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Abstract. In this paper, we discuss the possibility of developing a nice i.e.

first order theory for Banach spaces: the restrictions on the set of sentences

for recent compactness arguments applied to Banach spaces as well as for

other model-theoretic results are both natural and necessary; without them

we essentially get a second order logic with quantification over countable

sets. Especially, the Hanf number for sets of sentences of the first order

theory of Banach spaces is exactly the Hanf number for the second order

logic of binary relations (with the second order quantifiers ranging over

countable sets).

In recent years, various authors have tried to develop a first order theory of

Banach spaces and have obtained several successful results [2], [3], [6].

Nevertheless, they could not find a complete analogy with first order logic.

Either, they had to restrict themselves to a proper subset of the set of all

formulas of the first order language they considered,1 or else their results

applied to classes of normed spaces and did not yield specific information on

the Banach spaces included in these classes.

It is intuitively clear that the notion of Banach space is not first-order as it

involves quantification over sequences. The present paper is an attempt to

measure the gap between this notion and what can be expressed by first order

logic. Essentially, we show that if one adds to a first order language suitable

to discuss normed spaces a single formula meaning

"Every Cauchy sequence has a limit", then one gets all the strength of

second order logic where all second order variables range over countable sets.

Especially, it becomes possible to interpret the notion of well ordering.

Let L be a first order language with equality which includes, besides

variables, a binary function symbol + and a unary predicate symbol B. Any
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'The kind of restrictions which are necessary can be understood even by the reader not

familiar with the model theory of Banach spaces: suppose one wants to imitate the proof of the

compactness theorem for first order logic by ultraproducts. Then one has to take an ultraproduct

of Banach spaces. Obviously this is not a real Banach space, so one has to omit the elements with

"infinite" norm and to divide by the set of elements with infinitely small norm. Then, one gets a

Banach space and for the sentences preserved under the above two operations one gets

compactness.
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148 SAHARON SHELAH AND JACQUES STERN

real Banach space E can be viewed as an L-structure: + is interpreted by the

addition in E and B by the unit ball of E. L is clearly the weakest meaningful

language to discuss Banach spaces.

1. Main Theorem. There exists a set of closed formulas (sentences) of L, say

$ and formulas <p(x), \[/(x,y), 0 such, that

<p(x) has one free variable;

4*(x, v) has two free variables;

6 is closed;

and

(1) Given a Banach space E which is a model of $, there is an infinite linear

ordering C(E) whose domain is the quotient of {a G E: <p(a)} by the equiva-

lence relation a = ± b, and whose order relation is defined by \p(a, b).

(2) Any infinite linear ordering is isomorphic to C(E) for a suitable Banach

space E modelling $.

(3) C(E) is a well ordering if and only if 0 holds in E.

The main theorem is a particular case of a more general result which

applies not only to the notion of well ordering but to any property which can

be expressed by a formula of a second order language, where second order

variables are interpreted by countable sets. We will not state this result in its

general form but we will restrict our attention to the set Z/(<°) °f aH second

order formulas of the language L' which contains (besides equality) the only

two-place predicate symbol R.

The notion of satisfaction is extended to formulas of L'(w) by interpreting

second order variables by (at most) countable sets.

2. General Theorem. There exists a set of closed formulas of L, say $',

formulas <p'(x), $'(x, y), and a mapping 0: L'(a>) -» L such that:

<p'(x) has one free variable;

$'(x,y) has two free variables;

for any closed formula y of L'(u), 0(y) is closed;

and

(1) Given a Banach space E which is a model of <3>' there is an infinite L'

structure C(E) whose domain is the quotient of {a G E: (p'(a)} by the equiva-

lence relation a = ± b and whose binary relation is defined by ip'(a, b).

(2) Any infinite L' structure with an infinite domain is of the form C(E)for a

suitable Banach space E modelling $'.

(3) For any closed formula y in L'(u>), C(E) t= y if and only if EV 0(y).

Furthermore any Banach space E which is a model of <S>' is the closed linear

span of a set of linearly independent elements which has the same cardinality as

{a G E: <p'(a)}, and is not the closed linear span of any set of smaller

cardinality.
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FIRST ORDER THEORY OF BANACH SPACES 149

That this result is essentially the best approximation to the notion of

completeness is shown by the following.

3. Theorem. There exists a closed formula y0 of L(<o) such that a normed

space is a model of y0 if and only if it is a Banach space.

(By L(co) we mean the set of formulas of the second order language

associated with L; second order variables still range over countable sets.)

Before we describe in some detail the organization of the paper, let us

discuss the consequences of the results on the computation of Hanf numbers.

Let £ be an arbitrary language such that the class of sentences of £ is

actually a set. If ^ is a sentence of £, we let K(\p) be the class of all cardinals

K such that \p has a model of cardinality k. If $' is a set of sentences, we

define K($) similarly. Now, for a given \p, K(\p) may be bounded or not. The

Hanf number of £ is the first cardinal which exceeds all elements of K($) for

any sentence \p of £ such that K(\p) is bounded. In other words the Hanf

number of £, A(£), is the least cardinal X such that, for any sentence ^ of £,

the following holds: if $ has a model of power > A, then >p has models of

arbitrarily large cardinalities. Similarly, the Hanf number for sets of sentences

of £, /z'(£), is the least cardinal X such that for any set of sentences 0 of £,

the following holds: if <E>' has model of power X, then $' has models of

arbitrarily large cardinalities.

Similarly, if 4> (resp. <£>') is a sentence (resp. a set of sentences) of L, we let

Kb(k) (resp. KB($')) be the class of all cardinals k such that \p (resp. $') has a

model which is a Banach space with a dense subset of cardinality k and no

dense subset of a smaller cardinality.

Hanf numbers are defined accordingly.

For example, the Hanf number of the first order theory of Banach spaces

hB(L) is the least cardinal À such that, for any sentence of L say \p, K(\¡/) is

unbounded if and only if K(\p) has an element > X. The Hanf number for

sets of sentences h'B(L) is defined similarly.

Now, if 0, $' are in the statement of the general theorem, then given a

sentence u> of L'(w)> one gets

K(f) - A, ({800} U V).
Similarly if S? is a set of sentences of L'(w)

JT(¥) - KB(Q(*) u *0-

Also if \p is any sentence of L, by Theorem 3

Vk G Kb (i)   39 G Kty A Yo)   *< 6 < *H°-

and if SE' is a set of sentences of L

Vk G Kb (Sfr)   39 G K(<ï u {y0})   « < 9 < K\
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150 SAHARON SHELAH AND JACQUES STERN

From these observations, it is easy to derive the following inequalities:

®h(L'(u))<h'B(L),

(n)h'(L'(a))<h'B(L),

(in) hB(L)<h(L'(u)),

(iv) h'B(L) < h'(L'(o>)).

Thus:

4. Theorem. The Hanf number for sets of sentences of the first order theory of

Banach spaces is exactly the Hanf number for sets of sentences of the second

order logic of binary relations (with the second order quantifiers ranging over

countable sets).

Unfortunately, it is not possible to extract from Theorem 4 an exact

"computation" of h'B(L). As is well known [7], the Hanf numbers of lan-

guages which allow quantification over countable sets are "large cardinals"

and their size are governed by large cardinals axioms. More precisely, Silver

[8] has shown that the Hanf numbers of languages which express the notion

of well ordering (such as L'(<S)) exceed the first cardinal k such that the

partition property k-»(co)<<j holds, if such a cardinal exists. (Recall that

k -> (w)<u means that for any function/defined on the set of finite subsets of

k with value in {0, 1), there exists an infinite subset X of k, such that for each

«,/is constant on the set of (unordered) «-tuples from X.)

In the other direction, it is not difficult to see that both h(L(u)) and

h'(L(u>)) are smaller than the Hanf number of the language LU|Ui which

allows countable conjunctions and disjunctions as well as countable strings of

quantifiers. (For details see [7].) It is known, also (see [7]), that the Hanf

number of Lao is smaller than the first strongly compact cardinal (if such a

cardinal exists). This gives an upper bound for hB(L).

Going back to the main result, let us also point out that, although we do

not mention them in the present paper, the real-valued languages defined by

Krivine [2] and the second named author [3] have the same pathologies

provided one admits alternation of quantifiers: theorems similar to those

stated above can be proved for these languages and especially one can still

interpret the notion of well ordering.

The paper is essentially devoted to the proof of the main theorem which
goes as follows.

In §1, we construct a basic model M, which is a Banach space "encoding"

the ordering of the set of rational numbers Q as well as the infinite descend-

ing chains of this ordering. To perform the construction of M, we use a

technique introduced by the second named author in order to solve the

so-called problem of envelopes [5].

Next, in §2, we study the subspaces of the ultrapowers of M and show that

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:63



FIRST ORDER THEORY OF BANACH SPACES 151

many properties of these subspaces can be expressed by formulas of L.

Finally, in §3, we single out by a set of closed formulas O of L, specific

subspaces of spaces M1 /% and we prove the main theorem.

In §4, we briefly indicate how to adapt the preceding proof in order to get

the general theorem and we prove Theorem 3.

The present paper grew out of conversations we had during the logic

Colloquium held in Clermont-Ferrand in the summer of 1975. We are

grateful to the Organizing Committee of this Colloquium for having invited

both of us.

1. The basic model M. Let X be an infinite dimensional real Hilbert space.

The inner product is denoted by (x, y) and the norm by \x\ = (x, x)1^2. If e is

an element of X with norm 1, and 8 a strictly positive real number we let

H(e,8) be the set of elements x of X such that (x, e) = 1 — 8; we let

F(e, 8) be the set of elements x of H(e, 8) such that [jc| < 1, a set F(e, 8)

will be called a. facet. Finally a segment [x, x'] is { y: 39 G [0, 1]; v = 9x + (1

- 9)x'). (All these definitions are taken from [5].)

Now, let A be a set of elements of norm one in DC, let 5 be a strictly

positive real and A be a function from A into R such that

Va G A,   0 < A(a) < 8.

Assume that the facets F (ta, A(a)), e = ± 1, a G A, are pairwise disjoint,

then, we define the space %(A, A, 8) to be X endowed with a new norm

whose unit ball is the set of points x such that

1*1 < 1»
\(x,a)\ < 1 - A(a),aGA.

It is easy to check that the unit sphere of %(A, A, 5) is the union of the

facets F(ea, A(a)), e = ± 1, a G A, and of those elements x with euclidian

norm one such that [0, x] does not meet any of the facets F (ta, A(a)).

M is a space %(A, A, 5) for suitable X, A, A, 8.

We first describe X; X is the space /2(Q) where Q is the set of rational

numbers. Recall that l2(X) is the set of mappings u from X to R such that

^xex\u(x)\2 < °°> endowed with the inner product norm (2xex\u(x)\2y/2.

We let p,q,r,... range over the rational numbers, o,t,... over the set of

finite strictly decreasing sequences of rational numbers denoted by Q<a. eq is

the element of X whose value at g is 1 and whose value elsewhere is 0. If

o » {qx,... ,q„) with qx> • • • > q„, then we let

We let 1(a) be the length of a, i.e. ¡(a) = n.

A consists of the following points of X:
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152 SAHARON SHELAH AND JACQUES STERN

eq, ?eQ.
(ep + 2eeq)/y/5 ,p, q G Q, £ = ± \,p < q.
aa,oEQ<u,I(a)>3.

Let K be defined by K = (2£, l//2)_l/2 = V6 /it.

Lemma 1.1. Let a, b be elements of A distinct from all aa, a G Q<w,

1(a) > 3; let a, r be distinct elements of Q<w of length > 3. The following

inequalities hold

(i) \a ± b\ > 1 - 2/V5 ;
(ii) k ±a\> K/3;
(iii) \aa ± aT\ > K/n(a, t)

where a = (qx,..., qn), t = (q\.q'm) and n(a, r) is the least integer i such

that q¡ 7*= q¡; or i > n, or i > m.

Proof. We leave to the reader the computations needed to prove (i) and

(ii), and we turn to (iii). Let a = [qx,..., q„), qx> • • • > q„ and t =

{?i> • • • » I'm)' <t\ > * ' ' > <im- Assume / is the least integer such that q¡ =/= q'¡

or q¡ (resp. q¡) is undefined. We may assume without loss of generality

either that q¡ > q'¡; or

that q¡ is defined and q'¡ undefined.

In both cases, q¡ G a, q¡ Q t.

We have

c*0-t(! /)"/!>^

(ûT, eg) - 0;

therefore

(a„ - aT, eq) > K/i,       (aa + aT, e^ > K/i

so that

\a0-ar\>K/i

and similarly

\a„ + aT\>K/i.   Q.E.D.

Lemma 1.2. Let F(e, y) be a facet in X; any point x of F(e, y) satisfies

\x - e\ < Vly .

Proof. \x - e\2 = |x|2 + \e\2 - 2(x, e) < 2 - 2(1 - y) = 2y.

In order to define the function A, we assume V28 < K/9,

V28 < j(l —2/VS) and 8 G Q, and we choose an infinite strictly decrea-

sing sequence (5„)„6N such that:

80 = 8, V28„ < K/3(n + 1)
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FIRST ORDER THEORY OF BANACH SPACES 153

(82/(n + l)2 is such a sequence).

We remark that lim,,^ 8„ = 0.

We now let
Heq) = 80;qe Q.
A((ep + 2ee9)/VS ) = 5„ e - ± \,p < q.

à(aa) = 8„;aG Q<", 1(a) = n > 3.

We have to check that this is a correct definition.

Lemma 1.3. The facets F(ea, A(a)), e = ± l, a G A, are pairwise disjoint.

Proof. In view of Lemma 1.2, it is enough to show that given any two

distinct elements of A, say a and a' we have

\a ± a'\ >^2A(a) +yJ2A(a') .

We now use the inequalities in Lemma 1.1. If a and a' are distinct from all

a„'s, we get by inequality (i)

|a±a'|> 1 -2/V5 > 3V2S >^2A(a)  +yJ2A(a') .

In case only one of a, a' is some ag, we apply inequality (ii). Finally if a = a„

and a' = aT, then \aa — aT\ > K/n(a, t), where n(a, t) is the first integer /

such that q¡ =?*= q'¡ so that if a has length n and t has length m, n(a, r) <

min(m, n) + 1, we get

This finishes the proof of Lemma 1.3.

We now state and prove some properties of our basic space M =

%(A, A, 8).

Lemma 1.4. For any x in X, the following holds

M<||*||<(i-ô)-'|x|.

The equality \\x\\ = (1 - 8)~ l\x\ holds if and only if x = \eqfor some X G R

and some q G Q.

Proof. The inequality |jc| < ||x|| follows from the fact that the unit ball of

%(A, A, 8) is included in the unit ball of the euclidian norm. To check the

inequality ||x|| < (1 — ô)~'|x| it is enough to see that any element x of the

unit sphere S of %(A, A, 8) has euclidian norm > 1 — 8. This is clear for

those elements of S with euclidian norm one; as for the other ones, they

belong to one of the facets F (ta, A(a)), e = ±1, a G A; but it is easy to

prove that if x G F(ea, A(a)), then \x\ > 1 - A(a), and |jc| = 1 — A(a) only if

x is a multiple of a, so that |x| = 1 if and only if |x| = e(l — 8)eq. This

finishes the proof.
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154 SAHARON SHELAH AND JACQUES STERN

Actually, for many elements x, one gets \x\ = ||x||. Especially, the follow-

ing result will be useful.

Lemma 1.5. Assume x is such that \\x\\ = 1, and (1 - 5)-1 V25 < ||x -

eq\\ < 2V28 then \x\ = 1.

Proof. By Lemma 1.4, we get

V28 <\x- eq\<2V28 .

Now, if ]jc| ̂  1, then x belongs to a facet F(ea, A(a)), e — ± 1, a G A. From

Lemma 1.2, it follows that a ¥= eq, but, by Lemma 1.1., we get \eq — ta\ >

K/3 > 3VÏ8 and by Lemma 1.2, \x - ea\ < V25 . Hence we get \eq - x\ >
2V25 ; contradiction.

Lemma 1.5 admits a kind of converse.

Lemma 1.6. There exist fixed real numbers a, ß such that

(1) 1 > a > ß > 0.
(2) Any element x such that \x\ = 1 and a > (x, eq) > ß satisfies \\x\\ = 1.

Proof. Assume \x\ = 1 and ||jc|| ¥= 1. Then there exists a facet F(ea, A(a)),

a G A,e = ± 1 such that (x, ta) > 1 — A(a). Hence

\x - eaf = 2 - 2e(x, a) < 2A(a),

\x - ta\ < 2}jA(a) < 2Y8 .

If a = 1 — 8, the hypothesis a > (x, eq) implies

|x - eq\2= 2 - 2(x, eq) > 2(1 - a) = 25,

so that \x — eq\ > V25 which, in turn, implies ta ^ eq. Now, by Lemma 1,
we get

\eq -ta\> K/3 > 3V28 .

So I* - eq\ > \eq - ta\ - \ta - x\ > 2V28 . If ß = 1 - 45, then, the in-
equality (x, eq) > ß implies

\x - eq\2= 2 - 2(x, eq) < 2(1 - ß) = 85;

which contradicts

\x- e,|>2V25.

2. Ultrapowers of M and their subspaces. We now turn to ultrapowers of M

and their subspaces. Detailed information about ultrapowers can be found in

[1] or [3] or else [4]. For the reader's convenience, we recall some definitions.

In what follows, % is an ultrafilter on a set /. If (a,)/s/ is a bounded family

of real numbers, the limit lim^a,- is the unique real number a such that for

any t > 0 {/: \a¡ — a\ < t} G %. Now if £ is a Banach space, we let n0 be
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FIRST ORDER THEORY OF BANACH SPACES 155

space defined by:

no - {(■*/)/€/ e S': for some X > 0 ||x,|| < X}.

Ho is endowed with the seminorm

The set N of elements of IIq with seminorm 0 is a subspace of II0 and the

ultrapower E1 /% is the quotient space TIq/N, which is a Banach space (see

[3, §6]).
In view of Lemma 1.4, it folows from the definitions that M1/% and

X7 /% are based on the same space so it is convenient to have a description

of M'/% in terms of %'/%. To give this description, we let Q* - Q7/^ be

the ultrapower of Q in the usual sense; %I/Gll is a Hilbert space: if x is

(■*/)/«/ and v is (y¡)¡eI, the inner product is given by lim^x,-, y¡). If q* G Q*,

eq, denotes the element (eq.^ieI. If a* is a finite decreasing sequence

q* > • • • > q*, then

-(^•••^)(,iUP
Proposition 2.1. Let % be an ultrafilter on a set I, Mr/% is

%' /^(A', A', 8) where A' consists of the elements

eq„ q* G g*.

(ep, + 2teq.)/V5 ,e=± \,p* < q*.
a0„ a* G Q*<", ¡(a*) > 3;

and A' is defined by
à'(eq.) - 50;

A'((v + 2ce?.)/V5) = 5i;
A'(aa.) = 5„, if a* G Q*<", I (a*) = n > 3.

Proof. We first prove that the unit ball of M7/% is included in the unit

ball of %'(A', A', 5). Once this is done we prove the reverse inclusion. Let x

be given by (x¡),ml and assume ||x|| < 1 in the ultrapower of M, let x\ =

•x,-/sup(l, H*,-1|), then hm^Hx/ — x,|| = 0, so that we may assume without loss

of generality that x is given by (x,)/e/ with \\x,\\ < 1. Now if \\x¡\\ < 1, then
in X we have:

|x,.| < 1, |(x,., a)\ < 1 - A(a), a G A.
Consider a given q* one gets

|(*,-> *,♦(<>)! < l - A(V('))

and therefore in X7/^

\(x,eq.)\<l-A'(eq.).
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156 SAHARON SHELAH AND JACQUES STERN

Similarly

(**£*)< M***)
Now let a* = (qf,..., a*) be given with q* > • • - > q*; then, {/: q\*(i)

> • • * > ?*(0} e ^1" Let °i be {?*(/)> • • • » 9*(0}î then almost everywhere

with respect to 6lL, a¡ is a decreasing sequence of length n and |(x(-, a„)| < 1 —

8„ = 1 — A(a„). Clearly, (a0),6/ is exactly a0. so that

|(x,a0,)|<l-A'(a0.).

So far, we have proved that the unit ball of MT/% is included in the unit ball

of X7/6lL(A', A', 8). We now prove the reverse inclusion. If this inclusion

does not hold, we may pick x = (x,)ieI such that

x has norm < 1 in %'/^i(A', A', 8),

x has norm > 1 in M1 /%.

Let ||jc|| = 1 + Tj in M1'/%, r/ > 0; on one hand |jt| is at most one so that

one may assume that for all i \x¡\ < 1. On the other hand {/: ||jc,|| > 1 +

tj/2) G <2l; so that equivalently

{i:¡xÁl + n/2)-li>l}^%.

It follows that almost everywhere with respect to % there exists a, G A such

that

|(*,(1 + v/2)-\ a)\> 1-A(a,)

or

K^a.^O + Tj^Kl-Aia,))

if a is given by (a,),e/ (where a, is 0 when undefined), one gets

|(x,a)|>(l + |)(l-limA(a,)).

We now distinguish four cases:

Caje 1. {/: A(a,) = 50} G %. Then a, is almost everywhere equal to some

eq(S), so that a is equal to some eq. and lim% A(a() = A'(eq.), but then

inequality (+) gives

\(x,eq.)\>l-A'(eq.)

and this contradicts the fact that x has norm < 1 in %(A', A', 8).

Case 2. {/: A(a() = 5,} G %. Then, similarly, a is equal to some (ep, +

2teq.)/V5 and lim% A(a,) = A'((ep, + 2teq,)/V5); contradiction.

Case 3. For some n > 3, {/: A(a,) = 5„} G %; then, almost everywhere

with respect to 9l, a¡ is equal to some ao(/) with l(a(i)) = n; let
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FIRST ORDER THEORY OF BANACH SPACES 157

o(i) = {?,(0 > • • •  > ?„(/)}

then, if qf is (qj(i))ieI, 1 < j < n, and if a* - {a? > • • • > a*}, we get

a = a„.   and    lim A(a,) = A'(aa.)-

Then, it follows from inequality (+) that

\(x,aa.)\>l-A'(a0.);

this contradicts the assumption.

Case 4. Cases 1, 2, 3 fail. Then lim^ A(a,) == 0 so that (+) becomes

\(x, a)| > 1 + 7j/2; this, in turn, gives |jc| > 1; contradiction.

This finishes the proof of Proposition 2.1.

Actually, we have not checked that the definition of %'/%(A', A', 8') is

correct. This can be done directly by proving the analogs of Lemmas 1.1, 1.2,

1.3; for example, the analog of Lemma 1.1 reads:

Lemma 2.2. Let a, b be distinct elements of A' distinct from all a0.; let a*, t*

be distinct elements ofQ*<u; the following inequalities hold:

(i) |a ± b\ > 1 - 2/V5 ;
(ii) |aa. ± a| > K/3;

(iii) |a0. ± aT.| > K/n(a*, t*);

where a* = (qf,.. ., q*), t* = (q\*,. . ., q'm*) and n(a*, r*) is the least in-

teger i such that qf ¥= qf, or i > n or i > m.

Similarly, one can state and prove the analogs of Lemmas 1.4 and 1.6.

Lemma 2.3. For any x in X7/%, the following holds

M^I^O-o)-»!*!.
The equality \\x\\ = (1 — 5)~'|.x| holds if and only if x = \eq.for some X G R
and some q* G Q*.

Lemma 2.4. There exist fixed real numbers, a, ß such that:

(1) 1 > a > ß > 0;

(2) Any element x such that \x\ = 1 and a > (x, eq.) > ß satisfies \\x\\ = 1.

We now restrict our attention to the class of all closed infinite dimensional

subspaces X of ultrapowers M1/6^. Such a subspace X is endowed with two

norms: its own norm inherited from M1 /% and the euclidian norm inherited

from X7/<$L. We consider these X as ¿-structures (the norm used being the

one inherited from M'/%) and we show that a lot of information on X can

be expressed by formulas of L. To be more precise, assume one can associate

to any X an «-ary relation R (X) over X i.e. a subset of X"; we say that R is

definable if there is a formula <p(x„ ..., x„) of L such that given any X

together with «-elements b¡,.. .,b„ofX
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X F <p(blf ...,b„)   if and only if   (6„ ...,b„)GR (X).

We say <p defines R.

We now study definable relations.

Lemma 2.5. Let a be a rational number; the relation a = qb is definable.

Proof. Assume q > 0, a = mn -1, m G N, n G N; then c — qb'ûlnc — mb

where ne is defined by

n times

If q = 0, c = qb is c + c = c. If a < 0, c = qb is equivalent to

3.x   (x + ¿ = 0 and c = (-ç)x).

Corollary 2.6. Let q, qu ..., qn be elements ofQ. The relation

||a,6, + -.. +aAH<a

« definable.

We leave the proof to the reader.

Lemma 2.7. The set of elements b of X such that \\b\\ = |6| = 1 is the set of

extreme points of the unit ball of X. Therefore, the relation ||£|| = \b\ = I is

definable.

Proof. The set of extreme points of the unit ball is definable by the
formula & (x)

B (x) A VyVv'(5 ( v) A B (/) Ay * / ->y + / + 2x).

Now, we claim that this set of extreme points is exactly [b: \\b\\ = \b\ = 1}.

Clearly if b is an extreme point ||6|| = 1. Now, if we have \b\ < 1, then b is

an interior point of a facet F(ta, A'(a)), e = ± 1, a G A'. As X is infinite

dimensional there exists a segment [c, c'\ such that

c¥*c\

[c, c'] Q X n F(ta, A'(a)),
b is an interior point of [c, c'].

This contradicts the fact that b is extremal.

Conversely, if ||è|| = |è| = 1, then b is an extreme point; this is because

||c|| < 1, and ||c'|| < 1, and c ^ c' imply |c| < 1 and |c'| < 1 so that \(c +

c')/2\ < 1 hence (c + c')/2 ^ b.

We now try to express the relation |6| = 1; we need a lemma:

Lemma 2.8. Let x,y be distinct elements of X, 0 < 0 < 2tr/5; assume at

¡east five distinct points (cos k9)x + (sin k9)y, k G N, are extreme points of

the unit ball of X, then \x\ = \y\ = 1.
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Proof. Let P be the plane spanned by x and y. The set of elements

z = (cos X)x + (sin X) v, X G [0, 2m\, is an ellipse and can have at most four

points in common with the euclidian unit circle of P except if it is equal to

this circle, in which case ]jcj = | v| = 1.

We now define the following formula Ne(x) with free variable x

3y   (^JcAo<,1<W<,5<m(/Vr H^k^x + sin(Wv)))

where 9 is a real number such that 0 < 0 < 2it/5, cos 9, sin 9 G Q and m is

the least integer such that m > 2ir/9.

Actually, the formula Ne(x) is not a formula of L, but it is easy, using

Lemma 2.5 to find a formula of L equivalent to Ne(x). Ne(x) means that, for

some y, at least five elements (cos k9)x + (sin k9)y are extreme points of the

unit cell; thus clearly, by Lemma 2.7, X f Ng(b) implies |6| = 1.

We now let <pB(x) be the formula

B((l-8)x)ANe(x).

Lemma 2.9. Assume X f <pe(b), then b is equal to some element teq*, e = ± 1,
a* G Q*.

Proof. X f <pe(b) implies

\\b\\ < (1 - ó)'1,

\b\ - 1.
Hence, by Lemma 2.3, b = teq., t = ± 1, q* G Q*.

In order to prove a converse to Lemma 2.9, it is necessary to fix 9. Recall

Lemma 2.4. Let $, $' be defined by

0 < 4> < -it/2;  0 < $' < ir/2,   cos \p = a;  cos $' = ß,

where a, ß are as in Lemma 2.4; clearly ^ < t//.

We let 9 be any fixed real number such that 0 < 9 < (\J/' - $)/6 and

cos 9, sin 9 G Q. This is possible in view of the following fact.

Fact. For any e > 0, there exists 9,0 < 9 < e, such that cos 9, sin 0 G Q.

Proof of the fact. Let / be an integer such that 2/ + 1 is a square (say n2)

(rh)2+      "2      = '2 + "2 = i2 + 2/ +1 m j

(/ + l)2      (/ + l)2 "     (/ + l)2

so that there is an angle 9 with 0 < 0 < tt/2 and

sin 9 = , . . ,      cos 9 =
i + 1 '      "~"     i + 1 *

Now, when j -» oo, cos 9 -» 1 hence 9 -» 0.

From now on, we assume 9 is fixed as indicated above.

Lemma 2.10. Assume eq, belongs to X then X f <pe(eq*) and X f <pe(—eq*).
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Proof. Pick an element y such that |y| = 1, (y, eq.) — 0, and y G X and

consider the sequence uk = (cos k9)eq* + (sin k9)y, k < m, where m is the

least integer such that m9 > 2tt.

Because 0 < 9 < ($ — W/ó at least five consecutive integers say k, k +

1,..., k + 4 are such that

$ < (k + i)9 <f;      / = 0, 1,..., 4,

it follows that

o > cos(k + i)9 > ß;       i = 0,1,..., 4,

so that

a > (eq., uk+i) > ß;      i = 0,1,..., 4,

hence by Lemma 2.4,

IK+(||=i;     / = o,i,...,4.
By Lemma 2.7, uk+¡, 0 < / < 4, is an extreme point of the unit ball of X, so

that X f N$(teq.) but ||é-,.|| = (1 - Ô)"1 i.e. X f B((l - 8)eq,); finally, one

gets X f <p0(e¿.). Similarly X f ye(-eq.).

So far, we have studied relations which could be defined by a single

formula <p(x„ ..., x„) in every infinite dimensional closed subspace X of any

ultrapower M 7/%. From now on, we make an extra assumption on X, and

we study relations which can be defined by a single formula in those spaces X

which satisfy this assumption. The extra assumption is the following:

V«   X f 3x, • . • 3x„( /Y\ x, * Xj A ,/y\ %(*,))•
V   i¥-J l<i<n /

It means that X contains infinitely many elements eq,, a* G Q*, and it will be

shortened by X N 3cox<p9(x). In order to emphasize the fact that definable

relations are considered only for those spaces X which satisfy 3tx>x<pe(x), the

statements of the lemmas will begin by the words: Assume X f 3eox<pe(x). For

example:

Lemma 2.11. Assume X f 3cox(pe(x); then the relation \b\ = 1 is definable.

Proof. We claim |6| = 1 if and only if X f N9(b). Clearly, X f N0(b)

implies |6| = 1. To show the converse implication, let |6| = 1; pick a* G Q*

such that X 1= <p9(teq.), e = ± 1. Now, if b is eq. or - eq„ then X f Ne(b); if

not there is an element c such that

\c\ = L
(c, b) = 0,

c belongs to the plane spanned by eq, and b.

Then exactly as in Lemma 2.10, one can see that at least five of the points

tk = (cos k9)b + (sin k9)c;       0 < k < m,
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are such that a > (tk, eq.) > ß. Hence, by the same argument one concludes

that X f Ne(b).

Corollary 2.12. Assume X f 3xxye(x); then the relation \b\ < 1 is

definable.

Proof. \b\ < 1 if and only if there exist c, c', c =£ c' such that |c| = 1 and

|c'| = 1 and (c + c')/2 = b. Therefore |è| < 1 is defined by

3y 3y '   (Ne (y ) A Ne (y ') A y * y ' A y + y ' = 2x).

Our next task is to get-in a definable way-a basis of neighborhoods of 0 in X.

In order to do so, we consider the set Cx = [b: \b\ < 1 and ||ô|| > 1}, and

the relation V(c, c'), given by c G Cx and c' G Cx and 2c - c' G Cx.

Obviously, by Corollary 2.12, we get

Lemma 2.13. Assume X Y 3°°x(p6(x); then the relation V(c, c') is definable.

Moreover, we have:

Lemma 2.14. Assume X N 3°°X(pg(x); then, when c varies over Cx, [c' — c:

V(c, c')) is a basis for the neighborhoods ofO.

Proof. First let c be a given element of Cx; we have |c| < 1 and ||c|| > 1,

so that for some a G A' and some t = ± 1, (c, ta) > 1 — A(a).

Let Tj be such that \c' — c\ < rj implies |c'| < 1 and (c', ta) > 1 - A(a);

then ||c' - c|| < tj implies \c' - c\ < tj (by Lemma 2.3) and also |(2c - c') -

c\ «• \c — c'\ < r\ so that both c' and 2c — c' are in Cx. Thus

{c'-c:V(c,c')}D{c'-c:\\c'-c\\<r,}

so that it is a neighborhood of 0.

Conversely, let r¡ > 0 be given; pick a G A' such that a G X and 16A(a) <

tj2. This is possible because X contains infinitely many elements eq,, so that

one can let a be equal to a„ for any sequence of > • • • > q* such that

eq. G X,i = 1,..., n, and n is large enough.

Let c be a(l — A(a)/2) and assume V(c', c) holds, then |2c — c'\ < 1 so

that (2c - c', a) < 1 but (2c - c', a) = 2(c, a) - (c\ a) = 2 - A(a) - (c', a)

so that (c', a) > 1 — A(a). From this, we get

|c'-a|2=|cf+|a|2-2(a,c')

< 2 - 2(c', a) < 2A(a)

also

\c - a\ = A(a)/2 < A(a) <^2A(a)

so that \c - c'\ <-\¡2A(a)  + ^2A(a)   < 4\JA(a)   < tj, this finishes the proof
of Lemma 2.14.
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If c is a given element of Cx, we let Vc be (c' — c: V(c, cr)}; clearly if we

assume X N 3°°x<pe(x), then the relation b G Vc is definable.

Lemma 2.15. Assume X f 3xx<pe(x); then the relation \\b\\ < 1 is definable.

Proof. Clearly, it is enough to show that ||6|| = 1 is definable. But in view

of Lemma 2.14, ||¿|| = 1 iff ||6|| < 1 and Vc G Cx 3y (y G Vc and ||6 + y\\
> 1) hence ||6|| = 1 is definable.

Lemma 2.16. Assume X f 3cox<pg(x); then the relation "b is the center of a

facet of the unit ball of X" is definable.

Proof. Assume b belongs to a facet of the unit ball of X, say X n

F (ta, A(a)), a G A', t = ± 1; let Eb = [d: d is an extreme point of the unit

ball of X and ||6 + a"||/2 = 1}. Clearly Eb is the intersection of the unit ball

of X with the hyperplane H (ta, A(ä)), so that if b is the center of the facet

Vjc G Eb 2b — x G Eb. Conversely assume b is such that

11*11 * 1.
|6| < 1,
Eb is not empty (say d G Eb),

Vx G Eb 2b — x G Eb,
then d, (d + b)/2, b are three distinct points in the unit sphere of X which lie

on the same line, so that b belongs to some facet F(ta, A(a)) n X. Moreover,

as Eb is invariant under the symmetry x -» 2b — x, then b is the center of the

facet X n F(ta, A(a)).

From these remarks the conclusion of the lemma follows.

Corollary 2.17. Assume X f 3cox%(x); then the relation "b is the limit of

an infinite sequence of centers of facets of the unit ball of X" is definable by a

formula v(x).

Proof. Just write that for any c in Cx there exists an element a* of Vc such

that a* ̂  0 and b + d is the center of a facet.

Lemma 2.18. Assume X f 3cox%(x), then the relation \b\ = |c| = 1 and

(b, c) = 0 is definable in X.

Proof. Assume |¿| = |c| = 1 then |f b + |c|2 = 1 + \%(b, c), so that

(¿,c) = 0iff |f 6+ |c| = 1.

Lemma 2.19. Assume X f 3°°xq>e(x), then the property "X is the closed linear

span of those eq, it contains" is definable by a formula X.

Proof. X is a formula of L equivalent to Vz(|z| = 1 -» 3x (<pa(x) A (x, z)

¥= 0)) (such a formula exists by Lemma 2.18).

If X does not hold, X contains an element which is orthogonal to all the eq,

included in X, therefore X is not the closed linear span of those eq*.
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Conversely, if X is not the closed linear span of those eq. it contains, then,

there is an element c such that

Y\ = 1.
(c, eq.) - 0; eq. G X.

Therefore X does not hold.

3. Proof of the main theorem. In order to define the set of sentences <£> of

the main theorem, we first show how to describe by a set of formulas the

subspaces of the ultrapowers of M.

Let L be a first order language including, besides variables,

a binary function symbol +,

a unary function symbol q, for any q G Q,

a unary predicate symbol B,

a unary predicate symbol B'.

Any real Banach space E can be viewed as an L-structure 2I(£); + is

interpreted by the addition in E, q. by the multiplication by the scalar q, B by

the unit ball of E, and B' by the set of elements of E of norm > 1.

By a term of L, we mean as usual an expression like ?,•*, + ••• + q„ • xn

where xx,..., x„ are variables.

The following is implicit in [3] as well as [4].

Proposition 3.1. X is a subspace of an ultrapower of M if and only if X

satisfies all the formulas

Vx-Vx,    (\¿/   5(/,)V\A/   B'(uj)j

where /„..., tk; ux,... ,u, are terms with free variables among xx,..., x„

and

mfVx,.--v*„  (vC7 5(0VW, £'(«,))•

Before proving the proposition, we note the following.

Corollary 3.2. There is a set of formulas $0 of L such that a given Banach

space X is a subspace of an ultrapower of M if and only if X Y $0.

Proof of corollary. By Proposition 3.1, X is a subspace of an ultrapower

of M, if and only if X satisfies a set of formulas <& of L of the form

v*. •••**„ (\a/ B(t¡)v\y; £'(",))•

Now the models of "9 are exactly the models of W where W is obtained from

Mr by replacing the formula
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V*,---Vxn   (\¿/   B(t) VW,   *'(«,))

by the infinite set

Vx.-.-V*,   (\A/   5(/,) VW,     "1 £(?«,)),      a>l.

Using the technique of Lemma 2.5 and Corollary 2.6, it is easy to translate W

into a set of formulas % of L.

We now have to prove Proposition 3.1. In order to do so, we recall the

following observation from [4, §5].

Observation. E'/Vl is obtained from the usual ultrapower $8 = 2Í(£)7/Sl

by performing the following operations:

First one restricts 33 to those elements b such that for some q ¥=0,

93 f B(q- b), thus one gets a substructure 53y.

Then, one takes the quotient of 33y by the equivalence relation b — b'

defined by: for any q G Q, 33 f B(q(b - b')).
Finally, one defines the norm by ||¿|| = (sup{ç: 33 f B(qb)})~\

From this observation, it follows that the truth of any positive universal

formula of L is preserved if one goes from M to a subspace of Ml/%,.

Conversely, to embed isometrically a Banach space X into an ultrapower

A/7/%, it is enough to find a mapping 9: X ->21(A/y'/% such that for any

sequence a,,..., a„ of elements of X, any sequence of rational numbers

a.,q„ and any rational number e, 1 > e > 0,

||«i?i + • • • + a„qn\\ < 1   implies  1 B'l -¡^- I

and

||a,a, + • • • + a„0„|| > 1   implies   1 B\ -—~E-)•

If this is not possible, then in the language L[X] obtained by adding a

constant symbol a for any a in X, the following set of formulas is not
consistent:

Th(3I(A/))   (the set of all closed formulas true in 21(M )).

-, b'( aiqi + • * ' + znQ* \        „ „^ ,
15 V-TT7-j;       Hfl|?I + ' ' ' +a"q"W< L

(a,q, + ' • • + a„a„ \
!_c       );    II«.?. + • • • + <w,||> i.

So that there exists a finite sequence of terms r,.tk, ux,..., u¡ depending
on a,,..., a„ such that
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TWO)h\¿ <(t4;)v$ ^(tt?).

/,(a„ ..., a„) > 1,       1 < i < k,

Uj(ax, . .., a„) < 1,       1 < j < l.

Substitutingxx,... ,x„ for a„ ..., a„, we get

M f Vx, • • • Vx„ W *(%^W H
U,.(x„ . . . , X„)

1 + $

Hence, if the hypothesis of Proposition 3.1 holds, we get

*"*>•■■"* [w "[rh,)^ *(tt?))
but a,,..., a„ contradict this last formula; this finishes the proof of the

proposition.

We now define <3>, <p(x), \¡/(x,y), 9. <& includes

the formulas of $0 (defined in Corollary 3.2);

the formulas

3x, • - • 3xn    AA B(X¡) A A\ "1 B(x, - xj),      n G N
i i¥*j

(these formulas hold in X C M7/% if and only if X is infinite dimensional);

the formulas

3*i   • • 3x*[/)t) %(*») A /Y\   x, * x,)

(these formulas mean that infinitely many eq»; q* G Q*, are included in X);

the formula X given by Lemma 2.19 (and meaning that X is the closed

linear span of those eq. it includes).

q>(x) is the formula %(x),

4>(x,y) is <pg(x) A %(y) A (x = y V * = - y V II* + 2y|| > r)
where r is a fixed rational number with V5  < r < V5 (1 — 5,)- ';

iK-*,y) means that x = teq., t = ± 1, q* G Q*, y = t'ep., e' = ± 1, p* G
Q* and q* < p*.

9 is the formula ~}3xv(x), where r(x) is defined in the proof of Corollary

2.17 and is such that X 1= v(b) iff b is the limit of an infinite sequence of

centers of facets of the unit ball of X (this will be henceforth abbreviated by

"b is a limit point of facets").

Let £ be a model of $; then, by Corollary 3.2, there exist /, % such that E

is isometric to a subspace of M'/%. Without loss of generality we may

assume E C A/7/%. Clearly, E is spanned by those eq» it includes (because

£ f X) and D(E) = [a G E: <p(a)} is infinite.
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Now the quotient of D (E) by the equivalence relation a = ± b is ordered

by $(x,y). We let C(E) denote this ordering.

Actually C(E) is a linear ordering: given any pair of elements a, a' such

that E 1= <p(a), E 1= <p(a') one can find t = ± 1, t' = ± 1, q* G Q*, p* G Q*

with a = teq., a! = t'ep, then either/»* = q* orp* < q* or #* < p*. So that,

either E f ^(a, a') or E f »/-(a', a).

Conversely let (C, <) be an infinite linear ordering; it is known that for

some ultrafilter % on a set I (C, <) can be embedded into Q7/^ = Q*. Let

i: C -» Q* be such an embedding. It is easy to see that the subspace E of

M'/% spanned by the set {em: c G C) is a model of $ and that C(E) is
precisely isomorphic to (C, <).

To complete the proof of the main theorem, it is enough to show the
following:

Lemma 3.3. C(E) is a well ordering if and only if no element of the unit ball

of E is a limit point of facets.

Proof. Assume first C(E) is not a well ordering. Let (an)„eN be an infinite

decreasing sequence, let

a„ = eneq.,       tn - ± 1,       a* G Q*

(as usual E is considered as a subspace of M1 /Gli).

Then if a* = {qf,..., q*}, n > 3, the sequence ((1 — S„)aa,)neN is an

infinite sequence of centers of facets with limit

Conversely, let x be the limit of an infinite sequence of centers of facets say

(OmeN- Obviously

lim \cm — cm.|-»0

m'~* oo

so that by Lemma 2.2, for m large enough, cm is of the form ema„,(l — 5/(a<)),

a* G Q*<", cm = ± 1, with lim /(a*) = oo.

Now if a* - {af, ...-,«?},#>•••> «?, and t* = {a',*,..., <$*},

q* > ' • • > qj*, we define as in Lemma 2.3, n(a*, t*) to be the least integer
such that qf ¥= q'¡* or / > k or /' > j.

By Lemma 2.2, as

one gets n(a*, <j*.) -> oo.

This means exactly that the finite decreasing sequence (a*)me(} has a

pointwise limit which is an infinite decreasing sequence. Furthermore, given

any m and any element q* of the sequence a*, we have (aa., eq,) =£ 0, hence,
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as E is the closed linear span of these eq. it contains, eq, G E; finally, this

shows that C(E) is not a well ordering.

4. The notion of completeness. In this section, we show that "completeness"

is a notion which bears all the strength of second order logic with second

order variables ranging over (at most) countable sets.

We first indicate briefly how to adapt §§1, 2, 3 in order to get a proof of

the general theorem (stated on page ). The basic model M must be replaced

by a slightly different one M' which we now describe. M' is a space
%(A, A, 8) for suitable A, A, 8.

X is the space /2(N U N2). We let m, n range over integers. e„ is the

element of X whose value is 1 at n, 0 elsewhere. Similarly for e„m. For any

one-one sequence a — {«„ ..., nk), we let

k = 1(a) is the length of a.

A consists of the following points of X:
e„, n G N.

enm, n G N, m G N.

(e„ + 2een>m)/V5 , n G N, m G N, e = ± 1.

(2e„ + eentm)/V5 , n G N, m G N, e - ± 1.
a„, a - {«„ .... «¿}, /(a) > 3.

A is defined by

A(e„) = 8o,nGN.

Ken,m) = 5„ « G N, m G N.

A((e„ + 2tenJ/y/5 ) = 52, n G N, m G N, e = ± 1.

A((2em + ee„tm)/V5 ) = 52, « G N, m G N, e - ± 1.

A(a„) = 5/(o)

where S„ is an infinite decreasing sequence like in §1. (Actually, for technical

reasons, the sequence 5„ should decrease more rapidly than in §1; we skip the
details.)

•The idea of the proof is the following: given a subspace A!" of an ultrapower

A/'7/% we want to define a structure C(X) whose domain is the quotient of

[ten, G X: n* G N7/<?L, e = ± 1} by the relation a = ± b, and whose bi-
nary relation Rx is given by

(en.,em.)GRx   iff   en^,GX.

For this reason we define a set of formulas $ of L in such a way that the

Banach spaces X which model $ have the following properties:

(1) A!" is a subspace of some ultrapower of AT, say M'7/%.

(2) X is infinite dimensional.
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(3) X contains infinitely many en., n* G N7/<ÎL.

(4) X is the closed linear span of those e„. it includes and of those e>m.

such that em., e>, e„,m. belongs to X.

It is easy to express (1), (2), (3) using the same techniques as in §§2 and 3.

To express (4), it is necessary to show that the set of elements ten,m. included

in X as well as e>, em», is definable. Actually this can be proved still using the

same techniques, if one realizes that this set is precisely the set of elements x

of X such that |x| = 1, (1 — 5,)x is the center of a facet of the unit ball of X,

there exist e„,, em. in X such that

||e> + 2x|| = V5(l-52)~I   and   ||2e> + x|| = V5 (1 - 52)"'.

In order to define the mapping 0 from L'(u) to L which enables to translate

the second order properties of the structure C(X) into first order properties

of the Banach X, a lemma is needed. To state this lemma, we let

D(X) = {ee„.: t = ± 1, n* G N7/^, e„. G X).

Lemma 4.1. There exists a formula of L, fi(x,y) with two free variables such

that

(i) Given any element a of X, [b: X t ß(a, b)) is a symmetric subset of D(X)

which is at most countable.

(ii) Given any symmetric subset of D (X), say u, which is finite or countable,

there is an element a of X such that u = {b: X 1= fi(a, /?)}.

We will not give a detailed proof of this lemma. Essentially ß(x,y) has the

following meaning:

y G D (X) and the inner product (x,y) is nonzero and one of the following
happens

(1) either there exist x„ x2 in D (X) such that x = x, + x2;

(2) or x is the center of a facet of the unit ball of X;

(3) or else x is a limit point of facets.

One can show that the points which are limit of an infinite sequence of

facets are exactly

[ta/, t = ± 1,/a one-one sequence of N7/^l}

where a¡ stands for

(i m *p
from this fact, it is clear that condition (3) above enables us to encode the

countable symmetric subsets of Dx; conditions (1) and (2) take care of the

finite subsets:

Using Lemma 4.1, the reader will easily supply a definition of the mapping
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0, using induction on the length of formulas. (For example to start the

induction ®(R(x,y)) can be any formula meaning: "x is some ten.,y is some

tem» and there exists z which is some tek.j. and is such that

||x + 2z||> r   and   ||2y + z\\> r

where r is a rational number satisfying the inequalities V5 < r < V5 (1 —

To complete the circle of ideas discussed in the introduction, we now show

that second order logic with second order variables ranging over at most

countable sets actually expresses completeness.

Theorem 4.2. There exists a formula y0 of L(u) such that a normed space is a

model of y0 // and only if it is a Banach space.

The proof requires a few tricks and therefore a few lemmas. In what

follows, we let x,y, z denote first order variables, X, Y,Z second order

variables.

Lemma 4.3. There exists a formula 9(x,y) of L(u>) such that given any

normed space E together with elements a, b, 9 (a, b) holds if and only if there

exists a positive real a such that b = aa.

Proof. We first define a formula X(x, X). X(x, X) is the conjunction of the

following statements

(ï)X(x),

(ii)Vy(A-(y+y)-+A-(y)),
(iii) Vy Vz (X(y) A X(z) -* X(y + z)),
(iv) X is the smallest countable set satisfying (i), (ii), (iii).

Clearly, given an element a of E and a countable subset A, X(a, A) holds iff

A = [ka/2m: k G N, m G N}.

Now, 9 (x, y) is given by

Vi Vy   (X(y, Y) A Y(t))->3u 3X(X(x, X)AX(u)AB(t- «)).

(9(x,y) means that the distance between {kx/2m} and any element of

{ky/2m) is always bounded by 1.)

Lemma 4.4. There exists a formula /c(x,y) of L(u>) whose meaning is

11*11 < IMI.

Proof. Let k0(x, y) be the formula

lö(y,x)A1Ö(-y,x)

A 3x' 3y'   (B(x') A ^B(y') A 9 (x, x') A 0 (y, y') A « (x - y, x' - /)).

Assume first a, b linearly independent in E with ||a|| < ||6||. Then, if we let a

be a positive real such that a||a|| < 1 < a||¿||, and a' = aa, b' = ab, it is easy
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to see that we have 19(a, b), l9(-b,a), B(af), lB(b'), 9(a,a'), 0(6,6')»

6 (a- b,a' - b'). So that K0(a, 6) holds.

Conversely, assume K0(a, 6) holds, then there exist a', 6' and a, ß, y > 0

such that a' - aa, \\a'\\ < 1; 6' = ßb, \\b'\\ > 1; a' - 6' = y(a - 6); but this
gives aa — ßb — y(a — 6) or a(a — y) = b(ß — y). If a =£ y then a =

(ß — y)b/(a — y) so that either 0(6, a) or 9(—b, a) holds; contradiction.

Hence a = y, this gives b(ß - y) = 0 so that iiß=£ywegetb = 0 and

also 6' = ßb = 0 but this contradicts ||6'|| > 1. Finally, a = ß = y and as

||aa|| < 1 < ||a6|| we get a ^ 0 and ||a|| < ||6||.

To obtain ic(x,y) we just consider the disjunction of the formulas /c0(x,y),

y*OA0(y,x)A0(y,y-x)A**y, y*°AH-y,x)AK-y*-y
-x)Ax¥= -y.

Lemma 4.5. There exists a formula 8(X) of L(u) meaning X is the range of

an infinite norm increasing sequence.

Proof. 8(X) is a formula which says that the relation ||x|| < ||y|| is a well

ordering of X such that any element has an immediate successor and any

element different from the minimal one has an immediate predecessor. In

view of the fact that ||x|| < ||y|| can be expressed by /c(x,y), such a formula

5 (A") exists in L(u>).

We are now ready to prove Theorem 4.2. In order to find the formula y0

whose existence is given by the theorem, we consider the following property

of a given space E:

There exists a countable subset X Q E such that X is the range of an

infinite norm increasing sequence which is a Cauchy sequence and has no

limit.
First of all, we claim that a normed space which is not a Banach space has

this property. Indeed let (x„)„eN be a Cauchy sequence without a limit.

Without loss of generality, we may assume

lim IKII^O.
/!-»00    "       "

Let

Now, if a = lim,,^ ||x„||, it is clear that

lim
n-»oo

-Î]
so thaty„ is a Cauchy sequence without a limit. Clearly, y„ is norm increasing.

Hence it remains to translate the above property into a formula of L(u). By

Lemma 4.4, we already know a formula 8(X) meaning that X is the range of
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an infinite norm increasing sequence. For such a sequence, the property of

being a Cauchy sequence can be expressed by

Vz^O,   3x   A-(x)AVyV)"

(X(y) A X(y') A <<(x,y) A *(*,/) -» *(y " /, *))•

Finally, if A" is the range of an infinite norm increasing sequence, this

sequence has a limit if and only if the following holds

3/   Vz^O,   3x   *(x)AVy   (X(y) A <x,y) ^ k(í - x, z)).

Finally, we have shown that we could translate the property of not being

complete by a formula 1 y0 of L(u>).

This finishes the proof.
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