SOUSLIN TREES AND SUCCESSORS OF SINGULAR CARDINALS

Shai BEN-DAVID and Saharon SHELAH

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

Communicated by A. Nerode Received 1 December 1983

Introduction

The questions concerning existence of Aronszajn and Souslin trees are of the oldest and most dealt-with in modern set theory.

There are many results about existence of λ^+ -Aronszajn trees for regular cardinals λ . For these cases the answer is quite complete. (See Jech [6] and Kanamory & Magidor [8] for details.)

The situation is quite different when λ is a singular cardinal. There are very few results of which the most important (if not the only) are Jensen's: V = L implies κ -Aronszajn, κ -Souslin and special κ -Aronszajn trees exist iff κ is not weakly-compact [7]. On the other hand, if GCH holds and there are no λ^+ -Souslin trees for a singular λ , then it follows (combining results of Dodd–Jensen, Mitchel and Shelah) that there is an inner model (of ZFC) with many measurable cardinals.

In 1978 Shelah found a crack in this very stubborn problem by showing that if λ is a singular cardinal and κ is a super-compact one s.t. $\operatorname{cof} \lambda < \kappa < \lambda$, then a weak version of \Box_{λ}^{*} fails.¹ The relevance of this result to our problem was found by Donder through a remark of Jensen in [7, pp. 283] stating that if $2^{\lambda} = \lambda^{+}$, then \Box_{λ}^{*} is equivalent to the existence of a special Aronszajn tree. Shelah, in [10], had shown that the situation can be collapsed down to $\aleph_{\omega+1}$ so we get Cons(ZFC + there is a super-compact cardinal) implies Cons(ZFC + there are no $\aleph_{\omega+1}$ -special Aronszajn trees). In the \aleph_2 case (of Silver and Mitchel) the nonexistence consistency result for Aronszajn trees followed the result for special Aronszajn trees and used similar methods in the proof.

A natural hope was that the same scheme will work for the Shelah result. Maybe for a singular λ above a large enough cardinal, there can be no λ^+ -Aronszajn trees. If this is true, then maybe by collapsing the large cardinal we could get the consistency of : "there are no $\aleph_{\omega+1}$ -Aronszajn trees". In this paper we show that this is not the case.

Theorem 1 shows the consistency with the existence of a super-compact

¹Ben-David noticed that a strongly compact κ suffices for the result.

0168-0072/86/\$3.50 © 1986, Elsevier Science Publishers B.V. (North-Holland)

cardinal of existence of Souslin trees for any successor of a singular cardinal. The proof is via forcing.

Theorem 2 shows that the situation of Theorem 1 can be 'brought' down to obtain the (rather surprising) consistency of "there are no $\aleph_{\omega+1}$ -special Aronszajn trees and yet there are $\aleph_{\omega+1}$ -Souslin trees" (relative to Cons(ZFC + \exists supercompact cardinal) of course).

Theorem 3 takes a somewhat different approach; imitating Jensen's construction of Souslin trees in L we define $\Box_{\lambda\mu}$, a weaker version of \Box_{λ} , and show it implies the existence of a λ^+ -Souslin tree for a strong limit singular λ s.t. $2^{\lambda} = \lambda^+$. The nice property $\Box_{\lambda\mu}$ is that it is consistent with the existence of a super-compact ordinal between $cof(\lambda)$ and λ (\Box_{λ} fails there) so we get another proof to Theorem 1.

Theorem 4 deals with a situation in which λ is a limit of super-compact cardinals. Now even $\Box_{\lambda\mu}$ fails and we define another principle \Box_{λ}^{μ} . Theorem 4 states that " \Box_{λ}^{μ} + GCH + μ is a λ -compact cardinal, $cof(\lambda) < \mu < \lambda$ " imply the existence of a λ^+ -Aronszajn tree. Baumgartner showed that \Box_{λ}^{μ} is consistent with the existence of super-compact cardinal κ s.t. $\mu < \kappa \leq \lambda$; we show the consistency of the full assumption of Theorem 4.

Theorem 5 gives a λ^+ -Souslin tree under the assumptions of Theorem 4.

As the first author is a student of the second, we feel it is worth a few lines to clarify who is responsible for what in the paper. Theorem 1 was proved by Shelah for Aronszajn trees and that was the trigger for the paper. Ben-David improved Theorem 1 to get Souslin trees. Shelah conjectured Theorem 3 which was, then, proved by Ben-David. Theorem 2 was noticed independently by both authors. Shelah proved Theorem 4, and Theorem 5 is a joint result.

Note added in proof

After the completion of this paper we have shown that for strong limit singular λ , if $2^{\lambda} = \lambda^+$, then the existence of a λ^+ -special Aronszajn tree implies the existence of a (λ^+, ∞) -distributive tree on λ^+ . It follows that if there is a λ^+ -Aronszajn tree, then necessarily there is a non-special one [1].

On the other hand, we proved that the existence of a λ^+ -special Aronszajn tree does not imply the existence of a non-reflecting stationary set of λ^+ (assuming the consistency, with ZFC of super-compact cardinals) [2].

Definitions and notation

(1) A λ^+ -Aronszajn tree is a tree of height λ^+ with no λ^+ -branch s.t. the power of each of its levels is less than λ^+ .

208

(2) A λ^+ -special Aronszajn tree is a λ^+ -Aronszajn tree T s.t. there is a function $f: T \to \lambda$ satisfying: for any two nodes $x, y \in T, x <_T y \Rightarrow f(x) \neq f(y)$.

(3) A λ^+ -Souslin tree is a tree of height λ^+ with no antichain of power λ^+ .

Remark. It is well known (and quite easy to see) that a Souslin tree is always an Aronszajn tree and that a special Aronszajn tree is never a Souslin tree.

(4) \Box_{λ} denotes the existence of a sequence $\langle C_{\alpha} : \alpha < \lambda^+ \rangle$ s.t. for any limit ordinal α , C_{α} is a closed unbounded subset of α s.t.

(i) The order type of C_{α} is less than α , and

(ii) If β is a limit point of C_{α} , then $C_{\beta} = C_{\alpha} \cap \beta$.

Remark. It is quite common to have (i) in the definition replaced by the demand $|C_{\alpha}| \leq \lambda$. It is not hard to prove by induction on $\alpha < \lambda^+$ that the two definitions are equivalent.

(5) Let us fix some notations. (i) For a regular cardinal λ , D_{λ} denotes the filter generated by the closed unbounded subsets of λ .

(ii) For any tree T and an ordinal α , we let $(T)_{\alpha}$ denote the α 's level of T (= the set of all nodes in T that have height α). We let l(x) denote the height of a node x(= the order type of $\{y: y <_T x\}$),

Results

Theorem 1. For any regular cardinal κ and any singular λ above it there is a forcing notion P_{λ}^{κ} satisfying:

- (i) P_{λ}^{κ} is κ -directedly-complete.
- (ii) P_{λ}^{κ} adds no sets of cardinality $\leq \lambda$ to the universe.
- (iii) If $2^{\lambda} = \lambda^+$, then $|P_{\lambda}^{\kappa}| = \lambda^+$ so it collapses no cardinals.
- (iv) Forcing with P_{λ}^{κ} produces a model of ZFC with a λ^+ -Souslin tree.

Corollaries. (i) Recalling Laver's super-compact indestructibility theorem, our theorem shows the consistency of Souslin trees on successors of singulars above a super-compact cardinal.

(ii) Iterating the forcing we can get a model of "ZFC + there is a super-compact cardinal + for every singular λ there is a λ^+ -Souslin tree".

Proof. We define a forcing notion P_{λ}^{κ} as follows: any member of P_{λ}^{κ} is of the form $\langle T_p, F_p \rangle$ where T_p is a tree of height $h(T_p) < \lambda^+$, $h(T_p)$ a successor ordinal and F_p is a set of functions $\{f_x^{\alpha} : x \in T_p, l(x) < \alpha < h(T_p)\}$. Each f_x^{α} is a function from κ to the α 's level of T_p s.t. (i) for every $\delta < \kappa$, $x \leq_T f_x^{\alpha}(\delta)$ and (ii) for every

210

 $\alpha < \beta < h(T_p), \{\delta: f_x^{\alpha}(\delta) <_T f_x^{\beta}(\delta)\} \in D_{\kappa}$. The order of P_{λ}^{κ} is: $\langle T_p, F_o \rangle \leq \langle T_q, F_q \rangle$ if T_q is an end extension of T_p (as trees) and $F_p \subseteq F_q$.

Lemma. (i) For every $\alpha < \lambda^+$, $B_{\alpha} = \{p \in P_{\lambda} : h(T_p) > \alpha\}$ is a dense subset of P_{λ}^{κ} . (ii) P_{λ}^{κ} is $<\kappa$ -complete.

- (iii) Forcing with P_{λ}^{κ} adds no sets of cardinality less than λ^{+} to the universe.
- (iv) Forcing with P_{λ}^{κ} adds a λ^+ -Souslin tree.

Proof of the Lemma. (i) Let p be any member of P_{λ}^{κ} and $\alpha < \lambda_{1}^{+}$ if $h(T_{p}) < \alpha$. We can add to each node of the maximal level of T_{p} a linearly ordered extension of length $\alpha + 1$ above it and define a condition of extending p s.t. T_{q} will be T_{p} with these extensions.

(ii) Let $(p_i: i < \mu < \kappa)$ be an increasing set of elements of P_{λ}^{κ} . Define a condition p by letting $T'_p = \bigcup_{i < \mu} T_{p_i}$ and adding to T'_p a maximal level by adjoining one node x_i for every $\langle x, i \rangle$ s.t. $x \in T'_p$ and $i \in \bigcap_{\alpha < \beta < \mu} \{j: f_x^{\alpha}(j) < f_x^{\beta}(j)\} = Ax$, x_i is above $\{f_{\alpha}^{x}(i): \alpha < \mu\}$ (this is a branch in T'_p), $T_p = T'_p \cup \{x_i: i \in A_x, x \in T'_p\}$ and $F_p = (\bigcup_{i < \mu} F_{p_i}) \cup \{f_x^{\gamma} x \in T'_p\}$ where γ is $f(T'_p) + 1$ and $f_{\gamma}^{x}(i) = x_i$ (actually $f_{\gamma}^{x}(i)$ is defined only for $i \in A$ and A is a club in κ). We can change the indices of κ -many elements of A s.t. $\{x_i: i \in A\}$ will be $\{f_{\gamma}^{x}(i): i < \kappa\}$ and $\{i: x_i = f_{\gamma}^{x}(i)\}$ is still a club in κ , so no harm is done. It is easy to check that $P = \langle T_p, F_p \rangle$ is a member of P_{λ} above each p_i $(i < \mu)$.

(iii) Definition. A forcing notion P is strategically-complete if player I has a wining strategy in the following game: Each player in his turn picks a condition p_i from P above all the conditions that where already picked, player I gets all the even moves (including all the limit stages) and player II the odd moves. Player I wins if $\bigcup_{i < \mu} p_i$ has an upper bound in P. A standard argument shows that if P is μ -strategically-complete, then forcing with P adds no μ -sequences to the universe. Let us prove that P_{λ}^{κ} is μ -strategically-complete for every $\mu < \lambda^+$. The strategy for player I will be as follows: At a successor stage i + 2 let $T_{p_{i+1}}$ be the tree of the last condition chosen by player II. Player I will extend $T_{p_{i-1}}$ by one level, for every $x \in T_{p_{i+1}}$ this level will contain κ -many extensions $\langle x^j : j < \kappa \rangle$ s.t. for $x \in T_{p_i}$ for all $j < \kappa$, $f_x^{\delta_i}(j) < x^j$ and whenever $f_x^{\delta_i}(j) < f_{x}^{\delta_{i+1}}(j)$, then $f_{x}^{\delta_{i+1}}(j) < x^j$ (where δ_i , δ_{i+1} are the last levels of T_{p_i} , $T_{p_{i+1}}$ respectively).

To complete the definition of p_{i+2} we have to define $F_{p_{i+2}}: F_{p_{i+2}} = F_{p_{i+1}} \cup \{f_x^{\delta_{i+2}}: x \in T_{p_{i+1}}\}$ and the $f_x^{\delta_{i+2}}$ are naturally defined by $f_x^{\delta_{i+2}}(j) = x^j$ for all $x \in T_{p_{i+1}}$, j < k. It is easy to check that p_{i+2} is a member of P_{λ} and that it extends p_{i+1} . We are left with the case *i* limit, in such a case T_{p_i} will be a one-level-extension of $\bigcup_{\alpha < i} T_{p_{\alpha}}$. Let δ be $\bigcup_{j < i} h(T_{p_j})$, let A be $\{h(T_{p_j}): p_j \text{ was picked by player I}\}$. For each $x \in \bigcup_{j < i} T_{p_{\gamma}}$ for all $j < \kappa$, $\bigcup_{\alpha \in A} f_x^{\alpha}(j)$ is a branch. Let $f_x^{\delta}(j)$ be a one-node extension of that branch and $F_{p_i} = \bigcup_{\alpha < i} F_{p_{\alpha}} \cup \{f_x^{\delta}: x \in \bigcup_{\alpha < i} T_{p_{\alpha}}\}$.

(iv) Let G be generic for P_{λ}^{κ} and $T_G = \bigcup_{p \in G} T_p$. By (i), T_G is a tree of height λ^+ , each level of T_G is a level of some T_p , $p \in P_{\lambda}$ so its cardinality is $\leq \lambda$ so, once we show that each set of pairwise incomparable members of T_G has cardinality less than λ^+ , we will know that T_G is a λ^+ -Souslin tree.

Let $A \subseteq T_G$ be a maximal p.i.s. (pairwise incomparable set) in V[G], let \tilde{A} be a name for A and $p^* \in G$ s.t. $p^* \Vdash \tilde{A}$ is a maximal p.i.s. in T_G , denote $A \cap \alpha = \{x \in A : l(x) \le \alpha\}$. We work in V. $\{p \in P_{\lambda}^{\kappa} : p \Vdash \tilde{A} \cap h(T_p) = a^{\gamma}\}$ for some set $a \in V\}$ is dense in P_{λ}^{κ} (as P_{λ}^{κ} adds no sets of power less than λ^+ to V). We shall restrict ourselves to members of this set.

Let T^- be $\{x \in T : l(x) < h(T)\}$.

Claim (a). $D_A^- = \{p : \Vdash \tilde{A} \cap h(T_p) \text{ is a maximal p.i.s. in } T_p^- \}$ is dense above p^* in P_{λ}^{κ} .

Proof. For each $p^* \leq q$ construct an increasing sequence $\langle q_i : i < \omega \rangle$ s.t. $q = q_0$ and $q_{i+1} \Vdash$ "each member of T_{q_i} is comparable with a member of $A \cap h(T_{q_{i+1}})$ " and let \bar{q} be $\sup\{q_i : i < \kappa\}$ (recall P_{λ}^{κ} is $<\kappa$ -complete), $\bar{q} \in D_{A}^{-}$.

Claim (b). $D_A = \{p : p \Vdash ``\tilde{A} \cap (h(T_p) + 1) \text{ is a maximal p.i.s. in } T_p``\}$ is dense above p^* in P_{λ}^{κ} .

Proof. For $p^* \leq q$ construct an increasing sequence $\langle q_i: i < \kappa \rangle$ s.t. $q_0 = q$ and for $\delta_i = h(T_{q_i}), q_{i+1} \Vdash \forall x \in T_{q_i} \forall j < i (f_x^{\delta_{i+1}}(j) \text{ is above a member of } \tilde{A} \cap \delta_{i+1})$ ". We choose the q_i 's by induction on *i*, at stage i + 1 pick a member q_{i+1}^* of D_A^- above q_i and change the last level of $T_{q_{i+1}}$ and the $f_x^{*\delta_{i+1}}$ s.t. for all $x \in T_{q_i}$ and j < i, $f_x^{\delta_i}(j) < f_x^{\delta_{i+1}}(j)$ and $f_x^{\delta_{i+1}}(i)$ is above a member of $A \cap h(T_{q_{i+1}})$ (as forced by q_{i+1}^*), as for all $x \in T_q$, $\{j: f_x^{*\delta_{i+1}}(j) \neq f_x^{\delta_{i+1}}(j)\} \equiv \emptyset \pmod{D_\kappa}$. The q_{i+1} obtained this way is a condition above q_i . At limit stages we take sup. Let \bar{q} be the natural one-level extension of $\bigcup_{i < \kappa} q_i$, that is, for each $x \in \bigcup_{i < \kappa} T_{q_i}, x^j = \{f_x^{\delta_i}(j): j < i\}$ is a branch above x cofinal in $\bigcup_{i < \kappa} T_{q_i}$ and we let $f_x^{\delta_i}(j)$ be a one-node extension of it. It is easy to check that $\bar{q} \in D_A$.

Claim (c). $P^* \Vdash ``\tilde{A}$ is a set of power $\leq \lambda$ ''.

Proof. D_a is dense above P^* and each member $p \in D_A$ forces " $\tilde{A} \subseteq \tilde{A} \cap (h(T_p) + 1)$ ", because if $p \in G$, then T_G is an end extension of T_p , so for $x \in T_G$, $l(x) > h(T_p)$ implies x is above a member of T_p 's last level which is forced by p to be above a member of $\tilde{A} \cap h(T_p)$ and as p^* forces A to be a p.i.s., no such node can belong to A.

Theorem 2. If "ZFC + there is a super-compact cardinal" is consistent, then so is "ZFC + there is no $\aleph_{\omega+1}$ -special Aronszajn tree + there exists $\aleph_{\omega+1}$ -Souslin trees".

Proof. Let κ be a super-compact cardinal and let λ be the first singular cardinal above κ . Let us first extend the universe by forcing with P_{λ}^{κ} . In $V[P_{\lambda}^{\kappa}]$, κ is still a super-compact cardinal and there is a λ^+ -Souslin tree. By [10] there is some regular $\mu < \kappa$ s.t. if we collapse by finite conditions μ to \aleph_0 and then Levy-collapse κ to \aleph_1 , we end up with a model in which λ is \aleph_{ω} and there are no $\aleph_{\omega+1}$ -special Aronszajn trees. As the iteration of the two collapsing partial orders is of size less than λ (in $V[P_{\lambda}^{\kappa}]$), any set of size λ^+ in our last model has a subset of size λ^+ in $V[P_{\lambda}^{\kappa}]$. It follows that any λ^+ -Souslin tree in $V[P_{\lambda}^{\kappa}]$ remains a λ^+ -Souslin tree.

The 'classical' methods for constructiong λ^+ -Souslin trees use Jensen's principles \Box_{λ} and \diamondsuit_{λ^+} (see Jensen [7] and Gregory [5]).

We want to construct a Souslin tree on λ^+ for a singular λ where there exists a super-compact cardinal κ below it. In such cases if $cof(\lambda) < \kappa$ then \Box_{λ} fails, so a different construction has to be developed.

We present here two weaker versions of \Box_{λ} , $\Box_{\lambda,\mu}$ and \Box_{λ}^{μ} . For $\mu < \lambda$ these principles are consistent with the existence of super-compact cardinals below λ (even when λ has small cofinality).

Theorem 3 states that (for any $\mu < \lambda$) " $\Box_{\lambda,\mu} + \diamondsuit_{\lambda^+}$ " implies the existence of a λ^+ -Souslin tree. (Recall that by Shelah [11] and Gregory [5], \diamondsuit_{λ^+} is not a strong demand and it holds whenever λ is a strong limit cardinal and $2^{\lambda} = \lambda^+$.)

 $\Box_{\lambda,\mu}$ fails for all $\mu < \lambda$ if λ is a limit of super-compact cardinals, in such a case \Box_{λ}^{μ} comes to our rescue, this principle is consistent for such λ 's as well, and assuming further that μ is a λ -strongly compact cardinal we get in Theorem 5 a Souslin tree on λ^+ .

Definition. $\Box_{\lambda,\mu}$ for cardinals $\mu < \lambda$, asserts the existence of a sequence $\langle C_{\alpha} : \alpha < \lambda^{+}$, cof $\alpha > \mu \rangle$ satisfying: (i) C_{α} is a closed and unbounded subset of α ; (ii) for $\alpha > \lambda$, otp $(C_{\alpha}) < \alpha$; (iii) if γ is a limit point of both C_{α} and C_{β} , then $C_{\alpha} \cap \gamma = C_{\beta} \cap \gamma$.

Remark. Note that for $\mu < \mu' < \lambda$, $\Box_{\lambda,\mu} \Rightarrow \Box_{\lambda,\mu'}$.

Theorem 3. If λ is a singular strong limit cardinal, $2^{\lambda} = \lambda^+$ and $\Box_{\lambda,\mu}$ holds for some $\mu < \lambda$, then there exists a Souslin tree on λ^+ .

Proof. By Shelah [11] our assumptions imply $\Diamond(S)$ for any stationary $S \subseteq \lambda^+$ s.t. $S \subseteq \{\alpha < \lambda^+ : \operatorname{cof} \alpha \neq \operatorname{cof} \lambda\}$. As $\Box_{\mu,\lambda} \Rightarrow \Box_{\mu',\lambda}$ for any $\mu < \mu' < \lambda$ we may assume $\operatorname{cof} \lambda \neq \mu^+$.

Lemma 3.1 (Shelah [11]). There is a stationary $S \subseteq \{\alpha < \lambda^+ : \operatorname{cof} \alpha = \mu^+\}$ and a $\Box_{\lambda,\mu}$ -sequence $\langle C_{\alpha} : \alpha < \lambda^+, \operatorname{cof} \alpha > \mu \rangle$ s.t. if β is a limit point of C_{α} , then $\beta \in S$ only if $\beta = \alpha$ (and, of course, $\alpha \in S$).

Proof of the Lemma. Let $\langle C'_{\alpha} : \alpha < \lambda^+$, $\operatorname{cof} \alpha \ge \mu \rangle$ exemplify $\Box_{\lambda,\mu}$ (from our assumptions). Let δ be the first ordinal s.t. $S_{\delta} = \{\alpha : \operatorname{cof} \alpha = \mu^+ \text{ and } \operatorname{otp}(C'_{\alpha}) = \delta\}$ is stationary (such δ exists by Fodor's Lemma as $\operatorname{otp}(C'_{\alpha}) < \alpha$ and $\{\alpha : \operatorname{cof} \alpha = \mu^+\}$ is stationary in λ^+). Let S be S_{δ} and $C'_{\alpha} = C_{\alpha}$ if $\operatorname{otp}(C'_{\alpha}) < \delta$ or $\alpha \in S$, and $C_{\alpha} = C'_{\alpha} \setminus (C'_{\alpha} \text{ first } \delta + 1 \text{ elements})$ if $\operatorname{otp}(C'_{\alpha}) > \delta$ and $\alpha \notin S$. It is easy to check that if β is a limit point of any C_{α} , then $\beta \in S$ or $\beta = \alpha$.

Let us fix a set S, a $\Diamond(S)$ -sequence $\langle A_{\alpha} : \alpha \in S \rangle$ and a $\Box_{\lambda,\mu}$ -sequence $\langle C_{\alpha} : \alpha < \lambda^+, \operatorname{cof} \lambda \ge \mu, \alpha \notin S \rangle$ satisfying the demands of the Lemma.

Sh:203

212

The construction of the tree. We define by induction on $\alpha < \lambda^+$, $T \upharpoonright (\alpha + 1)$ carrying the following induction hypothesis:

(i) $T \upharpoonright (\alpha + 1)$ is a tree of height $\alpha + 1$ and each of its levels has no more than λ nodes.

(ii) For each node $x \in T \upharpoonright \alpha$, and for each $\beta \le \alpha + 1$ there is a one-one function $f_x^{\beta}: \mu^+ \to (T \upharpoonright (\alpha + 1))_{\beta}$ (the β 's level of the tree) s.t. $\forall i < \mu^+ x <_T f_x^{\beta}(i)$.

(iii) $x \in T \upharpoonright \alpha$ and $h(x) < \beta < \gamma \le \alpha$ imply $\{i < \mu^+ : f_x^\beta(i) < T_x^\gamma(i)\}$ belongs to D_{μ^+} .

(iv) $x \in T \upharpoonright \alpha$ and $h(x) < \beta < \gamma \le \alpha$ imply that whenever C_{α} is defined and $\beta < \gamma$ are limit points of C_{α} , then $\{i < \mu^+ : f_x^\beta(i) < T_x^\gamma(i)\} = \mu^+$.

(v) $\alpha \in S$ implies that if A_{α} is a maximal antichain in $T \upharpoonright \alpha$ then each member of $(T \upharpoonright (\alpha + 1))_{\alpha}$ is above a member of A_{α} .

Claim. If each $(T \upharpoonright \alpha + 1)$ satisfies the demands (i)–(v) and $T = \bigcup_{\alpha < \lambda^+} (T \upharpoonright \alpha + 1)$, then T is a λ^+ -Souslin tree.

Proof. By (i), *T* is a λ^+ -tree and the cardinality of each of its levels is less than λ^+ , by (v) we can show it has no λ^+ -antichain. Let $A \subseteq T$ be an antichain. As $\langle A_{\alpha} : \alpha \in S \rangle$ is a \diamondsuit -sequence, there exists some $\beta \in S$ s.t. $A \upharpoonright \beta = A_{\beta}$. By claim (v) any $x \in T$ s.t. $h(x) > \beta$ cannot belong to *A* as any such *x* is above a member of $T_{\beta+1}$ so it is above a member of $A_{\beta} = A \upharpoonright \beta$ (and *A* is assumed to be an antichain) so $|A| \leq \lambda$.

Let us show that the construction can be carried on for each $\alpha < \lambda^+$.

We assume $T \upharpoonright \alpha$ is defined and satisfies (i)–(v) and define $T \upharpoonright \alpha + 1$.

Case (a) If α is a successor, then there are no difficulties as no new cases are added to the demands (iv), (v). We just split each node of T_{β} (where $a = \beta + 1$) to λ many successors and for each $x \in T \upharpoonright \beta$ and $i < \mu^+$ we pick an arbitrary successor of $f_x^{\beta}(i)$ to be $f_x^{\alpha}(i)$, for $x \in T_{\beta}$ we pick as $f_x^{\alpha}(i)$ an arbitrary successor of x.

Case (b) α is a limit ordinal, $cof(\alpha) \leq \mu$.

(i) For each $x \in T \upharpoonright \alpha$ let $C = \langle \alpha_{\rho} : \rho < \operatorname{cof} \alpha \rangle$ be an increasing and continuous sequence of ordinals increasing to α s.t. $\alpha_0 = l(x)$. Now for each $i \in \bigcap_{\gamma < \delta \in C} \{j : f_x^{\gamma}(j) < f_x^{\delta}(j) < f_x^{\delta}(j)\}$ we add a node $y_x^{\alpha}(i)$ above $\bigcup_{\rho < \operatorname{cof} \alpha} f_x^{\alpha}(i)$.

Now if α is not a limit point of any C_{β} , then we let $(T \upharpoonright \alpha + 1)_{\alpha}$ be $\bigcup_{x \in T \upharpoonright \alpha, i < \mu^+} \{y_x^{\alpha}(i)\}$ and define $f_x^{\alpha}(i)$ to be $y_x^{\alpha}(i)$ for all $x \in T \upharpoonright \alpha$ and for almost all i (as $y_x^{\alpha}(i)$ is defined for a closed unbounded subset of μ^+).

(ii) When α is a limit point of some C_{β} we should take care of demand (iv). Let β_0 be the minimal β s.t. α is a limit point of C_{β} . If α is the first limit point of C_{β} , we may just repeat the construction for $(T \upharpoonright \alpha + 1)_{\alpha}$ of case (b)(i). Otherwise, either α is a limit of limit points of C_{β_0} , or there is some β_1 the maximal limi point of C_{β_0} below α . In the first case by the induction hypothesis for each $i < \mu^+$, $\bigcup \{f_x^{\alpha}(i): \gamma \text{ is a limit point of } C_{\beta_0}, h(x) < j < \alpha\}$ is a branch and we just add to it a maximal node and define $f_x^{\alpha}(i)$ to be this node. In the second case we first repeat

214

S. Ben-David, S. Shelah

our basic construction of $(T \upharpoonright (\alpha + 1))_{\alpha+1}$ (case (b)(i)). Let $f'_x(i)$ be the set of functions we get this way, so for each x, $\{i: f_x^{\beta_1}(i) <_T f'^{\alpha}_x(x)\} \in D_{\mu\nu}$ and let C_x be its complement. For each $i \in C_x$ there is an unbounded branch in $T \upharpoonright \alpha$ above $f_x^{\beta_1}(i)$ (as $cof(\alpha) \le \mu$); let $t_x^{\alpha}(i)$ be a new node at the top of such a branch and define

$$f_x^{\alpha}(i) = \begin{cases} f_x'^{\alpha}(i) & \text{if } i \notin C_x, \\ t_x^{\alpha}(i) & \text{if } i \in C_x. \end{cases}$$

Case (c): $cof(\alpha) > \mu$.

(i) $\alpha \notin S$, by the induction hypothesis for each $i < \mu^+$, $A_x^{\alpha} = \{f_x^{\alpha}(i) : \gamma \text{ is a limit} point of <math>C_{\alpha}\}$ is a branch for all $x \in T \upharpoonright \alpha$. For each such x and i we add a node at level α above A_x^{α} and define $f_x^{\alpha}(i)$ to be this node. (The α 's level of $T \upharpoonright (\alpha + 1)$ will be the set of all these nodes.)

(ii) $\alpha \in S$, now we consider the \diamondsuit -sequence. Let A_{α} be its α 's element, if A_{α} is not a maximal antichain of $T \upharpoonright \alpha$. We repeat the construction of case (c)(i). We are left with the case $A_{\alpha} \subseteq T \upharpoonright \alpha$ and is a maximal antichain there and cof $\alpha = \mu^+$. First, note that as $cof(\alpha) = \mu^+$, C_{α} exists so by the induction hypothesis for each $x \in T \upharpoonright \alpha$ there is a cofinal branch above it (in fact μ^+ many), as for all $i < \mu^+$, $\{f_x^{\beta}(i):h(x) < \beta, \beta \text{ a limit point of } C_{\alpha}\}$ is such a branch. Note also that as A_{α} is a maximal antichain in $T \upharpoonright \alpha$ each node of $T \upharpoonright \alpha$ is either above a node in A_{α} or it has an extension in A_{α} .

We will define for each $x \in T \upharpoonright \alpha$, f_x^{α} in such a way that for all $i < \mu^+$, $f_x^{\alpha}(i)$ is above a node in A_{α} , and let $(T \upharpoonright (\alpha + 1))_{\alpha}$ be $\bigcup_{x \in T \upharpoonright \alpha} \{\text{Range}(f_x^{\alpha})\}$. Let $B_{\alpha} = \{\alpha_i : i < \mu^+\}$ be a cofinal subset of C_{α} or order type $\operatorname{cof} \alpha = \mu^+$. For each xand i let y_x^i be a node above $f_x^{\alpha_i}(i)$ that either belongs to A_{α} or extends a node in A_{α} . As noted above such y_x^i always exists and there is always a cofinal (in $T \upharpoonright \alpha$) branch above it, so let $f_x(i)$ be a new node at the top of such a branch. As $\alpha \in S$ it is not a limit point of any C_{β} for $\beta > \alpha$, so we do not have to worry about demand (iv) at higher stages, and demand (iii) is satisfied as for all x and i, $\{j:f_x^{\alpha_i}(j) \leq_T f_x^{\alpha_i}(j)\}$ is at least $\{j < \mu^+ : i \leq j\}$ and as $\langle \alpha_i : i < \mu^+ \rangle$ is cofinal in α for any $\beta < \alpha$ there is some α_i above it and

$$\{j: f_x^{\beta}(j) <_T f_x^{\alpha}(j)\} \supseteq \{j: f_x^{\beta}(j) <_T f_x^{\alpha}(j)\} \cap \{j: f_x^{\alpha}(j) <_T f_x^{\alpha}(j)\}$$

so it is a member of D_{μ^+} .

This completes the definition of T. It is easy to check that the induction hypotheses hold all through the way.

Definition. \Box_{λ}^{μ} asserts the existence of a sequence $\langle C_{\alpha} : \lambda < \alpha < \lambda^{+}, \operatorname{cof}(\alpha) < \mu \rangle$ s.t. C_{α} is a club in α of order type less than α and if δ is a limit point of C_{α} , then $C_{\delta} = C_{\alpha} \cap \delta$.

Theorem 4. Let λ be a singular cardinal. Let κ be a λ -strongly compact cardinal s.t. $\operatorname{cof} \lambda < \kappa$ and assume \Box_{λ}^{κ} and \diamondsuit_{λ} , then there is an Aronszajn tree on λ^+ .

Remark. The significance of the theorem is that the assumptions are consistent with the existence of arbitrary many super-compact cardinals between κ and λ . We may start with any model in which λ is a strongly compact cardinal and $\lambda^+ = 2^{\lambda}$ (so \diamondsuit_{λ} holds) and κ a λ -strongly compact cardinal, and then force the \Box_{λ}^{κ} -sequence. Such forcing can be done without disturbing the super-compactness of any cardinal between κ and λ , and without adding subsets to λ so the λ -compactness of κ still holds in the generic extension. (For details about forcing \Box -sequences above super-compact cardinals consider [2].)

Proof of the Theorem. Let us fix a sequence of regular cardinals $\langle \kappa_i : i < \operatorname{cof} \lambda \rangle$ s.t. $\kappa_0 = \kappa$ and the sequence is increasing and λ is its supremum, and a \Box_{λ}^{κ} -sequence $\langle C_{\alpha} : \operatorname{cof} \alpha < \kappa, \lambda < \alpha < \lambda^+ \rangle$. Finally let $\langle A_{\alpha} : \alpha \in S \rangle$ be a \Diamond_{λ} sequence where $S \subseteq \lambda^+$ is stationary in λ^+ and $\alpha \in S \Rightarrow \operatorname{cof}(\alpha) > \kappa$.

We define $T \upharpoonright (\alpha + 1)$ by induction on $\alpha < \lambda^+$ such that $T \upharpoonright (\alpha + 1)$ should satisfy:

(i) $T \upharpoonright (\alpha + 1)$ is a tree if its height is α and each of its levels has less than λ^+ nodes.

(ii) For each $x \in T \upharpoonright \alpha$ and β s.t. $h(x) < \beta \le \alpha$ there are one-one functions $\langle f_{x,i}^{\beta}: i < \operatorname{cof} \lambda \rangle$ s.t. $f_{x,i}^{\beta}: \kappa_i \to (\beta$'s level of $T \upharpoonright (\alpha + 1))$, and for all $j < \kappa_i$, $x < _{T} f_{x,i}^{\beta}(j)$.

(iii) For $\beta_1 < \beta_2 \le \alpha$ and $x \in T \upharpoonright \alpha$ s.t. $h(x)\kappa < \beta_1$, there is $i_x(\beta_1, \beta_2) < \operatorname{cof}(\lambda)$ s.t. $i_x(\beta_1, \beta_2) < i$ implies $\{j: f_{x_i}^{\beta_1}(j) < f_{x_i}^{\beta_2}(j)\} \in D_{\kappa_i}$.

(iv) If $cof(\alpha) < \kappa$ and $\beta < \gamma < \alpha$ are limit points of C_{α} , then for all $i < cof \lambda$ and for all $x \in T \upharpoonright \alpha$ s.t. $l(x) < \beta$ and for all $j < \kappa$, $f_{x,i}^{\beta}(j) <_T f_{x,i}^{\gamma}(j)$.

(v) If A_{α} is a cofinal branch of $T \upharpoonright \alpha$, then in $T \upharpoonright (\alpha + 1)$, A_{α} has no node above it (recall that if $cof(\alpha) \le \kappa$, then A_{α} is not defined).

It is easy to see that if the construction can be carried away for all $\alpha < \lambda^+$, then $\bigcup_{\alpha < \lambda^+} T \upharpoonright (\alpha + 1)$ is a λ^+ -Aronszajn tree. Assume $T \upharpoonright (\beta + 1)$ is defined and satisfies (i)-(v) for all $\beta < \alpha$ and let us define $T \upharpoonright (\alpha + 1)$. Whenever $cof(\alpha) < \kappa$, the situation in analogous to cases we have dealt with in the proof of Theorem 3. We are left with the case $cof(\alpha) > \kappa$.

Claim. For each $x \in T \upharpoonright \alpha$ there is an unbounded $B \subseteq \alpha$ on which $i_x(\beta_1, \beta_2)$ is bounded.

Proof. As κ is a λ -strongly compact cardinal and $\kappa \leq \operatorname{cof}(\alpha) < \lambda$, there is a κ -complete ultrafilter U on $\operatorname{cof}(\alpha)$. Let $\langle \beta_i : i < \operatorname{cof}(\alpha) \rangle$ be an increasing sequence cofinal in α , $x \in T \upharpoonright \alpha$. The function $i_x(\beta_1, \beta_2)$ is, by (iii) of the induction hypothesis, defined for all $\beta_1, \beta_2 < \alpha$. Define $g : \operatorname{cof}(\alpha)^2 \to \operatorname{cof}(\lambda)$ by $g(\rho, \gamma) \stackrel{\text{def}}{=} i_x(\beta_\rho, \beta_\gamma)$. As U is κ -complete and $\operatorname{cof} \lambda < \kappa$, for each γ there is some $\delta_{\gamma} < \operatorname{cof}(\lambda)$ s.t. $A_{\gamma} = \{\rho : g(\rho, \gamma) = \delta_{\gamma}\} \in U$. And there is a set $B \leq \operatorname{cof}(\alpha), B \in U$ s.t. $\gamma_1, \gamma_2 \in B$ implies $\delta_{\gamma_1} = \delta_{\gamma_2}$. We claim that g is bounded on B^2 . Let γ_1, γ_2 be any two members of B, as $A_{\gamma_1}, A_{\gamma_2} \in U$ there is some $\gamma_3 \in A_{\gamma_1} \cap A_{\gamma_2}$ s.t. γ_1 ,

S. Ben-David, S. Shelah

 $\gamma_2 < \gamma_3$. Now $g(\gamma_1, \gamma_3) = \delta_{\gamma_1}$, $g(\gamma_2, \gamma_3) = \delta_{\gamma_2} = \delta_{\gamma_1}$ (as $\gamma_1, \gamma_2 \in B$) and we claim that $g(\gamma_1, \gamma_2) \leq \delta_{\gamma_1}$. To see why this is true recall that $g(\gamma_1, \gamma_3) = \delta_{\gamma_1} \Rightarrow$ for all $i > \delta_{\gamma_1}$, $\{j: f_{x_1}^{\beta_{\gamma_1}}(j) < _T f_{x_1}^{\beta_{\gamma_3}}(j)\} \in D_{\kappa_i}$, $g(\gamma_2, \gamma_3) = \delta_{\gamma_1}$ implies that for all $i > \delta_{\gamma_1}$, $\{j: f_{x_1}^{\beta_{\gamma_2}}(j) < _T f_{x_1}^{\beta_{\gamma_3}}(j)\} \in D_{\kappa_i}$. As $T \upharpoonright \alpha$ is a tree, $\gamma_1 < \gamma_2 < \gamma_3$ and $f_{x_1}^{\beta_{\gamma_1}}(j) < _T f_{x_1}^{\beta_{\gamma_3}}(j)$ and $f_{x_1}^{\beta_{\gamma_2}} < _T f_{x_1}^{\beta_{\gamma_3}}(j)$ imply $f_{x_1}^{\beta_{\gamma_1}}(j) < f_{x_1}^{\beta_{\gamma_2}}(j)$. So, for $i > \delta_{\gamma_1}$, $\{j: f_{x_1}^{\beta_{\gamma_1}}(j) < _T f_{x_1}^{\beta_{\gamma_2}}(j)\} \in D_{\kappa_i}$, so $i_x(\beta_{\gamma_1}, \beta_{\gamma_2}) \leq \delta_{\gamma_1}$, so $g(\gamma_1\gamma_2) \leq \delta_{\gamma_1}$. As U is uniform, B is unbounded in cof(α), so $\langle \beta_{\rho}: \rho \in B \rangle$ is cofinal in α . This completes the proof of the claim.

Now we can define $T \upharpoonright (\alpha + 1)$: Let $i_0 < \operatorname{cof} \lambda$ be an upper bound of $\operatorname{Rang}_e(g \upharpoonright B^2)$ s.t. $\operatorname{cof}(\alpha) < \kappa_{i_0}$. As D_{κ_i} is a $\operatorname{cof}(\alpha)$ -complete filter for all $i_0 < i < \operatorname{cof}(\lambda)$, and for all ρ_1 , $\rho_2 \in B$, $i_0 < i < \operatorname{cof}(\lambda)$, $C_{\rho_1\rho_2} = \{j: f_{\kappa_i}^{\rho_i}(j) < f_{\kappa_i}^{\rho_2}(j)\} \in D_{\kappa_i}$ and $\bigcap_{\rho_1 < \rho_2 \in B} C_{\rho_1\rho_2} \in D_{\kappa_i}$, we can now define the σ 's level of $T \upharpoonright (\alpha + 1)$ by adding a node on top of each branch that has the form $\bigcup_{\rho \in B} f_{\kappa_i}^{\rho_i}(j)$ ($j \in \bigcap_{\rho_1 < \rho_2 \in B} C_{\rho_1\rho_2}$). For all $i_0 < i < \operatorname{cof} \lambda$, define $f_{\kappa_i}^{\alpha}(j)$ to be this node and define $f_{\kappa_i}^{\alpha}(j)$ for $i \leq i_0$ or j's outside this set in any arbitrary way that satisfies demand (ii). We repeat the construction for each $x \in T \upharpoonright \alpha$ and let $(T \upharpoonright (\alpha + 1))_{\alpha}$ be the union of the ranges of all the $f_{\kappa_i}^{\alpha}(x \in T \upharpoonright \alpha, i < \operatorname{cof}(\lambda))$. We do need one more modification. In order to satisfy demand (v) we may have to eliminate one node at level α , so we eliminate it. No harm can be done as $\operatorname{cof}(\alpha) > \kappa$ so C_{α} is not defined, demand (iv) is empty of content, and all other demands are formulated in terms of belonging to some D_{κ_i} , which is not affected by such a small change.

Theorem 5. For a strong limit singular λ s.t. $2^{\lambda} = \lambda^+$: if there is a λ -strongly compact cardinal κ , $cof(\lambda) > \kappa > \lambda$, and \Box_{λ}^{κ} holds, then there is a λ^+ -Souslin tree.

Proof. By Shelah [11] for a strong limit singular λ , $2^{\lambda} = \lambda^{+}$ and \Box_{λ}^{κ} for some κ , $cof(\lambda) < \kappa < \lambda$, imply the existence of a set $S \subseteq \lambda^{+}$ s.t. S is stationary, $\alpha \in S$ implies $cof(\alpha) = cof(\lambda)$, \diamondsuit_{S} holds and there is a \Box_{λ}^{κ} -sequence $\langle C_{\alpha} : \alpha < \lambda^{+}, cof \alpha < \kappa \rangle$ such that for no α there is a limit point of C_{α} in S except maybe α itself.

We assume the existence of a such an S and such a \Box_{κ}^{λ} -sequence and repeat the proof of Theorem 4 (using this $\bigotimes_{\kappa}^{\lambda}$ -sequence) with the following additional demand: If $\alpha \in S$ and A_{α} is a maximal antichain in T_{α} , then every member of T_{α} is above a member of A_{α} .

Let us show that it is possible to cary out the inductive construction of our tree in such a way that this demand is met.

We repeat the construction from the proof of Theorem 4 for all the stages α s.t. our new demand does not apply to α .

Let $\alpha \in S$, A_{α} a maximal antichain in T_{α} .

For every $x \in T_{\alpha}$ let $\langle \alpha_i : i < cof(\lambda) \rangle$ be an increasing and cofinal subset of C_{α} s.t. $l(x) < \alpha_0$. For each $i < cof(\lambda)$ and each $j \in \kappa_i$, let f_x^{α} , (j) be any extension of a cofinal branch of T_{α} above $f_{x,i}^{\alpha_i}(j)$ through a point in A_{α} . Such an extension always exists as A_{α} is a maximal antichain.

Let T_{α} be the set of all the $f_{x,i}^{\alpha}(j)$ for all $i < cof(\lambda)$, $j < \kappa_i$, $x \in T_{\alpha}$. It is straightforward to check that $\langle T(\alpha + 1), F_{\alpha+1} \rangle$ defined here satisfy all of our inductive demands (note that $\{\alpha_i : i < cof(X)\} \subseteq C_{\alpha}$ and for $f_{x,y} \in C_{\alpha}$, $f_{x,i}^{\beta}(j) < f_{x,i}^{\gamma}(j)$ for all x, i, j).

Why is the tree T constructed in such a way a Souslin tree? Let X be any maximal antichain in T, there is a closed unbounded subset of λ^+ , C, s.t. $\alpha \in C \Rightarrow X \cap \alpha$ is a maximal antichain in T_{α} . There is also a stationary $D \subseteq S$ s.t. $\alpha \in D \Rightarrow X \cap \alpha = A_{\alpha}$. Let α belong to $D \cap C$, A_{α} is a maximal antichain in T_{α} , so by our last demand all members of T_{α} are above members of $A_{\alpha} = X \cap \alpha$, so as X is an antichain $X \subseteq T_{(\alpha+1)}$, so $|X| \leq \lambda$.

References

- [1] S. Ben-David and S. Shelah, Non-special Aronszajn trees on $\aleph_{\omega+1}$, Israel J. Math., to appear.
- [2] S. Ben-David and S. Shelah, \Box_{λ}^{*} does not guarantee a non-reflecting stationary subset of λ^{+} , in preparation.
- [3] S. Ben-David and M. Magidor, The weak □* is really weaker than the full □, J. Symbolic Logic, to appear.
- [4] S. Ben-David, A properness axiom of super-compact cardinals, in preparation.
- [5] J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic 41 (1976) 663–671.
- [6] T.J. Jech, Trees, J. Symbolic Logic 36 (1) (1971) 1-14.
- [7] R.B. Jensen, The fine structure of the constructible universe, Ann. Math. Logic 4 (1972) 209-308.
- [8] A. Kanamory and M. Magidor, The evolution of large cardinal axioms in set theory, in: C. Miller, D. Scott, eds., Higher Set Theory, Lecutre Notes in Math. 669 (Springer, Berlin, 1978) 99–275.
- [9] W. Mitchel, Aronszajn trees and the independence of the transfer property, Ann. Math. Logic 5 (1973) 21-46.
- [10] S. Shelah, On successors of singular cardinals, in: M. Boffa, D. Van Dalen, K. McAloon, eds., Logic Colloquium '78 (North-Holland, Amsterdam, 1979) 357–380.
- [11] S. Shelah, Diamonds and uniformizations, J. Symbolic Logic 49 (1984) 1022-1033.