation, An and
the operations previously considered, by letting it be the unique symmetric
relation which satisfies the inductive hypothesis and extends the restriction of ='„
previously defined. Transitivity will be an easy consequence of the definition since
we will always link to a previous =„.

(1) Image of R. Inductive hypothesis:
R(s, t) =„ 0 if and only if either for some A,, A2 e AQ, P(s) =„ kx, P(t) =„ A2 and

R ( X k ) O P ( ) P ( y
R{s> 0 =n 1 if a nd only if either for some At, A2 € AQ, P(s) =„ A,, P(t) =„ A2 and

R(XX, A2) =01 or there is some k > 0 such that P{t) =„ SkP(s);
R(s> t) =n R(s', t') if and only if either for some Au A2, A3, A4 eA0, P(s) =„ A,,

P{t) =„ A2, P(s') =n A3, P(t') =n A4 and R{XU A2) ^ 0 R{K A4) or
R{s, t) =„ 0 =„ R{s', t') (as above) or R(s, t) =n 1 =n R{s', t') (as above) or
P{s) - „ P{s') and P{t) =H Pit');

Riu,v)=n Uis) if and only if either there are t, A,, A2e# such that t=ns,
P{u)=n A,, P(v)=nX2 and Uit) =0RiXu A2) or there are kuk2eAn such
that s =„ /?(A,, A2) and i?(A,, 5A2) =n i?(«, v);

R(s, t) =n u if and only if either one of the above cases holds or there is v e B
such that Ris, t) =n v as above, and v =„ u.

REMARK. Note first that every equivalence on the right-hand side of the
inductive hypothesis either concerns elements in An or is covered in earlier
clauses. As to the decidability of the relation, at various points we need to know if
there are elements with a certain property. For example, in the fourth clause we
ask whether 'there are A,, A2 such that 5 =„ ^(A^ A2) and R{kx, Sk2) =„ R{u, v)\
By property (v) we can tell if there are k[, A2 such that s =„ Rik'u A2). Since
=„ is a partial congruence, if there are A,, A2 such that s=nR(kuk2)
and Riky, Sk2) =„/?(«, v) then for all k[, k2, s=nRik[, k2) implies that
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R(X[, Sk2) =„ R(u, v). Hence we have an algorithm for answering the question.
Similar comments apply throughout.

There remains property (v) to consider. It is enough in view of the inductive
hypothesis to be able to decide when elements of the form U(s) and members of
B are in the range of R. Since B is finite, we can assume we know the answer for
elements of B relative to Ao. By property (i), we will then know the answer for all
An, if we can settle the case n = 0. By the fourth clause, we can reduce the
question to either elements of B or elements of Ao. In Ao all the elements of the
form U(s) are either in B, =0-equivalent to an element in the range of R, or
^-equivalent t 0 an element in the range of F. Since no element in the range of R
can be =0-equivalent to an element in the range of F, we can decide whether a
given element of Ao in the range of U is ^-equivalent to an element in the range
of R. Such considerations recur throughout.

(2) Image of F. Inductive hypothesis:
F(s, 0 s « OF if and only if either there are A,, A2€y40 such that H(s) =n A,,

H(t) mH A2 and F(ku A2) = 0 0F or H(s) - „ H(t);
F(s, t) =„ 1F if and only if either there are kx, X2eA0 such that H{s) =„ A,,

H(t) =„ A2 and F(ku A2) =0 1F or there is k >0 such that H{t) =„ HTk(s);
F(s, t) =n F(s', t') if and only if either there are A,, A2, AJ, A2 eAQ such that

//(*)=„ A,, / / ( ; ) - „ A2, / / (* ' )= , A;, H(t')=nk2 and F(A,, A2) =0F(A|, A2)
or F(s, t) =n 0F=n F(s', t') (as above) or F{s, t) =n lF=n F(s', t') (as above)
or H{s) = „ H{s') and H{t) ^ H{t');

F(u, v) =n U(s) if and only if either there are t, Xx,k2eB such that t =ns,
H(u) =n A,, H(v) =n A2 and U(t) =Q F(A,, A2) or there are A,, A2 such that
s =n F{h, ^2) and F(ku TX2) =n F(u, v);

F(s, t) =n u if and only if either one of the above cases holds or there is v e B
such that F(s, t) =„ v as above, and v =„ u.

(3) Image of U. Inductive hypothesis:
U(s) =„ 0 if and only if either for some t e B, s=nt and U(t) =00 or there are

Ai, X2eAn such that s=n /?(A,, A2) and ^(A^ 5A2) =n 0;
U(s) =n 1 if and only if either for some t e B, s=nt and U{i) =0 1 or there are

A1? X2eAn such that s=n R(XU A2) and R(k\, 5A2) =„ 1;
U(s) =n 0F if and only if either for some t e B, s =nt and U(t) =0 0F or there are

A,, A2 eAn such that s =n F{ku A2) and F(ku TA2) =„ 0F;
U(s) =„ 1F if and only if either for some t e B, s=nt and (/(f) =0 IF or there are

Au A 2 e ^ such that 5 =„ F(A,, A2) and F(A,,TA2) =w l r ;
/7(5) =nR(u, v) if and only if e/f/ier there are t, ku X2eB, such that t =ns,

P(u)=nkx, P{v)=nk2 and U(t) =0 /?(A,, A2) or there are A,, k2eAn such
that 5 =„ /?(A,, A2) and 7?(A,, 5A2) =n R(u, v);

U{s) =„ F(u, v) if and only if either there are f, A(, k2eB, such that /=W5,
P(M)=nAj, P(f)=wA2 and f/(0 = 0 F(ku A2) or there are A,, k2eAn such
that s ^ F(Alf A2) and F(A,, TA2) =n F(a, u);

U(s) =n U(t) if and only if either U(s) =n 0 =„ U(t) (as above) or
U(s) =„ 1 - „ U(t) or U(s) ^n 0F=n U(t) or U(s) =H lF=n U(t) or s=nt or
there are s', t' € B such that s =n s', t =„ t' and U(s') =B U(t');

U(s) =n u if and only if either one of the above cases holds or there is v e B
such that U(s) =n v as above, and v =n u.
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(4) Image of CQ. Inductive hypothesis:
CQ{s) =nq for qeQ if and only if there is AeA0 such that H{s) =nA and

CQ(s) =„ CQ{t) if and only if either there are Alf A2 eA0 such that H(s) =„ A,,
H(t) =„ A2 and C^Aj) =„ CQ(A2) or //(*) =„ H(t);

CQ(s) =„ AfG(«, U, W) if and only if either H(w) =„ w, HT(w) =„ H(s),
CQ(w) =„ w and C2(w) =„ u or for some qeQ, CQ(s) =n q =„ NQ(u, v, w)
or there are A € Ao, and u0, v0, woe B such that H(s) =„ A, u0 =„ u, u0 =n v,
w0 s n w and CQ{X) =0 NQ(UQ, V0, W0);

CQ(S) =„ u if and only if either one of the above cases holds or there is v e B
such that CQ{s) =n v as above and v =„ u.

REMARK. In the third clause we have to decide whether CQ(w) =„ u and
Cz(w) =n v. In order that ='n be well defined we need to know that if
NQ(u, v, w) eAn then C2(A) eAn, where A is the normal form of H(w). This can
be verified by induction on n.

(5) Image of NQ. Inductive hypothesis:
NQ{s, t, u) =n q e Q if and only if either there exist p eQ and a e 2 such that

s-np> t =„ a, H(u) =„ u and o(p, a) = q or s=n qL or qR, H{u) =„ u and
t-nC*(u) or u=nH{u), s=nCQ{u), t^nC^(u) and CQ(T(u))=nq or
there are s', t', u' e B such that s =n s', t =„ t', u =n u', NQ(s, t, u)e B and

NQ(s, t, u)=nNQ(s', t', u') if and only if either for some qeQ,
NQ{s, t, u) =„ q =„ NQ(s', V, u')ors =n s', t =n t' and u =„ u' or u =„ H(u),
u'=nH(u'), s=nCQ{u), s'=nCQ(u'), t=nC^{u), t'^nCx(u') and
CQT(u)=nCQT(u') or there exist b=Bb' such that NQ(s,t,u)=nb (as
above) and NQ(s', t', u') =n b'\

NQ(u, v, w) =n CQ{s) if and only if either H{w) =n w, CQ{w) =n u, C2(w) =„ v
and CQT{w) =n CQ(s) or for some qeQ, CQ(s) =n q =n NQ{u, v, w) or
there is some b e B such that NQ(u, v, w) =n b (as in the paragraph above)
and CQ(s)=nb;

NQ(s, t, u) =n v if and only if either one of the above cases holds or there is
w e B such that NQ(s, t, u) =„ w as above, and v =n w.

(6) Image of C-z. Inductive hypothesis:
if R(s, H(s)) =n 1 and P(s) is not equivalent to an element of Ao then

R(T(s), HT(s)) is not =„ 1 and dually for R(H(s), s);
Cx(s) =n

 a e 2 if and only if there is A € Ao such that A =n P(s) and C2(A) =0

Cx(s) =n Cjfc) if a n ^ only if either there are kx, A2 eA0 such that P(s) =n klt

P(0=«A2 and CS(A,) - 0 C2(A2) or P(s)=nP(t) or P(s)=HTP(t) and
R(t, H(t)) =n 1 or R(H(t), t) =n 1 or the last condition holds with the roles
of s and t reversed;

Cx(s) =« ŝ(w> v, w) if and only if either there is a e 2 such that
C2(.s) =„ a =„ Nx(u, v, w) or u =n CQ(w) and v =n C2(w>), w =n H(w) and
C?(s) =n C^(T(w)) or there are keA0, u', v', w' e B such that P(s) =nk,
u =n u', v =n v', w =n w', NT(u', v', w') e B and C2(A) =n N^(u', v', w');
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Q(s) =n C*(t, u) if and only if either for some a e 2, Cx(s) =„ a =n C*(t, u) or
u=nR(H(t),t) or u^nR{t,H{t)) and C2(s) s n C^{T{t)) or u=nl,
t=nP(t) and CJ:(S) =n C2(f) or there are t',u'eB and Aey4 0 such that
f - „ f', u =n u', C*{t', u') e B, P{s) =„ A and C*(t', u') - 0 C2(A);

C2(s) =„ M if and only if either one of the above cases holds or there is v e B
such that CT(s) =n v as above and v =n u.

(7) Image of N^. Inductive hypothesis:
Nx(s, t, u)=na e 2 if and only if either there are q eQ, b e 2 such that

a =„ //(«), a(q, b) = a and s=nq, t=nb or a = eL (respectively eR) and
there is q eQ, such that « =n H{u), s =n qL (respectively qR), t =n C2(u) or
H{u) =n u, CQ(u) =„ s, C2(M) =„ t and a =n CxT(u) or there are s', t', u' e
B such that $=„.?', t =nt', u=n u', N^(s', t', u')eB and N^(s', t', u')=Ba;

Nx(s, t, u) =n Nx(v, w, z) if and only if either they are both =,,-equivalent to
the same a e 2 or s=nv, t=nw and u=nz or H(u) =n u, CQ(u) =„ s,
C2(M) =„ t, H{z) =n z, CQ(z) =n v, C?(z) =„ w and C2T(u) =„ C^T(z) or
there are b=Bb'eB such that A^s, /, M) =„ b and A^(u, »v, z) =n b' (as
above);

Nx(u, v, w) =n Cx(s) if and only if either there is a e 2, such that
QCs) =•« « =* Nz(u, v, w) or u =„ CQ(w) and v =n C2(»v), w =„ H(w) and
C-z(s) =n Cz(T(w)) or there are A eA0, u', v', w' e B such that P(s) =„ A,
a =„ «', v =„ u', »v sfl w', A^(a', u'f w') € B and CS(A) s n A^(w', v', w');

N-z(s, t, u) =„ C*(v, w) if and only if either there is a e 2 such that
C*(v, w) =n a =n N-z(s, t, u) or there is some z such that C*(v, w) =„
Cx(z) =n Nx(s, t, u) or there is some b e B such that N^(s, t, u) =n b
(as above) and b =„ C*(v, w);

Nx(s, t, u)=nv if and only if either one of the above cases holds or there is
w e B such that N^(s, t, u) =n w as above and v =n w.

(8) Image of C*. Inductive hypothesis:
C*(u, v) =„ a e 2 if and only if either there are u =n P{u), v =„ R(u, H(u))

or R(H(u), u) and CTT{u)=na or v=nl, u=nP{u) and P(u) =n a or
there exist u',v'eB such that u=nu', v=nv', C*(u', v')e B and
C*(u',v')=Ba;

C*{t, u) =n Cz(s) if and only if either for some a e 2, C2(s) =n a =„ C*(r, M) or
u=nR{H{t),t) or u=nR{t,H{t)) and C2(s) =„ CS(T(O) or a - „ 1,
t=nP(t) and C2(5) = „ C 2 ( 0 or there are t',u'eB and A G V 4 0 such that
t =n t', u =n u', C*(t', u') e B, P(s) =„ A and C*(t', u') = 0 CS(A);

C*(5, f) =n C*(u, v) if and only if either both are ^-equivalent to the same
a e 2 or there are At, A2 such that C*(^, f) =n C2(A,), C*(w, t») =„ C2(A2)
and C2(Aj) =„ C2(A2) or s =nu and t=nv or there are bx=Bb2e B such that
C*(s, f) =„ />i and C*(s, t) =n b2 as above;

C*(v, w) =n Nz(s, t, u) if and only if either there are a e 2 such that
C*(v, w) =„ a =n N^(s, t, u) or there is some z such that C*(v, w) =„
CJ:(Z) =n Nx(s, t, u) or there is some b e B such that A^(^, t, u) =„ b
and b =„ C*{v, w) (as above);

C*(s, t) =n u if and only if either one of the above cases holds or there is v e B
such that C*(s, t) =n v as above and u =„ v.

Sh:291



A VARIETY WITH SOLVABLE WORD PROBLEM 247

(9) Image of E. Inductive hypothesis:
E(s) =„ 1 if and only if either for some A, s =„ CQ(k) or there is t e B such that

s=ntandE(t)=Bl;
E(s) =„ 0 if and only if either s =nh or there is t e B such that s=nt and

( ) 0
E(s) =n E{t) if and only if either s=nt or E{s) =„ 1 =n E(t) or E(s) =„

0 =„ E(t) or there are b1=Bb2 such that E(s) =„ fr, and E(t) =„ b2 (as
above);

E(s) =„ t if and only if either one of the above cases holds or there is u e B such
that E(s) =n u (as above) and u =n t.

(10) Image of K*. Inductive hypothesis:
K*(s, t) =n 0 if and only if either s=nt and either s is =„-equivalent to a

constant or P(s) =n s or s is equivalent to an element in the image of C2,
CQ, R or F or there are bub2eB such that s=nbx, t=nb2 and
K*(bub2)=B0;

K*(s, t) =n 1 if and only if either P(s) =n s and there is a constant d =£c with
t =„ d or s is equivalent to an element in the range of Cs and there is a
constant d $ 2 such that t =n d or s is equivalent to an element in the range of
CQ and there is a constant d $ Q such that t=n d or s is equivalent to an
element in the range of R and there is a constant d =£ 0, 1 such that t=nd or
s is equivalent to an element in the range of F and there is a constant d =£ 0F,
1/r such that t=nd or s is equivalent to an element in the range of one of the
operations P, C2, CQ, R, F, and t is equivalent to an element in the range of
a different one of these operations or there are bly b2e B such that s =„ b\,
t=nb2, <mdK*(bltb2)=Bl;

K*(s, t) =„ K*{u, v) if and only if either K*(s, t) =n 0 =„ K*(u, v) or
K*(s, t) =n 1 =„ K*(u, v) or s=nu and t=nv or there is bx =B b2 such that
K*(s, t) =n bx and K*(u, v) =n b2 (as above);

K*(s, t) =n u if and only if either one of the above cases holds or there is v e B
such that K*{s, i) =„ v (as above) and u =„ v.

5.8. Definition of
Define A"n and ="n as follows. For n even:

An = A'n\J {NH(s, t, Hk)\ s,teA'n, A e An space-time}.

For n odd:

A"n = A'nU {K(s, A)| 5 € A'n, A ei4n space-time}.

We will extend ='„ to a partial congruence ^ on AJ,'. First, for n even, we
define N//(5, t, Hk) e A'n — An to be reducible (to u) if and only if one of the
following holds:

(i) there exist s', t', A' with u = NH(s', t', Hk') e B and s='ns', t='nt', and
HX^nHk';

(ii) s ='nq e 0 , and t='na e2, and w = 5/i(<?a)r//(A);
(iii) 5 = ; qL and f < C2//(A) and u = S~XTH{K)\
(iv) 5 = ; ^^ and / ='„ C2//(A), and M = STH(X);

(v) 5 = ; CQH{K), t ='n C2//(A) and M = HTk.
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Now, for n even, define NH(s, t, H(X) ='^NH(s', t', HX') (for both NH{s, t, HX)
and NH(s',t',Hk')eAn

n-An) if and only if either s='ns', t = 'nt', HX = HX or
both NH{s, t, HX) and NH(s', t', HX') are reducible, to u, u' respectively, and
u='nu'\ and define NH(s,t,HX)='!tveAn if and only if either NH(s, t, HX) is
reducible to u, and u='nv, orv = NH(s', t', HX') and s='ns', t = 'nt', HX='nHX'.

Similarly, for n odd, we define K(s, X) eA"n — An to be reducible (to u) if and
only if one of the following holds:

(i) there exist 5', A' with u = K(s', X')eB and s='ns, X='nX'\

(ii) s ='„ 0 or 0F and u = X;

(iii) s ='n 1 or 1F and u = P(c).

Now, for n odd, define K(s, X) ='^K{s', X') (for both K(s, X) and K(s', X) and
K(s', X') in y4̂ ' - An) if and only if either s='ns' and A =^ A' or both /C(s, A) and
K(s',X') are reducible to u, u' respectively, and u='nu'\ and define
K(s, X)='nve An if and only if K(s, A) is reducible to u, and u='nv or
v = K(s', A') and both K(s, X) and K(s', A') are irreducible, and s =n s', X ='n A.

Finally, we define An+l and =w + 1 to extend v^' and =^' as follows. For n even:

For n odd:

\J{S"TmHTkX\ XeAZ-An,neZ,k&0}.

5.9. Definition of(An+l,=n+l)
We extend =^' to =„+, on >!„+, as follows. For n even:
5 T w A = w + 1 5 " ' r m i f and only if n = n', m = m' and A=;'A;, and
SnTmX =n+A v eAn if and only if A is reducible, to u, and SnTmu =„ v.

For n odd:
SnTmX =„+, Sn'Tm'X' if and only if AZ = n', m = m', and A =M A;, and
SnTmHTkX=n+xS

n'Tm'HTk'X' if and only if n = n ' , m=m') k = k', and
A = A'.

Finally, SnTmX =n+l v eAn if and only if A reduces to u and SnTmu =n v, and
similarly with S"TmHTkX.

This completes the definition of (An+X, =n+\)- It is straightforward to check
that (An+U =n+i) is a decidable partial congruence satisfying (i), (ii), (iii), (iv)
above. Property (v) can be verified in the other cases as it was after the definition
of the inductive hypothesis on R. Also, as discussed in § 5.1, [JnSc0 =n is precisely
dgp restricted to Un&o-^n- The An and =„ are uniformly decidable in n. Together
this means that {Jn»0An and Un&o=n are decidable. Since {Jn»oAn contains all
terms, modulo (effectively) reducing space-time terms to their normal forms, this
completes the proof.

If we combine Theorems 3.1, 4.1, and 5.1, we obtain the following theorem.

THEOREM 5.5. There is a finitely based variety of finite type which has solvable
but not uniformly solvable word problem.
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6. A recursively based variety defined by laws involving no variables

6.1. Definition of the variety
In this section we will describe a recursively based variety of finite type, defined

by laws which involve no variables, which has solvable but not uniformly solvable
word problem.

The variety is a modification of the finitely based variety defined in the
preceding sections. The use of infinitely many axioms allows us to use a simpler
picture of space-time.

The operations are the same, except that P, C*, and U are deleted and K and
K* are identified. Specifically, the operations are:

Constants: c, all a el., all q e Q, 0, 1, 0F, 1F;
Unary: T, S, S~\ H, C2, CQ, E;
Binary: F, R, K;
Ternary: NH, NQ, Afe.
Define, for each k, Hk = HTk{c), and let A= {SnTm{Hk)\ nel, m, keN}.

These will be the space-time elements.
The laws defining the variety are as follows.

I. H{c)~c,
T(SnTm(Hk))« SnTm+\Hk),
S(SnTm(Hk)) « Sn+xTm(Hk),
S-\S

nTm(Hk))~S"-xTm(Hk),
H(S"Tm(Hk)) « Hm+k for all k, m ^ 0 and n e Z.

II. NQ(q, a, Hk) ~ o(q, a) for all q e Q, a e 2, k ^ 0,
NH(q, a, Hk) - S^-a)T{Hk) for all q e Q, a e 2, k ^ 0,
NT(q, a, Hk) - a{q, a) for all q e Q - QLR, a e 2, k ^ 0;
NQ{qL, Cx(Hk), Hk)~q~NQ(qR, C*(Hk), Hk),
NH(qL,Cz(Hk),Hk)~ST(Hk),
NH{qR, C^{Hk), Hk)~S-xT{Hk),
Nz(qL,Cx(Hk),Hk)~eL,
N^{qR, Cx(Hk), Hk) - eR, for all q e Q\QLR and k ^ 0.

III.
CQT{Hk)~NQ{CQ(Hk), C^{Hk),Hk),
Hk+x~NH{CQ{Hk), Cx{Hk), Hk) for all k 2*0.

IV. Ce(A) ~ CQH{X) for all A e A.

V. R{k, A) = 0 for all AeA,
R{k, Sk{X)) ~ 1 for all k > 0, and A e A,
F(A, A) = 0F for all AeA,
F(A, r*(A)) ~ 1F for all A e A and k > 0,
F(A, y) ~ F{Hk, H{y)) for all A, y e A.

VI. CY{SnTH{X)) ~ C2(5"//(A)) for all A e A and n =£0.
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VII. K(Q, A)« A for all A e A,
K(l, A) « c for all A e A,
K(d, d) = 0 for all constants d,
/f (d, e) «* 1 for all constants d =£ e =£ c,
K{k, d) = 1, for all A e A and constants d =£ c,
/C(C2(A), d) ~ 1 for all constants d $ 2, and A e A,
K(CQ(k), d) = l for all constants d * Q, and A e A,
K(fl(A, y), rf)« 1 for all A, y e A, and d #0 , 1,
K(F(X, y), rf) * 1 for all A, y e A, and d ±0F> 1F;
#(f, f) = 0 and K(s, t) = l for all s, t where 5, f belong to different
members of the following list of sets:

A, {C2(A)| AeA}, {Ce(A)| AeA}, {R(k, y)\ A, ye A}, {F(A, y)| A, ye A}.

VIII. £CQ(A)«1 for all AeA,

Note that every term generated from c by the operations 5, S~l, T, and H is
equivalent modulo the above laws I to an element of A; in fact there is an
effective procedure which, given such a term t, produces A e A with t equivalent
(modulo I) to A. Thus we may, and will, ignore all such terms t except those in A.

6.2. Non-uniform solvability of the word problem

PROPOSITION 6.1. The variety V does not have uniformly solvable word
problem.

Proof. The proof is analogous to the proof of Theorem 3.1: for an initial tape
configuration as described there, we have associated the same presentation 9* and
prove that the universal Turing machine, started on that configuration, eventually
halts if and only if 0 =9 1.

As in the proof of Theorem 3.1, the 'only if part is clear.
For the 'if direction, if the machine does not halt, we again produce a model

AeV satisfying all the 9* equations, in which 0 =£ 1.
The underlying set of A is as in the proof of Theorem 3.1, and the operations

are as defined there, with the following changes.
Parts (ii), (iii) and the definition of C* are deleted (since we have deleted the

operations P, U, and C*).
In (v), R(x, v) = * unless both x, y e A.
In (vi), F(x, v) = * unless both x, v e A.
In (vii), K(x, v) = * for x, y not in the form of the first two lines.
In (viii), replace K* by K.

6.3. Solvability of the word problem
The proof that V has solvable word problem is somewhat different from the

proof in §5.
We again differentiate two cases: whether or not 9* has degenerate space-time,

which in this case means A =9 c for all AeA.
In the degenerate case, we have (A, c) e =9 for all AeA, and hence the

equations defining our variety are equivalent (modulo =^) to finitely many
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equations, namely S(c) = T(c) = S~l(c) = c together with all instances of the
equations defining the variety with c substituted for the arbitrary A e A which
appear. Thus => is finitely generated relative to the variety of all algebras, and
hence is decidable by Corollary 1.2.

In the non-degenerate case, we proceed, at first, similarly to § 5, bearing in
mind that there are fewer space-time elements (see above definition of A), but
time coordinates, time prefixes, and space prefixes are defined as before, except
that all these notions are always relative to c = H(c), that is, the only space-time
component is that of c.

The proof of the next lemma is essentially the same as the proofs of Lemmas
5.2 and 5.3.

LEMMA 6.2. For any finite subset F c A , with maximum time coordinate m,
there is a finite F c A with the same maximum time coordinate such that

(i)FsF,
(ii) if A is a right subterm of y e F then ke F,
(iii) if A e A and kd&y for ye F then A e F,
(iv) ifkeA and TkeFthen keF.

Definition of A. The algebra A consists of all terms appearing in the equations
defining the variety, and all subterms thereof, plus all elements C2(A), and
K{k, y) for A, ye A (the elements CQ(k) are already included).

Let =A be the restriction to A of the congruence defining our variety; then,
because we have no non-trivial information about Cs and CQ, rules III cannot be
applied in a non-trivial way, and hence =A is decidable, as in condition (3) of
Proposition 1.1. Thus (A, =A) is a partial subalgebra satisfying the hypotheses of
Proposition 1.1.

Definition of B. Let B& consist of all terms appearing in the presentation &,
and all subterms thereof, and all constants.

Enlarge Bg. as follows:
(i) for each b eBg,, if there exists a eA with a Bg. b, add one such a, and

choose a e A whenever possible;
(ii) let F consist of all the elements of A we have so far, and add the set F of

Lemma 6.2;
(iii) for all A, yeF, add CQ{k), C2(A), R(k, y), F(k, y).
The resulting set is B. It is closed under taking subterms, and for A, y e A, if

yeB and A d&y then ke B.
Let =B be Bg\B\ then B and =B are both finite, and hence decidable.

Definition of Ao. Let A0 = A(JB, and let =0 be the partial congruence on
AUB generated by =A^=B\ we are going to show that (Ao, =Q) is a partial
subalgebra satisfying the hypothesis of Proposition 1. Since Q9 is generated by
=,,11=8 and hence by =0, the decidability of dg, will then follow from
Proposition 1.1, the proof of which is deferred to the next subsection.

Since membership in A is decidable, and B is finite, we know that membership
in Ao is decidable.
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Next, we need to establish that =0 is decidable; this, however, can be proved
analogously to the proof in § 5 that =0 (as denned there) is decidable, deleting
from that proof consideration of elements which we do not have in this example,
such as elements in the image of U or C* and space-time elements except those in
the presently-defined A.

It remains to check that (Ao, =0) satisfies hypothesis (3) of Proposition 1.1,
that is, that there is an algorithm which, given an operation o of arity n, and
ax, ...,an eA0, determines whether there exist bx,..., bneA0 with a, =0 bt and
o(bx, ...,bn)eA.

Now, B is finite, and hence we can check all elements of the form
o(bx,..., bn) e B, and decide whether at =0 bh

Thus it is enough to decide whether there exist bx,..., bneA with
o{bx,..., bn)eA and a, =0 bt. Moreover, if some a, e B —A then at e B9 and so if
there exists bt e A with at =0 bt then there exists c, e A n B with a, =$ c, and we
may replace a, by c,. Thus we may assume without loss of generality that all

Hence we have reduced the problem to the following: given ax, ...,an e
A do there exist bx,..., bn eA with a, =0 bt and o(bx, ..., bn) eAI

There is an effective procedure which, given a eA, produces deA such that
d=Aa and either deA, d is a constant, or d e CQ(A), d e C2(A), d e R(A, A),
or d e F(A, A). Thus we may assume that each a, is already of this form.

We consider the operations in turn.
T: For a eA, if there exists b eA with b=Qa and T{b) eA then b eA and

hence a e A. Thus there is such a b if and only if a e A.
S, S~l, and H: These are the same as I.
R: For ax,a2eA, if there exist bt=oai with b(eA and R(bx, b2)eA then

bi e A and hence a, e A; conversely if a, e A then R(ax, a2) e A.
F: This is the same as R.
CQ: For b eA, CQ(b) eA if and only if b e A; hence there exists b =0

 a with
CQ(b) eA if and only if a e A.

C2: This is the same as CQ.
NQ: If ax, a2, a^eA and there exist fe,=oa, with NQ(bx, b2, b2)eA, then

b3 = Hk for some k; then because a3 =0 b3 we must have that the time component
of a3 is k, so we can just check whether a3 = Hk. If the answer is affirmative, then
for bx and b2 we have NQ(bx, b2, Hk) eA if and only if either ax=oqeQ and
a2=oa e2, or ax =0 qL or qL or CQ(Hk) and a2 =o C^(Hk); there are only finitely
many cases to check.

Nx, NH: The argument is the same as for NQ.
E: For aeA, if there exists beA with E(b)eA then either a=oh or

a =0 C2(A) for some AeA. The latter occurs if and only if either a e in^Cs) or
a =0 to some d el, or a=0 C^(b) e B; these finitely many cases can be checked.

K: If fli=o^>i and a2=0b2 and K{bx,b2)eA then there are various
possibilities:

(1) b2 e A, whence a2 e A, and ax =00 or ax =0 1 or ax is in A or in the image
of C2, CQ, R or F, or ax =0 an element in the image of one of these
operations in B; these finitely many cases can be checked;

(2) ax and a2 are each =0 some constant (possibly different ones);
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(3) ax e A and a2 is either =0 some constant not equal to c, or a2 e A, or a2 is in
the image of C2, CQ, R or F, or a2 is =0

 t o a n element in the image of one
of these operations in B;

(4) a j is in the image of C2 or is =0 an element of B which is in the image of
C2, and a2 =0 d, a constant which is not an element of 2;

(5) similar to (4), with C2 replaced by CQ, or R, or F respectively, with the
appropriate constraint on the constant d =oa2.

This completes the proof.

Applying Proposition 1.1, we have proved the following theorem.

THEOREM 6.4. There is a variety in a finite language defined by a recursive set of
laws involving only constants which has solvable but not uniformly solvable word
problem.

6.4. Proof of Proposition 1.1
We complete this section with the promised proof of Proposition 1.1.

Proof (of Proposition 1.1). We first produce a partial subalgebra (B, =B)
satisfying (1) to (3), such that A^B, and =A c =B, which has the feature that if
<*i=B bj for l=£/ssn and if o(alf ..., an) e B then o(bx, ..., bn) e B. Thus B and
=fl are defined by induction on the complexity of terms, as follows.

Let BQ = A and =0 be =A. For each natural number k, let

Bk+i = BkU{o(by, ...,bn)\ oeH^jeBk and

there exists a, =k bt with o(au ..., an) e A},

Rk+i = {(o(bu ...,bn),a)\ oe'E,bieBk,a€A and
there exists a, =k bt with a = o(ax, ..., an)}.

Let =*+, = =,» UC^oU^uC/?^,•si4)u(J?*i1o ^ol?^,)-
Define B = U Bk (k e co) and define =B = U =k (k e a>).
Note that each Bk is closed under subterms.
We will prove the following by induction on k:

(i) =* S =k+u

(ii) if b e Bk and b=ka, b =kc for a, c e A then a =A c;
(iii) =k\B( = =j for all i<k;
(iv) =k is transitive;
(v) =k is a partial congruence on Bk.

The initial step, k = 0, is trivial. For the induction step suppose we have (i) to
(v) for k.

(i) We have Rk+1 c /?fc+2 and hence ^ + 1 c =k+2.
(ii) Suppose b e Bk+l and b =k+i a, b =k+i c for a, c eA. Note that Rk+i\A c

=,4, and hence if b eA then b =A a and 6 =A c so a =A c.
Assume b$A. Then b — o(bx, ..., bn) and there exist a,;=k bt with

a(fl!, ...,an) eA and a(fl!, ..., an) =A a. Similarly there exist Cj=kbj with
o(cx, ..., cn) eA and a(ci, ..., cn) =A c. But by the induction hypothesis we get
at =A c( and hence o(aX) ...,an)=A o(cu ..., cn), so a =A c.
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(iii) It is enough to prove that =k+x\Bk = =*., and for this it is enough to prove
that Rk+x\Bk^Rk (or =A if A: = 0). However, if (o(bx, ...,bn), a) eRk+x and
b = o(bx,..., bn) eBk then there exist ax, ..., aneA with bj=kaj and a =
o(ax, ..., an). If k = 0 then we have b eA and hence (b, a) e =A. If k > 0 then
beBK implies that bx, ...,bne Bk_x and so the induction hypothesis yields
b{ =k-x dj and hence (b, a) e =k.

(iv) This is a direct consequence of (ii).
(v) For k = 0 this is just the hypothesis on (A, =A), since we have assumed

that =A is a partial congruence on A. Suppose bt =k+x dj and o(bx, ..., bn) e Bk+X

and o(dx, ..., dn) e Bk+X. Then bh dt e Bk for 1 =s / s=n and hence by (iii), b{ =* dt.
Also, there exist ah c, e A (l^i^n) with b, =ka{ and dj =k c, and o(ax,..., an),
o(cx,..., cn)eA. By (iv) and (ii) we obtain a,=A c, and hence
o{ax,..., an) =A o(cx,..., cn) and thus a(6j , . . . , bn) =k+x o(dx, ..., dn).

It remains to verify (1), (2), and (3) for (B, =B).
Note first of all that o(bx,..., bn) e B if and only if there exist ax,..., an eA

with aj=Bbi and o(ax, ...,«„) eA. Moreover, if o(bx,..., bn)e B and the
dj are as above then whenever bj=BCjeA with a(c,, . . . , cn)eA then
a ( f l , , . . . , « « ) s ^ ^ ( c i , . . - , c n ) .

We show that there is an algorithm which, given b e FX, determines whether
b e B and in the affirmative case produces aeA with b=Ba.

Consider b € FX. It is decidable whether be A, and in the affirmative case we
have finished. If b $ A then b = o(bu ..., bn) for unique bu ..., bn and o. In this
case, b e B if and only if all the bt e B, and there exist at e A with o{aly ..., an) e
A and bi=Bat. The 6, are of lower complexity than b; determine for each
whether it belongs to B and if so, produce c, eA with c, =B b(. Given the ch it is
decidable whether there exist ax,..., an eA with a,=A c, and o{ax, ...,an)eA,
and moreover, since membership in A is decidable, we can effectively produce
the at in the affirmative case, thus yielding an appropriate a eA with a=Bb,
namely a = o(ax> ..., an) =n o(cx, ..., cn) =n o(bx, ..., bn) = b.

Thus membership in B is decidable, and hence =B is decidable: given b, c e B
we effectively produce a, d e A with b=Ba, c=Bd and then b =B c if and only if
a =A d, and the latter is decidable.

Finally, given an n-ary operation a and bx, ..., bne B, there exist ax, ..., ane
B, with ai=Bbj and o(ax, ..., an)eB, if and only if o(bl, ..., bn)eB, and we
have just proved that the latter is decidable.

Thus (B, = s ) is a partial subalgebra with all the properties claimed above.
Now, each element s e FX can effectively be written as s =s'(ux, ..., un) where

the Uj e B are subterms which are maximal with respect to belonging to B.
Define a relation = on FX as follows: for s =s'(ux, ..., un) and t =

t'(vx, ..., vk), where the uh Vj are maximal 5-subterms, s = tii and only if s' = t'
and u, =B vt for all /. Then = is a congruence on FX, which extends =A and is
generated by it, and so is the congruence on FX generated by =A. Moreover, the
above description of =, together with the decidability of =B, yields the
decidability of =, as required.

7. A variety with infinitely many operations

If we allow infinitely many operations, then it is much easier to obtain a variety
with solvable, but not uniformly solvable, word problem. The following example
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is a modification of an example given by Wells [11, p. 161] for a different,
although related purpose. He suggested its relevance to our question.

Let V be the variety with a constant, 0, a binary operation denoted by
juxtaposition, and countably many unary operations hn (n e w) satisfying the
following laws:

xy^yx,
x(yz)~(xy)z,
*0 = 0,
x2 « 0,
xhn(y) ~ 0 for all n e co,
hn{hn{x)) ~ hn(x) for all n G co,
hn(hk(x)) ~0 for a\\ni=k,

and

where {mn\ n GN) is a recursive listing of a non-recursive set X.
Thus V is a variety of commutative, square-zero semigroups with countably

many idempotent unary operations, and the above is a recursive set of equations
defining V. It is worth commenting on why the system of equations is recursive.
Obviously, the only problem is identifying when an equation is included in the
scheme (*). Now the equations in (*) are of the form hf(xi ...Xj)^0. Such an
equation is in (*) if and only if j = mk. The trick of using h"mn{xx ••• xmn) rather
than hmn(xi ... xmj is a variant of the old trick of pleonasm due to Craig which he
used to prove that any theory with a recursively enumerable axiomatization has a
recursive axiomatization (see Monk [7, p. 262]).

We will show that V has an undecidable equational theory, and hence does not
have uniformly solvable word problem, by establishing that V satisfies the
equation hk(xx... xk)= 0 if and only if k e X. One direction is trivial by the laws
above. To complete the proof of undecidability, we construct an algebra in which
for k$X, hk is non-zero on a product of k elements.

Let S be the free algebra on countably many generators in the class of
commutative semigroups with 0 satisfying x2 = 0. Let {a^ i eN} be a countable
set disjoint from S, and let >l = 5U{a,| / eN} . Define the operations in A as
follows: the binary multiplication extends that of S, and otherwise is constant
with value 0.

For n GX, hn is constant with value 0. For n $ X,

if x = 0 or x = at for some i ¥= n,
., otherwise.

It is easy to check that this algebra has the desired properties.
Now, to see that V has solvable word problem, consider a finite presentation 9*

in generators bx, ..., bn. Let m be greater than n, and greater than k for any k
such that hk appears in one of the defining relations of 9*. Let B be the algebra
given by the presentation ^ in the variety V, which has operations 0,
multiplication, and /*, for / ^ m, and is defined by the laws defining V which
involve only the ht for i ^ m. Then B is finite, and hence the word problem for 9>
relative to the variety V is decidable. Let C c B consist of all non-zero elements
of B which are not the image of any ht (i^m). Then the algebra A given by the
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presentation ^ in the variety V has as underlying set B U (C x {/ € fol| i > m});
the multiplication extends that of B and otherwise has value 0, the /i, for / =s m
extend those of B and otherwise have value 0, and for i > m and c eC,
hj{c) = (c, /) = hj((c, i)) and ht has value 0 otherwise. The equations for i > m are
satisfied in A because all products JC, ... xk for k > m are 0. (It is a simple exercise
to show that the laws imply hk(0)~0.) This explicit description of A yields a
solution to the word problem for ^ relative to the variety V.
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