

Regular Subalgebras of Complete Boolean Algebras Author(s): Aleksander Blaszczyk and Saharon Shelah Source: *The Journal of Symbolic Logic*, Vol. 66, No. 2 (Jun., 2001), pp. 792-800 Published by: <u>Association for Symbolic Logic</u> Stable URL: <u>http://www.jstor.org/stable/2695044</u> Accessed: 13/06/2014 11:00

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Symbolic Logic.

http://www.jstor.org

REGULAR SUBALGEBRAS OF COMPLETE BOOLEAN ALGEBRAS

ALEKSANDER BŁASZCZYK AND SAHARON SHELAH[†]

Abstract. It is proved that the following conditions are equivalent:

- (a) there exists a complete, atomless, σ-centered Boolean algebra, which does not contain any regular, atomless, countable subalgebra,
- (b) there exists a nowhere dense ultrafilter on ω .

Therefore, the existence of such algebras is undecidable in ZFC. In "forcing language" condition (a) says that there exists a non-trivial σ -centered forcing not adding Cohen reals.

A subalgebra \mathbb{B} of a Boolean algebra \mathbb{A} is called regular whenever for every $X \subseteq \mathbb{B}$, $\sup_{\mathbb{R}} X = 1$ implies $\sup_{\mathbb{A}} X = 1$; see e.g., Heindorf and Shapiro [6]. Clearly, every dense subalgebra is regular. Although every complete Boolean algebra contains a free Boolean algebra of the same size (see the Balcar-Franek Theorem [1]), not always such an embedding is regular. For instance, if \mathbb{B} is a measure algebra, then it contains a free subalgebra of the same cardinality as \mathbb{B} , but \mathbb{B} cannot contain any infinite free Boolean algebra as a regular subalgebra. Indeed, measure algebras are weakly σ -distributive but free Boolean algebras are not, and a regular subalgebra of a weakly σ -distributive one is again weakly σ -distributive. Thus B does not contain any free Boolean algebra. On the other hand, measure algebras are not σ -centered. So, a natural question arises whether there exists a σ -centered, complete, atomless Boolean algebra \mathbb{B} without regular free subalgebras. Since countable atomless Boolean algebras are free and every free Boolean algebra contains a countable regular free subalgebra, it is enough to ask whether \mathbb{B} contains a countable atomless regular subalgebra. In the paper we prove that such an algebra exists iff there exists a nowhere dense ultrafilter.

DEFINITION 1 (Baumgartner [2]). A filter D on ω is called nowhere dense if for every function f from ω to the Cantor set ${}^{\omega}2$ there exists a set $A \in D$ such that f(A) is nowhere dense in ${}^{\omega}2$.

In the sequel we will rather interested in nowhere dense ultrafilters. Observe that every *P*-ultrafilter (i.e., every *P*-point in ω^*) is a nowhere dense ultrafilter.

THEOREM 1. There exists an atomless, complete, σ -centered Boolean algebra without any countable atomless regular subalgebras iff there exists a nowhere dense ultrafilter.

© 2001, Association for Symbolic Logic 0022-4812/01/6602-0021/\$1.90

Received March 24, 1998.

[†]The research was partially supported by the Basic Research Foundation of the Israel Academy of Sciences and Humanities. This publication has Number 640 in S. Shelah's list.

By a recent result of Saharon Shelah [7] there exists a model of ZFC in which there are no nowhere dense ultrafilters. So it is consistent with ZFC that there are no atomless, complete, σ -centered Boolean algebras without any countable regular subalgebras.

In the first part of the paper, forcing methods are used to show that nowhere dense ultrafilters exist whenever there exists a σ -centered forcing \mathbb{P} such that above every element of \mathbb{P} there are two incompatible ones and \mathbb{P} does not add any Cohen real. The forcing constructed here uses some ideas from Gitik and Shelah [5]. They have shown that if \mathbb{P} is a σ -centered forcing notion, $\{A_n : n < \omega\}$ are subsets of \mathbb{P} witnessing this, and both \mathbb{P} and A_n 's are Borel, then \mathbb{P} adds a Cohen real. On the other hand it is known that a forcing \mathbb{P} adds a Cohen real iff the complete Boolean algebra $\mathbb{B} = RO(\mathbb{P})$ contains an element u such that the reduced Boolean algebra $\mathbb{B}|u$ has a regular infinite free Boolean subalgebra. Thus, to prove the Theorem 1 we need to show in particular the following:

THEOREM 2. If there exists a σ -centered forcing \mathbb{P} such that above every element of \mathbb{P} there are two incompatible ones and \mathbb{P} does not add any Cohen real then there exists a nowhere dense ultrafilter on ω .

We shall proceed with the proof by some definitions and a lemma.

DEFINITION 2. (a) A forcing \mathbb{P} is called σ -centered if $\mathbb{P} = \bigcup \{A_n : n < \omega\}$ where each A_n is directed, i.e., for every $p, q \in A_n$ there exists $r \in A_n$ such that $p \leq r$ and $q \leq r$.

(b) A forcing \mathbb{P} adds a Cohen real if there exists a \mathbb{P} -name $\underline{r} \in \mathbb{Q}$ 2 such that for every open dense set $\mathcal{D} \subset \mathbb{Q}$ we have $\Vdash_{\mathbb{P}} \ \underline{r} \in \mathcal{D}^*$, where \mathcal{D}^* denotes the encoding of \mathcal{D} in the Boolean universe.

REMARKS. (a) The order of forcing in this notation is inverse of the one in the Boolean algebra.

(b) We can just assume that there is a member p of \mathbb{P} such that if q is above p then there are r_1 and r_2 above q which are incompatible in \mathbb{P} .

DEFINITION 3. A set $X \subseteq {}^{\omega>2}$ is somewhere dense if there exists an $\eta \in {}^{\omega>2}$ such that for every $\nu \in {}^{\omega>2}$ there is $\varrho \in X$ with $\eta^{\neg} \nu \trianglelefteq \varrho$, where $\eta^{\neg} \nu$ stands for the concatenation of η and ν and the relation \trianglelefteq means that ϱ is an extension of the sequence $\eta^{\neg} \nu$.

LEMMA 3. A filter D on ω is not nowhere dense iff it is a so-called well behaved filter, i.e., there is a function $f: \omega \to {}^{\omega>2}$ such that for every $B \in D$ the range of f restricted to B is somewhere-dense.

PROOF. Suppose $f: \omega \to {}^{\omega}2$ be such that for every $B \in D$ the image of B is not nowhere dense. Without loss of generality we can assume that the range of f is dense in itself. Since every closed and dense in itself subset of the Cantor cube ${}^{\omega}2$ is homeomorphic to the whole ${}^{\omega}2$ we can assume also that the range of f is dense in ${}^{\omega}2$. Moreover, since it is countable it can be identified with a subset of the set ${}^{\omega>}2$ of all rational points of the Cantor set. Thus without loss of generality we can assume that f maps ω into ${}^{\omega>}2$. On the other hand a set $X \subseteq {}^{\omega>}2$ is nowhere dense whenever for every $\eta \in {}^{\omega>}2$ there exists some $v \in {}^{\omega>}2$ such that the set of all sequences extending $\eta \cap v$ is disjoint from X. Therefore, since the image of B under f is not nowhere dense in $\omega > 2$, it can be identified with a somewhere dense subset of $\omega > 2$. This in fact completes the proof of the lemma.

REMARK. If D is a filter on ω and $\mathscr{P}(\omega)/D$ is infinite then D is not nowhere dense. Indeed, if $\langle A_n : n < \omega \rangle$ is a partition of ω such that $\omega \setminus A_n \notin D$ for all $n < \omega$ and $\langle e_n : n < \omega \rangle$ list the set ${}^{\omega>2}$ then the map $f : \omega \to {}^{\omega>2}$ defined by the formula

$$f(e) = e_n \quad \text{iff} \quad e \in A_n$$

witness "D is well behaved".

PROOF OF THEOREM 2. Assume that there are no nowhere dense ultrafilters. Further assume that \mathbb{P} is a forcing in which above each element there are two incompatible ones and $\mathbb{P} = \bigcup \{A_n : n < \omega\}$ where each A_n is directed. We start with the following known fact which we prove here for the sake of completeness:

FACT 4. Every forcing \mathbb{Q} with Knaster condition such that above every element of \mathbb{Q} there are two incompatible ones, adds a real.

In fact, by assumption, forcing with $\mathbb Q$ adds a new subset to $\mathbb Q,$ hence a new subset to some ordinal. In the set

$$\mathscr{K} = \{(\alpha, p, \underline{\tau}) \colon p \in \mathbb{Q}, \alpha \text{ an ordinal and } \underline{\tau}\}$$

a \mathbb{Q} – name of a subset of α such that $p \Vdash `` \underline{\tau} \notin V "$ }

we choose (α, p, τ) with α being minimal. So necessarily α is a cardinal and

 $p \Vdash$ "the tree ($^{\alpha>}2, \trianglelefteq$) has a new α -branch in $V^{\mathbb{Q}}$ "

So, as \mathbb{Q} satisfies the Knaster condition (which follows from σ -centered), necessarily $cf(\alpha) = \aleph_0$ and letting $\alpha = \bigcup_{n < \omega} \alpha_n$, where $\alpha_n < \alpha_{n+1}$ for some countable $w \subseteq \alpha > 2$ we get

$$p \Vdash ``(\forall n < \omega)(\tau \upharpoonright \alpha_n \in w)",$$

so $p \Vdash$ "we add a new subset to $w, |w| = \aleph_0$ ".

We have shown that $I = \{p \in \mathbb{Q} : p \Vdash ``\underline{r} \in {}^{\omega}2 \text{ is new " for some } \mathbb{Q} - \text{name } \underline{r}\}$ is a dense subset of \mathbb{Q} . So let $\{p_i : i < \omega\} \subseteq I$ be a maximal antichain and let \underline{r}_i be such that $p_i \Vdash ``\underline{r}_i$ is new ". By density of I we can define the \mathbb{Q} -name \underline{r} as follows: $\underline{r} = \underline{r}_i$ if $p_i \in G_{\mathbb{Q}}$. This completes the proof of Fact 4.

Now we fix a \mathbb{P} -name of a new real $\underline{r} \in {}^{\omega}2$ added by \mathbb{P} . For every $p \in \mathbb{P}$ we set $T_p = \{\eta \in {}^{\omega>}2: \neg(p \Vdash \neg(``\eta \trianglelefteq \underline{r}"))\}$, i.e., $\eta \in T_p$ iff there exists $q \in \mathbb{P}$ such that $p \leqslant q$ and $q \Vdash ``\eta = \underline{r} \upharpoonright \lg \eta$, where $\lg \eta$ denotes the length of the sequence η .

FACT 5. For every $p \in \mathbb{P}$, T_p is a subtree of $\omega > 2$, i.e $\eta \leq \nu$ and $\nu \in T_p$ implies $\eta \in T_p$ and $\langle \rangle \in T_p$, where $\langle \rangle$ denotes the empty sequence.

Indeed, if $\eta \leq v$ and $v = \underline{r} \upharpoonright \lg v$, then $\eta = \underline{r} \upharpoonright \lg \eta$.

FACT 6. The tree T_p has no maximal elements.

794

To prove the Fact 6 we fix $\eta \in T_p$. Then there is $q \in \mathbb{P}$ such that $p \leq q$ and

$$\eta \Vdash \underline{\check{r}} \upharpoonright \lg \eta = \eta$$
".

Let $k = \lg(\eta)$, so $I = \{r \in \mathbb{P}: r \text{ forces a value to } \underline{r} \upharpoonright (k+1)\}$ is a dense and open subset of \mathbb{P} , hence there is $q' \in \mathbb{P}$ such that $q \leq q'$ and q' forces a value to $\underline{r} \upharpoonright (k+1)$, say ϑ . So q' also forces $\underline{r} \upharpoonright k = \vartheta \upharpoonright k$, but $q \leq q'$ and $q \Vdash \underline{r} \upharpoonright k = \eta$ hence $\vartheta \upharpoonright k = \eta$. As q' witnesses $\vartheta \in T_p$ and $\vartheta \in k+12$ and $\eta \in k2$, $\eta \leq \vartheta$, this completes the proof of Fact 6.

FACT 7. The set $\lim T_p$ of all ω -branches through T_p is closed, i.e., if $\eta \in {}^{\omega}2 \setminus \lim T_p$ then there exists $\nu \in {}^{\omega}>2$ such that $\nu \leq \eta$ and the set of all ω -branches extending ν is disjoint from $\lim T_p$.

Indeed, if $\eta \in {}^{\omega}2 \setminus \lim T_p$ then there exists $n \in \omega$ such that $n \leq m < \omega$ implies $\eta \upharpoonright m \notin T_p$. By Fact 5 it is clear that every ω -branch extending $\nu = \eta \upharpoonright n$ does not belong to T_p , which proves the Fact 7.

Now let us observe that the family $\{T_p : p \in A_n\}$ is directed under inclusion, i.e., if $p, q \in A_n$ and $r \in \mathbb{P}$ is such that $p \leq r$ and $q \leq r$ then $T_r \subseteq T_p \cap T_q$. Indeed, if $\eta \in {}^{\omega>2}$ and there exists $s \geq r$ such that $s \Vdash ``\eta = \underline{r} \upharpoonright \lg \eta$ " then of course $s \geq p$ and $s \geq q$ and thus η belongs to T_p and T_q .

So by compactness of $^{\omega}2$ and Facts 5–7 we get the following:

FACT 8. The set $T_n = \bigcap \{T_p : p \in A_n\}$ is a subtree of $\omega > 2$ and the set of ω -branches of T_n is non-empty.

Now we make a choice:

(1)

 η_n^* is an ω - branch of T_n .

Subsequently for every $n < \omega$ and every $p \in A_n$ we define

$$B_p^n = \{k < \omega \colon (\exists q \in \mathbb{P}) (p \leqslant q \land q \Vdash "\underline{r} \upharpoonright k = \eta_n^* \upharpoonright k \& \underline{r}(k) \neq \eta_n^*(k)")\}$$

We have the following:

FACT 9. For every $n < \omega$ and every $p \in A_n$ the set B_p^n is infinite.

Indeed, since $p \in A_n$ and T_n is a subtree of T_p , η_n^* is an ω -branch of T_p . Let us fix $m < \omega$. Then, by the definition of T_p , there exists $r \in \mathbb{P}$ such that $r \ge p$ and

$$r \Vdash ``\eta_n^* \upharpoonright m = \underline{\underline{r}} \upharpoonright m$$

On the other hand

 $\Vdash_{\mathbb{P}} ``\underline{r} \neq \eta_n^*",$

because <u>r</u> is a new real. Thus for some $q \in \mathbb{P}$, $q \ge r$ and $k < \omega$ we get

$$q \Vdash "\underline{r} \restriction k \neq \eta_n^* \restriction k$$
".

We can assume that k is minimal with such a property. Since $r \leq q$, it must be k > m. But $q \geq p$ and thus, by minimality of k, we have $k - 1 \in B_p^n$, which proves the Fact 9.

Now we establish for every $n < \omega$ the following definition:

$$\mathscr{D}_n^0 = \{ B \subseteq \omega \colon (\exists p \in A_n) (|B_p^n \setminus B| < \omega) \}$$

FACT 10. For every $n < \omega$, \mathcal{D}_n^0 is a filter.

796

Indeed, let $B_1, B_2 \in \mathscr{D}_n^0$. Then there exist $p_1, p_2 \in A_n$ such that both $B_{p_1}^n \setminus B_1$ and $B_{p_2}^n \setminus B_2$ are finite. Since A_n is directed we can choose $r \in A_n$ such that $p_1 \leq r$ and $p_2 \leq r$. On the other hand, from the definition of B_p^n it easily follows that

$$p \leqslant q$$
 implies $B_q^n \subseteq B_p^n$.

Thus $B_r^n \subseteq B_{p_1}^n \cap B_{p_2}^n$ and therefore

$$B_r^n \setminus (B_1 \cap B_2) \subseteq (B_{p_1}^n \setminus B_1) \cup (B_{p_2}^n \setminus B_2)$$

is finite. Clearly, every superset of an element of \mathscr{D}_n^0 also belongs to \mathscr{D}_n^0 and, by the Fact 9, \mathscr{D}_n^0 does not contain the empty set, which completes the proof of Fact 10.

Now by Fact 9 and Fact 10, we can make the following choice: for $n < \omega$

(2)
$$\mathscr{D}_n$$
 is a non-principal ultrafilter containing \mathscr{D}_n^0

By our hypothesis the ultrafilters \mathcal{D}_n are not nowhere dense and so by Lemma 3 for every $n < \omega$ we can choose a function $f_n: \omega \to {}^{\omega>2}$ such that

$$(3) \qquad (\forall B \in \mathscr{D}_n)(\exists u \in {}^{\omega >}2)(\forall v \in {}^{\omega >}2)(\exists k \in B)(u^{\frown}v \trianglelefteq f_n(k)).$$

Without loss of generality we may assume that the empty sequence does not belong to the range of f_n .

Now we have to come back to the sequence $\{\eta_n^*: n < \omega\}$ of ω -branches of the trees T_n . Since it can happen that the sequence is not one-to-one we consider the set

$$Y = \{n < \omega \colon \eta_n^* \notin \{\eta_m^* \colon m < n\}\}.$$

Then for $n, m \in Y$ we have $\eta_n^* \neq \eta_m^*$ whenever $n \neq m$.

In the sequel we shall need the following:

CLAIM. If $\langle \eta_n : n < \omega \rangle \subseteq {}^{\omega}2$ is a sequence of distinct ω -branches of a tree $T \subseteq {}^{\omega>}2$ there exists an increasing sequence $\langle e_n : n < \omega \rangle \subseteq \omega$ such that for all $n < m < \omega$ we have

(*)
$$\{\eta_n \upharpoonright l : e_n < l < \omega\} \cap \{\eta_m \upharpoonright l : e_m < l < \omega\} = \emptyset.$$

To prove the claim observe that $\eta_n \upharpoonright l \neq \eta_m \upharpoonright l$ and k > l implies $\eta_n \upharpoonright k \neq \eta_m \upharpoonright k$. Now assume that e_0, \ldots, e_n are defined so that the condition (*) holds true. Since $\eta_{n+1} \notin \{\eta_0, \ldots, \eta_n\}$ there exists $k < \omega$ such that $\eta_0 \upharpoonright k, \ldots, \eta_n \upharpoonright k, \eta_{n+1} \upharpoonright k$ are pairwise different. We can assume that $k > e_n$ and e_{n+1} to be the first such k. This completes the proof of the claim.

Now using the claim we can choose an increasing sequence $\langle e_n : n < \omega \rangle \subseteq \omega$ in such a way that, letting

$$C_n = \{\eta_n^* \mid l \colon e_n \leq l < \omega\},\$$

the sequence $\langle C_n : n \in Y \rangle$ consists of pairwise disjoint sets, and so that we have

$$\eta_n^* = \eta_m^* \Leftrightarrow e_n = e_m \Leftrightarrow C_n = C_m$$

Finally, for $\eta \in {}^{\omega}2$ we define

$$u(\eta) = \{ n \in Y : (\exists l < \omega)(\eta \upharpoonright l = \eta_n^* \upharpoonright l \land (\forall m < n)(\eta \upharpoonright l \neq \eta_m^* \upharpoonright l)) \},\$$

 $n_k(\eta)$ = the *k*-th member of $u(\eta)$,

$$m_k(\eta) = \min\{m < \omega : e_{n_k(\eta)} < m \land \eta \upharpoonright (m+1) \not \leq \eta^*_{n_k(\eta)}\},\$$

i.e., $m_k(\eta)$ is the smallest $m > e_{n_k(\eta)}$ such that $\eta \upharpoonright (m+1) \neq \eta^*_{n_k(\eta)} \upharpoonright (m+1)$. By definition of $m_k(\eta)$, we have $e_{n_k(\eta)} < m_k(\eta)$. Clearly we also have:

(i) $u(\eta)$ is well-defined,

(ii) $n_k(\eta)$ is well–defined if $k < |u(\eta)|$,

(iii) $m_k(\eta)$ is well–defined if $k < |u(\eta)|$ and $\eta \neq \eta_{n_k}^*$.

Now we can define a function $\tau : {}^{\omega}2 \setminus \{\eta_n^* : n < \omega\} \to {}^{\omega \geq}2$ by the formula:

 $\tau(\eta) = f_{n_0(\eta)}(m_0(\eta))^{-} f_{n_1(\eta)}(m_1(\eta))^{-} \cdots,$

where, for $n < \omega$, f_n is the function from the condition (3). From the formula it follows easily that $\tau(\eta) \in {}^{\omega \geq 2}$ and it is well defined if $\eta \notin \{\eta_n^* : n < \omega\}$ and moreover $\tau(\eta)$ is infinite whenever $u(\eta)$ is infinite, as $\langle \rangle \notin \text{Range } (f_n)$.

To complete the proof of the theorem it remains to show:

FACT 11. $\Vdash_{\mathbb{P}}$ " $\tau(\underline{r})$ is Cohen over V".

PROOF. To prove this fact we fix an open dense set $I \subseteq {}^{\omega>2} 2$ and a $p \in \mathbb{P}$ and we show that there is a $q \in \mathbb{P}$ with $p \leq q$ such that $q \Vdash_{\mathbb{P}} "\tau(\underline{r}) \in [I]$ ", where [I] is the name of $\{\eta \in {}^{\omega}2 : t \leq \eta \text{ for some } t \in I\}$ in the generic extension. Let $n < \omega$ be such that $p \in A_n$ and let $n^{\otimes} = \min\{m < \omega : \eta_m^* = \eta_n^*\}$. Clearly $n^{\otimes} \leq n$ and $n^{\otimes} \in Y$. Then $u(\eta_n^*)$ is well defined and $n^{\otimes} \in u(\eta_n^*)$; in fact n^{\otimes} is the last member of $u(\eta_n^*)$. Let $k = |u(\eta_n^*)| - 1$, so $n_k(\eta_n^*) = n^{\otimes}$. Also $m_i(\eta_n^*)$ is well defined and finite for i < k. Then we set

$$w^{\otimes} = f_{n_0(\eta_n^*)}(m_0(\eta_n^*))^{\frown} \cdots ^{\frown} f_{n_{k-1}(\eta_n^*)}(m_{k-1}(\eta_n^*)),$$

so if k = 0, i.e., if $u(\eta_n^*)$ is a singleton, then v^{\otimes} is the empty sequence.

Clearly $v^{\otimes} \in {}^{\omega>2}$. Also we have $p \not\Vdash_{\mathbb{P}} "\underline{r} \upharpoonright (e_n + 1) \not\preceq \eta_n^*$. Hence $p \not\Vdash_{\mathbb{P}} "\neg \varphi"$, where φ is the formula asserting $u(\eta_n^*)$ is an initial segment of $u(\underline{r})$. Note that φ implies $(\forall i < k)(n_i(\underline{r}) = n_i(\eta_n^*)) \land m_i(\underline{r}) = m_i(\eta_n^*)$. Since $p \not\Vdash_{\mathbb{P}} "\underline{r} \neq \eta_n^*$, it follows that $p \not\Vdash_{\mathbb{P}} "\varphi \to m_k(\underline{r})$ is well-defined". Let $Z = \{\varrho \in {}^{\omega>2} : p \not \Vdash_{\mathbb{P}}$ $"\neg(\varphi \land f_{n_k(r)}(m_k(\underline{r})) = \varrho)"\}.$

It is enough to show that Z is a somewhere dense subset of ${}^{\omega>2}$. [Suppose that Z is a somewhere dense subset of ${}^{\omega>2}$. Then there is $\varrho_0 \in {}^{\omega>2}$ such that for any $v \in {}^{\omega>2}$ there is $\varrho \in Z$ with $\varrho_0 \mathcal{V} \trianglelefteq \varrho$. Let $\tilde{\varrho}_0 = v {}^{\otimes} \mathcal{Q}_0$ and let $v \in {}^{\omega>2}$ be such that $\tilde{\varrho}_0 \mathcal{V} \in I$. Then there is $\varrho \in Z$ such that $\tilde{\varrho}_0 \mathcal{V} \trianglelefteq \varrho$. Let $q \ge p$ be such that $q \Vdash_{\mathbb{P}} "\varphi \wedge f_{n_k}(\underline{r}) = \varrho$ ". Then $q \Vdash_{\mathbb{P}} "\tilde{\varrho}_0 \mathcal{V} \trianglelefteq \tau(\underline{r})$ ". And hence we can conclude that $q \Vdash_{\mathbb{P}} "\tau(\underline{r}) \in [I]$ ".]

Now, we have $p \not\Vdash_{\mathbb{P}} ``\neg (n_k(\underline{r}) = n^{\otimes} \lor \neg \varphi)$ ''. Hence

$$Z = \{ \varrho \in {}^{\omega >} 2 : p \not\Vdash_{\mathbb{P}} ``\neg (f_{n \otimes}(m_k(\underline{r})) = \varrho \land \varphi) "\}.$$

Thus, by the choice of $f_{n\otimes}$, it is enough to prove:

 $B_0 = \{m < \omega : p \not\Vdash_{\mathbb{P}} ``m_k(\underline{r}) \neq m \lor \neg \varphi"\} \in \mathscr{D}_{n^{\otimes}}.$

[Suppose that $B_0 \in \mathscr{D}_{n\otimes}$. Then, by (3), there is $\rho \in {}^{\omega>2}$ such that $(\forall \nu \in {}^{\omega>2})(\exists k \in B_0)(\rho \nu \leq f_{n\otimes}(k))$.]

We have $\mathscr{D}_{n^{\otimes}} = \mathscr{D}_n$. Hence it is enough to show $B_0 \in \mathscr{D}_n$. By definition of $m_k(\underline{\underline{r}})$ and since $\varphi \to n_k(\underline{r}) = n^{\otimes}$, this is equivalent to:

 $\{m<\omega: p \not\Vdash_{\mathbb{P}} ``\underline{r} \upharpoonright m \neq \eta_{n^{\otimes}}^* \upharpoonright m \vee \underline{\underline{r}}(m+1) = \eta_{n^{\otimes}}^*(m+1) \vee \neg \varphi"\} \in \mathscr{D}_n.$

But $\eta_{n^{\otimes}}^* = \eta_n^*$ and $p \in A_n$. Hence, by definition of \mathscr{D}_n^0 , the set above does belong to $\mathscr{D}_n^0 \subseteq \mathscr{D}_n$. \dashv

Finally we prove that the converse to Theorem 2 is also true, i.e., we shall show that whenever there exists a nowhere dense ultrafilter there exists a σ -centered forcing \mathbb{P} with the property that above each element there are two incompatible ones and moreover \mathbb{P} does not add a Cohen real. To prove this fact we shall use some topological methods, but we can also write it using forcing.

Recall that a subalgebra \mathbb{B} of a Boolean algebra \mathbb{A} is *regular* whenever $\sup_{\mathbb{A}} X = 1$ for every $X \subseteq \mathbb{B}$ such that $\sup_{\mathbb{B}} X = 1$. The subalgebra \mathbb{B} is regular iff the corresponding map of the Stone spaces is semi-open, i.e., the image of every non-empty clopen set has non-empty interior. Using nowhere dense ultrafilters we construct a dense in itself, separable, extremally disconnected compact space (=Stone space of an atomless, σ -centered, complete Boolean algebra) which has no semi-open continuous maps onto the Cantor set.

We use a topology on the set ${}^{\omega>}\omega = \bigcup \{{}^{n}\omega : n < \omega\}$. If $s \in {}^{\omega>}\omega$ is a sequence of length n and $k \in \omega$, then $s \cap k$ denotes the sequence of length n + 1 extending s in such a way that the *n*-th term is k. For a set $A \subseteq \omega$ we set $s \cap A = \{s \cap k : k \in A\}$. For a given ultrafilter $p \subseteq \mathscr{P}(\omega)$ we consider a topology \mathscr{T}_p on ${}^{\omega>}\omega$ given by the formula:

 $U \in \mathcal{T}_p$ iff for every $s \in U$ there exists $A \in p$ such that $s \cap A \subseteq U$.

The set ${}^{\omega>}\omega$ equipped with the topology \mathscr{T}_p we denote G_p . The space G_p is known to be Hausdorff and extremally disconnected; see e.g., Dow, Gubbi and Szymanski, ([4]). Hence the Čech-Stone extension βG_p is extremally disconnected, compact, separable, and dense in itself.

Under a much stronger assumption that there exists a P-point the next theorem was proved by A. Blass [3].

THEOREM 12. If there exists a nowhere dense ultrafilter then there exists a σ -centered forcing \mathbb{P} such that above every element of \mathbb{P} there are two incompatible ones and \mathbb{P} does not add any Cohen real.

PROOF. By virtue of a theorem of Silver, it is enough to show that there exists a σ -centered, complete, atomless Boolean algebra \mathbb{B} such that \mathbb{B} does not contain any regular free subalgebra. For this goal we shall use the topological space G_p described above. It remains to show that whenever p is a nowhere dense ultrafilter and $f: \beta G_p \to {}^{\omega}\{0, 1\}$ is continuous, then there exists a non-empty clopen set $H \subseteq \beta G_p$ such that int $f(H) = \emptyset$.

First of all we notice that since p is a nowhere dense ultrafilter, for every $s \in {}^{\omega >}\omega$ there exists $A_s \in p$ such that

(4)
$$\operatorname{int} \operatorname{cl} f(s^{\frown}A_s) = \emptyset.$$

In the sequel L_n will denote the set of all sequences of length n, i.e., L_n is the *n*-th level of the tree $\omega > \omega$. In particular, $L_0 = \{s_0\}$ is the empty sequence. By induction we define a sequence of sets $\{U_n : n < \omega\}$ such that $U_n \subseteq L_n$ for every $n < \omega$ and, moreover

(5)
$$\operatorname{int} \operatorname{cl} f(U_n) = \emptyset,$$

798

(6) for every
$$s \in U_n$$
 there exists $A \in p$ such that $s \cap A \subseteq U_{n+1}$.

We set $U_0 = \{s_0\}$ and $U_1 = s_0 \cap A_{s_0}$. Assume U_n is defined, say $U_n = \{s_k : k < \omega\}$. Then by continuity of f and the condition (4) we can choose $A_k \in p$ in such a way that int cl $f(s_k \cap A_k) = \emptyset$ and moreover, the diameter of cl $f(s_k \cap A_k)$ is not greater than $\frac{1}{k}$. Clearly, s_k is an accumulation point of $s_k \cap A_k$, because $A_k \in p$. Hence, for every $k < \omega$ we get

$$\operatorname{cl} f(s_k \cap A_k) \cap \operatorname{cl} f(U_n) \neq \emptyset.$$

Therefore, since diameters of the sets cl $f(s_k \cap A_k)$ tend to zero, the set of accumulation points of the set $\bigcup \{ cl f(s_k \cap A_k) : k < \omega \}$ is contained in cl $f(U_n)$. Indeed, every ε -neighborhood of the set cl $f(U_n)$ has to contain all but finitely many sets of the form cl $f(s_k \cap A_k)$. So the set cl $f(U_n) \cup \bigcup \{ cl f(s_k \cap A_k) : k < \omega \}$ is closed. It is also nowhere dense as it is a countable union of nowhere dense sets and is closed. Now we set

$$U_{n+1} = \bigcup \{s_k \ \widehat{A}_k \colon k < \omega\}$$

and observe that

$$\operatorname{cl} f(U_{n+1}) \subseteq \operatorname{cl} f(U_n) \cup \bigcup \{\operatorname{cl} f(s_k \, {}^{\frown} A_k) \colon k < \omega \}.$$

Thus the set $f(U_{n+1})$ is nowhere dense, which completes the construction of U_n 's. By the condition (5), there exists a dense set

$$\{x_n: n < \omega\} \subseteq {}^{\omega}\{0,1\} \setminus \bigcup \{\operatorname{cl} f(U_n): n < \omega\}.$$

In particular, for every $n, k < \omega$ we have $f^{-1}(\{x_n\}) \cap \operatorname{cl} U_k = \emptyset$, where "cl" denotes here the closure in βG_p . Now, for every $n < \omega$ we choose a clopen set $V_n \subseteq \beta G_p$ such that

(7)
$$f^{-1}(\{x_n\}) \subseteq V_n \subseteq \beta G_p \setminus \operatorname{cl}(U_0 \cup \cdots \cup U_n).$$

By induction we construct a sequence $\{W_n : n < \omega\}$ such that the following conditions hold:

(8)
$$W_n \subseteq U_n \text{ for } n < \omega \text{ and } W_0 = U_0$$

for every $s \in W_n$ there exists $B_s \in p$ such that

(9)
$$s \cap B_s \subseteq U_{n+1} \setminus (V_0 \cup \cdots \cup V_n),$$

(10)
$$W_{n+1} = \bigcup \{s \ ^{B_s} : s \in W_n\}$$

Assume the sets W_0, \ldots, W_n are defined in such a way that (8), (9) and (10) are satisfied. Then we have in particular

 $W_n \subseteq U_n \setminus (V_0 \cup \cdots \cup V_{n-1});$

by the condition (7) we also have

$$U_n \subseteq \beta G_p \setminus V_n.$$

Hence we get $W_n \subseteq \bigcup_{n=0}^{\infty} U_n \setminus (V_0 \cup \cdots \cup V_n)$. Since the set $\bigcup_{n=0}^{\infty} U_n \setminus (V_0 \cup \cdots \cup V_n)$ is open, for every $s \in W_n$ we can choose $B_s \in p$ such that $s \cap B_s \subseteq U_{n+1} \setminus (V_0 \cup \cdots \cup V_n)$. Then it is enough to set $W_{n+1} = \bigcup \{s \cap B_s : s \in W_n\}$.

Clearly the set $W = \bigcup \{ W_n : n < \omega \}$ is open in G_p and $W \cap V_n = \emptyset$ for every $n < \omega$. Indeed, if m > n, then $W_m \cap V_n = \emptyset$ by the conditions (9) and (10), whereas

800

for $m \leq n$, $W_m \cap V_n = \emptyset$ because $W_m \subseteq U_m$ and $U_m \cap V_n = \emptyset$ by the condition (7). Since V_n is a clopen set in βG_p we also have

$$\operatorname{cl} W \cap V_n = \emptyset$$

for every $n < \omega$. Since βG_p is extremally disconnected, cl W is clopen subset of βG_p and, by the last equality and condition (7) we get

$$f(\operatorname{cl} W) \cap \{x_n \colon n < \omega\} = \emptyset.$$

Therefore $f(\operatorname{cl} W)$ is nowhere dense, because $\{x_n : n < \omega\}$ is dense in ${}^{\omega}\{0,1\}$, which completes the proof.

Acknowledgements. The authors are very indebted to the referee and Heike Mildeberger for simplifying the proof of Theorem 2 as well as for information that Jörg Brendle obtained similar result independently.

REFERENCES

[1] B. BALCAR and F. FRANEK, Independent families in complete boolean algebras, Transactions of the American Mathematical Society, vol. 274 (1982), pp. 607–618.

[2] J. BAUMGARTNER, Ultrafilters on ω , this JOURNAL, vol. 60 (1995), pp. 624–639.

[3] A. BLASS, Selective ultrafilters and homogeneity, Annals of Pure and Applied Logic, vol. 38 (1988), pp. 215–255.

[4] A. DOW, A. V. GUBBI, and A. SZYMANSKI, Rigid Stone spaces within ZFC, Proceedings of the American Mathematical Society, vol. 102, 1988, pp. 745–748.

[5] M. GITIK and S. SHELAH, More of simple forcing notions and forcing with ideals, Annals of Pure and Applied Logic, vol. 59 (1993), pp. 219–238.

[6] L. HEINDORF and L. B. SHAPIRO, *Nearly projective Boolean algebras*, Lecture Notes in Mathematics, vol. 1596, Springer-Verlag, 1994.

[7] S. SHELAH, *There may be no nowhere dense ultrafilter*, *Proceedings of the Logic Colloquium Haifa'95*, Lecture Notes in Mathematical Logic, vol. 11, Springer-Verlag, 1998, pp. 305–325.

INSTITUTE OF MATHEMATICS SILESIAN UNIVERSITY BANKOWA 14, 40-007 KATOWICE, POLAND *E-mail*: ablasz.cz@ux2.math.us.edu.ps

DEPARTMENT OF MATHEMATICS HEBREW UNIVERSITY GIVAT RAM, 91904 JERUSALEM, ISRAEL

and

DEPARTMENT OF MATHEMATICS RUTGERS UNIVERSITY NEW BRUNSWICK, NJ 08903, USA *E-mail*: shelah@math.huji.ac.il