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Introduction 

The questions concerning existence of Aronszajn and Souslin trees are of the 
oldest and most dealt-with in modern set theory. 

There are many results about existence of h+-Aronszajn trees for regular 
cardinals A. For these cases the answer is quite complete. (See Jech [6] and 
Kanamory & Magidor [8] for details.) 

The situation is quite different when A is a singular cardinal. There are very few 
results of which the most important (if not the only) are Jensen’s: V = L implies 
K-Aronszajn, K-Souslin and special K-Aronszajn trees exist iff K is not weakly- 
compact [7]. On the other hand, if GCH holds and there are no A+-Souslin trees 
for a singular h, then it follows (combining results of Dodd-Jensen, Mitchel and 
Shelah) that there is an inner model (of ZFC) with many measurable cardinals. 

In 1978 Shelah found a crack in this very stubborn problem by showing that if A 
is a singular cardinal and K is a super-compact one s.t. cof A < K < A, then a weak 
version of q ,* fai1s.l The relevance of this result to our problem was found by 
Donder through a remark of Jensen in [7, pp. 2831 stating that if 2’ = A+, then q ,* 
is equivalent to the existence of a special Aronszajn tree. Shelah, in [lo], had 
shown that the situation can be collapsed down to Xo+l so we get Cons(ZFC + 
there is a super-compact cardinal) implies Cons(ZFC + there are no X,+,-special 
Aronszajn trees). In the X, case (of Silver and Mitchel) the nonexistence 
consistency result for Aronszajn trees followed the result for special Aronszajn 
trees and used similar methods in the proof. 

A natural hope was that the same scheme will work for the Shelah result. 
Maybe for a singular A above a large enough cardinal, there can be no 
A+-Aronszajn trees. If this is true, then maybe by collapsing the large cardinal we 
could get the consistency of : “there are no rC,+,-Aronszajn trees”. In this paper 
we show that this is not the case. 

Theorem 1 shows the consistency with the existence of a super-compact 

’ Ben-David noticed that a strongly compact K suffices for the result. 
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208 S. Ben-David, S. Shelah 

cardinal of existence of Souslin trees for any successor of a singular cardinal. The 
proof is via forcing. 

Theorem 2 shows that the situation of Theorem 1 can be ‘brought’ down to 
obtain the (rather surprising) consistency of “there are no K,+,-special Aronszajn 
trees and yet there are X,+,-Souslin trees” (relative to Cons(ZFC + 2 super- 
compact cardinal) of course). 

Theorem 3 takes a somewhat different approach; imitating Jensen’s construc- 
tion of Souslin trees in L we define q AW, a weaker version of q ,, and show it 
implies the existence of a A+-Souslin tree for a strong limit singular A. s.t. 
2h = d+. The nice property q hP is that it is consistent with the existence of a 
super-compact ordinal between cof(A) and A (0, fails there) so we get another 
proof to Theorem 1. 

Theorem 4 deals with a situation in which k is a limit of super-compact 
cardinals. Now even q i,, fails and we define another principle Of. Theorem 4 
states that “0; + GCH + y is a L-compact cardinal, cof(n) <p <A” imply the 
existence of a h+-Aronszajn tree. Baumgartner showed that 05: is consistent with 
the existence of super-compact cardinal K s.t. y < K 6 A; we show the consistency 
of the full assumption of Theorem 4. 

Theorem 5 gives a A+-Souslin tree under the assumptions of Theorem 4. 
As the first author is a student of the second, we feel it is worth a few lines to 

clarify who is responsible for what in the paper. Theorem 1 was proved by Shelah 
for Aronszajn trees and that was the trigger for the paper. Ben-David improved 
Theorem 1 to get Souslin trees. Shelah conjectured Theorem 3 which was, then, 
proved by Ben-David. Theorem 2 was noticed independently by both authors. 
Shelah proved Theorem 4, and Theorem 5 is a joint result. 

Note added in proof 

After the completion of this paper we have shown that for strong limit singular 
A, if 2’=IZ+, then the existence of a il+-special Aronszajn tree implies the 
existence of a (h+, m)-distributive tree on Iz+. It follows that if there is a 
A+-Aronszajn tree, then necessarily there is a non-special one [l]. 

On the other hand, we proved that the existence of a At-special Aronszajn 
tree does not imply the existence of a non-reflecting stationary set of il+ 
(assuming the consistency, with ZFC of super-compact cardinals) [2]. 

Definitions and notation 

(1) A A+-Aronszajn tree is a tree of height il+ with no il+-branch s.t. the power 
of each of its levels is less than il+. 
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Souslin trees and successors of singular cardinals 209 

(2) A A+-special Aronszajn tree is a A+-Aronszajn tree T s.t. there is a function 
f : T + il satisfying: for any two nodes x, y E T, x <ry $f(x) #f(y). 

(3) A h+-Souslin tree is a tree of height k+ with no antichain of power A+. 

Remark. It is well known (and quite easy to see) that a Souslin tree is always an 
Aronszajn tree and that a special Aronszajn tree is never a Souslin tree. 

(4) Cl, denotes the existence of a sequence (C, : LY < d+) s.t. for any limit ordinal 
IX, C, is a closed unbounded subset of 1y s.t. 

(i) The order type of C, is less than a, and 
(ii) If p is a limit point of C,, then C, = C, fl p. 

Remark. It is quite common to have (i) in the definition replaced by the demand 
IC, 1 c A. It is not hard to prove by induction on m < h+ that the two definitions 
are equivalent. 

(5) Let us fix some notations. (i) For a regular cardinal A, DA denotes the filter 
generated by the closed unbounded subsets of A. 

(ii) For any tree T and an ordinal 4 we let (T), denote the a?s level of T 

(= the set of all nodes in T that have height m). We let I(x) denote the height of a 
node x(= the order type of {y : y <,x}), 

Results 

Theorem 1. For any regular cardinal K and any singular h above it there is a 

forcing notion PT satisfying: 
(i) P; is K-directedly-complete. 

(ii) P; adds no sets of cardinal& c A to the universe. 
(iii) If 2h= A+, then \P;\ = A+ so it collapses no cardinals. 
(iv) Forcing with Pz produces a model of ZFC with a A+-So&in tree. 

Corollaries. (i) Recalling Laver’s super-compact indestructibility theorem, our 
theorem shows the consistency of Souslin trees on successors of singulars above a 
super-compact cardinal. 

(ii) Iterating the forcing we can get a model of “ZFC + there is a super-compact 
cardinal + for every singular A there is a A+-Sot&in tree”. 

Proof. We define a forcing notion P; as follows: any member of P; is of the form 
( T,, F,) where T, is a tree of height h( T,) < A+, h( T,) a successor ordinal and F, 
is a set of functions {f_F : x E T,, t!(x) < a < h (T,)}. Each f,” is a function from K to 
the a’s level of Tp s.t. (i) for every 6 < K, x Srfc( S) and (ii) for every 
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CY<~ < h(T,), (6 :f,“(S)<,f~(S)} E 0,. The order of P; is: (Tp, F,) 6 (T,, F,) if 
T, is an end extension of Tp (as trees) and F, E F,. 

Lemma. (i) For every LX < Iz+, B, = (p E Pn : h(q) > (u} is a dense subset of P;. 
(ii) PT is <K-complete. 

(iii) Forcing with PT adds no sets of cardinality less than il+ to the universe. 
(iv) Forcing with Pf adds a A+-So&in tree. 

Proof of the Lemma. (i) Let p be any member of P;: and LY < h: if h(T,) < a. We 
can add to each node of the maximal level of T, a linearly ordered extension of 
length CC + 1 above it and define a condition of extending p s.t. T, will be T, with 
these extensions. 

(ii) Let (pi: i < p <K) be an increasing set of elements of PT. Define a 
condition p by letting TL = lJ,_, I& and adding to T; a maximal level by 
adjoining one node xi for every (x, i) s.t. x E TI, and i E naCB.+ {j:f,“(j) < 

f:(j)} =Ax, xi is above (f”,(i): a < p} (this is a branch in TL), T, = TL U 
{xi : i E A,, x E TL} and F, = (lJi.+ FJ U {f”, x E TL} where y is f(TA) + 1 and 
f”,(i) = xi (actually f”,( ) d fi i is e ne only for i E A and A is a club in K). We can d 
change the indices of K-many elements of A s.t. {xi : i E A} will be {f”,(i) : i < K} 
and {i : xi = f",(i)} is still a club in K, so no harm is done. It is easy to check that 
P = (T,, F,) is a member of Ph above each pi (i < p). 

(iii) Definition. A forcing notion P is strategically-complete if player I has a 
wining strategy in the following game: Each player in his turn picks a condition pi 
from P above all the conditions that where already picked, player I gets all the 
even moves (including all the limit stages) and player II the odd moves. Player I 
wins if LJi+pi has an upper bound in P. A standard argument shows that if P is 
~-strategically-complete, then forcing with P adds no p-sequences to the 
universe. Let us prove that P; is ,n-strategically-complete for every p < A+. The 
strategy for player I will be as follows: At a successor stage i + 2 let Tpz+, be the 
tree of the last condition chosen by player II. Player I will extend T,,_, by one 
level, for every x E T,;+, this level will contain K-many extensions (xj :j < K) s.t. 
for x E Tpz for all j < K, f?(j) <xi and whenever f:(j) < f$+‘(j), then f?+-‘(j) <xi 

(where 6, 6i+l are the last levels of T,,, Tpx+, respectively). 
To complete the definition of pi+z we have to define FPrt2: Fp,+* = Fpz+, U 

If?+* :x E T,,+,} and the fxS,+* are naturally defined by f:+‘(j) = xi for all x E Tpi+,, 
j < k. It is easy to check that pi+2 is a member of Ph and that it extends picl. We 
are left with the case i limit, in such a case Tpl will be a one-level-extension of 
UaCi Tp,. Let S be lJjCi h(q,), let A be {h(T,) :pj was picked by player I}. For 
each x E UjCi Tp,, for all j < K, UoleA f,“G) is a branch. Let f,“(j) be a one-node 
extension of that branch and F,, = UaCi Fpa U (f,“:x E Umci T,@}. 

(iv) Let G be generic for P; and TG = lJpGc q. By (i), TG is a tree of height 
3L+, each level of T, is a level of some T,, p E Pn so its cardinality is 4 so, once 
we show that each set of pairwise incomparable members of TG has cardinality 
less than A+, we will know that TG is a A+-Souslin tree. 
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So&in trees and successors of singular cardinals 211 

Let A E T, be a maximal p.i.s. (pairwise incomparable set) in V[G], let A be a 
name for A and p* E G s.t. p* #“A is a maximal p.i.s. in TG”, denote 
A II cv = {x EA :I@) < a}. We work in V. (p E P;:p II “A fl h(T,) = u” for some 
set a E V} is dense in P; (as Pt adds no sets of power less than A+ to V). We shall 
restrict ourselves to members of this set. 

Let T- be {x E T:l(x)<h(T)}. 

Claim (a). DA = (p : It “A fl h(q) . IS a maximal p.i.s. in T;“} is dense above p* 

in Pf. 

Proof. For each p * S q construct an increasing sequence (qi:i < w) s.t. q = qO 
and qi+I It “each member of T,< is comparable with a member of A f~ h(T,,+,)” and 
let 4 be sup{q,: i < K} (recall Pf: is <K-complete), 4 E DA. 

Claim (b). DA = (p:p /-“A fl (h(T,) + 1) is a maximal p.i.s. in q”} is dense 
above p* in PT, 

Proof. For p * S q construct an increasing sequence ( qi : i < K) s.t. qO = q and for 
hi = h(Tqz), qi+l It “Vx E TqL V’j < i (f$+l(j) is above a member of A t3 ai+,)“. We 
choose the qi’s by induction on i, at stage i + 1 pick a member qT+* of DA above 
qi and change the last level of Tg,+l and the f;61+1 s.t. for all x E T,< and j < i, 
f?(j) <f:+‘(j) and f:+‘( ‘) I is above a member of A n h(T,+,) (as forced by qi*cI), 

as for all x E T,,, 0’ : f, *63+1(‘j) &f_$+Q)} = 0 (mod DK). The qi+I obtained this way is 
a condition above qi. At limit stages we take sup. Let q be the natural one-level 
extension of lJi_ qi, that is, for each x E lJiiK T,,, xi = {f:(j) : j <i} is a branch 
above x cofinal in UI_ T,< and we let f,“qG) be a one-node extension of it. It is 
easy to check that 4 E DA. 

Claim (c). P* II “A is a set of power GA”. 

Proof. D, is dense above P* and each member p E DA forces “A G A n (h(q) + 
I)“, because if p E G, then T, is an end extension of T,, so for x E T,, 
I(x) > h(T,) implies x is above a member of q’s last level which is forced by p to 
be above a member of A fl h(T,) and as p* forces A to be a p.i.s., no such node 
can belong to A. III 

Theorem 2. If “ZFC + there is a super-compact cardinal” is consistent, then so is 
“ZFC + there is no K, +1 -special Aronszajn tree + there exists K,,,-Souslin trees”. 

Proof. Let K be a super-compact cardinal and let A be the first singular cardinal 
above K. Let us first extend the universe by forcing with P;. In V[PF], K is still a 
super-compact cardinal and there is a A+-Souslin tree. By [lo] there is some 
regular p <K s.t. if we collapse by finite conditions ,U to X, and then 
Levy-collapse K to Xi, we end up with a model in which A. is X, and there are no 
x w+l -special Aronszajn trees. As the iteration of the two collapsing partial orders 
is of size less than A. (in V[P;]), any set of size A+ in our last model has a subset of 
size A+ in V[P,“]. It follows that any A+-Souslin tree in V[P’J remains a 
il+-Souslin tree. 0 
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212 S. Ben-David. S. Shelah 

The ‘classical’ methods for constructiong il+-Souslin trees use Jensen’s prin- 
ciples Cl, and O*+ (see Jensen [7] and Gregory [5]). 

We want to construct a Souslin tree on A+ for a singular A where there exists a 
super-compact cardinal K below it. In such cases if cof(h) < K then 0, fails, so a 
different construction has to be developed. 

We present here two weaker versions of El,, q ih,@ and 0:. For p < A these 
principles are consistent with the existence of super-compact cardinals below A 
(even when A has small cofinality). 

Theorem 3 states that (for any p <A) “I&, + Oh+” implies the existence of a 
A+-Souslin tree. (Recall that by Shelah [II] and Gregory [5], Oh+ is not a strong 
demand and it holds whenever A is a strong limit cardinal and 2* = A+.) 
q h+ fails for all y < k if il is a limit of super-compact cardinals, in such a case 

Cl! comes to our rescue, this principle is consistent for such k’s as well, and 
assuming further that p is a k-strongly compact cardinal we get in Theorem 5 a 
Souslin tree on IZ+. 

Definition. Cl,,, for cardinals p < A, asserts the existence of a sequence (C, : a < 

A+, cof a > p) satisfying: (i) C, is a closed and unbounded subset of cu; (ii) for 
(Y > A, otp(C,) < a; (iii) if y is a limit point of both C, and C,, then 
c, n y = c, n y. 

Remark. Note that for P < FL’ < A, QP 3 Clh,y,. 

Theorem 3. If A is a singular strong limit cardinal, 2’= A+ and Cl,,, holds for 
some p < A, then there exists a So&in tree on II+. 

Proof. By Shelah [ll] our assumptions imply O(S) for any stationary S c h+ s.t. 
Sc_{n<il+:cof(Y#cofh}. As q r,h+Oy,,k for any p < ~1’ <A we may assume 
cof Iz # /_l+. 

Lemma 3.1 (Shelah [ll]). There is a stationary S G {a, < h+:cof a: = p’} and a 
q ,,,-sequence (C, : a < A+, cofa:>p) s.t. if /3 is a limit point of C,, then DES 
only if p = LY (and, of course, (Y E S). 

Proof of the Lemma. Let (CL: a < A+, cof & 2 p) exemplify q i,+ (from our 
assumptions). Let 6 be the first ordinal s.t. S, = {a: : cof a = CL+ and otp(CL) = S} 
is stationary (such 6 exists by Fodor’s Lemma as otp(CL) < a and {(Y : cof a = p+} 
is stationary in A+). Let S be S, and CL = C, if otp(C&) < 6 or a E S, and 
C, = Ck\(Cb, first 6 + 1 elements) if otp(CL) > 6 and a $ S. It is easy to check 
that if p is a limit point of any C,, then p E S or /I = a. 

Let us fix a set S, a O(S)-sequence (A,: (Y ES) and a q ,,,-sequence 
(c,:a<A+, cof A. 2 p, o .$ S) satisfying the demands of the Lemma. 
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The construction of the tree. We define by induction on LY < Ai, T 1 (LX i- 1) 
carrying the following induction hypothesis: 

(i) T I( IY + 1) is a tree of height LY + 1 and each of its levels has no more than h 
nodes. 

(ii) For each node x E T 1 a; and for each p G (Y + 1 there is a one-one function 
fc: p++ (T r (a: + l))a (the B’s level of the tree) s.t. Vi < ,u+ x <*f!(i). 

(iii) x E T r a and h(x) < /3 < y G LY imply {i <p+ :f,P(i) <TfT(i)} belongs to 

D P+. 
(iv) x E T r LX and h(x) < p < y s a! imply that whenever C, is defined and 

/3 < y are limit points of C,, then {i < p+ :fc(i) cTf*y(i)} = ,u+. 
(v) w E S implies that if A, is a maxima1 antichain in T 1 ty then each member of 

(T 1 (ct + l)), is above a member of A,. 

Claim. If each (T 7 IX + 1) sati$es the demands (i)-(v) and T = Unch+ (T 1 LY + 

l), then T is a il+-Souslin tree. 

Proof. By (i), T is a A+-tree and the cardinality of each of its levels is less than 
A+, by (v) we can show it has no il+-antichain. Let A c T be an antichain. As 
(A, : a E S) is a O-sequence, there exists some /3 E S s.t. A r p = A,. By claim (v) 
any x E T s.t. h(x) > /? cannot belong to A as any such x is above a member of 
Tp +I so it is above a member of A, = A 1 p (and A is assumed to be an antichain) 

so IAl s/l. 
Let us show that the construction can be carried on for each LY < ;Cf. 
We assume T 1 c~ is defined and satisfies (i)-(v) and define T r cy + 1. 
Case (a) If E is a successor, then there are no difficulties as no new cases are 

added to the demands (iv), (v). We just split each node of Tp (where a = /3 + 1) to 
il many successors and for each x E T 1 p and i < p+ we pick an arbitrary 
successor of f<(i) to be f:(i), for x E T, we pick as f,“(i) an arbitrary successor of 
X. 

Case (b) (Y is a limit ordinal, cof(a) d p. 
(i) For each x E T 1 (Y let C = ( aP : p < cof N) be an increasing and continuous 

sequence of ordinals increasing to (Y s.t. cr, = I(x). Now for each i E 

n Y<GEC {j:f,‘ti)<f,“o’) <f,“o’)> we add a node y:(i) above lJ,,,,f,f~(i). 
Now if a is not a limit point of any Cp, then we let (T r LY + l), be 

U XCT i a,i<p + (y,“(i)} and define f,“(i) t o b e y,“(i) for all x E T 1 (Y and for almost all 
i (as y,“(i) is defined for a closed unbounded subset of p’). 

(ii) When (Y is a limit point of some C, we should take care of demand (iv). Let 
&, be the minimal /3 s.t. LY is a limit point of CP. If d is the first limit point of C,, 
we may just repeat the construction for (T r LY + l)e of case (b)(i). Otherwise, 
either u is a limit of limit points of CP,,, or there is some pi the maximal limi point 
of CPO below (Y. In the first case by the induction hypothesis for each i <p+, 
lJ {f:(i) : y is a limit point of CPU, h(x) <j < a} is a branch and we just add to it a 
maxima1 node and define f,“(i) to be this node. In the second case we first repeat 
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our basic construction of (T 1 (a + l))n+l (case (b)(i)). Let f:“(i) be the set of 
functions we get this way, so for each X, {i :ffl(i) <J:“(X)} E D,,, and let C, be its 
complement. For each i E C, there is an unbounded branch in T r (Y above f!‘(i) 
(as cof(cu) =S ,u); let t;(i) be a new node at the top of such a branch and define 

Case (c): cof(a) > p. 
(i) a # S, by the induction hypothesis for each i < ,u+, A,” = {f,‘(i) : y is a limit 

point of C,} is a branch for all x E T 1 a. For each such x and i we add a node at 
level (Y above A,” and define f,“(i) to be this node. (The a’s level of T 1 (a + 1) 
will be the set of all these nodes.) 

(ii) a: E S, now we consider the O-sequence. Let A, be its a’s element, if A, is 
not a maximal antichain of T 1 LY. We repeat the construction of case (c)(i). We 
are left with the case A, G T 1 a and is a maximal antichain there and cof a = ,u+. 
First, note that as cof(a) = p+, C, exists so by the induction hypothesis for each 
x E T r a there is a cofinal branch above it (in fact p+ many), as for all i < p+, 

{f!(i) : h(x) < p, f3 a limit point of C,} is such a branch. Note also that as A, is a 
maximal antichain in T 1 cy each node of T r cx is either above a node in A, or it 
has an extension in A,. 

We will define for each x E T 1 (Y, f,” in such a way that for all i < p+, f,“(i) is 
above a node in A,, and let (T r(a + l))& be lJxcTIE {RangeOP,“)}. Let 
B, = {(ui :i < p+} be a cofinal subset of C, or order type cof cr = p+. For each x 
and i let yi be a node above f,“(i) that either belongs to A, or extends a node in 
A,. As noted above such yi always exists and there is always a cofinal (in T r a) 
branch above it, so let f,(i) be a new node at the top of such a branch. As a E S it 
is not a limit point of any C, for p > a, so we do not have to worry about demand 
(iv) at higher stages, and demand (iii) is satisfied as for all x and i, G:f:(i)ST 
f,“(j)} is at least G< p ‘:iSj} and as (c~~:i<p+) is cofinal in 
there is some ai above it and 

ci $33 <rf,“ti)) 2 ci :.EG) 5X%)) f-l ci :f,“‘ti) <rf,“o’)l 

so it is a member of D,+. 

ff for any /3 < LY 

This completes the definition of T. It is easy to check that the induction 
hypotheses hold all through the way. 0 

Definition. 02 asserts the existence of a sequence (C, : A < a < A+, cof(a) < p) 
s.t. C, is a club in cx of order type less than (Y and if 6 is a limit point of C,, then 
c, = c, n 6. 

Theorem 4. Let k be a singular cardinal. Let K be a il-strongly compact cardinal 
s.t. cof A. < K and assume q j: and on, then there is an Aronszajn tree on il+. 
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Remark. The significance of the theorem is that the assumptions are consistent 
with the existence of arbitrary many super-compact cardinals between K and A. 
We may start with any model in which A is a strongly compact cardinal and 
A’ = 2’ (so Oh holds) and K a A-strongly compact cardinal, and then force the 
Q-sequence. Such forcing can be done without disturbing the super-compactness 
of any cardinal between K and A, and without adding subsets to k so the 
A-compactness of K still holds in the generic extension. (For details about forcing 
U-sequences above super-compact cardinals consider (21.) 

Proof of the Theorem. Let us fix a sequence of regular cardinals (K~: i -=c cof A) 
s.t. K~ = K and the sequence is increasing and il is its supremum, and a 
Of-sequence (C,:cof a< K, A < &<A+). Finally let (A,: a ES) be a O*- 
sequence where S 5 A+ is stationary in A+ and cr E S 3 cof( (Y) > K. 

We define T I( cx + 1) by induction on (Y < k+ such that T r (a + 1) should 

satisfy: 
(i) T 1 (a + 1) is a tree if its height is a: and each of its levels has less than il+ 

nodes. 
(ii) For each x E T 1 LY and p s.t. h(x) <p G a there are one-one functions 

(f$:i < cof A> s.t. f$: K~-,(/~'s level of T 1 (a + I)), and for all j < K~, XC 

Tf!,iti>. 

(iii) For p1 < p2 G (Y and x E T 1 a: s.t. OK <PI, there is ix& &) < cof(n) 
s.t. i,(&, &) < i implies {j : f$j) CTfcY_i)} l I&,. 

(iv) If cof(a) < K and p < y < a are limit points of C,, then for all i < cof A and 

for all x E T 1 a s.t. I(x) < p and for all j <K, ff&) <Tfz,i(j). 

(v) If A, is a cofinal branch of T 1 a; then in T r (a + l), A, has no node above 
it (recall that if cof(a) s K, then A, is not defined). 

It is easy to see that if the construction can be carried away for all a < ;l+, then 

U a<l+ T 1 (a + 1) is a A+-Aronszajn tree. Assume T I(/3 + 1) is defined and 
satisfies (i)-(v) for all /I < (Y and let us define T 1 (a + 1). Whenever cof(cu) < K, 

the situation in analogous to cases we have dealt with in the proof of Theorem 3. 
We are left with the case cof(cu) > K. 

Claim. For each x E T 1 cc there is an unbounded B E a on which ix(&, &) is 

bounded. 

Proof. As K is a k-strongly compact cardinal and K 6 cof(a) <A, there is a 
K-complete ultrafilter U on cof(a). Let (pi : i < cof(cy)) be an increasing sequence 
cofinal in a; x E T r a. The function ix(pl, &) is, by (iii) of the induction 
hypothesis, defined for all /3r, p2 < (Y. Define g : cof( Ly)2+ cof(h) by 
g(p, y) zfix(P,, &). As U is K-complete and cof Iz < K, for each y there is some 
6, < cof(d) s.t. A,, = { p :g(p, y) = 6,) E U. And there is a set B s cof(a), B E U 
s.t. yl, y2 f B implies 6,, = 6,,. We claim that g is bounded on B2. Let y,, y2 be 
any two members of B, as AY1, A,, E U there is some y3 CA,,, “A,, s.t. yr, 
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y2 < y3. Now g(ylj y3) = &, g(y2, y3) = by, = $,, (as yl, y2 E B) and we claim 
that g(y17 y2) 6 b,,. To see why this is true recall that g(y,, y3) = a,,, + for all 
i > c$,,, G :f$l~) +f,Br3(j)} E D,,. g(y,, y3) = a,, implies that for all i > By,, 
(i :f$zo’) <&;y,(j)} E D,,. As T 1 a is a tree, yr < y2 < y3 and f!:,(j) CTfflj(j) and 
f$2$.fcT4j) imply ft:ydj) < f$z(j). So, for i > $,, G :f$Jj) Crf$4j)} E D,,, so 
i&,,, &) G dyl, so g(y,y,) G a,,. As U is uniform, B is unbounded in cof(&), so 
(j3, : p E B ) is cofinal in a. This completes the proof of the claim. 

Now we can define T r ((u + 1): Let i, < cof il be an upper bound of 
Rang,(g 1 B2) s.t. cof(cu) < K~~. As DKi is a cof(cu)-complete filter for all i, < i < 
cof(3L), and for all pl, p2 E B, i, < i < cof(h), CPlpz = G :f$T;J CTfc;(j)} E D,, and 

n pl<PzsB CPlpz E D,,, we can now define the o’s level of T 1 (CT + 1) by adding a 
node on top of each branch that has the form iJ,,sf;i(j) (j E np,cptcB C’,J. For 
all i, < i < cof h, define f,S,(j) to be this node and define f;(j) for i c i, or j’s 
outside this set in any arbitrary way that satisfies demand (ii). We repeat the 
construction for each x E T r LY and let (T r (a + l))a be the union of the ranges of 
all the fci (x E T 1 a, i < cof(31)). We do need one more modification. In order to 
satisfy demand (v) we may have to eliminate one node at level a, so we eliminate 
it. No harm can be done as cof(a) > K so C, is not defined, demand (iv) is empty 
of content, and all other demands are formulated in terms of belonging to some 
D,, which is not affected by such a small change. 0 

Theorem 5. For a strong limit singular k s.t. 2A = A+: if there is a /l-strongly 
compact cardinal K, cof(A) > K > h, and 0; holds, then there is a A+-So&in tree. 

Proof. By Shelah [ll] for a strong limit singular A, 2’= A’ and 02 for some K, 

cof(A) < K <A, imply the existence of a set s G A+ s.t. s is stationary, a E s 
implies cof(cu) = cof(A), 0, holds and there is a Cl,“-sequence (C,: a! < A+, 

cof a <K) such that for no LY there is a limit point of C, in S except maybe a 
itself. 

We assume the existence of a such an S and such a Q-sequence and repeat the 
proof of Theorem 4 (using this Ok-sequence) with the following additional 
demand: If LY E S and A, is a maximal antichain in T,, then every member of T, is 
above a member of A,. 

Let us show that it is possible to cary out the inductive construction of our tree 
in such a way that this demand is met. 

We repeat the construction from the proof of Theorem 4 for all the stages a: s.t. 
our new demand does not apply to a. 

Let LY E S, A, a maximal antichain in T,. 
For every x E T, let ( ai : i < cof(A)) be an increasing and cofinal subset of C, 

s.t. I(X) < LYE. For each i < cof(n) and each j E K~, let f,S (j) be any extension of a 
cofinal branch of T, above f,S;(j) through a point in A,. Such an extension always 
exists as A, is a maximal antichain. 
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Let T, be the set of all the f$(j) for all i < cof(A), j < q, x E T,. It is 
straightforward to check that ( T(cx + l), F,,,) defined here satisfy all of our 
inductive demands (note that {q : i < cof(X)} G C, and for f,,, E C,, f$(j) <f$(j) 
for all x, i, j). 

Why is the tree T constructed in such a way a Souslin tree? Let X be any 
maximal antichain in T, there is a closed unbounded subset of A+, C, s.t. 
(II E C + X fl (Y is a maximal antichain in T,. There is also a stationary D s S s.t. 
LY E D j X fl a! = A,. Let (Y belong to D fl C, A, is a maximal antichain in T,, so 

by our last demand all members of T, are above members of A, = X n a, so as X 
is an antichain X s Tc,+lj, so 1x1 d ?L. 0 
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