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FIXED-POINT EXTENSIONS OF FIRST-ORDER LOGIC

Yuri Gurevich™ and Saharon Shelah**

Electrical Engineering and Computer Science Dept.
University of Michigan, Ann Arbor, MI 48109-1109

Abstract. We prove that the three extensions of

first-order logic by means of positive inductions,
monotone inductions, and so-called non-monotone
(in our terminology, inflationary) inductions
respectively, all have the same expressive power
in the case of finite structures. As a by-product,
the collapse of the corresponding fixed-point
hierarchies can be deduced.

$0. Introduction

In 1979 Aho and Ullman [AU] noted that the
relational calculus is unable to express the transi-
tive closure, and suggested extending the relational
calculus by the least fixed point construct. The
relational calculus [Ul] is a standard relational
query language; from the point of view of expres-
sive power, the relational calculus is exactly
first-order logic. Aho and Ullman’s paper triggered
an extensive study of the expressive power of
fixed-point extensions of first-order logic [CH,
Im1, Va, Li, Gu, BGK, etc.] with emphasis on finite
structures.

There are two fields where fixed-point exten-
sion of first-order logic were extensively studied
earlier. One is the theory of inductive definitions
summarized to an extent in the book [Mo]. The
other is semantics of programming languages
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where a fixed-point extension of first-order logic
is known as first-order p-calculus. But neither of
the two fields put finite structures into the center
of attention.

Proviso. Al structures are finite unless the
contrary is said explicitly.

Fixed-point constructions arise in the frame of
first-order logic quite naturally. A formula 9(P.x)
with an r-ary predicate variable P and a sequence x
of r free individual variables yields an operator
F(P)=(x: #(P,x)} that can be applied repetitively.
Additional free variables of ¢ are viewed as para-
meters. If F is monotone then it has a least (with
respect to the inclusion relation) fixed point
LFP(F)=LFPP;xqi(P.x):uF'(B).

E.g. LFPp, , (Edge(x.y) or 3z[P(x2) & Pzy)))

is the transitive closure of Edge, and
LFPp.y (x=u or x=v or 3y3z[P(y) & P(2) & x=(y,2)])

is the closure of set {u,v} unger the operation f.
Unfortunately, the extension of first-order logic
by the construct LFP applicable to formulas ¢ with
a monotone F, is not a nice logic because recogni-
zing well-formed formulas is undecidable [Gu]. But
there is a simply recognizable sufficient condition
for monotonicity. If a first-order 9(P,x) is posi-
tive in P then the operator F(P)={x: P(Px)} is
monotone. Moreover, the definition of positivity
naturally extends to new formulas, and positivity
remains sufficient for monotonicity. The extension
FO+LFP of first-order logic by the constuct LFP,
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applicable to positive formulas, is most popular.

The restriction to positive formulas has its own
price. In many cases it is obvious that a given
formula P(P,x) yields a monotone operator F but it
is not clear how to transform ¢(P,x) to an
equivalent formula 9'(P,x) which is positive in P.
(A first-order 9(P) may yield a monotone operator
and have no first-order equivalent ¢'(P) that is
positive in P [AG].) In order to define a more flex-
ible fixed-point extension of first-order logic, it
is worth to loosen the condition of monotonicity
rather than to tighten it up.

Call an operator F(P)={x: P(P.x)} inductive if the
sequence FY(@) increases. If F is inductive then
uFi(z) is a (not necessarily the least) fixed point
of F that will be called the inductive fixed point
IFP(F)=IFPp. P(P.x) of F. Call F inflationary if
VPIPCF(P)l. Any inflationary F is inductive. The
operator F'(P)=(x: P(x) or §(P,x)} is inflationary,
and if F is monotone then IFP(F')=LFP(F).  This
suggests an extension FO+IFP [Gu, Li] of first-order
logic by the construct IFP applicable to any
formula [P(x) or 9(P,x)] with arity(P)=length(x).

Obvicusly, FO+LFP<FO+IFP by expressive
power, and the monotonicity bound extension lies
in-between. Every FO+IFP query is computable
within time polynomial in the size of a given
structure. In the presence of linear order, every
polynomial time computable relational query is
expressible in FO+LFP [Im, Val; the presence of
order allows to simulate Turing machines. Thus, in
the presence of linear order, FO+LFP and FO+IFP
have the same expressive power. In general, how-
ever, not every polynomial time computable query
is expressible in FO+LFP [CH] or even FO+IFP [BGK].
The general case is important: a query may depend
not on specifics of the given representation but
only on the isomorphism type of the given
structure. We show that even in the general case
FO+LFP and FO+IFP have the same expressive
power. Actually, a stronger result holds.

Theorem ! (Main Theorem). Let I' be an arbi-
trary operator that, given two r-ary relations and
an r-tuple of elements, produces a boolean value.
Then

IFPp,4 IP(x) or T(P, =P.x)] = LFPq, ¥(Q.4)

for some Y which is built from T by first-order
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means and is positive in the predicate variable Q.

It is supposed of course that I'(P,P’x) is posi-
tive in both predicate variables. In applications,
given a formula ¥(P,x), define I'(P,P’,x) as the
result of substituting P’ for the negative occur-
rences of P in ¥. Main Theorem speaks about
arbitrary TI'(P,—P,x) rather than arbitrary ¥(P.,x)
because of the need to distinguish between posi-
tive and negative occurrences of P. Apart from
this, the internal structure of the given formula is
of no importance in constructing the desired .

Corollary 1. FO+LFP, FO+IFP and the monotoni-
city bound extension of first-order logic all have
the same expressive power.

Corollary 2. For every first-order formula
¥(P,x) there is a first-order formula Y(Q,y) such
that ¥(Q,y) is positive in Q and

IFPp. [P(x) or ¥(P.x)] = LFPQ;UW(Q,Q).

The proof of Main Theorem is sketched in §3:
the full proof of Main Theorem will appear in [Gul.

Chendra and Harel {CH] raised the question
about the LFP hierarchy in logic FO+LFP. Immer-
man [Im1] announced that the LFP hierarchy col-
lapses on the first level; he elaborated his solution
in [Im2]. In July 1985, Phokion Kolaitis brought to
our attention some difficulties in Immeman’s
proof. We saw immediately that the IFP hierarchy
collapses on the first level.

Theorem 2 (See §4). Every FO+IFP formula is
equivalent to an FO+IFP formula which is either
first-order or of the form [IFP_@1(..) where ¢

is first-order.

Moreover, the proof of hierarchy collapse is
very natural in the FO+IFP setting. Immerman told
us that all difficulties will be taken care of in a
new version of [Im2]. Anyway, Theorem 2 and
Corollary 2 imply

Corollary 3 [Cf. Im1, Im2). Every FO+LFP for-
mula is equivalent to an FO+LFP formula which is
either first-order or of the form (LFP_¢I(..)

where @ is first-order.
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§1. Defining logics FO*LFP and FO+IFP

In this section structures are not necessarily
finite.

Definition. Let P be a complete partially
ordered set and F be a function from P to P. Let
Po=Min(P), Poes 1=F(Po), and Po=sup(Pg: B<od for
limit o If the sequence P, is increasing (i.e.
«<f - Po(sPs) then F is inductive. If F is
inductive and p=minfoc P =Py} then Py is the

inductive fixed point IFP(F) of F. If X<F(X) for
every XeP then F is inflationary.

Iheorem 1. Let P be a complete partially
ordered set and F: P » P.

(@) If F is inflationary then it is inductive.

(b) The function sup{X,F(X)} is inflationary;
its inductive fixed point equals IFP(F) if F is
inductive.

{c) If F is monotone (i.e. X<Y = F(X)<F(Y))
then F is inductive and the inductive fixed point of
F is a least fixed point LFP(F) of F.

Proof is clear. O

Examples. Suppose U={0,1, 2}, P is the power
set of U ordered by inclusion, and X ranges over P.

(i) Let F(X)=Xu{the cardinality of X} if X=U,
and F(U)-U. Then F is inflationary but does not
have a least fixed point: {1} and {0,2} are fixed
points of F but 2 is not.

(ii) Let G(X)=F(X) if X is an initial segment
of U, and G(X)=@ otherwise. Then G is inductive
but neither inflationary nor monotone.

(iii) A constant function H(X)={0} is monotone
but not inflationary.

The syntax of logic FO+LFP is the result of
augmenting the syntax of first-order logic by:

LEP_Formation Rule Let r be a positive
integer, x be an r-tuple x,,....%, of individual vari-
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ables, P be an r-ary predicate variable, P(P,x) be a
well-formed formula, and t be an r-tuple of terms.
It §(P.x) Is positive in P (i.e. all free occurrences
of P in 9(P.x) are positive) then LFPp.,9(P.x) is a

well-formed predicate and [LFPp., $(Px)Kt) is a
well-formed formula.

P and x,,...x. are bounded in the new predi-

cate. Other free individual or predicate variables
of 9 remain free in the new predicate. If Q is a
predicate variable different from P then every pos-
itive (respectively, negative) oocurrence of Q in
(P ,x) remains positive (respectivelg, negative) in
the new predicate.

Bemark. A simplified notation LFPpP(P x) for
[LFPp. (P X)x) is deficient: just try to express
[LFPp. P(P. X)) in the simplified notation.

To be on the safe side, let us emphasize that
logic FO+LFP allows interleaving LFP with
propositional connectives (including negation) and
quantifiers; in particular, one can negate an LFP
formula then use the LFP formation rule again, etc.

The meaning of the predicate LFPp. (Px) is

the least fixed point of the operator F(P)={x:
9(P.x)} on the set of r-place predicates ordered by
inclusion. Since the formula $(P,x) is positive in
P, the operator F is monotone and therefore has a
least fixed point. /

As we have mentioned in the introduction,
direct replacement of positivity by monotonicity in
the LFP formation rule does not lead to a nice
logic. However, the operator F'(P)=(x: P(x) or
9(P,x)} is always inflationary and therefore has an
inductive fixed point. By Theorem 1, IFP(F')=LFP(F)
if F is monotone. This leads to a more liberal
extension FO+IFP of first-order logic. Let us call
a formula 9(P,x) (in whatever language) explicitly
inflationary if P(P.x)=IP(x) or ®(P.x)] for some &.
The syntax of logic FO+IFP is the result of
augmenting the syntax of first-order logic by:

IEP Formation Rule. Let r be a positive inte-
ger, x be an r-tuple of individual variables, P be
an r-ary predicate variable, 9(P.x) be an arbitrary
well-formed formula, and t be an r-tuple of terms.
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It the formula P(P,x) is explicitly inflationary then
IFPp. (P.x) is a well-formed predicate, and

[lFPp;xtp(P,x)](t) is a well-formed formula.

The meaning of the predicate IFPp. #(P.x) is

the inductive fixed point of the inflationary
operator F(P)={x: (P.x)).

§2. Simuitaneous induction

For reader's convenience we prove in this
section the known fact that simultaneous induction
reduces to the ordinary one. Structures are not
necessarily finite.

Given natural numbers p and q, order the set
{(P,Q): P is a p-ary predicate and Q is a q-ary
predicate} componentwise: (P,Q) < (P’,Q’) if PCP’
and Q€ Q. The resulting partially ordered set is
complete. Let x and y be sequences of individual
variables of length p and q respectively.

Simultaneous Induction Lemma for FO+LFP
[cr. Mol. Let F(P,Q) = ( {x: 9(P,Q.x)}, {y ¥(P.Q,Y} )
be an operator where 9, ¥ are FO+LFP formulas
positive inP and Q. Let

( LFP‘P,Q;X,Q(¢'W)' LFPZP,Q.X.Q(‘P'W) )
be the least fixed point of F. Then there is an
FO+LFP formula odx) such that

ox) & [LFP1p gy y(P¥)NX), and

ofx) has the form [LFP_¥](..) where ¥ is

built from @,y by first-order means.

Proof. To simplify the exposition we suppose
that x=(x;.xy) and y=(y;.4yp.u3). Let u,v,w,w’ be
individual variables, R be a new predicate variable
of arity S5=2+max{p,q}, and z be a triple (z,25,23)
of new individual variables. Let ¥(R,u,v.z},z5.23)
say the following:

Either there is only one element in the
universe, and an equivalent of
(LFP1p i y(P:¥)KZ.22), built from @ and ¥ by
first-order means, holds,

or there are w=w' such that
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u=v=zz & P({x: Rlw,w.x,w)}, {y: R(w,w"'.y)}, 2{,25)
or
uzv & Y({x: R(w,w,x,w)}, {y: Riw,w".u)}, 2y,2.23 ).

The idea is to represent P(x) by R(u,u,x,u) with
arbitrary u, and Q(y) by R(u,v.y) with arbitrary u=v.
The desired odx) = [LFPR,, > ¥1(xy %y x%y). If
p=0 then o« = [LFPR,, \, \ B1(x),... X|) where x, is a
new variable or a constant. O

The proof is a slight modification of the cor-
responding proof in [Mo]. (The possibility of using
only one individual constant or even none at all is
mentioned in [Im2].) The same proof establishes

Simultaneoys [nduction Lemma for FO+IFP.
Let F(P,Q) = ( {x: P(P,Q%)}, {y: Y(P.QY})
be an operator where @, ¥ are explicitly infla-
tionary FO+IFP formulas. Let

( lFPlp'Q;x'g(‘P.‘?). lFPZp.Q;x'u(‘P.‘l') )
be the inductive fixed point of F. Then there is an
FO+IFP formula o(x) such that

O((X) Aind “Fpip'o;x'u(?o"‘)](x)o and

ofx) has the form (IFP_¥K..) where ¥ is
built from 9,y by first-order means.

It is easy to formulate and prove analogues of
the two lemmas for the case when three or more
relations are defined by simultaneous induction. In
a sense, fixed-point logics with built-in simul-
taneous induction are more natural. In the sequel
we will use the extension of FO+LFP by an addi-
tional formation rule for LFPIP.Q;x’g((P.W). and the

extension of FO+IFP by additional formation rules
for IFP1p i y(9¥) and IFPIp g Ry y A(9.9.X).

By the simultaneous induction lemmas, the addi-
tional formation rules do not increase the expres-
sive power.

§3. Expressing the inductive fixed point

The proviso of §0 is in force: all structures
are finite.
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Theorem 1. Let T be an arbitrary operator
that, given two unary relations and an element,
produces a boolean value. Then

[IFPp. (P(x) or (P, =P, x)))(x)
is equivalent to a formula

( [LFP ‘ R.S;x'g.Z,u'vlw (plc)l (x'x:x) )
where p,0 are built from " by first-order means

and are positive in the ternary predicate variables
R.S.

we write I'(P, —P,x) rather than ¥(P,x) in order
to distinguish between positive and negative oc-
currences of P. First-order formulas and formulas
built from F by first-order means will be called
pseudo first-order. The notion of positivity is
generalized to pseudo first-order formulas in the
obvious way; in particular the pseudo first-order
formula I'(P,P’,x) is positive in both P and P’.

Corollary 2. Theorem | remains true under
the vector interpretation (when x Is interpreted as
an r-tuple of individual variables, P is interpreted
as an r-ary predicate variable and so on).

Corollary 3. Every FO+IFP formula is equi-
valent to an appropriate FO+LFP formula.

Proof of Corollary 3 proceeds by induction.
The only non-trivial case is that of [IFPp., (P(x) or
¥(P.x)Kx) where ¥ — by the induction hypothesis —
can be assumed to be an FO+LFP formula. Let
(PP’ x) be the result of replacing the negative oc-
currences of P In ¥(P.x) by —P' where P’ is a new
predicate variable. Obviously, I'(P,—P,x) « ¥(Px).
Now use Corollary 2. O

In the rest of this section we sketch a proof
of Theorem 1. For expositary purposes we choose
a nonempty finite set U as our universe of dis-

course. Let P(P.x)=IP(x) or T(P, -P.x)l, F(P)=(x:
P(P.X)} and P=FY(@) i.e. Py=@ and Pp,=F(P,).

The sequence Pp, is (non-strictly) increasing. Let
m=min{n: P=Pp, )i Pp, is the inductive fixed
point of F. In addition, let P,=U . For every xeU,
let stage(x)=min{n: xeP}. Note that stage(x)>0.
Let x<y abbreviate [xePp, and stage(x)<stage(y)],
and let x<y abbreviate stage(x)<stage(y). Note
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that x<x «* xePp,. We start with defining an

auxiliary inductive operator G whose inductive
fixed point is the relation <.

Lemma 4 [Cf. Stage Comparison Theorem, Mo).
x<y < P({x: x'<y}.x),

x<y & -¢({y: -(x<y" y)., and

x<y & o({x: -y —(x' <y yll. x).

The proof is straightforward; formally speak-
ing, the lemma will not be used. The last state-
ment of Lemma 4 gives the desired G, but the need
to keep a track of the positive and negative occur-
rences of the induction variable forces us to give a
more explicit definition of G.

Let Q. Q’ be binary predicates variables. Let

A(Q,Q' x' y)=[Q'(x"y) or
My Q'(x'.y)), {y'= aCx' .y, yll,
A'(Q,Q' %' y)=—-A(-Q',—Q,x".4),
¥(Q,Q,%,y)=[A'(Q,Q" x,y) or
Nix: A'(Q,Q",x" .9}, {x: AQ,Q".x".y)}, X)),
and G(Q)=((x,y): ¥(Q,—Q,x,y)}.

Then A, A’ and ¥ are positive in Q and Q’,
and

AQ-Q.XY) «— 9y —-Q(x" .y y).

Lemma S. ¥(Q,-Qxy) <
o{x": -9{y": - (x' <y}, yl}, ).

Proof. [A'(Q,—Q.x.y) or
Nix: A'(Q,—Q.x' y)), {x: A(Q,~-Q,x" Y}, X)) <
-A(Q,-Q,x,y) or
M({x: -A(Q,~Q,x",y)}, {x': A(Q,-Q,x"y)}, x)] —
P(x" -A(Q,-Q.x' Y}, x) «
P(fx: -9({y:-alx'.y).YLx). O

Let Q =GX(®).
approximations to <.

we show that Qk's are

Lomma 6. For every natural rumber k, Q=
U{(PjxPg): k>i<B} where § may be equal to .

Proof by induction on k. Case k=0 is Clear.
We suppose Q=U{(PjxPg): k>i<B} and prove
Que 1 =V{(PPR): k*12i<B).
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First, check that -9({y" -Q(x'.y")}, y) holds
if and only if stage(y)>stage(x’)<k. Second, let
B=stage(y). We have {x": —9({y": —Q(x".y")}, yh={x"
B>stage(x‘)5k}=Pi where j+1=min{B,k+1}). Third,
let i=stage(x). Then (xy)eQu.; < P(P;X) <
i<j1 o (i<B and i<k+1) = (xyleV{(PPg):
Bi<k+1}). O

Corollary 7. The operator G is inductive, Qp

is the inductive fixed point of G, and the relation
< coincides with Qp,.

Now we come to the crucial transition to a
positive induction. Note that the formula
¥(Q,-Q,x,y) is, in general, not positive in Q; it
defines Qq .y interms of Q and —Qu. Our idea is
to build, by a positive simultaneous induction, two
ternary relations R and S in such a way that

Rice1=Ry= ke1} x Qe

Ske1= 5= ke 1) X =gy .

This would allow us to use positive occurrences of
S instead of negative occurrences of Q. Of course,
we do not have an access to natural numbers but
the number k+1 may be represented by elements of
Pk* ‘ —Pk.

Here is the formal definition. Let p(R,5,x,u,v)
be the formula saying:

R(x.uv), or xePy& (uv)eQ, or there Is y

such that  R.y.Y).,  Y(R(Y——).SlU—-u.v),
S(!J»x-x). and ‘1’(“(9.—-—).5(9.—.—).&)()

Let o(R,5,x,u,v) be the formula saying:
S(x,u,v), or xeP;& -[(uv)eQq], or there isy

such that R(y.u.Y), -¥(-S(Y.——), —R{Y,——).u.V),
S(y.,x.x), and Y (R(Y,——),S(Y—.—).X.X).

Here the expressions xeP; and (uv)eQ,
abbreviate pseudo first-order formulas 9(2.x) and
¥(2,-2,u,v) respectively. Obviously, p and o are
positive inR and S. Therefore the operator H(R,S)=

({(x,u,v¥ p(R,S,x,uV)}, {(x,u,v): O(R,S,x,uV)).
is monotone and has a least fixed point.

Lemma 8. The least fixed point of H is
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(Y emlPie 1Pid* Qe
Uieeml(Pie 1 =Pl Qa1 )-

Proof. For each natural number k, let
(RS, =HK(2,9). It suffices to prove that

Ris 1~ P =Pre 17 P * Qe s

Sk+1~ Sk = (Pya1~Pi)* — Qe

The case k=0 is clear: the formulas
p(2,2,xu,v) and o(2,2,x,u,v) describe PyxQy and

Pyx-Q, explicitly. Let k >0. If (xuwk
(Pya 1~Pr)* Qe then any yeP —Py_y will witness
that p(Ry.Sp.xu.v) & —R(x,u,v) holds i.e. (x.u.v)e
Rys1=Ry- If P(R.Sy.xuV) & —Ry(x,u,v) holds, let

y be any witness for p. By the inductive hypo-
thesis, yeR{—R;-;  for some positive i<k,

Re(Y—-)=Q;, and Sy(Y—)=—Q;. Hence
W(Q;—Q;u.v) — (U,v)Q4, 1, Syly.x.x) + —[xePy), and
¥(Q;Qjx.X) (x.%)Qj4q > %€Pjy; thus (%,u,v)
belongs to (P, -P{)*Q;,;. But it does not belong
to Ry_;. Hence izk and (x,u,v)e(Py,y-Py)*Quy .
The other equality is proved similarly. O

Theorem 1| follows from Lemma 8. O

Remark. To see the use of finiteness in the
proof, note “any yeP, —P,_; will witness® in the

proof of Lemma 8.

Theorem 1 and Simultaneous Induction Lemma
for FO+LFP imply Main Theirem.

§4. The collapse of the FO+IFP hierarchy
Again, all structures are supposed to be finite.

TIheorem 1. Every FO+IFP formula is equi-
valent to an FO+IFP formula ¢ such that ¢ is either
first-order or of the form [IFP_ ®](..) where ®

is first-order.
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Proof. Formulas ¢, described in Theorem 1,
will be called explicitly low. Also predicates {x:
o(x)} and IFP_®, where ® is first-order, will be

called explicitly low. A formula (resp. predicate)
will be called low if it is equivalent (resp. equal
on every relevant finite structure) to an explicitly
low formula (resp. predicate). We prove that every
FO+IFP formula is low.

Lemma 1. Predicates IFPIP’Q;x.u(q,-‘P) and
IFP1p q Rixy, (P ¥:X).  where ¢, ¢ and X are
first-order, are low.

Proof. Use simultaneous induction lemmas for
FO+IFP. O

lemma 2. If o{Q*x) is built from an
explicitly low predicate Q*=IFPq,¥(Q.y) by
first-order means then it is low. Hence, the set of
low formulas is closed under negation and
universal quantification.

Proof. oPx) is
“FP 1 p’Q;x'g(o,\l’)](X) where

equivalent to

O(P,Q,x)= Vx(¥(Q,y)—Qly)) & o(Q,x),
Y(P,Q,u)= ¥(Q.y).

The idea is: first build Q*, then set P={x:
odQ*x)}. For readability, we have omitted a for-
mally required disjunct P(x) in the first clause. O

Lemma 3. The conjunction [IFPp.,PI(x) &
[lFPQ:u\{l](g) of explicitly low formulas is

equivalent to an explicitly low formula
“FP ‘ P'Q;x'u(o'v)](x,g).

Proof.
o(P,Q,x) = P(P,x) & Vyly(Q,y) — Qy)] & Q(y),
Y(P.Qy)=y(Qy). O

Note. InLemmas 2 and 3, x and y do not have
common variables.

Lemma 4. 1If ¢(P.x) is an explicitly low for-
mula [IFPq, ¥(P.QU)Kt) then IFPp,y[P(x) or $(P.X)]

is low.
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Proof. Since y is bound in lFPQ;uW(P.Q.g), we

can assume that no y-variable occurs in t or x.
Note that if a t-variable does not occur in x then
its value is not changed during the double recur-
sion; view such variables as parameters.

Let F(P)={x: 9(P.x)}, P=Fi(2), and G;(Q)=
{y: ¥(P;.Q.Y)). Let m=minfi: P;=P;,} and, for every
i<m, let n=min{j: G;}(2)=6,1*"(2)). We reduce
the double induction to a single simultaneous
induction. The difficulty is that Q oscillates,

during the double recursion, between the empty set
and the inductive fixed points of Gj's. To cope

with this non-inflationary behavior, we introduce
predicates R(x,y) and Qq(y) where Qq is simply Q
in its first incarnation. The stages of the
simultaneous induction are labeled by pairs (i,j),
where i<m and j<n;, ordered lexicographically.
The dynamics of P(x), Qg(y), and R(x,y) is explained
in Claims 1-4 below. Formally speaking, let

odx) = P(x) or Vy'($(8.09.4")—Qp(y") & Qyt) or

Vy($(P.Q.y)-0(y)) & QL)
BY) = Y200

¥(x.y)= R(x,y), or
P(x) & ($(P.QY), or Vy'(¥(P.Qy)—0ly"))
& 3x(Q(t) & -P(x));
QW (3x'(Px'& -VyRx'Yy' & Rx'y) or
Ix'P(x") & Vx'(Px’~» Vy'Rx'Y’)).

where

Claim 1.
Qo=601(z).

Claim 2. Suppose that >0, P=P; and
R=(Pj- X ALDUI(P;-Pi_)xGil(@)L. Then a=G,i(@).
(Here "All” is the set of all tuples of the appropri-
ate length.)

Claim 3. On every stage (i,j) with i>0, P=P;;
Qg=IFP(Gy): and R=
(Pi_"‘A")U[(Pi-Pi-|)"Gij(¢)].

Claim 4. The simultaneous recursion stops on
stage (m,ny,).

On every stage (0,j), P=R=2 and
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Thus

IFPp. P(P.x) equals

IFP1 F’.Q.R:x,g'.g(oc.B ). 0

AG
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Im1

Im2

Li

The four lemmas imply Theorem 1. O
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