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Suppose T is not superstable, T c T; (both first-order theories). If A > |T}| is regular or strong
limit, we construct 2* non-isomorphic, pairwise L., ;-equivalent models of T of power A, which
are reducts of models of 7;. Note, however, that the proof applies to the class of models of
T, T (superstable but) with dop or otop and even to appropriate non-elementary classes as
well.

0. Introduction

This paper has a place in two lines of research: existence of L. ,-equivalent
non-isomorphic models of power A and classification theory.

On the history of construction of L. ;-equivalent, non-isomorphic models of
power A, see e.g., 1], [3], [7], [8].

In the mid-seventies some people became interested in building such models
for specific theories and have gotten some results (Nadel, Stavi, Macintyre).

In [8] we have announced the solution for any non-superstable T (and for such
pseudo-elementary classes).

Our main result is: (The unexplained notions are defined in 1.2A.)

0.1. Theorem. Suppose L c L, are vocabularies, and for every Ie K (see
Definition 1.2) EMY(I, ®) is an L,-model, which is the Skolem-hull of Uner@y,
(@,:n €1) is indiscernible in EM'(I, @) (see Definition 1.1). Suppose further that
¢.(%, ¥) are formulas in the vocabulary L (not necessarily first-order), and for
n € P;,, v e P, we have: EM'(I, @)k ¢y &y, 4,] iff v<n.

Then for every A>|L,|, A regular or strong limit, there are 2* models of the
form EM'(I, ®), |I| = A, (L,)« s-equivalent, but with non-isomorphic L-reducts in
pairs.

Remark. Of course, we got many index models I, of cardinality A which are quite
similar, but {EM(Z,, ®): «a} are pairwise non-isomorphic. We can combine the
proofs here with those of [6] demanding on the I,’s conditions as there. A
consequence is getting many pairwise non-elementarily embeddable such models.

As an example look at the class of separable abelian p-groups. Define
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EM(I, @) (for I € K{) as the abelian group freely generated by x, (1 € Piyy),
lg(n) < w) and x; (n € P, n < ), except the relations xj — px3*' =x,,, when
n € PL, (so, informally, x? = Y=,p* "x,;:). There is no problem to define
Ly, .

We can conclude that there are 2% L. ;-equivalent non-isomorphic separable
abelian p-groups of power A. On this see [6], [9]. [Note that, as mentioned in [9,
p. 244] by the general results of [5, Ch. VIII, §2] for A>R, there are 2*
non-isomorphic separable abelian p-groups of power A.)

If we want that no one (group from the family) is embeddable into another (not
just not-purely embeddable) see [6, p. 106, Remark 2], and we can combine this
with the L. ;-equivalence.

Note. For the regular case we also use a construction of a linear order (see
Appendix) which is a variant of the one from [2, §3] due to Galvin and Laver.

Let us now turn to classification theory. It is reasonable to say that if there are
models of T of power A, L. ;-equivalent but not isomorphic, then T has no good
structure theorem. For the possible invariants distinguishing the two models
cannot have a simple definition (see a discussion in [10]), we now can prove

0.2. Main Conclusion. Let K be the class of models of T which are reducts of
models of T,, T complete in L, T<T, Then in K there are 2" pairwise
non-isomorphic, L. ,-equivalent models of power A for every L>|T)| which is
regular or strong limit if at least one of the following holds:

(a) T not superstable.

(b) Ty =T, and T has the dop (see [11, Definition X 2.1]).

() Ti=T, T countable and T has the otop (see [11, Definition XII 4.1]).

This clearly includes many examples, but more important is that for countable
T, = T it is best possible: by [11, XIII 1.1] for countable superstable 7" without the
dop nor the otop and A >2™ any two L.. ;-equivalent models of T power A are
isomorphic (and we can even weaken the logic).

Proof of 0.1. We apply 2.10 for A regular, 3.1 for A strong limit.

Proof of 0.2. We use 0.1. For case (a) its assumption holds by 1.3. For cases
(b), (c) we have to replace 1.3 by parallel theorems, and they are
[11, X, Fact 2.5A], [11, XII, the proof of 6.1(1)], respectively.

Notation. Bar means a finite sequence, § € I means § = (sg, .. .), 5S¢, ... €L
tpa(d, B, M) = {¢(%, b):b e M, Mt ¢[a, b], ¢(%, 7) € A, b € B}.

For A the set of atomic formulas of L(M) we write ‘at’; for A the set of basic
( = atomic or negation of atomic) formulas of L(M) we write ‘bs’.
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Let L denote a vocabulary (i.e., a set of predicates and function symbols). So
an L-model M is a universe |M| and interpretation of the predicates and function
symbols of L as relations and functions on |M|.

1. Preliminaries

We review here some of the necessary material we shall use. Recall from [5,
Ch. VII, Definitions 2.4, 2.6, p. 393]:

1.1. Definition. We define generalized EM-models (EM for Ehrenfeucht—
Mostowski).

Let K be a class of models we call the index models and we denote its members
by I,J. Let L c L' be vocabularies.
For I € K we say that (d,:s € I) is indiscernible in M, if, (denoting @5, s, ) =
a,,as"---"a,_,) for every s, f eJ realizing the same atomic type in [, 4,4,
realize the same type in M. If L' is a vocabulary, Lc L', @ a function with
domain including {tp.(5, §, M*) =5 €I}, and I € K, we let M' = EM'(/, @) be an
L'-model generated by U, a, such that tp,(@s;, 8, M') = &(tp.(5, 8, 1))

We say @ is proper for K if for every [ € K, EM'(1, @) is well defined.

Let EM(/, @) be the L-reduct of EM'(I, ®).

Remark. The case we have in mind is T a complete theory in L, T; a complete
theory in L' extending T and having Skolem function, EM'(I, @) a model of T;.

1.2. Definition. Let K, be the class of linear orders.
We shall write K@ for the class of trees with (w + 1) levels (see 1.2A).

1.2A. Definition. Let K be the class of models isomorphic to some (A, <,
P,, <, h),.., where A c“~ [ for some linear order I and:

(1) A is closed under initial segments.

(2) < denotes the initjial segment relation; A(n, v) is the maximal common
initial segment of n and v.

(3) P.={neA:lg(n)=n}.

(4) < is Upyea (< Suca(n)), (e, x<y— 3In[ryeSucy(n)] and
< | Sucy(n) is a linear order 0" (x) <n”"(y) iff IFx <y, where Suca(n)=
{vea:n<vand lg(v)=lg(n)+1}.

The partial order < extends naturally to the lexicographical order on A. (We
will not distinguish strictly between < and the lexicographical order.)

For n €I € K2, 1g(n) is the unique n < w such that [£P,[n], and n [ n (where
n < ) is the unique v, IEP,(v) Av<n.

We identify such A<c*>I with the model (A, <, P,, <, h),<., and call it
standard.
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1.3. Theorem. Suppose L< L', T a complete (first-order) theory in L, T, a
complete theory in L' with Skolem function and T = T,. Suppose further T is not
superstable and ¢,,(x, ¥,) (n < w) witnesses this (see [5, 11, 3.14, p. 52; 3.9, p. 46)).

Then there is a ®, proper for K2 such that for every I e Kpo, EM'(I, ®) is a
model of Ty, and for ne PL, ve Pf,,, EM'(I, D) I+ ¢,.(a,, a,) iff IEn<v.

Proof. See [5, VII 3.5(2), VII 3.6(2)].

P 7a

By a theorem of Karp (see Dickman [i]):

1.4. Theorem. (1) The L-models M,N are L. ;-equivalent iff there is a non-
empty family F of functions such that:

(a) Each f € F is a partial isomorphism from M to N (i.e., f is a one-to-one
function from Dom(f) = M into N) and for every d € Dom(f), tp, ([1 @8, M) =

tpat(f(a)l ”; M)
(b) For every Ac M, |A| <A and f € F there is g € ¥ extending f such that

A ¢ Dom(f).

(c) For every Ac N, |A|<A and f € F there is g€ F extending f such that
A c Rang(f).

(2) In such case we say & exemplifies M,N are L., ;-equivalent.
1.5. Lemma. If 1J are L. ;-equivalent, then so are EM(I, @), EM({J, @).
Proof. Let ¥ exemplify I,J are L. ,-equivalent by 1.4. For each f € ¥ we define
f*: it is a function whose domain is {7(a;,, . .., 4;,):51, ..., s, € Dom(f), 7is an
L,-term} and f*(z(a,, " 5 85)) = T(dssyy - - -5 Gps,y). It is easy to check that

1.6. Deﬁnition. Ic.J for 1,J from K{ means: I is a submodel of J and for
neP,, if(Vi<w)n|lel, thennel

1.7. Claim. Suppose Ic_J (both in K2, see Definition 2.6(2)), @ proper for K&
¢ off of -_C \ i J \=/s/7> r Ir J u
and:
(* N\ Foronervmel — I and countahle — Suic A m) and dictinet v LY —
\ } A4 Ui Cve J II A= 3 4 3y WiV VUMUK (1) :qul\l I AT LD LET IS Vl’ 5] Vk =
Suc,(n) — A there are distinct vi, . . . , v; € Suc;(n) — A such that

k k
(VpeA)/\[p<v,Ep<V,'andv,<pEv,’<pand /\ v <v,=v;<v,]
=1

(* *) For every n €I — PL, (3v e PL) [n<v] and Suc,(n) is infinite.

Then for every countable set of Li-formulas p = {y;(%, b,):i<w} where
b; e EMX(I, @), if p is realized in EM'(J, ®), then p is realized in EM'(I, ®).

Proof. Easy.
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ﬁx

.8 Claim. In 1.7, we can replace (*) by:
(*)" b;=1,(i)) and for every vel— P, A={p I l:I<1g(p), p € (Ui<w 1)}
N Suc,(v) satisfies (*).

Proof. Easy.

1.9. Definition. Let A be an uncountable regular cardinal.
(1) A is a A-representation of A if A= (A,:a<A), A, increasing continuous
ine, |A,]<Aand A =J,<, A,. SO a A-representation of M is a A-representation

of |M| (the universe of the model) but we write M = (M, : @ <A).

(2) A function F is D,-invariant (function) (D, is the filter of closed unb

subsets of 1) if its domain is a class of A-representations and

(a) for every A-representation M, F(M) is a subset of A and for A
representations M', M? of M, F(M") = F(M?) mod D,, and

(b) if M*', M? are representations of M*, M? resp., models of power A which
are isomorphic, then F(Ml\ = F‘(MZ\ mod D,

(3) For F D,-invariant, F(M ) is F(M)/DA for every ( =some) A-representation
M of M.

1.10. Definition. (1) For a A-representation M let (on splitting see below)

< A: 6 limit, and for some a €| _,; M, for every B <6
tp(a, M5, M) split over Mﬁ}

1.10A. Remark. (1) Sp is D;-invariant (when A = cf A > R).

(2) On splitting see [5, I Section 2]. We say tp,(a, B, M) (A1, A;)-splits over
AcM (where deM,BcM) if for some by, b,eB, tps(by, A, M)=
tpa,(ba, A, M) but tp, (" by, A, M) #1tpa(@” b, A, M).

1.11. Definition. (1) M is (4, A;, A,)-nice if Spa, 4,(M) =9/D,.

(2) 1€ K2 is locally (A, bs,bs)-nice [locally (<A, bs)-stable] if for every
nel—PiL, (Suc,(n), <) is (A, bs, bs)-nice {(<A, bs)-stabiej and (* *) of 1.7
holds.

(3) M is (<A, A)-stable if for every A < |M| of power <A

A> {tpa(@ A, M):d & [M}.

2. Regular cardinals

2.1. Assumption. Let A be a fixed uncountable regular cardinal (for this section).
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¢, (n < ®), @ be as in the conclusion of 1.3 and assume A > [L,|.

2.2, Definition. For [ € K;; of power A, we define a set $ = S(/) € A modulo D,
(so formalistically, S(I) belongs to #(1)/D,).
For any A-representation [ = (I,: @ <A) of I'let S(J) = {6 < 4:4 a limit ordinal

and for some n e PY, {n In:n<w)clsbutforno a<4y, {n tn:n<w)cl).

By the following fact S(I) is determined by 1, modulo D;.

2.3. Fact. (1) The function of S is D,-invariant.
() If TeK?® is locally A-nice, then Qn(l\ = ?(I\ Moreover

2y If Ieky locally A-nice, then S(I). Moareover,
representation I of I, Sp(I)=S(I) provzded that for nel—- P, nel,
Sp({Suc(n) N Lo, i<A))=9.

for any A-

2.3A. Remark. Almost nothing changes if we replace S by S', S'(I)={d<1:6
a limit ordinal and for some ne P, {n | n:n<w}cl; but n¢I;} and restrict
ourselves to (<A, bs)-stable I

2.4. Theorem. (1) If I, J € K have power A, A regular >R, and 1, ] are locally
(A, bs, bs)-nice, (<A, bs)-stable and EM(I, @), EM(J, @) are isomorphic, then
S(I)/ Dy = S(J)/D;.

(2) If I, J € K¢ have power A, are locaily (4, bs, bs)-nice, (<A, bs)-stable and
there is an embedding of EM(I, @) into EM(J, @) preserving the formulas ¢,,~ ¢,
(for n < w), then S(I) = S(J) mod D,.

Remark. (1) This is like [5, Ch.V.III 2.1, 2.2).
(2) Really “I,J are (<A, bs)-stable” can be weakened to “I,J are locally
(<A, bs)-stable”.

Proof. As |I|=A>NX, and [ is locally A-nice and (<A, bs)-stable there is
I={I,:a<A), such that
(i) Iis a A-representation of I.

(i) Ifnel,,vel, v<n, thenvel,.

(iii) If nel,, a<d<A, O limit, veSuc/(n), then tp.(v, s, ) does not
(bs, bs)-split over I for some <9, i.e., for some B, « <f <6 and one of the
following holds:

(a) (Vo eSuc,(n))[o<n & (30’ €Sucy(n))(o<o’'<n)] or

(b) (Vo €Sucy(n))[o>n< (30’ €Sucy(n))(o >0’ >n)]

Similarly for J there is a sequence (J,:a <A). Suppose f is a function from
EM(J, ®) into EM(J, ®) preserving the formulas ¢,,, —1¢, for n < w.

For a sequence da={(agp,...,a,;) from EM(I D) let f(a)=
(f(ag), - .., f(a,_y)). For nellet f(a,)=%,(¥,) (i.e., T, is a finite sequence of

AV RN LV 24 n—1,/ v \Fis LANME/ P Caddd i

terms in the vocabulary EMl(J, D), v, a finite sequence of elements of J).



Sh:220

Existence of L. ,-equivalent non-isomorphic models 297

Let ¥, = (vi,:1<lg(¥,)). Let

Co={6<A:dislimit, and (Vnel)(nels © v, c/,},

Ci={08 € Co:(Va <) (VY € L,)(Vp, € Suc,(n))(3p, € Suc,(m)[v,,, Vo,
realize the same atomic type over J,]},

C= {6 € C,:C,N S has order type 8}.

Clearly Cy, Cy, C are closed unbounded subsets of A. So it suffices to prove
(*) S(L:a<A)NCcS((J,:x<h)).

So suppose 6 € S({L,:a<A))NC—S({J,:a<A)) and we shall eventually
derive a contradiction. As 8 € S({I,: @ <A)) there is nel, IEP,(n), and for
n<w,nlnelybutforno a<y, {n |n:n<w}cl,.

Now for each I <lg(¥,) there are a; <8, 0,€l,,,; and m; < @ such that:

(o) (Vi) I myel,,

(B) If m; <lg(vh), then (vi) | (m +1) ¢ J;.

(y) If m;<lg(v'), then

(a) (Yo eSuc, (v l m))[o<v) } (m+1) & 3o’ el )(v, | (n+1)>0'>0).
or

(b) (Vo eSuc, (v, | m))o>v, | (m+1) & (Fo’' el )(vh | (n+1)<o'<o0).

Let a =Max{a;, +1:/<lg(¥,)}, so «<48. As 6 € C, 6 N C; has order type 6,
sowecan find B, yeC,, a<B<y<$é, and

ANlntnel, > nltnell

Let n < @ be maximal such that 1 [ n € Iz (exists by the choice of 7).
Let p, =7 | (n +1). We shall prove:

(*) There is pyel, — Iz, IE(p1<px) A(py I n=p;n), lg(p;)=n+1 such
that 7, = 7, and (in J) v, ¥,, realize the same atomic type over ¥,).

This suffices as then

EM("’ (I)) F ¢n+1(i'1’) (‘_,77)’ :i.pl(‘—,Pl)) = ¢n+1(i',,(1_’,,), ipz(‘—,pz))
but

EM(I, (D) F ¢n+1(drp ﬁpl) A _'¢n+l(&r); dpz)

so we get contradiction to the property of the function f.

Proof of (*). By the choice of a (and the ¢;’s) and as (J, :a < ) satisfies (jii), it
is enough that ¥, , ¥,, satisfy the same atomic type over J. This is possible as
B,y € C, (see its definition).

2.5. Remarks. (1) See more (particularly on singular A) in [6].
(2) From the isomorphism type of M =EM(/, @) we can reconstruct S(/):
using @ as a parameter: trivially (as S(J) for every J such that EM(J, @)= M).
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But the use of @ is not necessary as also: S(J) for every J such that for some &'
(corresponding to a vocabulary L;, |Lj| <A) M =EM(J, ¢').

A more direct definition is the minimal S/D,, such that there is (E,:Ac M
finite) such that each E, is an equivalence relation on the family of finite
sequences from M with <A equivalence classes and

S = {8 <A:06 limit of cofinality X,, and for some @ € M,
for every finite A c M, there are b, ¢ € M,, which are
E ,-equivalent:tp(b, AU a, M) #tp(¢, AU a, M)}.

Alternatively: the maximal § such that for some expansion M' of M (of
vocabulary of power <), M' is (<A, L,)-stable and (A — S, L,, L)-nice.

See more on this in 2.11. )

(3) In 2.4 we actually prove: if I € Ky;, then I is (<A, bs)-stable and locally
(A, bs, bs)-nice.

(4) The proof in Section 2 can be made more similar to the one in Section 3,
building the J,’s by hence-and-forth argument, but less explicitly.

2.6. Definition. (1) For I,Je Ky, IcJ means I is a submodel of J hence
necessarily veJ, v<n, nelimply vel

(2) For I,J e K2, Ic.J (I a closed submodel of J) means I cJ and (n € PJ,
{ntnin<w}cl > nel).

(3) For I,J € K, we say f is an embedding [closed embedding] of I onto J if it
is an isomorphism from I onto some I' cJ [I' . J].

2.7. Claim. (1) Ky has the amalgamation property for closed embeddings.

(2) If f, is a closed embedding of I, into I, for | =1,2, then we can find J and
closed embeddings g, of I, into J (for | =1,2) such that g,f, =g.f. Moreover
W < |l + |14, I = g1(5h) U gx(L) and if f, is the identity on Iy we can choose g,
as the identity (on I).

Proof. Left to the reader.

2.8. Claim. Suppose J,I € K{ have power A, I cJ and there is a function h such
that:

(a) The domain of h is PJ,— P,

(b) For every n e Dom(h), h(n)<n

(c) For every v €J, the set {n e Dom(h):h(n)= v} has power <A.
Then S(I) =S(J) (mod D,).

Proof. Let J = (J;:i <A) represent J. We define a function g from J — P, into A:
g(v) is the first ordinal o <A such that {#n e Dom(h):h(n)=v} cJ,.

Now «a exists as A is regular and the set above has power <A by (c) of the
claim. Now define C = {8 <A:§ limit and for every veJs, g(v)<48}. As A is
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regular and |J,|<A for « <A, and as g is a function into A, C is a closed
unbounded subset of A. Now we shall prove that

CNS{Jy:a<A)N=CNSKINT,:a<A)).

As (INJ,:a <A) is a representation of I this is enough for showing S(I) = S(J).
The inclusion o is trivial. For the other direction suppose d e CNS({J,: e <
1)). So forsome ne P, {n ln:n<w)}clsbutfor a<é, {(ntn:n<w}l,.

If n¢l, then n e Dom(k), now h(n)e{n n:n<w} (as h(n)<n), hence
h(n) € J5, which implies g(h(n)) <6, but then 1 € J,u¢) =Js, contradiction. So
nel, hence (as IcJ), {n In:n<w}cl hence {n ln:n<w}cINJs;. So g
witnesses 6 € S({(INJ,:a<A)), but trivially 6 e C. So we have proved the
second inclusion hence the claim.

2.9. Lemma. Suppose I, € Ky, |I,|=A for « <Ai. Then we can define J, € K}
(a < A) such that:

@) V=41, c.J,.

(b) S =S(.,).

(c) For a,B <AJy=u,Jp.

(d) If each 1, is [locally] (<A, bs)-stable, then so is each J,

(e) If each L, is locally (A, bs, bs)-nice, then so is each J,.

Notation. For J € K2 let (/)™ = |U, <o P
Proof. Without loss of generality the models I, have pairwise disjoint universes.

Subfact. There are a linear order M, and functions H,, H, from M, onto
Uaer )™, {a: a < A} respectively such that:

(*) If a,b € M,, then for some automorphism g =g, of My,

(A) gla)=b,

(B) (Vc € My)[c #a— H,(c) = Hi(g(c)) A Ha(c) = Hy(g(c))],

(C) M, is (<A, bs)-stable,

(D) M, is (A, bs, bs)-nice,

(E) for every x € Uge; L™, @ <A, the set {c e My: Hi(c)=x, H)(c)=a} is a
dense subset of M,.

Proof of the Subfact. We want to apply A3 of the Appendix. So let ;= u, = A",
fi=4 is a function from Reg(A™) to A (see Al of the Appendix), f(6) =6, and
g1 =g, is a function from A to Reg(A*), g:(@) is a if @ e Reg(A™), gi(a)=Ro
otherwise. Let x, = x> =Ny, and choose (M, P,),<, € K, ,, (exists by A3 of the
Appendix). Let My=M, ({P,:a <A, a ¢ Reg(A")). Now define H,, H, such
that for each a <4, H, | P,, H, | P, are constant (and (E) holds).

Let H;: M — A be defined by: Hy(a)=a & H\(n)€el,.
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Let M = {{a, n):a € My, € Un<s (I, — P=)} be ordered by:

(a1, m){az, 1) iff Myka,<a,ora; =a,,

o= T P § e s e e — - =Dl .. - Dl
M €dy, N2€l,, 0; <& OF @) =dy, 11 €Ly, €L,
n<mor Ny, n,€ P> a,=a, and in I, N, <y 7,.

Taot H(ln M\)_-:n farl=1 92 A H(la n\NX=HAa\ H.({n \ —

LA L2\ \ sy 7}/ Wy, 1UL ¢ — 1, & J LA\, T 7] == L3\l j, sE4\\Cy 7717 ) —

Let for @ <A, cl®le M, be such that H,(c!*!) = the <-m1n1mal element of I,
and Hy(cl*l)y= 1 and for @ <A, y<A4, cl*le M, be such that H,(c!*) = Hy(c!*}),
Hy(cl*)) = y, and w.l.o.g. c}*T=cl*l.

Let (IwE'E <A) be a A-representation of I, for each & <A. Now we shall
define for each o, J,:

hat 2+ §

J, &> MU {n:ne“M, and for some
m, <®, &, <A, y, <A and p, € P (where a(n) = an):
(1) (Vl)[m <i<w > Hn0)=1,)
@ii) (VD[m,<I<w > Hyn())=a],
(iii) if y, <A, then p, € U{la, 18 <7n},
(iv) if y, =4, then m, =0, &, = a,
(v) (VDlm, <I<w—>n(l) = (™, p, 1 (+1)]}.

We shall identify 7 € P2 (n < ) with (#,:/ <n) where 7, = {c!*}, n | I). Note:

(* #) If v, n ey, [<lg(n), [ <lg(v), then
(v(m):m<1)"(n(m):l<m <lg(n)) belongs to J,.

(* *)2 FOI' a’ﬁ<A) Ja F(Un<m P:a) =JB r(Un<w Prllﬂ)

(**); X nePl, v, <A, a<Aand B<A, then € PL.

Now we should prove that J, (o <A) are as required.

Proof of (a). Clearly |J,|=|M|=A and |,|<E,<,IM||"+X{|L]:ne“ M,
y=Hy(n [ 1))} <A hence |J,|=4.

L1720 JICIILC

It is also clear (by the identification after the definition of J,) that I, ¢ J,, and
looking more carefully that I, c.J,.

Proof of (b). We define a function k, with domain Pz — P%. Now, if n e Pl —
P, then y, <A (see (iv) in the definition of J,).

Defined h,(n)=n | (m,+1). By the previous sentence for every 1o,
Hntha(n) =h (o)} < |J¢,y"0| < A. Hence by 2.8, §(1,) = S(J,) (mod D,).

Proof of (c). Let a <p <A. We define below a family %, 4 of partial isomorph-
isms from J, into Jg:

fe%F.p iff (a) fis a partial isomorphism from J, into Jg, the
<-minimal element of J, in its domain,
if n e Dom(f), ! <lg(n), then n |l e Dom(f )

SOV A =g\ ), PRl 1LV

(b)
(c) ifne Dom(f) l<lg(r]) then Suc,a(n I 1) < Dom(f),
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(d) J, I (Domf)c.Ja,
(e) like (b), (c), (d) replacing &, f by B, f .

Now, by 1.4, ¥, g exemplify that J, =, J;.

It is nonempty as the function f, Dom(f) = P, Rang(f) = P{ (it exists and is
unique) belongs to it. Also condition (a) of Theorem 1.4(1) is satisfied. The
proofs of conditions (b) and (c) are in fact identical, so we shall prove (b) only.

Let fe #,5 AcJ,, be such that |[A| <A, W.lo.g. A is closed under initial
segments and if v eJ, — Pl and {v():l<lg(v)} c{p(D):p e A, I <lg(p)}, then
veA. W.lo.g. A is closed, weakening “|A| <A” to “|A — Pl <A”.

As A is regular, by the choice of (I, ¢:&<1) for some y <A:

ANl cl,,.

BE (n 11:neA, n¢Dom(f), n | leDom(f), n | ( +1) ¢ Dom(f)}
and for n € B, let

A, L fyv:ved —Dom(f), @)v | =n}U{n).

We now define by induction on k < w, A’,‘,c;A,,,, increasing in k, such that
[veAL, vIieA, > v IeAl)

Ay={n},

AZ*1=AZU{veA,: for some v' €1, and [, Ig(v) = Ig(v"),
vIileAZ, v (+1)¢ A%,
(Ym)[l=sm<lg(v)—1— v()=v'(D]},

A%+2= A2+ (v e A, :for some [ <lg(v), v | [ € A7*", and

(Ym)[l<m <lg(v) — 1 = Hy(n(l)) <Al}.

Let A* = (Dom f) U {A%:n € B}. Note that each A satisfies:
(@) if n € A%, I <lg(n), then Suc, (n ) = A%,
B) A cc e,

(Y) k<o A* S

We now define by induction on k < w, f, such that

(8) fi € Fup, Dom(f) = A%,

(&) /=1, fu ks
Suppose f; is defined. Let

B, € {n € A*:Suc, (n) N A* =9}
and for n € By, let
Ay={veA,in=sv)

It is enough to define f,., [ A; for each n € B,.
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Case 1: k is odd. We define for ve A},
Fren (V) =fi(m) * (v(m):1g(n) < m <1g(v)).
Case 2: k is even. Let
Ar*={n}U{v:veA;, and Suc, (v) N A; #8}.
Note that [ve A7", lg(n) <I<ig(v)=>v [ le A7"]. Let g =g qu be as in (*),
(A), (B) above. We define f,., | A;* by
Feaa(v) = Fulm) (g (Hov (1)), Ha(v(D))) :1g(n) <1 <1g(¥)).

We leave the inspection that f ., € ¥, 5 and that U, fy € F, g to the reader.

Proof of (d). Assume each I, is locally (<4, bs)-stable.

As M, is (<A, bs)-stable, (by (c)) and for every & <A, 5 €1,, (Suc,(n), <) is
(<A, bs)-stable (by the previous sentence), clearly M is (A, bs)-stable. But for
ne€Jy, <A, (Suc, (), <) =M hence (for & <A)J, is locally (<A, bs)-stable.

Next, suppose each 1, is (<A, bs)-stable. By the previous paragraph J, is locally
(<A, bs)-stable. Let e <A, AcJ,, |A| <A and m < w, and we want to show that
ISt(A, M) <A. Clearly |Sp(A, M)| < [Si(A, M)|™ + Ry, so without loss of gener-
alitym = 1.

As we can increase A (as long as A cJ, A |A| <A) without loss of generality
(V1 € A)[/\i<igenn 11 € A], and

(*) [veDom#h, NA, h,(n)=v = n e A
Now I, is (<A, bs)-stable, hence
{tpus(b, A, J,):b e L} < |{tpus(b, ANL,J,):bel}|
< |{tpus(b, AN, L):bel,} <A
On the other hand by (*)
{tpus(b, A, Ju):bed, — L} <|A|+Ro<A.
Together we get J, (<A, bs)-stable.
Proof of (e). Suppose I, is locally (A, bs,bs)-nice. So for a <4, ne(l,)™,

(Suc, (n), <) is (A, bs, bs)-nice, as also M, is (4, bs, bs)-nice (by (b) clearly M is
(A, bs, bs)-stable). So J, is locally (4, bs, bs)-stable.

2.10. Theorem. There are 2* pairwise non-isomorphic L.. y-equivalent models of
the form EM(I, @), (I € Ky). In fact, we can get that no one is embeddable into
another by an embedding preserving ¢,,, —¢p,.

2.10A. Remark. (1) In fact we have expansions which are pairwise L ;-
equivalent,
(2) Remember, we are assuming 2.1.
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Proof, Let S, {6<A,cfd=Ky} be pairwise disjoint stationary sets. For
6€lU,<2 S, let n5 be an increasing w-sequence converging to 8. Let I, =
(““AU{ns:6€8,}). Clearly S(I,)=S,/D;, 1, € Kg, I, is (<A, bs)-stable and I,
is locally (4, bs, bs)-nice.

Apply the previous lemma and get J, (o <A) such that J, € Ky}, V.| = A; the J,
are pairwise L. -equivalent, S(J,)=S(,)=S./D,, each J, is (<A, bs)-stable
and locally (A, bs, bs)-nice. So clearly the J,’s are pairwise non-isomorphic. By
1.5 the models EM(Q, I,) (for a <A) are pairwise L. ;-equivalent and by 2.4
they are pairwise non-isomorphic. But we want 2* such models not only A. So

without loss of generality each J, is standard.
For any set A ¢ A, |A| = A, let us define J,, a standard member of K. Its set of

2L S GCIITIE J 45 Allealdl HICT]

elements: {( )} U {(o:) N, n€J,, « € A}. The models J, (A c A, |A| =A) are in

theorem. Llearly S(J,) is the union in J’(/‘L)/l);L of 5,/D,(aeA). Soif yeA,
y ¢ B, then S, NS(Jz)=0/D, but S,/D,c=S(J4). As S, is stationary S(J,)#

S(JB).

Remark. We made no use of A =A=* though in Theorem 1.4 we speak about ‘for
every A cJj,, |{A]<A’, as there is a ‘cover’ of power 4, i.e., ‘of smail power’ was
replaced by ‘bounded’.

For singular cardinals the situation is more complicated.

2.11. Discussion. There are, of course, various alternatives to the invariants

Aafinad in 2 8N T at far gmnliocity 1~ LIT1 ha wagnlas T At A —
GO 1l 2.J0(4). At 10T GIIIPLCIYY l\./nl-r|11| o€ fcguiar. ret A=

{@n(%, ,):n <w}, m(0)=1g(x) be as in 1.3.
2.11A. Definition. Let for a A-representation M,

Fm A(M) = {6 <A:cf 8 =Ry, and for every @ € ™ |M|, every countable
subset of tp,(a@, M;) is realized in M,}.

Clearly

2.11B. Fact. F 5 is a D;-invariant.

We would like to have
(*) FZQEM(, @) =5(1)

and even

(%) | |F™ ((EM(]. ®))=S(

\ J ;J £ CS, LA\ ) el

2.11C. Fact. For (*) and (* *) to hold, it is enough to demand

(@) I|=A,1Lis (<A bs)-stable
b) For every n € P., n<w, thereis ve P, n<w.
( n n
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(c) Every interval of ((Suc,(n), <) is uncountable.

(d) T =Th(EM(I, ®)) is stable.

For understanding the proof in the direction ((a) + (b) + (c) = (d))=> (* *)),
see [5, VII3.2].

2.11D. Conclusion. If A >R, + |T}| is regular, T = T;, T (complete) stable but not
superstable, then {F ,(M):M e PC(T,, T)} is P(1)/D;.

2.11E. Fact. In 2.11C if we are satisfied with (*) only, we can weaken (d) to:
(d)! Forn<w,JeKy, M =EM(J, @) there is no A, STy x5, (4, M) > (|A| +
|DP|). Equivalently:
(dy’ For n<w, JeKg there are no a,, b, (a<|®|*) such that EM(I, ®)F

2.11F. Remark. Now 2.11D is interesting as, if (d)’ fails, then for some &'
proper for K,

{EM!(1, ®"):J € K,;} c {EM'(I, ®):1 e K},
and for ¢;, t, e J € K,
EM(J, &Yk ola,, a,) iff Jru <t

where @(x1y1, %27,) = (%1, 7,) for some n. Now for EM(J, @') we can apply
[5, VIII 3.1] (its proof, more exactly) to get a reasonable invariant.

2.11G. Definition. For a A-representation M = (M;:i <A) of an L-Model M, A

a set of L-formulas, m <e let

Fo (M) = {8 <A:if for « < wy, 3, € ™M and p = Av,({a,, a < w,),
M. M\ iS a comnlete (/\ m\ type, then

iVig, £ (Lo

P I MoUUq<o, @, is iealized in M}
2.11H. Fact. For a A>Ty regular, T c T;, T unstable
{ﬂ F2(s)(M):M € PC(T;, T), | M]| =x}
¢,m

is P(L)/ D, (we can for A>|T,|" use Fl. p).
3. The strong limit case

3.1. Theorem. Let A be a strong limit singular cardinal of uncountable cofinality.

There are Ia € K2 (a <2") such that

(D) |l =A.
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) L= =wa1lp.
B) If Lc L', ¢, (n<w), P are as in the conclusion of 1.3, then the models
EM(L,, @), a <2*, are pairwise non-isomorphic.

Remark. We can get “no one embeddable into another (by an embedding

sreserving ¢.. —¢.)" if we act as in Laciais ) £71) coca N
preserving @, 1¢,) 1 We act as in lU Theorem 2. UU), cas€ pj.

Proof. Let k =cf(A), A=Y, A, A, increasing continuous, x < 4,;, 2%<A,,,. Let
Ao = A. We first show

3.2. Claim. There is a linear order M, such that

(a) IM]|| =2

(b) For every Ac M, |A| <A, u <A, there are automorphisms f, (« < u) of M
such that fo,(A) N fE(A) =0 for a #B.

(c) For u<A, in the set {A tAc M, |A|su} there are <2**“-equivalence

Al ccozo £ P zar e laloias £ AL AL LA —
[ST7ANY AN JUI L‘M W’leC ﬂLJMD L/_[ SOHIE GUIOFIOT S | Of ivi, j\/1) = D

Proof. Let for each i <k, N, be a dense strongly A;'-homogeneous linear order

(i.e., if A,B c N,, |A|, |B| < A;, f an isomorphism from M; [ A onto N; [ B, then f

can be extended to an automorphism of N;). We further assume ||N;|| = 2*.
Choose a; € N;. We shall now define M: its set of elements is

{f :f € [ N,, and for all but finitely many i, f(i) = ai}.

The order is the lexicographic order f <g < (F)[f@) <g@) Af ti=g li].

It is easy to check that |M|<1Y {Il;., A;:a finite subset of k} SA<Y,  A; <
|M|| = A, i.e., (a) holds.

Let us prove (b). Choose i such that |A| + u <A;, define B= {n(i):n € A}. So
B is a subset of N,. It is easy to find automorphisms g, of N; for i <y such that
(g«(B): @ < p) are pairwise disjoint (e.g., as we can prove N; is A;"-saturated and
|Bl <|A| <A).

Now we define the automorphisms f, of M: for n € M, f,(n) is a function with
domain k, defined by

[ nG) it
ROl Gy i1

It is easy to check that f, is an automorphism of M, and f,(A) (¢ <u) are

nairwica diginint
Paiiywvise Gi5jOine.

We are left with (c). Again choose i <k such that u +|A|<A;. For every
A c M define:

AD={n(i):neA) (which is &N;).
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It is easy to see that:

(*) If A;, A,c M, f an order preserving function from A, onto A, and for
each i < k there is an automorphism k; of N;, h;(a;) = a; and (V7 € A;)[h;(n())) =
FM))], then we can extend f to an automorphism of M.

The extension f' is simple

F'(m)(E) = h(n).

From (*) (c) is clear (as each N, is strongly A;'-homogeneous, ||N;}| =2*).

3.3. Claim. For M from 3.2 we can find M; (i < k), M; increasing continuous, for
i non-limit ||M||=2%+, and if A, M for a <A;, |A l<A.., then for some
automorphisms f, of M, f,(A,)c M,,,

[a# B> fu(A) N fo(Ap) = 0]
Proof. Immediate.

3.4. Definition. ] € Ky} is called cl-special if:

(@) I =<1, I increasing continuous, |I|<2*+, and ;I

(b) For every n € PL,— P.,, (Suc,(n), < | Sucy(n)) is isomorphic to M (from
Claim 3.2) and let f? be an isomorphism from M onto (Suc,/(n), < [ Suc,(n)).

(c) If n € I, then f} maps M, onto Suc,(n) N I; (M; from 3.3).

(d) I nel,~<1, i successor, Jc {v:v a sequence of length <w, for
I <Min({lg(n), 1g(v)}, v(1) = n(!) and for lg(n) <I<lg(v), v(l) e M}, J closed
under initial segments and has power <4,, then there is a function g = g7, from J
into I, such that

(i) 1g(g(v)) =lg(v) for v eJ,

(ii) g preserve <,

(iii) the range of g is a closed subset of I,

(iv) g(n)=mn,

(v) if n<vel, lg(v)<w, then for some automorphism # of M, for every

v {c) eJ (so ce M) (g(v"{c))=fge) (h(c))
3.5. Claim. If I°, I' are cl-special of power A, then I°=., , I'.

Proof. Let I' =, I’ as in the definition. Let % be the set of functions f such
that:

(1) I° | Dom fc. I° (hence v<<n € Domf = v € Dom f).

(2) I' l Rangfc I

(3) f:I°> I' is a partial isomorphism.

(4) If n € PL and (3v e Domf)[n <v], then {v e PY,,:n<v} < Domf.

(5) If n € PL, (3v e Rangf)[n<v], then {ve P, :n<v} cRangf.

(6) The power of {r:n € Dom f, not <-maximal in Dom f} is <A.

Why is & as required? By the definition of cl-special.



Sh:220

Existence of L., ;-equivalent non-isomorphic models 307

3.6. Construction. We define by induction on i < k, for every function A from A;
to {0, 1} (so really it is a set) a model I, € K{; and functions f7 (n € I, — P%) such
that:

(1) I, has power <2% (if A:4,— {0, 1}).

(2) Forj<i, IA rlichA.

(3) f4 is an isomorphism from M; onto (Suc,,(n), < | Suc,,(n)).

(4) For j<i, fa™%cfy (f n € Lany, — P3™, of course).

(5) For i successor, condition (d) of Definition 3.4 is satisfied.

(6) If i is limit of uncountable cofinality, then (when A:A;,— {0, 1})

Li=UL,.
J<i

(7) 1f i is limit (A €*2), then fy = {f3":j<i, nely}-

(8) If i = & with cf(8) =X, then: for every @, Lc L*, ¢,(x, 7,) (n <w) as in
1.3, |L'|<A;; and A,B:A,—2, A#+ B and a subtree J of I, with splitting in the
n-th level being A", ¥,-,A"=4; and a function F from {{a,:neJ} into
EM(I5, @) then there is an w-branch n of J such that: {¢,(x, a,,):n<w} is
realized in EM(J,, @) iff {¢,.(x, F(a,,)), n <} is not realized in EM(Z, P).

3.7. Why does this guarantee non-isomorphism? Suppose A,B:A—2, A+
BF :EM(1,, &) — EM(l3, ). Let h(n)=Min{i<k:F(a,) € EM(Jgn;, P)}.
The result follows by [6, 2.4].

Theorem. If A=Y, A;, Kk =cfA<A; <A; <A for i <A, A; increasing continuous,
h:“"A — k, then for a club of 8 <k, if cfd =R, there are i, <8, 0 =Up<pins
J € Um<w Hn<m Ai,, the splitting of J in the (n + 1)th level is A;, and h(n) <6 for
nel.

3.8. How to do the construction for demand (8). We list all possible
A, B, ¢,,, D, F by a list of length 2% = 2% We define by induction on <1y a
set Iz of obligations of power <|&| + X, each of the form:

For some A:4s;— 2 and w-branch n = {m:/<w) of Uj<sla; (i.e., m€R)
(m:1<w) has [or does not have] a <-upper bound in I, where (Vj<94)
@D ¢ 1ay)).

The definition of I's. takes care of (8) for A%, B%, L%, ¢5, (L")%, @5 F& J%,
and J& has A} w-branches, so one of them (n%:/<®) was not mentioned in I'®
and (V] < 8)@D[n} ¢4 1]

If for some definition of Iz: compatible with I'Y, {¢,(x, F(a, D):l<w} is
realized, by adding finitely many positive obligations of /5: we can guarantee this,
and by adding “(n::/<w) has no <-bound in I, we guarantee
“{¢u(x, ay):l <w} is not realized in EM(L4:, P)”.

If there is no such Jg, let I'e,; = I; U {(n%:! <) has a <-bound in I,,}. This
guarantees (8).
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3.9. There are no problems in other definitions.

Appendix: on unique linear orders

Al. Context. A, u,, u, are cardinals such that A™ =Max {u,, y,}. For{=1,2, f;
is a function from Reg(u;) = {k:k < y; a regular (infinite cardinal)} into 4, g,is a
function from A onto Reg(y,) such that g,(fi(x)) = k for x € Reg(y,) and [a # B,
gi(@) = g(B) = gi(@) = Ro].

Let for a linear order M = (A, <), M* = (A, >), i.e., its inverse.

A2. Definition. K = K(A, u;, U, f1, f>» &1, &2) is the family of models (M, P,)a<x
such that:

(i) M is a linear order.

(ii) M is the union of X, scattered subsets.

(iiiy Each P, is a dense subset of M.

(iv) (P,:a<A) is a partition of M.

(v) Every increasing sequence in M has length <y, but in every open interval
there are increasing sequences of any length <u,.

(vi) Every decreasing sequence in M has length <u, but in every open interval
there are decreasing sequences of any length <pu,.

(vii) If (a,:i <k) is an increasing bounded sequence in M, X, <k € Reg(u,),
then for some club C of kx, for 6 e CU {k}, {a;:i <} has a least upper bound
which belongs to Pp ).

(viii) If {(a@;:i <k) is a decreasing bounded sequence in M, R, <Kk € Reg(u,),
then for some club C of x, for 6 e CU {k}, {4,:i <} has a least upper bound
which belongs to Py ).

(ix) If x € P,, then cf({ye M:y <x}, <)=gi(a) and cf({y e M:y >x}, >) =
g(a).

A2’'. Definition. For x;, x, (infinite) cardinals <A, K, ,.=K(4, u1, w1, fi, fo
gl: g2) Xl) XZ) iS the famlly Of (M) Pa)a<A € K) Cf(M) =X1’ Cf(M*) =X2'

A3. Claim. For every regular y; <pu;, K,, ,, #9.

Proof. We define by induction on n <w, (M", P}),-, such that:
(i) (M", P"),<, is a submodel of (M"*!, P2, ;.

(i) M” is scattered, and every interval contains a jump.

(iii) (M", P3), <, satisfies from Definition 2: (i), (ii), (iv), first half of (v), first
half of (vi), and (vii), (viii).

(iv) If x € P}, has no immediate predecessor, then cf(M" [ {ye M:y <x})=
gi(a).

(v) If x € P}, has no immediate successor, then cf(M" [ {yeM:y>x})*)=
ga(a).
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(vi) cf(M") = x1, cf((M")*) = x2.
(vii) If x e M"*' — M", thenforsome y,z e M":y <x <z, (Jte M")y <t<z.
(viii) For every y <z in M": A\, P20 (y, 2)" 7 #8, in (y, z)""" there are
increasing sequences of any length <p,, in (y, 2)M""* there are decreasing
sequences of any length <u,.
(ix) cf(M®) =y, cf((M®)*) = x, (note that p; =A™ or u, =A").

There is no problem in this and (U, M", U, P%)s<a is as required.

Remark. Really x, <y, is o.k. if in (v), (vi) of A2 we speak about sequences in
some interval, and allow k= g, in (vii), (viii). We can complicate f; and (vii),
(viii).

Ad. Claim. Every two members of K, ,, are isomorphic.
Proof. Like [2,3.3].

AS5. Claim. Every M € K is (A, bs, bs)-nice and (<A, bs)-stable.
Proof. As in [12, §6, mainly ‘crucial fact’ of p. 217].

A6. Claim. (1) If (A, <,P)ux1€K, Sci, N=(UsesPo <! Uaes Fa)
P.)acs, then N is (<A, bs)-stable and (A, bs, bs)-nice.

(2) If (M, P)u<s€K, x,yeM, gi(x)=gx(y), 8g2(x)=82(y), then there is an
automorphism F of M, F(x) =y, (Vz e M)[z #x = A\, P.(z) = P.(F(2))].

Proof. Check.

A7. Remark. In Al we can change f; as follows: Dom f; = 4, fi(«) is a function
from g,(@) to A when g,(«) > X, (undefined otherwise) such that

(%) if @,B<A, o=<6<g(B), [/(B)I(S)=a, then g(a) = cf(5); moreover, if
in addition cf(8) > R,, then for some increasing continuous #:g,(a)— 8,

d=supRangh and {y<gdla):[f(@)](v)=[£(B)(r(¥))} € Dy

Then in Definition A2, we replace (vii) by (vii)’: if (@;:i <k) is an increasing
sequence in M, which is bounded, then for some club C of k, for every
8 e CU{k}, {a;:i <8} has a least upper bound b; and for 6 <« it belongs to

Pcerico)-
Similarly we can change (viii).
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