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We point out a class of unstable theories which are simple, and develop for them an analog to
the hasic theorems on stable theories.

0. Introduction

In [4] the property ‘T is stable’ was investigated in detail, there were some
theorems on classifying the unstable theories in 114 and 11I7. We proved that T is
unstable iff it has the strict order property (i.e. some formula ¢(x,y) is a
quasi-order with infinite chains), or it has the independence property (i.e. for
some model M of T, a, € M and ¢(x, y) any non trivial Boolean combination of
the ¢(x, a,) is satisfied in M). At earlier stage it seemed that unstable T without
the independence property and unstable T without the strict order property are
two incomparable classes of ‘simple’ unstable theory. The investigation of
KA Ty=sup{|S(A)|": |A}= A} prefer the second one, but some facts from [4]
pointed out to a subclass of the first:

Definition 0.1. T has the tree property if there are a formula ¢(%, y), k<w a
model M of T, and sequences d,€M (n€“ w) such that for any ne“ o,
{e(X. @, ): | <w}is k-contradictory (i.e. no subset of cardinality k is satisfied in
M) but for every ne*w, {¢(%: 4,,,): n <w} is consistent.

We shall call here theories without the tree property simple. In[4, 111 7.7, 7.11]
we proved:

Theorem 0.2. (1) T has the tree property iff one of the following holds:
(i) there are ¢(x:§), d,, M as in definition 0.1, such that for n, ve“”“ o no
one an initial segment of the other o(x: a,), ¢(x; a,) are contradictory;
(ii) there are ¢(x:a') (Ln<w) such that I={e(x;al): n<w} is 2-
contradictory, but for any n€“w, {¢(x:a%): | <w} is consistent.
* The author would like to thank the NSF for partially supporting his research by NSF grant MCS
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(2) The following conditions on T are equivalent:
(i) T is nonsimple;
(ii) for every A, x, such that A= = A, there are A* pairwise contradictory
m-types of power k over a set A of cardinality A;
(iii) there is a set A, and a set S of m-types over A each of power x such that
IS|>]A|T* +2T*x and no ¢ €€ realizes >x types from S.

The example of a simple theory which we usually have in mind is T}, the
model completion of the theory of one two-place symmetric irreflexive relation
(see [4. Exercise 4 < p.79)) (or another varient, T¥, see [4, Definition 114.8,
p. 71]).

There were two cases in [4] in which investigating some property, we get a
different answer for noasimple theories and for T,,,.

Case 1. Let SPr(A, k) mean any model of T of power A can be extended to a
Kk -saturated model of cardinality A. Assume for simplicity A'"'= A = «. Then for T
stable in A SP1()A «) holds, and for non-simple T it is equivalent to A = A™". The
author thinks this will hcid for any unstable T, and prove it under G.C.H., but by
[4. VIIL Exercise 4.5] if p = p™=* <A <2, SPp (A, «) holds. (And remember that
it is consistent with ZFC (if ZFC consistent) that there are infinite cardinals p, &, A
such that g = p ™" <A <2* and A# A™%)

Case 11. Investigating Keisler order, we prove it is consistent with ZFC, that
T, is strictly smaller than any non-simple T. (It is always a minimal unstable
theory.) We prove it by showing that Martin axiom implies there is an ultrafilter D
over w, such that for any 2"-saturated model M of TE,;, M/D is 2%-saturated (see
{4, VI3.10]); but for any non-simple T, for any A*-universal M, and regular
ultrafilter D over A, M} D is not A* *-saturated.,

The question was whether the simple unstable theories behave like 7%, or we
should weaken the tree property to get the right dividing line, or there is no
comprehensible answer. In another sense the question was whether we can build a
theory on simple T's.

What we succeed here to do is to show for Case I the consistency of ‘for any
simple T for some A <A™, SP(A, k) holds". We find the beginning of a theory on
simple T which is the parallel of I1, I1I in [4] (for stable T). There we analyze the
Lindenbaum algebra of formulas over Q, by finding when there are few ultrafil-
terc Here we try to find Boolean algebras with chain conditions. We use a kind of
degree to prove facts on indiscernible, etc.

Problem. ic SP.(A, «) equivalent to SP.. (A, k) for any A = A=k, and simple
unstable T? By the above a negative answer can only be a consistency proof. We
have an approximation to it in [6].

We prove in [6] that there may be simpie unstable theories which behave
differently for the questions of Cases I, II if we relativize the problem to a
predicate.
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The author would like to thank fullheartedly John Baldwin, for many conversa-
tions, and for writing notes which were very helpful in writing the paper.

Notation. We use that of [4].. We let € be a &-saturated model, and deal only
with elementary submodels M, N of it of cardinality <&: A, B, C<|®), 4, b, ¢ are
finite sequences from &, 1, J orders. I J sequences (&;: i € I) of m -sequences from

¢.

We assume weak familiarity with [4, Chapters 1.2, I1.1, 11.2, IIL1].

Some of the assertions are presented without proofs. They are divided to two
types. The first, those whic are simple generalization of basic facts from [4] with
almost the same proois. The second, theorems which follow trivially from
previous facts in this paper.

1. On types which divides

This section contains some results on the notion *p divides over A" which hold
in an arbitrary theory.

Definition 1.1. (1} The formula ¢(X, @) divides over A if there is a sequence
(@ | i <w) such that
(a) tp(a. Ay=tp(a. A) for all i,
(b) {@(%. &) i <w} is n-contradictory for some n.
(2) p divides over A if pt ¢ for some ¢ which divides over A.

More malleable is the notion of p “implicitly dividing’ or forking over A.

Definition 1.2. The type p forks over A if there are formulas
@olXo. dy). . - .. ¢, (X,. G,) such that

@ pt Vi, oulE. &)

(b) each ¢ (X, a;) divides over A.

[4. Chapter 11I] provides a detailed discussion of these notions with stable
theories in mind. Here we give some further characterizations and refinements
with unstable theories in mind.

Lemma 1.3. For a fixed type p and set A the following are equivalent
(i} p divides over A
(ii) there is a k << w such that jor every A there dre p, (i <A), automorphic images
of p over A which are k-contradictory;
(iii) there is a formula @(x, b) which is a conjunction of members of p an integer k
and an infinite sequence I, indiscernible over A, with bel such that {Y(x,¢): éel}
is k-contradictory.
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Proof. The equivaience of (i) and (iil) (which follows easily by Ramsey’s theorem)
is [4, 1 1.1(3)]. For (i)— (ii) choose (by compactness) {¢(x, a,): @ I} with
I} = A, to be k-contradictory where all members of I realize the same type over A
and ael Let F, be an automorphism of & over A which takes @ to 4, Then
{F,(p)| i <A} is the required set of images of p.

(ii)— (i) Let {p,: i<<A} be a set of k-contradictory automorphic images of p
where A>3, ., and a>|p|+|T|+|Al. Suppose that the closure of p under con
junction is cnumerated by {g;: j=|p|} and let F,(p) be {¢,; = F,(): j <|pl}). For
each function f:k — |p| let C;g Al*) be

Hige o st W pop - - oo W, -1y} is contradictory, i,<ij,...}.

Since the p, are k-contradictory A™< | J,., C;: whence by the Erdos-Rado
theorern there is an infinite sct S< A and f*e*|p| such that for i,<---=<i, _,€8.
{, ;v W, -} is contradictory. Let ¢F = Aycx o). Then each ¥ is
the image under F, of ¢*= A\, o, ., and the ¥ are k-contradictory so ¢*
divides over A and p F ¢* so p divides over A as required.

Lemma 1.4. For any sequences d and b and set A the following are equivalent:
(i) the tp(a, AU b) does not divide over A:
(i) if I is an infinite indiscernible sequence over A with bel, then there is an
automorphism F of € fixing AUb such that J= F(I) is indiscernible over A \Ja:
@ii) if Iis an (infinite) indiscemible sequence over A with hel there is an @
realizing tp(a@, A Ub) such that I is indiscernible over A U{a'}.

Proof. If (iii) holds (i) follows by letting F be an automorphism taking @' to
a, F 1 A the identity and a similar argument shows (ii)— (iii). To see that
(iii) — (i) suppose that (i) fails. Then by the prcceding lemma there are k <w and
a formula ¢(%, b, &) with € A and an infinite indiscernible sequence I containing
b such that {y(%, b,¢): bel} is k-contradictory. Now if @' is chosen by {iii).
Fy(a, b, ¢) and @' realizes tp(@, A Ub) so k¢(d', b, ¢). Since I is indiscernible
cver AU we deduce Byp(a’, b, &) for any b’ & I; but this violates the assertion,
{(E BLE): b el is k-contradictory’. Thus (iii) — (i).

Now, assume (iii) fails and chioose ¥ witnessing that failure. Let p(%, b) denote
the type of & over AUb. Let q= 5., p(%. b'); then q is inconsistent. If not,
letting I'(X) be the set of formulas which assert I is indiscernible over A U ¥, we
will show q(X) consistenc unplies g(x) U T'(X) is consisteni. But any a’ realizing
q(x)U I'(x) would verify (iii) for X and we have assumed I is a counterexample (o
(iii). To show g(X)UTI'%) is consistent note that for any finite ' < I, if we can
choose ¢ realizing g, then by Ramsey's theorem we can find an infinite subsequ-
ence of I indiscernible for I'* over A UZ. Finally if q is inconsistent, then for
some finite J< I and (3, b)e p(%, b), {w(% B'): b'eF} is inconsistent. That is,
since I is a sequence of indiscernibles over A, {(%. b): be I} is |J|-inconsistent.
But this shows p(%, b) = tp(d, A Ub) divides over A.
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Lemma L.5. If for each i<n tp(a@, AUbUG,U---Ud,_,) does not divide over
AUda,” -+ " a_,, then tp(@, a,  --+~ a, AUb) does not divide over A.

Proof. Fix I on indiscernible sequence over A with b I By Lemma 1.4 (iii) — (i)
it suffices to find dl, ..., a, with

tp(d, " " d.AUb)=tplay - anAUb)
such that I is indiscernible over A Uay, ~ - -- ~ @/,. We define the a! by induction.
Suppose df..... aj _, have been appropriately chosen. Now choose aj, so that
@y ay., T ahAub)=tpa, "~ @y " " d AUD)
and hence that
p=tpla, Aubua,_, ----ay
does not divide over A Uay, ~ -+~ a},. (Choose by the induction hypothesis an

automorphism F of € fixing A Ub and mapping & to @, (i <k): by the hypothesis
of the Lemma F(a,)= a; works.) But now by (i)— (iii) of Lemma 1.4 we can
choose dj so that I is indiscernible over A Ual---al ., JUal. and .t realizes

tplag, Aua, -+ aj.,Ub).
The following claim lists some trivial facts.

Claim 1,6. (1) If p divides over A, then p forks over A.

(2) The m-type p divides over A iff for some finite q < p the formula A q divides
over A and {@(X: @)} divides over A iff (X: @) divides over A and p forks over A
iff sume finite q < p forks over A.

(3) If p=q (i.e. for any a, a realizes p iff a realizes q), then p forks over A iff q
forks over A.

2. Degrees and types which weakly divide

Definition 2.1. We define D™(p, A, A, k) (and ordinal, —1, or =) (p a set of
m-formulas. 4 a set of formulas. A a cardinal, k a natural number) by defining for
every ordinal ¢ when D"(p, 4, A, k)= a by induction on a.
(1) D"(p, 4, A, k)=0 iff p is an m-type:
(2) D™ (p, A, A, k)=8 (6 a limit ordinal) iff D™(p. A, A, k)= for every $<18;
(3) D"(p. A, A, k)=a+ 1 if for every u <A and finite g < p there are ¢(X. ¥) e
A, and sequences d, (i = p) such that:
(i) D" (qU{e(%, @)} A A k) =a
(ii) {@(%, a,): i=u} is k-contradictory, i.e. for every wa(u+1). jw|=k
F3ONA.. ¢(£:a)
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Claim 2.2. (1) If ptq, then
D™(p, 4, A, k)<D™(q, A, A, k).
@) If Ay A,, A\ =My, ky<<k,, then
D™{(p, A}, Ay, k))<D™(p, 43, My, k3).
(3) For every p. 4, M, k there is a finite g p,
D™ (p, A, A k)=D"(q, A, A, k).
(4) For every finite 4, 1+, k thzre is 8(X;¥) such that for every m-type p and

infinite cardinal A,
D™(p, A, A k) =D™(p, 6(%. ), A k)

(5) For infinite A

D (pU{\, w(x. @)}, 4 A k) =Max D" Ul @)} 8. 1. )

Proof. Left to the reader (look at [4] for parallel claim).

Claim 2.3. For every m, A, finite m-type p, cardinal A and k, n < the following
are equivalent:
() D"(p. A, A" k)=n;
(2) there are d,(ne" N0, € Alqe"” "A) such that:
(i) for every me"\, pULB, (%, @,y 1)) O=i<n}is consistent,
(it) for every ne"“A, {0,(%: @, - ): i <A} is k-contradictory:
(3)

U{p(x,): memAtu {-1(32) IA 0%V, -wrmne A wehlw= k}
U{(’nll(iv‘u )-’nlu ) l)): ne A ”}
is congistent for some 0, € A(me""\).

Proof. We prove it by induction on n (for all p’s).

Claim 2.4. (1) For A =46}, Claim 2.3 holds for not necessarily finite p. and 8, = 6.
(2) D"(p. 6. Ry, ky=zw iff D™(p. 6, n, k)= n for every n < e iff D"(p, 0, %, k)=
w. For finite \, k., D" (p, 0, . kY= w iff D™ (p, 0, A, k) ==,
(3) For every p, k. 0, m, for all large enough 1 <8,

D™ (p, 6,8y, k)=D"(p, 6,1, k).

Proof. (1) By compactness.
(2), (3) Easy, by Claim 2.3.
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Definition 2.5. For an m-type p =p(%), ¢=@(%,,...,%,; b) (I(X)=m)) let [p]*
be

U &) Ulg(E, ..., £ ),
Remark. Note that [pNq]* =[p]* N[q)*, [puUql®* =[p]* Vlq]"

Claim 2.6. (1) For any finite A, k,n,m and finite A there is a formula =
Yapn(Ey, ..., Kam) such that: for any m-type p, D™(p, A, A+ 1, k)=n iff [p]* is
consistent.

(2) For any finite A, k, n, m there are formulas ' = ¢, (%, .... %) such that:
for any m-type p. D™ (p, A, R, k)= n iff [p]* is consistent for every | < w.

Remark. Note that  is constructed from formulas of A by logical operation.

Proof. (1) by Claim 2.3(3). More exactly, let ¢'(..., X,..., ¥) be the conjunction
of the set letting A = {8} for notational simplicity.

{afigv B(Z. §o-o): ME""A, WS A, |w]= k}uw(f,.. Faigon): ME"A, i <n)

and ¢ =(3§)¢'. If [p]* is consistent there are {...,¢,,...),.n realizing it, and
there is b such that Ey[..., ¢, ..., b], so the ¢'s and b shows Claim 2.3(3) holds,
hence D™(p, 6, A, k) =n. The other direction is easy too.

(2) By the first part and Claim 2.4(2).

Now we define the central notions:

Definition 2.7. (1) T is simple if for every 6, k D™ (x =X, 8, 8, k) < w (or equival-
ently, <x)

(2) For a set B and m-type r (not necessarily over B) we say the m-type p
weakly divides over (r, B) if for some beB, and ¢=(X,...., %, b), [r]" is
consistent but [rUp]* is inconsistent.

Remark. The idea behind the last definition is that 'p does not weakly divides
over (r, B) says that p is similar to r modulo formulas with parameters from B.

Claim 2.8. (1) If pFq, A < B, q weakly divides over (r, A), then p weakly divides
over (r, B). Hence p=q implies p weakly divides over (r, B) iff q weakly divides
over (r, B).

(2) For any m,o=@(%,,...,%,4,: b)) ((E)y=m) and ¢=(x',..., 3" b,)
(I(x"y=m - n(1)) there is a formula ¢ = that for any m-type p

tpk)* =[pl*.

(3) If [p}® weakly divides over ([r]*, B), then p weakly divides over (r, B) y with
parameters from B).
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Proof. Easy.

Lemma 2.9. (1) For m-types r. p and formula  such that [rUp}® is defined and
consistent p weakly divides over (r, B) iff [p]* weakly divides over {[r}*, B)
(2) The following are equivalent (p, r are m-types):
(i) p weakly divides over (r. B):
(i) for some W=(%,, ..., % BIE)=m) over B, and finite A, k, A, let
I=m-n

D'{r1*. A A D) >DU[ruplh, A A k):
(iii) as (i) with A replaced by N,.
Proof. (1) by Claimy 2.8(2), (3).
(2) (iii) — (i) by Clair~ 2.4(3). If (ii) holds, by Claim 2.4(2) D™ ([rUp]*, A. A, k)
is finite so by Claim 2.6(1) for some ¢ over ¢, {[r]“]® is consistent, but [[rUpJ*]*

is inconsistent, so we get (i) by Claim 2.8(2). If (i) holds, then for some ¢ over B,
[r1* is consistent but [rUp}* is not, hence

D(rl" 8, 2 k)=0>~1=D([rup]*. 4. A. k)

so (iii) holds.

Conclusion 2.9. (3) p, r are m-types, A, k finite,
D"(r. A, A Kk)=>D"(rUp. A, A k),

then p weakly divides over (r, B).

Claim 2.10. (1) If p divides over A, then for some finite k,, 4,,, for cvery A and finite
k such that k,<k, A,< A, and any A:

D" (p, A N\ k)<< implies D™(p, A A k)<D"{p | A 48, AKk).

(2) For infinite X the same holds when p forks over A.

Proof. (1) Easy.
(2) (See Definition 1.2 and Claim 2.2(5)).

Ceonclusion 2.11. Ler T be simple.

(1) If p forks over A, then p weakly divides over (p | A, Y.

(2) If p is over A, then p aoes not fork over A.

(3) If p does not fork over A,p is an m-type over B, A g B, thus there is
qeS"(B), p<q. q does not fork over A.

Proof. (1) By Claim 2.10(2). and 2.9(3).
(2) By Claim 2.10(2).
(3) By Claim 2.2(5).
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Conclusion 2.12. For any simple T axioms 114, VIII, X.1, X.2, X1.1, X1.2 héld
for F{_any A. Note that axioms I, IL2-11.3, HI.1, H1.2, IV, VIII and IX hold for F,
in any theory.

Proof. Left to the reader; this will not be used.

Lemma 2.13. Suppose tp(a, AUB) does not weakly divide over (tp(d, A). A).
Then for any A’ there is b’ such that:

d'eA’, tpl@, A)=tp(a, A) implies tp(b’ ~ @', A)=tp(h ~ G, A).

Proof. Let {G;: i<a} be a list of the a'e A’ realizing tp(d, A), and w.lo.g.
A'=AUUiza a. Let
p(%)=tp(d. AUb),
r= {(P(fi(u)- e Ko n<w. CEA
t=(P{&i(mv oo o CI

It suffices to prove I'U |, p(%;) is consistent. For if the assignment & — a!
satisfies it, let F be an automorphism of €, F | A the identity and F(a!)=a.
Then let b’ = F(b).

If I'U ;.o p(x,) is inconsistent, there is a finite inconsistent subset, so, by easy
manipulation, it is contained in a set of the form

U6 AP (R E())}U‘U (%)

where ¢ = Y(Z0 - - -0 Ko 1y: o) € 1:

This means [p(X)]* =[tp(d@, A Ub)]* is inconsistent, but clearly [tp(a, A)]* is
consistent (&, ~ - ** ~ &,a- 1, realizes it), so by Definition 2.7 tp(d, A U b) weakly
divides over (tp(d, A). A), contradicting the hypothesis.

Lemma 2.14 (The Weak Symmetry lemma). If tp(b, A U a) divides over A. then
tp{a. A Ub) weakly divides over (1p(a, A), A).

Proof. As tp{h. ALua) divides over A. there is an indiscernible sequence I=
(@,: n<w)over A, d,=a and g(% @) etp(b, A Ua) such that {¢(%, @,): 1 <w} is
k-contradictory. Letting A= AU, ., d, there cannot exist b’ as in the previ-
ous lemma, hence necessarily the hypothesis there fail, i.e. tp(a, A Ub) weakly
divides over (tp(d, A), A), as required.

3. Boolean algebras, essentially of formulas

Let T be simple in this section.
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Definition 3.1. For any set B, and type r let W(r, B)=(W(r, B), <) be the
following partially ordered set. The elements of W(r, B) are the formulas with
parameters from € (identified up to logical equivalence) which do not weakly
divide over (r, B). o<y if o+¢. Thus W(r, B) is a partial subalgebra of the
Lindenbaum algebra of €. In particular it is easy to see that W(r, B) is closed
under v and that if ¢, §, ¢ A are all in W(r, B), then @ A s is the greatest lower
bound of ¢ and . Now, ¢. { are incompatible means there is no 8 € W(r, B) such
that 8F¢ and @F 4. But, since for any formulas ¢, ¢, if ¢, ¢, and ¢, € W(r, B),
then ¢, W(r, B), ¢ and ¢ are incompatible just if ¢ A ¢ W(r, B). We define
W, (r, B) similarly, restrictiag ourselves to formulas ¢(%:a), a€ A.

Remark. For motivation of the above definition see the remark after Definition
2.7 and think about Lemma 4.9 (which proves Theorem 4.10).

Lemma 3.2. Fix r and B. Let A =(28"T)*, Then W(r, B) satisfies the A-chain
condition.

Proof. If not, let {¢;: i <A) be a sequence of elements of W(r, B) such that for
each i, j there is a formula ¢, with parameters from B such that ¢, A ¢; weakly
divides over (r, B) by ¢s;. By the Erdos-Rado theorem, we may assume that for
i <j<w all the Y are the same formula ¢ = (X, ..., %+ b}, and all the ¢, are
of the form ¢(%, d). Now, for each i< w[rU{e(& &)}]* is consistent but
[rU{e(R, a). ¢(% @)}]" is inconsistent if i# j, i, j<w. For any finite 4,

D({ru{e(x. a4, 8. 2)sD(r}* 4,8, 2D = I<w

(by simplicity of T). Now let A= Um {o(X,¥)}. If for each i, D(ru
{o(x, a)}l% A, Ry, 2) were equal to | it would follow by Definition 2.1(3) that
D([r]*, A, R;, 2) >1; thus for some i

D([rU{e(x, a)ll% 4.8, 2)<D([r}" A, R, 2).

But then by Lemma 2.9(2) ¢(x,a) weakly divides over (r, B) contrary to
hypothesis.

Lemma 3.3. If pe S™(C), then for some A < C,|A|<|T| p does noi weakly divide
over (p | A, A).

Proof. We first show that for any set B there is a B' such that p does not weakly
divide over (p ! B', B), Bz B',|B'|<|T|+|B|+¥,. Then setting A,=¢, A, ., =
(A, A =Upcw A, is as required. Now for euch ¢ = (%, b) b< B such that p* is
inconsistent choose 6, € p such that [6,]* is inconsistent. Let B’ be the set of
parameters which occur in any 6, The number of ¢ is <|T}+|B|+R,.

Definition 3.4. For any partially ordered set (P, <) there is a unique complete
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Boolean algebra RO(P) and a homomorphism e of P into RO(P) such that
(i} p, q are compatible in P iff e(p), e(q) are compatible (i.e. have a common
lower bound) in RG(P).
(ii) e(P) is dense in RO(P)
(iii) ¢ commutes with A when defined, so (i) holds for finite sets.
So chain conditions are preserved. We will call RO(W(r, B)), B(r, B). (This is
used c.g. in passing from forcing to Boolean-valued models.)

Lemma 3.5. (i) If p does not weakly divide over (r, B), then the image of p in
Bf(r. B) has the finite intersection property.

(it) If F is an ultrafilter on B(r, B), then p={¢ € W(r, B): e(¢)e F} is a type
which does not weakly divide over (r, B).

Proof. (i) Let a, - - - a, be in the image of p. Then there exist ¢, - - ¢, € p such
e(¢;)=a,. But then AL, ¢ ep and e(AX, @)= A5, a, so (i) holds.

(ii) Suppose ¢, - * - ¢, € p. Then e(g,),. ... e(¢,) are compatible in B(r, B) so
by the third condition on ¢ ¢,. ..., ¢, are compatible in W(B, r), that is, AX., ¢
does not weakly divide so p is as required.

Notation 3.6. (1) In the sequel, we will frequently drop the e and denote
e(@(X, €)) by @(X, ¢). We denote elements of B(r, B) by ¢.

(2) Any automorphism F of €. F | (BUDom r)=id induce an automorphism
of W(r, B) B‘(r, B) which we also denote by F.

Definition 3.7. (1) A set A<C is a support of an element ¢ of B¢ (r, B) if for
every automorphism F of €,

Fl (AUBUDomr)=id=> Flp)=¢.
(2) A set A<@ is a weak support of an element ¢ of B*(r, B) if
{F(¢): F an automorphism of €, F } (A UB UDom r)=id}
has cardinality <||G|}.

(3) Let B¥(r, B) be the set of elements of B°(r, B) with finite weak support.

Claim 3.8. (1) Any element ¢ of B<(r, B) has a support of cardinality < (28T
(2) The set of elements @ of B*(r. B) such that A is a support of ¢ [A is a weak
support of @] is a complete subalgebra.
(3) B™(r, B) is a subalgebra of B(r, B), including W(r, B).

Proof. (1) Clearly every clement of W(r, B) has finite support (the set of
parameters, of any formula representing it.) Let A =(2®*T)* so by Lemma 3.2
and Definition 3.4 B“(r, B) satisfy the A-chain condition. As W(r, B) is dense, any
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¢ BS(r, B) is suplg;: i <iy=A} ¢, € W(r, B), so if A is a finite support of ¢
U<, A; is a support of ¢.

(2) Easy.

(3) If A, is a support of ¢, (I =0, 1), then A,U A/ is a support of @, 1~ ¢,, ¢,V
¢, and A, is a support of —¢,, so there are no problems.

4. Extending to quite saturated models

Definition 4.1. (1) Let «r4(T) be the first regular cardinal «, such that there are
no A, (i <«) increasing with i, pe S"(A,), p | A,., fork over A,

(2) Let kr(T) be for simple T the first regular «, such that for every pe §"(A),
there is B € A, |B! ~ « such that p does not weakly divide over (p | B.®. For non
simpie [ we stipulate «r (T) = .

Claim 4.2. (1) «r.4(T) is the first k such that for every pe §™(A), p does not fork
cver sume BS A, |B{<«k. and « is regular: a similar assertion holds for kr (T).
(2) For simple T

kra( Ty =er(T)<|T|*.
(3) In Definition 4.1 (1) we can take m =1,

Theorem 4.3. (1) In Definition 4.1 (1) we can replace *forks™ by *divides™ and for a
fix A, assume there is an indiscernible 1< A, ., witnessing it. \l|= A (i.e. there are
k<w acA,bhel and ¢(%:7: ) such that @(%: b d)e p and {¢(R: ¢ a): ce Y is
k contradictory; in fact we can omit ).

(2) It is equivalent also to the definition of kr.o(T) in [4, 11, Definition 7.2}.

(3) If T is not simple kr(T)=kr(T)==, if T is stable it is simple, for stable
T, kr(T) = kro(T) = «r(T). If T is simple unstable, T lLas the independence prop-
erty (see [4. II, Definition 4.2.]) but not the strict order property. T is simple iff it
does not have the tree property [4. 111 7.2,

Proof of Claim 4.2, (1) Immediate.

(2) Clearly Conclusion 2.11(1) implies «r.o(T)=<xr,(T) and Lemmas 2.9 and
3.3 imply kr(T)<|T|".

(3) Clearly «r'(T) < kr"(T) because we can add dummy variables. Assume that
k <wkr"*'(T), then there are a sequence a={dy....a,) and an increasing
sequence of sets A; (i <«) such that tp(a. A,,,) divides over A, (by Theorem
4.3(1)).

Now by the assumption and Lemma 1.5 it is impossible that
1plag. .. .. a0 Ar,) does not fork over A, and tpla,. A, U{dy. . ... a, D
does not divide over A, U{a,,...,a, .}
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For all i<« tplay,....a,). A, divides ove: A, or tp(a,, AU
{ag,...,a,_;}) divides over A, U{a,, ..., a, .}

One of the cases happens « times:

In the first case {a,.....a,-,) and a subsequence of {A;}.. exemplifies
x <xr"(T) (remember monotonicity of dividing).

In the second case a,, and a subsequence of (A, U{a,. . .., a,, .} i <k exemp-
lifies & <kr'(T)).

Proof of Theorem 4.3. (1) If T is not simple, by Theorem 4.3(3) (proved below) T
has the tree property, and then it is easy to prove that in both variants of
Definition 4.1(1) we get =».

H p | A,., divides over A, clearly it forks over A, (see Claim 2.2) hence one
inequality is clear., For the other direction suppose A, (i<«) is increasing.
peS™A,). and p | A,,, fork over A, and for | <wn' I,=(a!,,: a« <A)is indiscer-
nible over A, {¢/(x:al,): <A} is mi-contradictory and

plALFY @lx:a):
]

w.lo.g. ai,= di, We define elementary mappings F'. Fi*', such that:

i) Dom F**''= A, ,Udl, DomF; = A, (for limit §), Dom Fi"'=A,, UL

(i} F* } A, is increasing.

(ili) F}''(d}) is indiscernible over B, = {J {Range F!: j<i.l<n'}.

We define by induction on i: for i = 0. limit there are no problems. For i+ 1
first define a sequence b, = b, (I<n') such that:

(@) tpthio. F(A D) = F(p(ab o A

(b) tpg(B. F'(A,)Ub} ) does not fork over F'(A,) (hence does not divide).

This is possible by Conclusion 2.11(2). (3) so by Lemma 1.4 we can define Fi*'.
In the end let ¢ realize F (p). then B; (i <«) is increasing, for each i Fi*"'(I) is
indescernible over B; (and infinite). ¢ realizes F'*'(p | A,,,). hence satisfies
Viei(x:di,) hence for some (i), ¢i(X;dii0etp(C B;,;). However,
{oti (&% a): ae Fiy; (L)} is mi-contradictory, so tp(é, B;..,) divides over B, and
the indiscernible sequence witnessing it is < B, |, and has power =\ so we finish.

(2) Is left to the reader.

{3) Start by proving that T is not simple iff it has the tree property (see
Definitions 0.1, 2.1, 2.7(1)) and the rest also easy.

Definition 4.4. (1) Let SP(T) (saturation pairs of T) be {(A, k): A ==|T|, and every
model of T of cardinality =\, has a «-saturated elementary extension of cardinal-
ity =A}L

(2} CP(T) (compactness pairs of T) is defined similarly, with x-compact replac-
ing k-saturated.

(3) Let SP(T)=SP(TiN{(A. k): A= A=k}, and CP'(T) is defined similarily.
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Claim 4.5. (1) SP(T) < CP(T).
(2) The following are equivalent:

(i) (A, x)eSP(T);
(ii) forevery T,, T T,,|Ti|= A, and model M of T,,|M||<A there is a model
N of Ty, M< N, |IN|<< A, and the L-reduct of N is k-saturated;
(iii) for every A,|A|= A, there is a set S < S(A) of cardinality = A. such that for
every 1-type p over A,|Dom pl <k, there is qe S, p<q.
(3) Like (2) replacing SP by CP in (i) and |Dom pl<« by |pl<«k in (ii).
4 (A R,)) e CP(T) whenever A>T}, and (A, R,) e SP(T) iff A =|D(T).

Proof. Left to the reader.

Conclusion 4.6. (1) If A= A~*=|T|, then (A. «)e CP(T).
(2) If A=A"*=2T or at least A = A" =|D(T)|, then (A, x)eSP(T).

Proof. (1) Use Claim 4.5(3)iii).
(2) Use Ciaim 4.5(2)(iii).

By [4]:

Theorem 4.7. (1) If T is not simple, or k <kr (T), then (A k)eCPT) iff
A=A =|T| and (A, k)eSP(T) iff A=A~ =|D(T)\.

(2) If T is stable, (A, k)€ SP(T) iff A=A~ ={D(T)| or T is stable in A.

(3) If T is stable, A=|{D(T)l, then (A, k)€ CP(T) iff A=A"*"" where k{(0) =
min{x, kr. (T}

(4) If T is unstable, A swong limit with cofinality <k or A<2%%, then
(A, k)¢ CP(T). .

(5) Suppose k >|T|. Then CP(A. k) iff SP(A, k).

Proof. (1) The "if’ parts follows by Conclusion 4.6, and the “only if* parts by {4.
VI 4.9, p. 456).

(2) The "if' part follows from {4, VII1 4.7, p. 455] and the ‘only if* part by [4,
VIII 4.9, p. 456).

(3) Left to the reader.

(4) By the proof of [4, VIII 4.8, p. 456].

(5) Easy.

Theorem 4.8. (1) (A, k) e SP(TE,) iff

(*Us A=k, and there are A functions f: A — 10, 1}. such that every partial
function g from A 10 {0, 1}, |Dom g| < « is included in some f,.

Q) If p=p""<<A=2%, then '\ k)eSP(TE ).

(3) If T is simple unstable, then SP(T) < SP(TE,).
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Proof. (1) Easy by Claim 4.5(2)(iii).
(2) By part (1) and Engelking and Karlowicz [2] (see also [6]).
(3) Easy.

Remark. It is not clear whether (A, )& SP(T,,) implies that for some u, p=* =
< A=2*; this is a set theoretic question. In a counterexample necessarily for
some strong limit p, p <A <p=* = 2%, 50 0* exists (and much more). We shali try,
however, to reverse Theorem 4.8(3) with a partial success.

Lemma 4.9, Suppose T is simple, k Zx(1) = kr(T), A=AV =|T|+«.

(1) For proving (A, k)e CP(T), it suffices to prove:

(St. 1) For every A, |Al<A, and type r over A, |Dom r|<«(l), there are A
ultrafilters D,(i<A) over BS(r,§), such that each family D of <« elements of
W, (r, @) with the finite intersection property, is included in one of them.

(2) In (1) we can replace CP(T) by SP(T), provided that we replace (st. 1) by
(st. 1) by allowing D to have the form p={¢,(x, &): i <io}, ||U; @<, p does not
weakly divide over (r, 9).

(3) If u=p~"<A<2% then the following implies (St. 1):

(St. 2) For every A,|Al<)\, and type r over A, |Domr|<k(l) there are pn
ultrafilters D, (i <p) over B(r,®), such that |, D; = W4 (r, $)—{0}.

(4) If p=p~" sA=<2" then the following implies (St. 1'):

(81.2') For every A.|Al<A and type r over A. |Domr|<k(l) there are u-
ultrafilters D; (i <p) over BS(r, 9) such that: every set D = W, (r, @) with the finite
intersection property of the form {@;{x, a): i <iy} is included in some D,

Remark. We could use RO(W,(r, B)) instead BS(r, B) and make other similar
non-essential changes.

Proof. (1). (2) Left to the reader.

(3) Let A, r be as in (St. 1), we should find D, (i <A) satisfying the demands of
(St. 1). By (St. 2) there are ultrafilters D, (i <p) of B%(r, ¢) such that |, D, =
Be(r. $)-{0}.

For every x <A let I ={t: t a finite subset of x}. As {{te [ : act} a<xl}isa
family of subsets of I with the finite intersection property there is an ultrafilter E,
over I, extending this family.

For each function f: I, — pu let Dy={aeB%(r.¢): {tel : ae Dy,}cE,}.

Now the following three facts finish the proof:

Fact A: Each Dy (f: I, — A, x <«) is an ultrafilter of B(r, ¢).

Fact B: D{D;: f:I, = p, x<«} is a set of p ultrafilters of B(r, ¢) (as its
poweris ¥, p =Y, . pw <Y =Y nSskp=p)

Fact C: If D is a family of <A elements of B(r, ¢), then for some D,e D, Dc
D,.
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(For let D={a;: i<xy<«k}and to tel let a,= (), G, 50 by the assumption
on D, a,#0. Define f(t) =min{i < u: q, € D} it is well-defined by the choice of the
D;’s. It is easy to check that D g Dy, and obviously D;e D.

(4) Left to the reader.

Remark. From Lemma 4.9 we have reduced the problem of proving (A «k)e
SP(T) (for simple T, and e.g. w <A <2". u=* +p'™'=u) 1o showing that certain
Boolean algebras of power A, satisfying the (2')"~chain condition is the union of
w’ -ultrafilters.

Theorem 4.10. It is consistent with ZFC (provided that ZFC is consistent) that:
(1) for stable T,SP(T)= K} =%"{{A, «): AT = A=k}
(2} for simple unstable T,

SP(T) = K, =*"{(A. k): "= A=« and A is not strong limit},

(3) for non-simple T, SP(T) = K =""{(A. k): A=" = A};
(4) for every X the classes K3, K} are distinct.

Remark. This theorem shows in some sense the distinction between simple and
not simple theories is significant.

Proof of Theorem 4.10. Follows from Theorem 4.12(2). and Lemma 4.13 below,
by Lemma 4.9 and Theorem 4.7(4). In Theorem 4.12(2) we choose (u,. x,.) such
that x, >R, o ensure part (1),

Definition 4.11. Ax,(A) for A regular is the following statement: Let P be a
partial order, |P|<2*, and D (i <i,<<2") dense subsets. There is a G < P generic
for {D;: i <i,} provided that:

(1) P is A-complete, i.e. if ¢;e P (i<iy,<A), i<j=> ¢;=¢; then form some
ceP, ¢ =c:

(2) for any sequance (¢;: i <A™) of sequences of P, there is a closed unbounded
ScA™ and sets V;(i<A') increasing |Vi|=A, and a function f:A" -, V,
fliye V, such that

@) cfi=A i8S implies V.= J;« V.

(ii) i, je S, cfi=cfj= A, F(i) = F(j). implies ¢.. ¢; has a least upper bound ¢; v,

Theorem 4.12. (1) Suppose V as model of ZFC satisfies GCH, w is regular
X > u, x regular. Then in sume generic extension V' of V:
() 2" =x, (VA<u)2*=A", (VAZu)2" = A"+, so p=pn"*;
(ii) (Axy) holds;
(iit) Cardinality and cofinality are preserved by the extensions.
(2) We can do the same simultaneousls for {(p,, x.): « an ordinal} provided that
all w,, x, are regular, « <B > y, < pg.
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Proof, See [5].

Lemma 4.13. Suppose (Axyp.), p=* = u, B a Boolean algebra, |B|<2*, B satisfies
the p-chain condition. Then B —{0} is the union of w ultrafilters. (We identify B and
it’s universe).

Proof. Let us define the partial order P. The members of P are partial functions f
from B-{0} into u such that |Range(f){<u and for every @,,....¢@,¢€
Domf, flg,) =+ - = fle,) implies ., ¢;# 0. The order is inclusion. For every
ee|B}—{0} let D,={f: ¢ Domf}. It is easy to see each D, is dense (for every
fe P choose i <p i¢ Range f, and extend f by ¢ = i), and if G < P is generic for
{D,: ¢ B~{0}}, clearly f*={J {f: fe G}, give our conclusion (for each i, extend
{¢: F*(¢)=1i} 10 an ultrafilter E; of B, (possibly as it has the finite intersection
property), and clearly |J, .., E =|B|-{0}). So we have to check conditions (1), (2)
from Definition 4.11. Now (1) is obvious. Let us prove (2). Let f ¢
Pla<A™).Domf, ={¢f: i<i,<u}. f,(@7)=j. Now for every «.j and finite
w< i, such that, ie w > £, (¢f") =j we define by induction on <y, an ordinal
Bla. w, Z)<a such that

(@) g = o fowwwoli)=j for ie w:

) {Nicwe B=PBla, w. £). £ or B=a} is a family of pairwise disjoint
(non-zero by (a)) elements of [B|:

(c) Bla. w. &) (=) is strictly increasing: and

(d) Bla. w. ) is the first ordinal for which (a), (b). (¢) holds. As B satisfies the
@ -chain condition, by (b) for some (first) { = (o, w) < p Bla, w. {) is not defined.
We let F(«) be the sequence of the following:

(o) (i<l

(B) {w. L Bla. w. 1) {L<la.w)):

(y) (B yoy i<i,). where for i<i,, if for some B<c. j<iz ¢f=¢, then
(Br. Yy =(a+1.j+1) otherwise B =y =0.

We let V, ={F(B): B=<a}, and left the checking to the reader.

Remark 4.14. We can decompose Lemma 4.13 to two:

(i) if ((B]—{0}, =) satisfies condition (2) from Definition 4.11. then it is the
union of p ultrafilters:

(ii) if B satisfies the p-chain condition. then (B —{0}. =) satisfies condition (2)
from Definition 4.11.

Remark 4.15. By [7] if B satisfies the g chain condition |B|= A", A™" = A, then
B {0} is the union of A ultrafilters,
5. Indiscernible sequences based on sets

Definition S.1. (1) Let I, I, be infinite indiscernible sequences over A of
m-sequences. Let da (I, I) be the minimal natural number n such that there are
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infinite indiscernible sequences over A of m-sequences, J;=(a,: te ), (I=<2n)
(the J, pairwise disjoint infinite, ordered sets, called the witnesses such that:
W) Izl ds, 215
(i) (a,: teJy, +J,.,) is an indiscernible sequence over A for /<n, and
{a,: te Js,»+Jo, ) is an indiscernible sequence over A for [+ 1= n. If there is no
such n, da (L, I) == .
(2) d\(I,, I) is defined similarly, except that we replace (ii) by
(i) J,NJ.,, is infinite for | <2n,
(3) I,=AI, if I, I, are infinite indiscernible sequences of m-sequences over A,
and d (I, I) <=,
(4) Cu(D where Iis an infinite indiscernible sequence over A, is | (& J=, 1,
and C(D=J {J: daJ, D=n}. (So Ca(D)= U, «, Calh).)

Definition 5.2, (1) The infinite indiscernible sequence I is weakly based over A if
it is indiscernible sequence over A, and the number of images of C,(I) by
automorphisms of € fixing A is <||€}.

(2) The infinite indiscernible sequence I is based on A if there are no
automorphism F, (i <{|€}) of €. F, | A = the identity, and for i # j, F,(I)# . F;().

Claim 5.3. Let L, I, be infinite indiscernible sequences over A of m-sequences. The
following are equivalent;
1 d;\('us '1)S~"l
(2) for every m < w and finite A < L and finite A'< A and @'e I, (i <m) increas-
ing (in the order of the sequence) il =0, 1) there are b* (k <2n,i<m) such thar:
(i b'=ap. b}"=a) (i<m),
(1) (B2 i<<m)y - (BIY i<m) is (A, m)-indiscernible over A' and (b*: i<
m) ~{bH i< m) s (A m)-indiscernible over A'. for | < n,

Proof. Left to the reader.

Conclusion 5.4. (1) For any A, n. and m, there is a type

Mgt )

Pt =P (Ko Yoo o o s Kis Vico v <« A) (Hx) = U(F)=m),
such that if F={(d,: k<) I={h: k<) arc indiscernible se:uences of ni-
sequences over A, then da(Ly=sniffay - by -+~ @ ~ b~ - realizes ri".
(2) For any A.n, m there is a type
PR s Faa e o Fao e e e s A) (&)= 1§ =mn)

such that if I=(b,: k<w) is an indiscernible sequence of mi-sequences over
A l@=m, then aeCy(hiff a b, b, " -+~ b~ - realizes ry".

Claim 5.5. (1) da. d!y are distance functions and ==, is an equivalence relation.
(2) Let I, 1, be infinite indiscernible sequences over A, then d. (K, L)<= iff
AL, 1) <=
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G If Iy=aI. then for any increasing al,....aell (=0,1)
tp(ag = " ah, Ay=tplds " - " al A

Proof. (1) Let I, (I =0, 1, 2) be infinite indiscernible sets over A.

(i) Reflexivity: dy(ly, k) = da(k,. 1) =0 because we can choose I, =J,
n =),

(i) Symmetry: diy(ly, I) = di\(I,, 1)) because if (J;:1=2n) is a witness for
d’\(Iy. )= n, then (J,_,: I <2n) is a witness for d’\(I,, I,)<n hence d’\(I,, I,)<n
implies d4(I,, I,)=n. By the symmetry. equality follows; d, (I, I,) =d,(I,, I,) is
proved similarly.

(iii) The triangle law: Suppose da (I, L, )V =n <> (=0, 1) and J: i=2n)is
a witness for this. Without loss of generality J3,, = I, = Ji, (see Definition 5.1) and
let

_{.r.’ i<2n,

J L., 2ng<is2ny+2n,.
Then (J;: i <2(n,+n,)) is a witness for d,(I,. L) <n,+n,. So
d,\('u. '2)Sd;\('u~ 'l)+ dA(II* ’2)'

(Ii the right-hand side is finite by the previous arguments, otherwise trivially.) The
triangle law for d’, is proved similarly.
(2}, (3) Left to the reader.

Claim 5.6, (1) If I is based on A, then I is weakly based on A.

(2) If Definition 5.2(1) we can replace <|G|| by <2'*MT1Similarly in Definition
5.202) it is equivalent to demand there are no such F, for i <(2**7T)y™ Also if we
change in Definition 5.2(2) F(I) # A F(I) to d (F (D). F,(I))>1 the above men-
tioned assertion remain true.

(3) The number of Co(D). I weakly based on A is <247

Proof. (1) Trivial
(2) Let us concentrate for example on Definition 4.2(2): similar argument
appear in McKenzie and Shelah [3]. Suppose F, is an automorphism of
G, F, | A =the identity for i <2 L =F(I) and L # 41 for i <j. We can
assume I = (d,: k <w), and let ak F,(a,). By a variant of Erdos-Rado theorem
we can assume tp(dh, ~ah " -~ al " @ ....A) for i<j<(A|+|T|}* depends
on i only. For i <j, and n<w as d(I,, I,) > n, there is (o, Fo. . . . . G Dyeryn
(k =k(i.j.n), (b= l.;;f,) (see Conclusion 5.4(1) for its definition) such that E—
wldd. aly, . ... d. k. b. By the above mentioned assumption we can assume
voE s k3L o) = k(L n), b" = h?. The number of possible (¢, b, k{i, n)) is
IT1+ |Al, hence we can choose by induction on n, ¢", b, k(n) and S, < (|A|+|T})"*
(i.e. S, is a set of ordinals) such thac
(1) 1S.1=(Al+[T)", .1 S8,;
(ii) for every i€ S,. ¢'= 4", b'=b", k(n, i)y=k(n).
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Now by compactness argument. there are aj (@ <[G|) such that

(@ tpag-as -7 A)=tpldy " @, - T a7 A)
and

by  for a<B n<w FE-wW"lal al asab,....ag., at.,. "l

hence
d,(J*. J®¥)=n where J* =(a}: k <w).

so by (a) for each a<[@} ihere is an automorphism F., of €, F, | A =1the
identity, F,(5)=J,, and by (b) for a# B, da(J,. I3} =%, s0 we finish.
For Definition 5.2(1) we use conclusion 5.4(2).

f.emma 5.7. For any pe 8" (IM)) there is an indiscernible sequence I of sequences
realizing p which is based on |M| in fact J= 1 iff do (I Yy 1 iff for any increasing
Ao« - Ay el 17(1. PP I),, elJ

tpd, - " a,. IMp=tp(h, " -~ b,, IMJ).

Proof. This is essentially from {4, VII, §4]. Let D, be the filter over ™|M|
generated by the family {o(M, d): ¢(%: d)e p} (e(M: @) ={be|M|: MEg([h: al}.
Let D be an ultrafilter extending D, and for every B, let Av(D.B)=
{o(z:h): be B, {ac|M|: Fola: blte D}. It is in $™(B). Define inductively 4,: &,
realizes Av(D. MU U,..,. @). I={(a,: n < w) is indiscernible over |M|. and if J is
as in the lemma, define ¢, to realize Av(D,|IM{UIUJ). and then J,=LJ, =
(Cain<w), J,=Jd are witnesses for d (L J)y=<1. For the last iff, apply Claim
5.5(3).

6. Existence of indiscernible sequences based on a set
Definition 6.1. (1) An infinite indiscernible sequence I={d,: te I) is calicd based
on (A, B), where AcB, if

(i) I is indiscernible over B:

(i) for every tel tp(a. BULJ,. ,d) does not fork over A,

Claimn 6.2, If I is based on (A, B), Ac A, < B,< B. then 1 is based on (A,. B,).
Also if I=L,+1,. then I, is based on (A. BUL,).

Remark. Note the difference between this definition and Definition 5.2(2).

Lemima 6.3. If A< B. pe $™(B), and p does not fork over A, then there are G,
realizing p such that {(a,: n<w) is based on (A, B).

Proof. Let A =2""T and we detine by induction on a<2,. m-sequences b,
such that tp(b,. BU g bg) extend p and does not fork over A. This is possible
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by Conclusion 2.11(3). Now by the meihod Morley proved his omitting type
theorem {see [1, Theorem 7.2.2]) there are m-sequences 4, (n<w) such that:
(i) for every n there are a(0)<---<a(n) for which

tp(@, ~ -+ " 4, B)=IP(5.,<m T ‘Ea(n)s B);

(i) {@,: n <w) is indiscernible over B.
By (i) each 4, realizes p and tp(d,, BU |J,, @) does not fork over A, hence
remembering (ii). {4,: n <w) is as required.

Conclusion 6.4. For simple T, pe 8" (A) there is an indiscernible sequence based
on (A, A) of sequences realizing p.

Proof. By Conclusion 2.11(2) p does not fork over A, so apply Lemma 6.3.
Lemma 6.5. For simple T. every indiscernible set I based on (A, B) is based on A.

Proof. Suppose not, let A =24"1" 5o by Claim 5.6(2) there are automorphisms
F, of €. F, | A =the identity, (i<<2,.) such that d,(I,, I;)>1 for a# B, where
I, =F, (I, and w.lo.g. let I=(a,: k<w) ap=F,(a,).

Claim 6.5. (1) There are b, k <w, a <w such that
M by~ o b ---.A)=tp(d“"“-‘&k T A)
(ii) for every k. (b“ T T by a <o) is an indiscernible sequence over A.
(i) for every n< I<w there are a <B <2, such that

tpythyy ~ By By By - Bl A)

=tpglag ~ afl '&T'ﬁl TeeeTagTagt o A)
Proof of Claim 6.5. (1) Dzfine by induction on n<w a type p, =p(Xhim=n)s
I(%,,) = Il{a.) such that:

(A) Pn & Prct-

(B) For each y <A™ there is an increasing sequence a’ = (a;j: i <2,) of ordinals
less than 2, such that:

) Al - 2: y+ i <2,) is an indiscernible sequence over A.
(2 )o if i, <iy<.--<<i, then tp(agl, m<n)=p,.

We shall prove the existence by induction on n:

For n=0,p,=¢.

For n+1 for each there is a sequence {¢;: i <2,,,.,) as mentioned above in
(B) for n. Applying Erdos-Rado we get an appropriate sequence of length 2, for
the type pl...

Because there are only A types there is p,,q s.t. {r: plo) = pasi| = A7, It is easy
to verify all the other conditions. |, -, p, is consistent, hence (by: ¢ <w, k <w)
realize it. It is easy to check that they are as required. Now we define by induction
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on | <@, m-sequences ¢ such that

(@), tp(bg -~ b~ G " &1, A) does not depend on « and is equal 10
tp(bs ~ - b BSay. ..., BT A) (or every k < w);

(i), for every k (b5 ~ - - - = bf: a < w) is an indiscernible sequence over A U |
n<i G

For [=0, (i), (i), reduce to (i), (ii) hence holds, So suppose (i), (i), hold.
Cov ... Gy are defined, and we shall define & such that (i), (i), , holds, Note
that (i), is equivalent to: for every a <o, (hy: k <)~ (¢,: n<1) in an indiscerni-
ble sequence over A. Let. for a<w

Do =40(R G s €iins v Cn By, .., D A): GEA,
(27 ()P AT )Yl N Y 3 | 3

Clearly ¢ realizes p, iff (b k <)~ (Ty, Ty. . ... &1, €) is an indiscernible sequ-
ence over A.

Let I' be a set of formulas, with the free variable in X only. over AU
(b2 e <w, k<@YU{Cu ..., .}, such that & realizes I iff for every k

by -+~ bP: a<w) is an indiscernible sequence over

AU le<lEv| Uc.

Clearly such I’ exists.

Now a sequence & satisfies (i), , iff ¢ realizes |, .., p.. and (ii);,, iff it realizes
I'. So it suffices o show |J,, ..., p. UT is consistent.

First we show ... P. is consistent. Otherwise there are a(n)<ow(n <n(0)).
@ € Pacny such that {g,: n<u(0)} is contradictory. As we can replace ¢,
by any conjunciion of formulas from p,, in which it appears, and increase
{a(n): n<n(0)}, we can assume al(n)=n for n<n(® and ¢,=

W% G Eon bR DR, ... B0, @), dE A, 50 @, is defined naturally for every n.
By (ii),, for every ny<m <-- <m0 <@ @ G« ., | 19 cOntradictory,
and in fact, for every distinct ng. ..., n,,<w. In other words {¢,: n<w} is
n(0)-contradictory. Again by (i), (¢, <+~ & " by " bY., - " by " d:n<w)

is an indiscernible sequence over A, but in the nth place appears the sequence of
parameters of ¢,. Hence by Definition 1.1(1) ¢, divides over A. But by (i), this
implies that ¢(Z, by, ..., b0, B By, ..., BY, a) divides over A. But bY.,.,
satisfies it. So by (i), @(X. @} ... .., @, @) divides over A and a,,,,, satisfies it, 5o
P vty s AU U er o @) divides (hence fork) over A, contradicting an
hypothesis.

So U, «q P is consistent. Using (ii), and Ramsey theorem, it is not hard to
prove that |J, -, p,UT is consistent, and choose ¢, as any sequence realizing it.
So as said before, (i);+,, (ii);,, holds, hence this completes the inductive definition
of the &'s. Now J,=(b}: k <w), J, = (&,: k <w), J,={b}: k < @) are witnesses for
da(dy, I)=1 (as J,+J,, J, +J; are indiscernible sequences over A by (i), (| <w).
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So by (i) (from the conditions on the bs) for some a# B, da(L, I,)=<1 con-
tradiction,

In fact the proof shows (remembering the proof of Claim 5.6) e.g.

Lemma 6.6. If I, =(a: tel,) is infinite indiscemible sequence based on (A, A)
for o < (2% T simple, then for some a# 8 da(l,, I)<1.

Conclusion 6.7. If T is simple, pe S™(A), then ihere is an infinite indiscernible
sequence based on A of sequences realizing p.

Proof. Combine Lemmas 6.5 and 6.6.

7. Summing on an indiscernible sequences

In this section T is simple.

Definition 7.1. For a B(r, B) clear from the context, r an m-type, a formula
@(% ¥). aset A and an infinite sequence I indiscernible over A, = AUBUDom r,
bel=I(b)= (), let

ent(D)=cnl ¢, A)= V {@(& a): ac Cy(D}e B(r, B).

If B<(r, B) is not clear in the content, we write cn(l, ¢, A, r, B) or cni (I, B) where
B = B“(r,B).

Remark. Note cn4(I) is well-defined because the disjunction v is taken in the
complete Boolean algebra B€(r. B).

Claim 7.2. If BUDom rc A, I an infinite indiscernible sequence over A, weakly
based on A, then cni(I, B) (B = B(r, B)) is weakly supported by A.

Proof. Trivial (see Definition 3.7).

Theorem 7.3. If BUDomrc A, I infinite, indiscernible sequence over A, |I}=
Kl T), then in B(r, B)
eni(l) =V ¢(x: 0).
cel
The proof is decomposed to claims, B = B(r, B) is fixed, and A the first cardinal
such that B satisfy the A-chain condition (exists by Lemma 3.2 and Definition
3.4).
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Fact 7.4. If I={(a,: i€ I) is indiscernible over A, and infinite, then for any ordered
set J, 1< J, we can define @, (teJ—I) such that (G, tel) is indiscernible over A.

Claim 7.5. If BuDomrg A, I=(a,:t€l) is an indiscernible sequence over A,
and ;L [J|= A, then

e LV ek a)= % V p(i:4)
Proof. Trivially ¢; =¢,. To prove the :onverse it suffices to prove ¢(%, d,) <¢;
for any s(0)cl Let us define for se L. J,={telJ: t<s}, ). ={(d,: tel,). Clearly
Jom={ted: 1<s(0)} or {teJ: t=5(0)} has cardinality A, by symmetry (we can
invert the order) we can assume |J,' = A. So for any

s€ Jae(X: d,0) % V @(X, d)
ted,

(in B(r, B)), but clearly
tp(a\’ A U"s) = tp(ds(())‘ A L‘. "s)'

S0 @(X;8,)F Viey, @(%:G,). Let ¢ =@(5:3,)- Vo @{X: 3), s0 @, €B(r.B),
¢,#0, and clearly for s(1) # s(2) in J, @, ¢, are disjoint. So {e,: s€J} is a
family of =\ non-zero, pairwise dis;oint elements of B(r, B) contradicting the
choice of A.

Claim 7.6. (1) If BUDom rg A, I, and I, are indiscernible sequences over A such
that, I~ 1. |L}.|L}= A, then

Voe(xia)=\ (x:a).

ael,

(2) Theorem 7.3 holds when {I|= A.

Proof. (1) By Definition 5.1(3) there are infinite indiscernible sequences J,
(<2nn<w), L=dy. 1, =8, Jo;+ Ty 1 Ioy o+ d3,, are indiscernible over A.
We can assume [[J{l=A (add predicates for the J; is, extend to a A-saturated
mode! and embedd in € over AUI,UI). We now prove by induction on [ that
Vaer @(x; @)= Vzey, ¢(x; @). For [ =0 it is trivial, for [+1 use Claim 7.5 twice,
and for [=2n we get the conclusion.

(2) Easy by (1).

Claim 7.7. If 1 is indiscernible over A = B UDom r and (%, b) is a formula such
that for some d, e I {o(%, dy), W(X, b)} does not weakly divide over (r, B), while for
some d, €l {o(% a,), ¢(%, b)} weakly divides over (r, B), then tp(h, A Ua,Ud,)
divides over A hence tp(h, A UI) does.
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Proof. Without loss of generality we may assume I is (G: ' <A,) with da,, a,
satisfying the hypotheses, A;=A. Let F, be an automorphism of 4 fixing A while
mapping @, to @;, d, to d,, and let r, be F,(tp(b, A U!a,. 4,})). For some k, the
r; are k-contradictory. Otherwise by the indiscernibility of 4, there is an element
b* which realizes all the r,. But §(%, b*)A @(F, da.q) =0 in B(r, B) for all i. But
then (% 6*)A V; @(%, d,)=0 and since by the previous lemma V, ¢(%, dz) =
V, (%, &) this implies W(x, *)AV .\, ¢(% @)=0. In particular, ¢(x, b*)s
@(%, d,) =0 contrary to hypothesis.

Clearly all the r;’s are automorphic images of r, over A so by Lemma 1.3 r,
divides over A.

Proof of Theorem 7.3. Let I={(q,: teI), and remember |I}= kr.o(T). Choose a
(A+|1))* -saturated dense order J, with no first or last element, I<J, and
a, (1e J—1) such that J=(a,: te J) is indiscernible over A. (exists by Fact 7.4).

Trivially cn{(D =V, ¢(%; a), and for proving the converse inequality it
suffices 10 prove for any be Cy(I)= C4(J) that ol(x, b)<V,.; ¢(x: @). By recal-
ling the meaning of \/,.,. this is equivalent to: no nonzero Y<cni(I) is disjoint
from all ¢(%; a,) (1 € I) (everything is in B(r, B)). As W(r, B) is dense in B*(r, B),
it suffices to assume Y= Y(%: b).

So we assume W= (%; b)e B(r, ¢)— {0} is disjoint to every ¢(%;d,), tel.
PY=cn4(I) and we shall get a contradiction. The first assumption means {y(x: b),
@(x: a,)} weakly divides over (r, B) for every tel. As ¥=cni(I)=cn%(J), by
Claim 7.6 for all but <A telJ, re(x:4,)#0 in B(r, B) or equivalently,
{W(%, B). ¢(%: @)} does not weakly divide over (r. B). Now by Claim 4.2(7) (and
monotoniality of weak dividing. see Claim 2.8) for some I, J. |L|<kr.(T),
tp(l_). A UJ) does not divide over AUIL, (I,=1{a,: te I,}). Choose t,e -1, let
Jo={teld: for every sel,. s<t=s5<t, and t¢ I,UI}. As J is (Il+ A)"-saturated.
Jo is (I} + A)" -saturated too. Hence |J,|= A, and clearly J, = (a,: te J,) is indiscer-
nible over A UL, We can choose t,€J, such that {¢(% b), ¢(%; d,)} does not
weakly divide over (r, B) (see above-all but <A member of J, are suitable). So
AUl J, ¢(%: b) and a,, a,, contradict Claim 7.7, hence we finish.

Theoren: 7.8. Suppose p =tp(d, A tJh) does not fork over A, Dom rUB c A, and
¢ (R @), ¢2(%, b) are contradictory in B<(r, B). Then there is an element ¥ in
B<(r. BY such that ¢ is almost over A and separates ¢, and ¢, (i.e. ¢, <y and
¢2= ).

Proof. By Theorem 6.3, there is an I with aef bascd on (A, A Ub) hence by
Lemma 6.5, Claim 5.6 weakly based on A so C,(I) has few images under
automorphisms fixing A. In particular V.o ¢1(%. €)= Ve, 01(X, €) is almost
over A. Since ¢,(x. @). ¢(x, b) are contradictory and I is a set of indiscernibles
over AUb containing d. ¢,(%, &), ¢,(%, b) are contradictory for all éel Thus
W= V..o (% ©) and @,(, b) are disjoint and ¥ is as required. by Claim 7.2.
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Theotem 7.9. If tp(@, AU U, &) does not divide over A>2BUDomr and D is
a ultrafilter in B(r, B) (the subalgebra of BS(r, B) containing those elements
weakly supported by A) such that for each i <a DU{p(X. &)} is consistent, then
D uU{e(%, a): i <a} is consistent (i.e. generate a (proper) filter, in B(r, B)).

Proof. Withou: loss of generality we may assume « is finite as the hypothesis
holds if even we replace (q;: i <a) by a finite subsequence, by monoticity of
dividing (Claim 1.6) and the conclusion for all « follows from the conclusion for
all finite subsequences of (g;: i <a) by the finite character of generating a filter
and the argument above,

Now we work by induction on a. Let @=d,, b=d, "+~ d,-, and ¢(x, by =
Ni<a ©(%, ;). By the induction hypothesis /(x, b) is consistent with D and by
hypothesis tp(a, A U b) does not divide over A and ¢(%; @) is consistent with. By
Theorem 6.4, there is an indiscernible set I' based on (A, A) with beF.
Now by Lemma 1.4 (ii) there is an automorphism F fixing A UdUJ such that
I=F(I') is indiscernible over A U{a}. If {(x, B). ¢(x. @)}UD is inconsistent,
then for every b’ e I {{(%, b"), (%, @)} U D is inconsistent. Thus for some 6 € D and
every b'el BS(B, rkE(e(F; a)r0Ad{% b)=0 which implies BS(B,r)k
(@(Z:@)A0) Vg (X 5Y=0. But Vo p(%:5) is almost over A so either
Voeg#(Z:BYeD or Vo (% b)Y D. But /.., W(X: b’} ¢ D is impossible since
each {@(%, d"} U D is consistent. S0 (¢(%; @) A 0) A V preg W(X; B') = Ois impossible so
D Ulg(% d): i<a} is consistent as required.

Added in proof

Until now we established a theory for a class of first order theories which
included in the class of the theories with the independence property.

It is interesting to check what happens in the other side of the unstable theories.
Therefore we added the following theorem which gives us some information on
the theories without the independence property.

The following is a slight improvement of a theorem of Poizat, using a model
theoretic proof, and answers a question of his.

(1) For an ultrafilter D over a set A we let
Avay(D, BY={¢(x,d):{be A:ko(b,d)ecD,acB,ocd}

If A=L we omit it; if A ={¢, "¢} we write ¢.

(2) Hypothesis. T does not have the independence property.

(3) Main Lemma. Suppose D,, D, are uitrafilters on a model M. Suppose
ai(i <w) are defined by induction on i such that af realizes Av(D, M U{al: j<i}).
Then

(i) if tpilal:i<e), M)=tpl{a?: i<w), M), then for every B, Av(D,, B)=
Av(D,, B);

(ii) for every ¢(x, ¥) there are finite 1, <w, 4, < L (not depending on D, M)
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such that if tp, ((a/:i<m,), M)=tp, ((af:i<m,),M). then for every B,
Av (D, B)= Av(D,, B).

Proof. (i) Suppose the assumptions hold, but not the con.iusion. So there are B,
€ such that

¢lx, ¢)e Av(D,, 8), "1p(x, €)e Av(D,, B).

It is known that (a}: i <w) is an indiscernible sequence over M. Now for any
finite 4 and n, we can define by downwatd induction on m < n, an element b,, e M
such that:

WD tpalba,{ad, ... ah 1o boets .. B
= tpA(ay‘ns {a(‘)’ ceey arln~lv bm+l~ ECEIEY bn})’
(*)2) @(b,,¢) holds iff m is even,

Why can we define b,? First suppose m is even; then p=
AV(D,, MUlal.....a\_yU&) include tpy(al.{ad, ..., at 1, bpirs. .., b)) and
{¢(x, &)}, but as both sets are finite and p is finitely satisfiable in M (by definition)
there is b,, as required. If m is odd, in (*)(1) we can replace a] by a7 as by an
assumption tp({a}, a3....), My=tp(ad, a3,...). M), and we look for b, cM.
Now  use D,. Clearly tp ({a;: [<n), @) =tp.((b: I<n),P). Hence
{etal,, §Y'm ™ m < w} is consistent contradictory to T does not have the
independence property™.

(ii) Same proof essentially.

{4) Conclusion. If M < B, then

{j) for every finite A, {peST(B): P finitely satisfiable in M}, has power
sDed, (M.

(ji) {pe S™(B): p finitely satisfiable in M} has power =<IT,, |S'“(M)I

Proof. The change from 1-types to m types is trivial.

(j} Use the obvious fact that a 1-type p is in a set A iff for some ultrafilter D
over A, p < Av(D, A). By (ii) of the Main Lemma (3) the averages are determined
by types of finite sequences (of length n,) and by a theorem from Section 4 Ch. 11
from [4] the number of complete n, types over B is bounded by Ded, (|M}).

(jj) A similar argument using the result of {3)(i) that types are determined by
w-types over M.
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