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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 66, Number 2, June 2001 

REGULAR SUBALGEBRAS OF COMPLETE BOOLEAN ALGEBRAS 

ALEKSANDER BLASZCZYK AND SAHARON SHELAHt 

Abstract. It is proved that the following conditions are equivalent: 

(a) there exists a complete, atomless, a-centered Boolean algebra, which does not contain any regular, 

atomless, countable subalgebra, 
(b) there exists a nowhere dense ultrafilter on co. 

Therefore, the existence of such algebras is undecidable in ZFC. In "forcing language" condition (a) says 

that there exists a non-trivial a-centered forcing not adding Cohen reals. 

A subalgebra B of a Boolean algebra A is called regular whenever for every X C B, 
super X = 1 implies SUPA X= 1; see e.g., Heindorf and Shapiro [6]. Clearly, every 
dense subalgebra is regular. Although every complete Boolean algebra contains 
a free Boolean algebra of the same size (see the Balcar-Franek Theorem [1]), not 
always such an embedding is regular. For instance, if B is a measure algebra, then 
it contains a free subalgebra of the same cardinality as B, but B cannot contain any 
infinite free Boolean algebra as a regular subalgebra. Indeed, measure algebras are 
weakly a-distributive but free Boolean algebras are not, and a regular subalgebra of 
a weakly a-distributive one is again weakly a-distributive. Thus B does not contain 
any free Boolean algebra. On the other hand, measure algebras are not u-centered. 
So, a natural question arises whether there exists a u-centered, complete, atomless 
Boolean algebra B without regular free subalgebras. Since countable atomless 
Boolean algebras are free and every free Boolean algebra contains a countable 
regular free subalgebra, it is enough to ask whether B contains a countable atomless 
regular subalgebra. In the paper we prove that such an algebra exists if there exists 
a nowhere dense ultrafilter. 

DEFINITION 1 (Baumgartner [2]). A filter D on co is called nowhere dense if for 
every function f from co to the Cantor set O' 2 there exists a set A E D such that 
f (A) is nowhere dense in O'2. 

In the sequel we will rather interested in nowhere dense ultrafilters. Observe that 
every P-ultrafilter (i.e., every P-point in co*) is a nowhere dense ultrafilter. 

THEOREM 1. There exists an atomless, complete, u-centered Boolean algebra with- 
out any countable atomless regular subalgebras iff there exists a nowhere dense ultra- 
filter. 
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REGULAR SUBALGEBRAS OF COMPLETE BOOLEAN ALGEBRAS 793 

By a recent result of Saharon Shelah [7] there exists a model of ZFC in which 
there are no nowhere dense ultrafilters. So it is consistent with ZFC that there are 
no atomless, complete, a-centered Boolean algebras without any countable regular 
subalgebras. 

In the first part of the paper, forcing methods are used to show that nowhere 
dense ultrafilters exist whenever there exists a a-centered forcing P such that above 
every element of P there are two incompatible ones and P does not add any Cohen 
real. The forcing constructed here uses some ideas from Gitik and Shelah [5]. They 
have shown that if P is a a-centered forcing notion, {An: n < co} are subsets of P 
witnessing this, and both P and An's are Borel, then P adds a Cohen real. On the 
other hand it is known that a forcing P adds a Cohen real iff the complete Boolean 
algebra B = RO(P)) contains an element u such that the reduced Boolean algebra 
Blu has a regular infinite free Boolean subalgebra. Thus, to prove the Theorem 1 
we need to show in particular the following: 

THEOREM 2. If there exists a u-centered forcing P such that above every element of 
P there are two incompatible ones and P does not add any Cohen real then there exists 
a nowhere dense ultrafilter on co. 

We shall proceed with the proof by some definitions and a lemma. 

DEFINITION 2. (a) A forcing P is called a-centered if P = U{An: n < co} where 
each An is directed, i.e., for every p, q E An there exists r E An such that p < r and 
q ? r. 

(b) A forcing P adds a Cohen real if there exists a P-name r Ead 2 such that for 
every open dense set 9 c 1 2 we have I[-p "r E 9* where 9* denotes the encoding 
of 9 in the Boolean universe. 

REMARKS. (a) The order of forcing in this notation is inverse of the one in the 
Boolean algebra. 

(b) We can just assume that there is a member p of P such that if q is above p 
then there are ri and r2 above q which are incompatible in P. 

DEFINITION 3. A set X C O'>2 is somewhere dense if there exists an C E O'~'2 such 
that for every v E w>2 there is p E X with Rev < Q, where rev stands for the 
concatenation of q and v and the relation < means that p is an extension of the 
sequence Rev. 

LEMMA 3. A filter D on co is not nowhere dense iff it is a so-called well behaved 
filter, i.e., there is a function f: co -* '2 such that for every B E D the range of f 
restricted to B is somewhere-dense. 

PROOF. Suppose f: co - 02 be such that for every B E D the image of B is not 
nowhere dense. Without loss of generality we can assume that the range of f is 
dense in itself. Since every closed and dense in itself subset of the Cantor cube 0'2 
is homeomorphic to the whole 0'2 we can assume also that the range of f is dense 
in w2. Moreover, since it is countable it can be identified with a subset of the set 
W>2 of all rational points of the Cantor set. Thus without loss of generality we can 
assume that f maps co into ('>2. On the other hand a set X C O'>2 is nowhere 
dense whenever for every q E '>2 there exists some v E '>2 such that the set of all 
sequences extending Rev is disjoint from X. Therefore, since the image of B under 
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794 ALEKSANDER BLASZCZYK AND SAHARON SHELAH 

f is not nowhere dense in O'>2, it can be identified with a somewhere dense subset 
of w'2. This in fact completes the proof of the lemma. -] 

REMARK. If D is a filter on co and 9(co)/D is infinite then D is not nowhere 
dense. Indeed, if (An: n < co) is a partition of co such that co \ An V D for all n < co 
and (en: n < co) list the set w'2 then the map f: co -* ''2 defined by the formula 

f(e)=en iff eEAn 

witness "D is well behaved". 

PROOF OF THEOREM 2. Assume that there are no nowhere dense ultrafilters. Fur- 
ther assume that P is a forcing in which above each element there are two incom- 
patible ones and P = U{An: n < co} where each An is directed. We start with the 
following known fact which we prove here for the sake of completeness: -] 

FACT 4. Every forcing Q with Knaster condition such that above every element 
of Q there are two incompatible ones, adds a real. 

In fact, by assumption, forcing with Q adds a new subset to Q, hence a new subset 
to some ordinal. In the set 

(ap, ~1): p E Q, a anordinalandT 

a Q - name of a subset of a such that p IF "c , V"} 

we choose (a, p, j) with a being minimal. So necessarily a is a cardinal and 

p IF "the tree (a>2, <) has a new a-branch in Ve" 

So, as Q satisfies the Knaster condition (which follows from a-centered), neces- 
sarily cf(a) = to and letting a aU< , an, where an < an+1 for some countable 
w C ce>2 we get 

p I[F "(Vn < co)(T an E W) 

so p IF "we add a new subset to w, Iw = to". 
We have shown that I = {p E Q: p IF- "r E 0'2 is new " for some Q - name r} is 

a dense subset of Q. So let {Pi: i < co} C I be a maximal antichain and let r be 
such that pi IF " r is new ". By density of I we can define the Q-name r as follows: 
r = r if pi E GQ. This completes the proof of Fact 4. 

Now we fix a P-name of a new real r E 0'2 added by P. For every p E P we set 

Tp = {q E '>2: -'(p -F ("a < _"))},i.e., q E Tp iff there exists q E P such that 
p < q and q HF "q = r [ lg q ", where lg q denotes the length of the sequence a. 

FACT 5. For every p E P, Tp is a subtree of 0>2, i.e C < v and v E Tp implies 
E Tp and () E Tp, where () denotes the empty sequence. 

Indeed, if q <I v and v = lg v, then q _ = lg a. 

FACT 6. The tree Tp has no maximal elements. 
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REGULAR SUBALGEBRAS OF COMPLETE BOOLEAN ALGEBRAS 795 

To prove the Fact 6 we fix q E T.. Then there is q E P such that p < q and 

q IF 44r Igq= q". 

Let k = lg(q), so I {r E P: r forces a value to r [ (k + 1)} is a dense and open 
subset of P, hence there is q' E P such that q ? q' and q' forces a value to r [ (k + 1), 
say W. So q' also forces r [ k = V 9 k, but q < q' and q IF "r k = hencet9 
k =f'. As q' witnesses 9 E Tp and 9 E k+12 and q E k2 q <1W this completes the 
proof of Fact 6. 

FACT 7. The set lim Tp of all co-branches through Tp is closed, i.e., if C E W2 \ 
lim Tp then there exists v E O'>2 such that v < q and the set of all co-branches 
extending v is disjoint from lim Tp. 

Indeed, if q E W2 \ lim Tp then there exists n E co such that n < m < co implies 
q [ m V Tp. By Fact 5 it is clear that every co-branch extending v = q [ n does not 
belong to Tp, which proves the Fact 7. 

Now let us observe that the family {Tp: p E An} is directed under inclusion, 
i.e., if p, q E An and r E P is such that p < r and q r then Tr C Tp n Tq. Indeed, 
if q E '>2 and there exists s ? r such that s IF "i r [ lg q" then of course s ? p 
and s ? q and thus q belongs to Tp and Tq. 

So by compactness of W2 and Facts 5-7 we get the following: 

FACT 8. The set Tn = {T: p E An} is a subtree of '>2 and the set of co- 
branches of Tn is non-empty 

Now we make a choice: 

(1) in* is an co - branch of Tn. 

Subsequently for every n < co and every p E An we define 

Bn = {k < co: (3q E P)(p ? q A q IF "_r k = q* [ k & _(k) 7& q*(k)5)1 

We have the following: 

FACT 9. For every n < cw and every p E An the set Bpn is infinite. 

Indeed, since p E An and Tn is a subtree of Tp, q* is an co-branch of Tp. Let us 
fix m < co. Then, by the definition of Tp, there exists r E P such that r ? p and 

rIF "q* m = r im". 

On the other hand 
[Fp "r 7& qn 

because r is a new real. Thus for some q E JI, q ? r and k < co we get 

q - 44"r ,k * k". 

We can assume that k is minimal with such a property. Since r ? q, it must be 
k > m. But q ? p and thus, by minimality of k, we have k - 1 E B, which proves 
the Fact 9. 

Now we establish for every n < co the following definition: 

gn? = {B C co: (3p E An)(JB n \ BI < co)}. 

FACT 10. For every n < co, 2n' is a filter. 
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796 ALEKSANDER BLASZCZYK AND SAHARON SHELAH 

Indeed, let B1, B2 E 90. Then there exist P1, P2 E A, 
such that both B \ Bn 

and B 2 \ B2 are finite. Since An is directed we can choose r E An such that P1 < r 
and P2 < r. On the other hand, from the definition of Bn it easily follows that 

p < q implies B n C Bn. 

Thus Bn C B n n B2 and therefore 

B n \ (B1 n B2) c (B nl Bi) U (B n2 \ B2) 

is finite. Clearly, every superset of an element of Ono also belongs to On2 and, by the 
Fact 9, On2 does not contain the empty set, which completes the proof of Fact 10. 

Now by Fact 9 and Fact 10, we can make the following choice: for n < co 

(2) On is a non-principal ultrafilter containing 9no 

By our hypothesis the ultrafilters On are not nowhere dense and so by Lemma 3 
for every n < co we can choose a function fn: co - '0>2 such that 

(3) (VB E On) (3u E 60>2) (Vv E 60"2) (3k B) (u-v _< f n(k)). 

Without loss of generality we may assume that the empty sequence does not 
belong to the range of f n 

Now we have to come back to the sequence {i*: n < co} of co-branches of the 
trees Tn. Since it can happen that the sequence is not one-to-one we consider the 
set 

Y {n < co: n* V {tq: m < n}}. 

Then for n, m E Y we have in* 7& q* whenever n m. 
In the sequel we shall need the following: 

CLAIM. If (qn: n < co) C '2 is a sequence of distinct co-branches of a tree 
T C C'>2 there exists an increasing sequence (en: n < co) C co such that for all 
n < m < co we have 

(*) {7n 1: en < I < c}o n {7m [1: em < I< co} 0. 

To prove the claim observe that qn , 1 7& qm , 1 and k > 1 implies qn , k ,& qm [ k. 
Now assume that eo, . . ., en are defined so that the condition (*) holds true. Since 

q/n+l O { o.--, n} there exists k < co such that 0o [ k, , n [ kqn+l [ k are 
pairwise different. We can assume that k > en and en+? to be the first such k. This 
completes the proof of the claim. 

Now using the claim we can choose an increasing sequence (en: n < co) C co in 
such a way that, letting 

Cn = {in F1: en < 1< CO}, 

the sequence (Cn: n E Y) consists of pairwise disjoint sets, and so that we have 

- tm en = em X Cn = Cm. 

Finally, for q E W2 we define 

u(q) = {n E Y: (31 < co)(q [ 1 = q*n [ 1 A (Vm < n)(q [ 1 74~ qm [ 1))}, 

nk(il) the k-th member of u(q), 

mk(1) = min{m < co : efl(q) < m A q [ (m + 1) A* k(7)}, 
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REGULAR SUBALGEBRAS OF COMPLETE BOOLEAN ALGEBRAS 797 

i.e., mk( ) is the smallest m > enf(q) such that q [ (m + 1) 74 q* (7) [ (m + 1). By 
definition of mk W, we have enk(q) < Mk(q). Clearly we also have: 

(i) u(q) is well-defined, 
(ii) nk (/) is well-defined if k < I u (q) 
(iii) mk( ) is well-defined if k < uu(q) I and q #nk . 

Now we can define a function -c: 62 \ {n* n < co} 0* >2 by the formula: 

(C W = fno (,) (MO W1) fn, (,) (m I 1)) 
- 

where, for n < cw, fn is the function from the condition (3). From the formula 
it follows easily that -(q) E 0`2 and it is well defined if q 0 {qn : n < co} and 
moreover - (q) is infinite whenever u (q) is infinite, as () 0 Range (f n). 

To complete the proof of the theorem it remains to show: 

FACT 11. Ip "T(r) is Cohen over V". 

PROOF. To prove this fact we fix an open dense set I C 0>2 and a p E P and we 
show that there is a q E P1 with p < q such that q Ip -4Tc(r) E [I]", where [I] is 
the name of {a E '2 : t < q for some t E I} in the generic extension. Let n < co 

be such that p E An and let no = min{m < co : Cm = n*}. Clearly n0 < n and 
e Y. Then u(q*) is well defined and n0 E u(q *); in fact n0 is the last member 

of u(q*). Let k = |u(n*)l - 1, sO nk(n* ) nX. Also mi(q*) is well defined and 
finite for i < k. Then we set 

v f=0no(*)(mo(qn*)) -" nkf(fl) (mk-1(tn*)), 

so if k = 0, i.e., if u (qn) is a singleton, then v0 is the empty sequence. 
Clearly v0 E 0>2. Also we have p IV "r [ (en + 1) P is". Hence p IV "- o", 

where so is the formula asserting u(q*) is an initial segment of u(r). Note that 
,o implies (Vi < k)(ni(r) ni(7*)) A m1(L) = mj(7*). Since p 1[p "4r 7 
it follows that p H-p "so mk(r) is well-defined". Let Z ={ E '>2 : p Ip 

"-(so A fnkr (mk( )) = -) 

It is enough to show that Z is a somewhere dense subset of 0>2. [Suppose that 
Z is a somewhere dense subset of '>2. Then there is Qo E 0>2 such that for any 
v E 0>2 there is p E Z with Qo-V < Q. Let So = v0-Qo and let v E '>2 be such 
that jo^V E I. Then there is p E Z such that jo^v <I . Let q > p be such that 
q Vp "so A fnk (r) a". Then q I-p "jo v <? T(r)". And hence we can conclude that 

q VP W(_ E [I] 1.] 

Now, we have p Ip "-(nk(r) = n0 V -'s)". Hence 

Z = {p E `2 : p IV? "-Y(fno(mk(r)) = A o)"}. 

Thus, by the choice of f nX, it is enough to prove: 

Bo = {m <co : p IVP "Mk(r) 7& m V -'so"} E Ono 

[Suppose that Bo E Ono. Then, by (3), there ise E e'>2 such that (Vv E c>2)(3k E 
Bo) (p 6v< f nX (k)). ] 

We have Ono = On. Hence it is enough to show Bo eE On. By definition of mk (_) 
and since so - nk (r) = no, this is equivalent to: 

{m <co : p IV "r ,m #7/ n m V r(m + 1) =/*@ (m + 1) V go"} E 
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798 ALEKSANDER BLASZCZYK AND SAHARON SHELAH 

But Ink = qn and p E A,. 
Hence, by definition of 9, the set above does belong 

to o C anu 

Finally we prove that the converse to Theorem 2 is also true, i.e., we shall show 
that whenever there exists a nowhere dense ultrafilter there exists a a-centered 
forcing P with the property that above each element there are two incompatible 
ones and moreover P does not add a Cohen real. To prove this fact we shall use 
some topological methods, but we can also write it using forcing. 

Recall that a subalgebra B of a Boolean algebra A is regular whenever supA X = 1 
for every X C IB such that supra X = 1. The subalgebra B is regular if the corre- 
sponding map of the Stone spaces is semi-open, i.e., the image of every non-empty 
clopen set has non-empty interior. Using nowhere dense ultrafilters we construct 
a dense in itself, separable, extremally disconnected compact space (=Stone space 
of an atomless, a-centered, complete Boolean algebra) which has no semi-open 
continuous maps onto the Cantor set. 

We use a topology on the set >Wco = U{'w: n < co}. If s E '>wco is a sequence of 
length n and k E co, then sik denotes the sequence of length n + 1 extending s in 
such a way that the n-th term is k. For a set A C co we set s-A = {sk: k E A}. 
For a given ultrafilter p C 9(co) we consider a topology 6'p on '@'co given by the 
formula: 

U E 7p if for every s E U there exists A E p such that spA C U 

The set '@'co equipped with the topology 5p we denote Gp. The space Gp is known 
to be Hausdorff and extremally disconnected; see e.g., Dow, Gubbi and Szymanski, 
([4]). Hence the Cech-Stone extension /3Gp is extremally disconnected, compact, 
separable, and dense in itself. 

Under a much stronger assumption that there exists a P-point the next theorem 
was proved by A. Blass [3]. 

THEOREM 12. If there exists a nowhere dense ultrafilter then there exists a u- 
centered forcing P such that above every element of P there are two incompatible 
ones and P does not add any Cohen real. 

PROOF. By virtue of a theorem of Silver, it is enough to show that there exists 
a u-centered, complete, atomless Boolean algebra B such that B does not contain 
any regular free subalgebra. For this goal we shall use the topological space Gp 
described above. It remains to show that whenever p is a nowhere dense ultrafilter 
and f: /3Gp -* {O, 1} is continuous, then there exists a non-empty clopen set 
H C /3Gp such that int f (H) = 0. 

First of all we notice that since p is a nowhere dense ultrafilter, for every s E 'CO 
there exists A, E p such that 

(4) int cl f (se-A,) =0- 

In the sequel Ln will denote the set of all sequences of length n, i.e., Ln is the n-th 
level of the tree '>wco. In particular, Lo {}so is the empty sequence. By induction 
we define a sequence of sets { Un: n < co} such that Un C Ln for every n < co and, 
moreover 

This content downloaded from 195.78.108.147 on Fri, 13 Jun 2014 11:00:42 AM
All use subject to JSTOR Terms and Conditions

Sh:640

http://www.jstor.org/page/info/about/policies/terms.jsp


REGULAR SUBALGEBRAS OF COMPLETE BOOLEAN ALGEBRAS 799 

(6) for every s E U, there exists A E p such that spA C Un+1 

We set Uo {so} and U1 = so -Ao Assume Un is defined, say Un {Sk: k < co}. 
Then by continuity of f and the condition (4) we can choose Ak E p in such a way 
that int cl f (Sk OAk) 0 and moreover, the diameter of cl f (Sk OAk) is not greater 
than k Clearly, Sk is an accumulation point of Sk Yak, because Ak E p. Hence, for 
every k < co we get 

clf (Sk Ak) n cl f(Un) #0. 

Therefore, since diameters of the sets cl f (Sk OAk) tend to zero, the set of accumu- 
lation points of the set U{cl f (Sk YAk): k < co} is contained in cl (Un). Indeed, 
every c-neighborhood of the set cl f( Un) has to contain all but finitely many sets of 
the form cl f (Sk YAk). So the set cl (Un) U U{c f (Sk YAk): k < co} is closed. It 
is also nowhere dense as it is a countable union of nowhere dense sets and is closed. 
Now we set 

Un+1 = U{Sk _Ak: k < co} 

and observe that 

Clf (Un+l) C Clf(Un) U U{clf (sk Ak) k < co}. 

Thus the set f ( U+l?) is nowhere dense, which completes the construction of Un's. 
By the condition (5) , there exists a dense set 

{Xn: n < co} C O{, 1} \ U{clf (Un): n < co}. 

In particular, for every n, k < co we have f -1 ({Xn }) n cl Uk = 0, where "cl" denotes 
here the closure in flGP. Now, for every n < co we choose a clopen set Vn C /3Gp 
such that 

(7) f 1({Xn }) C Vn C flGp \ cl(Uo U .U Un). 

By induction we construct a sequence { Wn4: n < co } such that the following condi- 
tions hold: 

(8) Wn C Un for n < co and Wo = Uo 

for every s E Wn there exists Bs E p such that 

(9) s -uBs C Un+j \ (Vo U .. U Vn), 

(10) Wn+ = U{s-Bs: s E Wn}. 

Assume the sets Wo, . . .W, n are defined in such a way that (8), (9) and (10) are 
satisfied. Then we have in particular 

Wn C Un \ (Vo U * U Vn-1); 

by the condition (7) we also have 

Un C /3Gp \ Vn. 

Hence we get Wn C U??0 Un \ (V0o U .U Vn). Since the set U 00 Un \( V u. U VnV) is 
open, for every s E Wn we can choose Bs E p such that sBs C Un+ 1\( VoU .U V"). 
Then it is enough to set Wn + = U{s -Bs: s E Wn}. 

Clearly the set W = UW n: n < co} is open in Gp and W n Vn 0 for every 
n < co. Indeed, if m > n, then WU n Vn = 0 by the conditions (9) and (10), whereas 
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800 ALEKSANDER BLASZCZYK AND SAHARON SHELAH 

for m ?f n, Wrn 0n = 0 because Wn C Un and Urn Vn = 0 by the condition (7). 
Since Vn is a clopen set in /3Gp we also have 

cl Wn 0 V 0 

for every n < co. Since /3Gp is extremally disconnected, cl W is clopen subset of 
/3Gp and, by the last equality and condition (7) we get 

f(clW)n{xn: n <co} 0. 

Therefore f(cl W) is nowhere dense, because {Xn n < co} is dense in O'{,0 1}, 
which completes the proof. - 

Acknowledgements. The authors are very indebted to the referee and Heike 
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