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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 65. Number 1. March 2000 

FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS OF THE 
ERDOS-DUSHNIK-MILLER THEOREM 

SAHARON SHELAH AND LEE J. STANLEY 

Abstract. We present two different types ofrmodels where, for certain singular cardinals ) of uncountable 

cofinality. iv (2. a + 1)2. although i is not a strong limit cardinal. We announce. here, and will present 

in a subsequent paper, [7], that, for example, consistently, / 4 (R,1o- + 1)2 and consistently, 

2"O 74 (2"O, co + 1)2. 

?0. Introduction. For regular uncountable K, the Erdos-Dushnik-Miller theo- 
rem, Theorem 1 1.3 of [1], states that K - (Es, co + 1)2. For singular cardinals, es, they 
were only able to obtain the weaker result, Theorem 11.1 of [1], that K -* (Es, co)2. 

It is not hard to see that if cf es = co then e 74 ( Coc + 1)2. If cf X > co and es 

is a strong limit cardinal, then it follows from the General Canonization Lemma, 
Lemma 28.1 of [1], that X, Co ( c + 1)2. Question 11.4 of [1] is whether this holds 
without the assumption that X is a strong limit cardinal, e.g., whether, in ZFC, 

(1) 8(91 ) (801'@~~~~~0_)+ 1 )2 

Another natural question, which the second author first heard from Todorcevic, 
is whether, in ZFC, 

(2) 2"O -* (2"0 o-w + 1)2. 

In connection with (2), we note that the first author proved, [3], ?2, the consistency 
of 2O> [. 1]2- 

In this paper we address these questions, by presenting two types of models where 
there is a singular cardinal i of uncountable cofinality, such that. -i (R., c + 1)2 

even though i is not a strong limit cardinal. In either model, i can be taken to be Zl 
and in the second, we can also have, simultaneously, ) - 210. We also announce 
here, and will present in a subsequent paper, some very recent results that show 
that, consistently, (1) and (2) above may fail. For (1), this answers Question 11.4 
of [1] negatively. 
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260 SAHARON SHELAH AND LEE J. STANLEY 

The first type of model seems specific to having the order type of the homogeneous 
set for the second color (green, for us, whereas the first color is the "traditional" red) 
be co + 1, whereas the second model allows generalizations to green homogeneous 
sets of order type 0 + 1 for cardinals, 0, with co < 0 < cf. , under appropriate hy- 
potheses. On the other hand, the proof for the first model is an outright implication 
from a hypothesis which follows from the existence of certain partition cardinals, 
either outright, or in inner models, and therefore, certainly, from the failure of the 
SCH, for example. 

THEOREM 1. If co < , = cf. , 2' < i and there is a normal nicefilter on X', then 
-i (),c + 1)2. 

There is no assumption on powersets between X, and A. We prove Theorem 1 in 
?1. The notion of nicefilter is due to the first author. In (1.1), below, we will give a 
condensed definition, sufficient for our purposes, which is consistent with the more 
general treatment of ??O, 1 of Chapter V of [5]. This is essentially clause (2) of 
Definition V.1.9 of [5]. The crucial property of nice filters, for the purposes of this 
paper, is that we can define a certain kind of rank function, rkD (f, ), with ordinal 
values, where D is any normal nice filter, f: X, -* OR and g' is the family of normal 
nice filters on r,. This rank function has the following important property: 

(#) If D E A, f, g: K -* OR, X is D-positive and for all y E X, g(y) < f (y), 
then then there is D' E 92 with D U {X} C D' such that 

rD 1 (g, A2) < rkD (fDA 

This can be extracted from the following items of Chapter V of [5]: Claim V2.13, 
and clause (1) of Fact V3.16. The existence of a nice filter on w1l, for example, 
is an outright consequence of the existence of a ,u such that pi -* (a) ` for all 

a < (22 1 + It can also be obtained in forcing extensions starting from models 
with such large cardinals. For these results, see Conclusion V1.13 and Remark 
Vi1.13A of [5]. In view of the first fact, we easily have the following corollary to 
Theorem 1; a later result in a similar vein is Woodin's striking result that from CH 
and the existence of a measurable cardinal it follows that the club filter on NZl is not 
82-saturated. 

COROLLARY 2. Assume that there is a measurable cardinal and that 2t' < ScO, 
Then Z-,,* (R0,, + 1)2. 

In the second type of model, we have several parameters. We let O < X = cf i <A 
As mentioned above, we have a cardinal 0 with co < 0 < r,. We have an additional 
cardinal parameter, a, with a ,& X and 0 < K. The cases a < X and a > X require 
somewhat different different treatment, and lead to Theorems 3 and 4, below, 
respectively, proved in ?2 and ?3. However, much of the preliminary material 
developed for Theorem 3 carries over to the proof of Theorem 4. The main case of 
Theorem 3 is when 0 = a, and the connection to Theorem 1 is when 0 = a = co. 
Theorem 3 was proved in Fall 1993 and Theorem 4 was proved in Fall 1994. 

For both Theorems, we assume that in V, i is a strong limit cardinal, and that 
U'U = a. Our model is obtained by forcing with P, which is the partial ordering for 
adding at least A Cohen subsets of a. When 0 > co, we need additional assumptions 
to guarantee, for example, that in VP, -* (,, 0 + 1)2. When 0 = co, this is just 
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FILTERS. COHEN SETS AND CONSISTENT EXTENSIONS 261 

the Erdos-Dushnik-Miller theorem for i,. The additional assumptions will involve 
cardinal exponentiation, and will be discussed below. We then have: 

THEOREM 3. Suppose that in V, 

co < 0 < a='5 < X, = cf A < i < v, 

i is a strong limit cardinal andfor all p < , Au<0 < i. Let P be the partial ordering 
for adding v Cohen subsets of C. Then, in VP, i (R. 0 + 1)2. 

THEOREM 4. Suppose that in V, 

co < 0 < K, < a <5 

X = cf i < i < v, i is a strong limit cardinal andfor all a < s, u< < N. Let P be 
the partial ordering for adding v Cohen subsets of a. Then, in VP, - (R, 0 + 1)2. 

We shall deduce Theorem 4 from the following result about lifting certain positive 
partition relations on K, in V to i in models, VP, where X, i, a, P are as in Theorem 4. 

THEOREM 4*. Suppose that in V, 

co < K < a < i 

X = cf i < i < v, i is a strong limit cardinal and P is the partial ordering for adding 
v Cohen subsets of C. Suppose, further, that C < K, and that K, -> (N, )2. Then, in 
VP, A, (R ;)2 

Of course, when we invoke Theorem 4* to obtain Theorem 4, we shall take 
0 + 1, and we will use the additional hypotheses on cardinal exponentiation in 

V to obtain the hypothesis of Theorem 4*, that K - (N.)2 . Then, this relation 
will also hold in VP, since there are no new subsets of r,. In fact, it is even possible 
to factor Theorem 3 through a similar kind of result about lifting positive relations 
on X, to i, but now lifting a VP relation on X, to a VP relation on i, since this 
time, forcing with P will not necessarily preserve a positive V relation on i'. In 
what follows, we shall not proceed in this fashion; however, we do state the lifting 
theorem: 

THEOREM3*. Suppose that in V, C < aC+ 1, a = c< < K = cfA < i < v, is 
a strong limit cardinal and P is the partial ordering for adding v Cohen subsets of a. 
Suppose, further, that in VP, K - (N. ;)2. Then, in VP, i _ (R. ()2. 

Once again, in order to obtain Theorem 3 from Theorem 3*, the additional 
hypotheses in Theorem 3 on cardinal exponentiation in V are designed to guarantee 
that the needed positive relation does hold in VP. It would, of course, be possible to 
combine Theorems 3* and 4* into a single statement, but the proof would certainly 
reflect the division into cases, which, here, is transparent in the statements. 

Finally, though these more recent results will be presented in a subsequent pa- 
per, [7], we state here, as numbered theorems, the negative consistency results for 
questions (1) and (2), mentioned above and in the Abstract. 

THEOREM 5. Suppose that, in L, u > ? > K, are cardinals, cf(i) =K > co (for 
example, i (= L = (81)L). Let G be P-generic over L, where P is (L's version 
of) the partial orderfor adding u Cohen subsets of s. Then, in L[G], c o (R. c + 1)2 

if and only if, in L, X, is weakly compact. 
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262 SAHARON SHELAH AND LEE J. STANLEY 

Taking f, = (j1)L, A = (RJ)L, we get the negative consistency result for (1). 
Combining the methods used to obtain Theorem 5 for this choice of X, and i, an 
additional forcing to add ) Cohen reals, and a double A-system argument for the 
second forcing, we get: 

THEOREM 6. Con(ZFC) implies Con(ZFC & 2'0 74 (2"0, ao + 1)2). 

REMARKS. 

(1) The proof of the Erdos-Dushnik-Miller theorem proceeds by assuming that 
there is no homogeneous set of power X, for the first color (red, for us), and showing 
that a certain tree of homogeneous green sets must have a branch of length co + 1, 
which naturally yields a homogeneous green set of order type co + 1. If 0 > co, 0 is 
a cardinal, -c > 0 is regular, and if: 

(*) for all v < -c, v<0 < I, 

then we can carry out essentially the same proof to show that -c - (c, 0 + 1)2. Thus, 
taking c = a, our hypotheses on cardinal exponentiation in Theorem 3, which 
remain true in VP, do guarantee that in VP, K - (N, 0 + 1)2. 

Similary, if co < A, 0 = card A, 0 < I, - is regular and if: 

(**) for all v < I, v < IC, 

then a similar tree argument shows that -c -* (Tc, )2. Thus, the additional hypotheses 
on cardinal exponentiation in Theorem 4 do guarantee that we have the hypotheses 
of Theorem 4*. 

For both theorems, we will also need to know that for many successor cardinals, 
-c, between K and ), we will have -c - (TC, 0 + 1)2, or - c, -(i )2 (for Theorem 4*). 
In view of the preceding paragraphs, it will suffice to have (*) or (**) for I, in V. 

One way of achieving this is to appeal to the fact that, in V, i is a strong limit 
cardinal, and, for example, to take - = ,u+, where u = ,, and where pu is chosen 
to have various other properties, as desired. 

(2) In all of what follows we shall have co < X = cf). <).. We shall express). as 
sup{ ) 17 q < X, }, where ( ).q 1 i < , ) is increasing and continuous, and for q= 0 
or q a successor ordinal, A,) is a successor cardinal. Various other properties of the 
). for such q will be introduced as needed. One such property will be that P 
where ,u = pu (and has various other properties, as desired). We also let Ao = 0o 
and for q < a,, A+ [, ). For a < ) we will let q(a) = the unique q < Xi 

such that a E Al. 
(3) Investigation of the case a = a, which is not treated in this paper, led to 

Theorems 5 and 6, above, among other results. When a < a, we use the a+-chain 
condition of P, whereas when a > K, we use the < c-completeness of P. 

(4) In Theorems 3* and 4*, it is clearly necessary that in VP, K, -* (N, 0 + 1)2, 
respectively, that K - (N. 2. 

(5) Our notation and terminology is intended to either be standard or have a 
clear meaning, e.g., card X for the cardinality of X, o. t. X for the order type of X, 
etc. 

(6) Theorems 3 and 5 of [6] are close in spirit to some of the above material. 
There are also similarities to certain themes from [4] and [2]. 
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FILTERS, COHEN SETS AND CONSISTENT EXTENSIONS 263 

?1. Using nice filters. In this section we prove Theorem 1 of the Introduction, 
which, for convenience, we now restate. 

THEOREM 1. If co < , = cf i, 2'6 < i and there is a normal nicefilter on X, then 
_ , ().,w + 1)2. 

PROOF. We begin by providing the promised definition of nice filter on i'. If D is a 
normal filter on X, and g is an ordinal valued function with domain a', we first define 
the game Gw* (D, g), as follows. On move 0, player I chooses Do := D, and player 
II chooses AO E (Do)+, and chooses go := g. On move n + 1, player I chooses Dn+I, 
a normal filter on X, extending Dn U {An}, and player II chooses An+I E (Dn+l)+, 
and gn+I D * gn, where 

D*+I := the normal filter on X, generated by Dn+I U {An+?I} 

Player I wins if at some stage n + 1, Player II has no legal play. We then state: 

DEFINITION 1.1. D is nice if for all ordinal valued functions, g, with domain X, 
Player I has a winning strategy in Gw* (D, g). 

Proceeding with the proof of the Theorem, we assume that co < , = cf)i <)i, 
2' < i and that there is a nice normal filter on K. We will show that ). (R. co + 1)2. 
There are no assumptions about powers of cardinals larger than a', and, as noted in 
the Introduction, the interest of the result is when is not a strong limit cardinal. 
The simplest case, of course, is when X, = I and ) 

So, towards a contradiction, suppose that c: [).]2 __ {red, green} but has no red 
set of power i and no green set of order type co + 1. Let )., A,,, q < X, be as in 
Remark 2 of the Introduction. We can clearly assume, in addition, that )o > 2't, 
for q < a, 7+, > +,+, and that each A,, is homogeneous red for c. The last is by 
the Erdos-Dushnik-Miller theorem for A,,+ 1 

For 0 < q < a, we define SeqQ to be 

I (io,..., ill,_) I(io) < ..< ~sl< q 

For t E Al and (io . . ., in-I) = 2 E Seq,,, we say 
- E TS if and only if {io... , in-l 

is homogeneous green for c. Note that an infinite decreasing (for reverse inclusion) 
branch in TC violates the nonexistence of a green set of order type co + 1, so, under 
reverse inclusion, TS is well-founded. Therefore the following definition of a rank 
function, rk , on Seq% can be carried out. 

We define rk : Seq, -* OR U {-I} by setting rk'(Z-) to be -1 if i- is not 
homogeneous green; otherwise, define rkV (Z ) > q if and only if for all C < q there 

is j such that rk&(Z-A) > i. Of course, for limit ordinals, s, if for all v < 65 
rkg (i) > v, then rkV (>) > s, and so for all i E To , there is a largest v such that 

rk( (i) > v. We take rkV (Zi) to be this largest v. In fact, it is clear that the range of 

rkV is a proper initial segment of ,u+, where 4uQ = card U{ AT I 
- < q }, and so, in 

particular, the range of rkV has power at most A. I Note that A,+, > +. 

But then, we can find B,1 an end-segment of Al such that for all Z' E Seq% and 

all 0 < y < u+, if there is 4 E BQ such that rk (z) = y, then there are A,,+, such 

S. Recall that A. and therefore also B,1 are of order type A,+, which is a successor 

cardinal. Everything is now in place for the main definition. 
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264 SAHARON SHELAH AND LEE J. STANLEY 

DEFINITION 1.2. (i Z, D, f ) E K if and only if 

(1) D is a nice, normal filter on a, 

(2) f: K -> OR, 
(3) Z e D, 
(4) forsomeO < C < X, e E Seq,, andforallT E ZK (C+ 1), thereis; E BT 

such that rkC (Zi) = f (c) (so, in particular, Z E T(). 

Note that K 7 0, since if we choose ST E BT, for - < X,, take Z = X,, 
the empty sequence, choose D to be any nice normal filter on X and define f by 
fI(T) =rkV'(i), then (,4ZD,f) e K. 

Now, let 92 be the family of nice normal filters on r,. Since rk' (If, W) e OR, 
clearly among the (4 Z, D, f ) E K, there is one with rkD (f, a) minimal. 

So, fix one such, and denote it by (Z *, Z*, D*, f *). For - E Z*, set 

CT = { 4 E BT I rk (( ) < f *(T ) }. 

Thus card CT =T, and for all C E CT, range (i * U {f}) is homogeneous green. 
Now suppose E e Z*. For ally E Z* r (-+ 1) and E e CT, let 

Cy+(') ={ E C;, c({',4}) green}. 

Also, let 

Z+(Q) {y E z (, + 1) I card Cy+0 =y+ }i 

It is, perhaps, worth pointing out that we could just as well have required only that 
C+ #0. 

LEMMA 1.3. For a D-positive set of T E Z* andfor 4?+i many 4 E CT, Z+(;) is 
D-positive. 

PROOF. For - E Z* and C E CT, let Y(Q) = K - Z+(). Since 4o > 2', for all 
e E Z* there is Y = YT C K, and CT/ C CT with card C, +i such that for all 

4;E CT E Y (;)=Yfl 

Let Z ={ E Z I YT E D }. We now conclude by showing that Z , D. If 
Z E D, then, since D is normal, we would have Y* e D, where 

Y* ={ zEZEforallcEZ n c, T cEyz }Y 

But then, by shrinking the CT/ for - E Y*, as in the next paragraph, we would get a 
homogeneous red set of power i, which is impossible. 

We define CT for - E Y* by recursion on - in such a way that CT is a subset of 
CT/ of power 4T+i. So, let - E Y8, and set 4 E CT if and only if e E CT/ and for all 

C Y* n 0 and all 4 E Cz , ( , CT(;). So, in fact, CT is the result of removing 
at most AT elements from CT/. But then, clearly the union of the CT for - Ec Y* is 
homogeneous red. This concludes the proof of Lemma 1.2. - 

We maintain the notation of the proof of Lemma 1.2. Fix - as guaranteed by 
Lemma 1.2, i.e., such that YT is defined, but YT V D. Let X = Z* K YT. Note 
that, for any C E CT, X K (C + 1) = Z+ (;) and X is D-positive. Now fix C E CT. 
For y E X K Cr + 1), note that by the definition of Cy+(), there is j E Cy+(;) 
such that rk' (Z' *) < fI (y). Choose one such and call it jy. Thus, again by the 
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FILTERS. COHEN SETS AND CONSISTENT EXTENSIONS 265 

definition of C;+(4), i 84J2 is homogeneous green, and so, by the definition of 

rkj)', rkj) (2 ; < f 
* (Y) 

Now, defineg: i, -* ORbyg(y) = rkJ2(Zi*), ify E X K C( + 1), andg(y)= 0, 
otherwise. Now, by the definition of rk' (f *, 2), (again, see Chapter V of [5]) there 
is D' E W with D U {X} C D' and such that rk', (g, A2) < rk2 (f *, 2). However, it 
is easily verified that (z *j, X, D', g) E K, and, finally, this contradicts the choice 
of (* *, Z*, D, f *), and thus completes the proof of Theorem 1. - 

?2. Adding Cohen sets below the cofinality. In this section, we prove Theorem 3 
of the Introduction, whose statement we now recall for convenience. 

THEOREM 3. Suppose that in V, 

co < 0 < a = a' < X, = cf i < i < v, 

i is a strong limit cardinal andfor all p < A, u0 < . Let P be the partial ordering 
for adding v Cohen subsets of a. Then, in VP, i - (R, 0 + 1)2. 

PROOF. So, let i, X, 0, C, v, P be as in the statement of Theorem 3, and let 
(, q < , ) be as in Remark 2 of the Introduction, and suppose, in addition, that 

2o = ,u + where uo ((,,))0, and for q < a, 4+1 = ut+, where 

Thus, by Remark 1 of the Introduction, we will have that in VP, K - (N, 0 + 1)2 
and similarly: 

(!) in VP, for each C < K which is either 0 or a successor ordinal, (- ,? 0 + )2. 

This follows from our choice of the )4 since forcing with P adds no new sequences 
of ordinals of length < 0. Also, let Aq, and q (a) be as in Remark 2 of the 
Introduction. 

For A C v, we let PJA be the subordering of P with underlying set the set of 
p E P with domain included in A. If card A = card B and T is a bijection from A 
to B, we abuse notation by also taking T to be the isomorphism from PJA to PJB 
induced by T. 

Suppose, now, that c is a P-name and that p E P forces that 

C: [A]2 -? {red, green}. 

We now embark on an analysis of c as a P-name culminating in (*), following (2.9). 
This analysis carries over to ?3, and even in the case a = K. We use the latter case in 
our forthcoming paper, [7], when X, is weakly compact. Therefore, we temporarily 
drop the assumption the assumption a < a, or even that a i4 a, retaining only that 
a -= U< < A. 

By (!), we can assume, without loss of generality, that for each q < a', p forces 
that A,, is homogeneous red for c. In order to develop material that will carry over to 
the proof of Theorem 4*, in ?3, for now, we make no additional hypotheses about c. 

For a < / < A, let A (a, /3) be a subset of v of power at most a such that c(a, /) 
is a PIA (a, /3)-name. Such A (a, /3) exists, since P has the a+-cc. Let 

A U A(a,/3) a < < A} 
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266 SAHARON SHELAH AND LEE J. STANLEY 

and let P* = PI A . Without loss of generality, dom p C A *. Thus, c E VP*, so by 
arguing in VP*, and remarking that card A A and therefore that P* P A, we 
can assume, without loss of generality, that v A, which we do from here on. 

For ar < Al < A, let ir (a, Al) = o. t. A (a, fl) and let ( p *| < ir (o a) be the 
increasing enumeration of A (a, /3). Also, let T (a, /3) be the order isomorphism 
from A(a, /3) to ir(oa, f) (so T(a, /)(pa, ) C). Let c'(a, /3) be the PIi (a,/)- 
name which results from applying T (a, /3) to c(a, /3) where T (a, /3) is viewed as 
the isomorphism from P A((a, /3) to P I (a, /3), as in the previous paragraph. Fix 
functions F1: [A]2 -* A, for i < a, such that for a < /3 < A, 

A(e,) = Fi(ae,)| i < al. 

DEFINITION 2. 1. Let 

Y (oa) i,E4)E af X (a, AIFi (a,A)=P } 

We also let X be the set of ordered 4-tuples, (a, /3, y, (5) from A such that a < /3 and 
y < (, and we define a function c with domain X by: 

C 
* 

(at, A, y,bU) = (iZ(aE, Al), ir (y,bo), Y (a, Al), Y (yn b), c'(at, Al), c'(y,bo)). 

Note that the following set is easily recoverable from c *(a, y, 5): 

c (ae, Al, yea6) = { (i, j) I F (a. Al) = Fj (y3 )} 

We abuse notation below by acting as if this were actually part of c * (a, /3, y, (). Also 
note that range c* has power at most 2'. 

Applying the general canonization lemma, Lemma 28.1 of [1], to c*, we get 
Bi7 C A,, with card Bo > , + a and for O < q < s, card B, > Aq, and such that 
(Bra: ,j < a) is canonical for c*, i.e, letting B = U{Bq , I j < r,}, if (a, I n < 4), 
(fin n < 4) E X n B4 and for all n < 4, (a,,1) = (/n), then 

c*((ag,, I n < 4)) = C*((fln I n < 4)). 

Further note that if h(al) = 7(a9) < j(/31) = h(/32) and al, a2, /3A, /32 E B, then 
since c* (al, /i, al, al) = c* (a2, /32, a2, /32), we also have that c'(al, /li) = c'(a2, /32) 
This, in turn, means that if pI E PIA((a , /li), P2 = (T(a2, 2)) o T(al, fil)(pl), 
and x. E {red, green}, then p, forces that c(al, /l3) = x if and only if P2 forces that 
c(a2, /32) = x. We will use this observation in several places in what follows. 

LEMMA2.2. Suppose that (a,,/3,y,() E X n B4, a f {y,5}, a' E Bq (a) and 
F1 (a, /3) = F (y,(b). Then also Fj (a', /3) = Fj (y, 5), and analogous statements hold 
where the values of the other coordinates of (a, /3, y, b) are varied instead of varying 
the first coordinate. 

PROOF. This is clear since (Bq ,j < r,) is canonical for c,(a) (a') 
and so, as noted at the end of Definition 2.1, (i, j) E c (a,/3, y,(5) if and only if 
(i, j) E c(a',/3,y (5). A 

DEFINITION 2.3. Suppose C < r < X, i < a, a E B17, /3 E B,. We define 

F7i: B, ) A and Fl B7 ) A by F (/3 =Fi (ac/3 and Fo (a)= F (a',/3). 

LEMMA2.4. If q < T < X, i < a then: 
(1) either (for all a E B,7, F7"sc is constant) or (for all a E B,7, F1T(c is one-to-one). 
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(2) either (for all /3 E BT, F/ is constant) or (for all /3 E BT, F/1 is one-to-one). 

PROOF. We first argue that each is either constant or one-to-one. We consider 
the For. Let fl 14 k2 both in B,. We claim that if F (a,/f3i) = F1(a,/32) then 
F7o is constant, while if Fi(a, /3l) 74 F1(a,f,62), then F7", is one-to-one. In the 
first case, (i, i) E c (a, All, a, fl2), while in the second case, (i, i) g c8(a, /l, a, a/2) 

But then, by canonicity, if ,6 E BT A {/, f/2}, (i, i) E c (a, f/, a, f/i) if and only if 
(i, i) E c (a, /3, a, /32) if and only if (i, i) E ci(a, Ali, a, /32). If (i, i) is a member of 
none, then Fi7ot is one-to-one. If (i, i) is a member of all, then F7" is constant. The 

argument for the FP is completely analogous. 
We now argue that if a,1 7 a2 both in By, and Fi7 , is constant then so is F7",,. 

Once again, the argument for FP, and FjP2 is completely analogous. So, suppose 
that F7"zt is constant. 

Choose yj 7& Y2 both in B,. Since F7rl is constant, (i, i) E c(a 1, y1, a 1, Y2), so, by 
canonicity, (i, i) E c(a2, yl, a2, Y2) which means that F7." is constant. -1 

REMARK 2.5. In Lemma 2.4, we cannot conclude that if Fi7C, is constant (respec- 

tively, one-to-one) then F,.f is constant (respectively, one-to-one), as this would 
involve an "illegal" application of canonization, comparing a "1, 2" case to a "2, 
1" case. It is, however, worth noting that if all the F7T', are constant, then all the 

F. are constant if all the F7o have the same constant value; similarly, if all the FP 

are constant, then all the FiT! are constant if and only if all the F,,l have the same 
constant value. We argue for the first statement. 

Suppose that all the F7" are constant. Let a1 7 a2 both in BE and l E B,. Then 

F. is constant if and only if F, (aI, /3) F1 (a2, fi) and therefore, since the Fi7z'j are 
constant, this holds if and only if they have the same constant value. 

DEFINITION 2.6. For C < r < X, i < a, a E B7, Al E BT, we define Fj (aT), 
F1 (q, /3) by F, (a, T) = the constant value of Fi7,o 5 if F7TE, is a constant function, and 
undefined if it is a one-to-one function. Similarly, Fj (a, /3) - the constant value of 
Ffl if F,/ is a constant function and undefined if it is a one-to-one function. 

REMARK 2.7. It is immediate from Lemma 2.4 that for fixed i < a, and fixed 
j < < a,, either all the F1 (a, T) are defined or all the Fj (a, T) are undefined, and 
similarly for the Fj (j, /3). Further, it is immediate from Remark 2.5 that if all the 
F1 (a, T) are defined then all the F1 (,j, A) are defined if and only if the function F, (-, T) 

is constant (and, when both of these statements hold, Fj (a, ) is also constant, with 
the same constant value), and the analogous equivalence holds, starting from the 
hypothesis that all the F1 (a, /3) are defined. 

DEFINITION 2.8. For < K, and a E B,, we define Wz, to be 

{Fi(j a) i < a, j' <j} U {Fi(a,-) I i< ,< K <} 

Note that for each j < a, { Wz, a E Bi } is a system of sets of ordinals of 
power at most a + a,. We have stated in terms of a + X, to emphasize that we are 
temporarily working without any assumptions as to the order relationship between 
a and a,. Thus, for all q < a, we can find B,7 C B.,, with card B., = card B such 
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that the ( Wc, I a E B, ) form a A-system whose heart we denote by Ha. We also 
set H = U{ Ha I q < X, }. We further assume all of the following, for each q < a: 

(1) (o. t. Wc, a a E B, ) has constant value, or; for a E B,> we let (yc} < o, 
be the increasing enumeration of Wc, 

(2) there is fixed a C oC such that for all a E Ba, a. { < Of I y$ E H} 
(3) there isfixedbC C (a x' xo)U(a x (I,( +1)) xot) suchthatforalla E Be 

and all (i, v, 4), (i, v, 4) E bC if and only if either (v < q and ya = Fj (v, a)) or 
(aj< v and yc = Fj (a, v)). 

LEMMA 2.9. If ak E B,,, /3k E B*, '1k < Tk < X, k = 0, 1, and {ao, /o} 
{a1, A1}, then A (ao, /3o) n A(a 1, /31) C H. 

PROOF. Suppose that F (ao,/3o) = F (al,/fl). Let a* C B*, a* ? {ao,al} 

and let /P E B*, /* V f {/3o,/3i}. Then, by canonicity, F1(ao,/o) = Fj(a*,fi), 
so Fj(ail,/l) Fj(a*,/l), which means that Fi(ao,/3o) E Wfl. By a sim- 
ilar argument, Fi(ao,/3o) - F(al,/*) = Fj(a*,/3*) E Wf*, and then, since 
F1(ao,/ 3o) E WB1 n Wfl*, F (ao, /o) E H,, C H, as required. - 

Let Po = P (H U domp) and let V' = VPo. Note that all our hypotheses on V 
still hold in V' and VP = ( V')Q, where, in V', Q - P. Thus, we can first force with 
Po without changing anything relevant; therefore, we can assume that H, p 0, 
which we do, from here on. By Lemma 2.9, this, of course, guarantees that 

(*) For aj, pli as in Lemma 2.9, A(ao, /o) n A(a1, /1) =0. 

Now choose ao E B* for K <s;. 

It is at this point that the proof of Theorem 4*, in ?3, will begin to diverge. Here, 
we will assume that p also forces that c has no homogeneous green set of order type 
0 + 1 and we will show that p forces that c has a homogeneous red set of power i, 
while in ?3, in the proof of Theorem 4*, our treatment of the colors will be more 
"symmetrical". However, the remainder of the argument, here, will be quite similar 
in spirit to the argument in Case 2 in ?3, below. 

Recall that here, we have already argued that, in VP, K - (N, 0 + 1)2. Thus, in 
VP, there must be S C Xs of power iX such that { a,, 1 E S } is homogeneous red 
for c { a, I q < X, } (and therefore also for c). 

So, let S be a P-name and q E P, p < q be such that q forces that {a a, E S} 
is homogeneous red for c and that S has power is. Then, in V, there are S C i, and 
for q E S, qq E P, q < qC such that qC forces that a. E S. 

We may assume, without loss of generality, that the ( qq I q E S) form a A-system 
with heart q (by which we mean that the q, are pairwise isomorphic as well). Thus, 
the qq, for q E S are pairwise compatible and whenever q < - are both in S and q,, 
q, < r E P, r forces that c(a, OaT) = red. 

Let A* = U{ A (aq, a,,) 1< T, both in S }. We may also assume that for all 
E E S, domqC C A*. This is because if this fails, then, letting q, qI A*, 

whenever C < - are both in S and q'i, qh < F E P, F forces that c(ao, OaU) = red, 
because c(a, OaUT) is a PJA(aq,, a,)-name and r forces that c(a, OaUT) = red, where 
r = F U (qq - qua) U (q- - 4it), and this is all that is required for the rest of the 
argument. 
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Further, we can clearly thin out S to obtain a subset, S', also of power a', such 
that forT E S', letting ' = minS' --, (- + 1), 

domq, - domq C U{A(a%, ai2) I 11 <12 < r/, bothin S}. 

Finally, for T E S' and a E B*, we make a copy q? of qj, above q. We do 
this by moving only coordinates in the A(a, , a,,) and the A (ar, a,) which are in 
dom q,, - dom q. We move these coordinates according to the order-isomorphisms 
between the A(a,1, AT) and the A(a,,, a), and the order-isomorphisms between the 
A(aT, a,1) and the A(a, a,1). Clearly by (*), above and by the previous paragraph, 
this is well-defined. Also, by Lemma 2.9 and (*), the q" are pairwise compatible. 

Further, arguing as in the paragraph immediately preceding Lemma 2.2, it is easy 
to see that whenever C < r are both in S', a E BE, /3 E B* and q7 U q7 r, 
r forces that c(a, ,G) = red. Finally, clearly, whenever q < r E P, r is incompatible 
with fewer than i many of the q? for T E S' and a E BT . But then, letting G be the 
canonical P-name for the generic, let Y be the following P-name: 

{oa I there is E S' suchthat a E B* andq" E G}. 

But then q forces that Y has power.i and is homogeneous red for c. This concludes 
the proof of Theorem 3. -1 

?3. Adding Cohen sets above the cofinality. Recall that in the Introduction we 
have already argued that Theorem 4 follows from Theorem 4*. Here, we will prove 
Theorem 4*, whose statement we recall. 

THEOREM 4*. Suppose that in V, 

co < Ks < a = a' < 

X = cf i < i < v, i is a strong limit cardinal and P is the partial ordering for adding 
v Cohen subsets of a. Suppose, further, that 4 < X and that X -* (a, C)2. Then, in 
VP, i _ (2 4)2 

PROOF. We carry over from ?2 all the material up to and including the choice of 
thea,1 EB,1, for q < a, and in particular, (2.1)-(2.9), except that here, the analogue 
of (!) of ?2 is: 

(!!) in VP, for each q < Xs which is either 0 or a successor ordinal, i% - (ft) 4)2. 

The argument for this exactly follows that for (!) in ?2. Also, as noted in the 
Introduction, it follows from the hypotheses of the Theorem, that in VP, Xs 

(K;, 4)2. Once again, (!!) enables us to assume, without loss of generality, that p 
forces that that each A,, is homogeneous red for c. 

Note that it is an easy consequence of Lemma 2.9 and our assumption that H 0 
that if q < r < is, q E PI H0,1, r E P I Hz, then q and r are compatible. Recall that 
by the paragraph immediately preceding (*), of ?2, we are assuming that p = 0. Let 
s E P. We now argue, using the a-completeness of P and the fact that a > s, that: 

LEMMA 3.1. In V, there is ( pa I 1 < is;) such that for all C < Xs, siHz,, < pq, 
domp,, C H,, , and such that 
(**) if r < r < s, x E {red, green}, either s U p, U P, forces c(a,, a,,) = x or there 

is q E P JA(a,,, a,) such that 
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(1) s U pA U p? < q, 
(2) q forces c(aq, a,,) 7& X, 
(3) dom q -. (dom p,7 U dom pT ) C A (a,,, aa) -. (H,1 U HQ.r) 

PROOF. Let ( (l, Qy) y < K ) enumerate all the pairs (C, T) with C < r < S'. For 
y < a, we define (pI' q < X ) by recursion on y so that py E PJHe,,, and for all 
ij < X and all y, < Y2 ? , pl ? p 2. 

For q < a, let Po s He,, and for nonzero limit ordinals, (s < a, and 17< K, 

let p= Uf py I y < 6 }. So, suppose that y = + 1. If - x we take 
p p5. We construct py,, ply,. Let C h- il T = AX, a a,,, a' a a, and 

let p(O) = p4, p'(0) =p$. Identify red with 0 and green with 1. We will have 
= p(2), py p'(2), where we define p(i), p'(i), i = 1, 2 by the following 

two-stage recursion. If k- 0, 1 and p(k), p'(k) are defined, and if s U p(k) U p'(k) 
forces c(a, a') = k, then we set p(k + 1) = p(k), p'(k + 1) = p'(k). Otherwise, 
choose q E P A(a, a') such that s U p(k) U p'(k) < q and such that q forces 
c (a, a') =1 - k. Finally, let p(k + 1) = q IH, p'(k + 1) = qI He'. 

Clearly then, by construction, for q < a,, taking p,, = PK, p,, is as required. This 
completes the proof of the Lemma. - 

REMARKS. Although we have developed it for both colors, we only use the ma- 
chinery of (**) of Lemma 3.1 with x = red. Also, in (**), if s U p7 U P, does not 
force that c(aq7, a,,) -red, we choose q,,,, to be some q whose existence is guaranteed 
by (**). 

Now, still working in V, we define d: [,M]2 -) {red, green} by d (1, T) = red if 
and only if s U p7 U pT forces c(a,, a,,) = red. Now, in V, K - (,0 + 1)2, So 

either (Case 1) there is Y E [f]( which is homogeneous green for d, or (Case 2) 
there is Y E [i,]' which is homogeneous red for d. We show that in Case 1, s has 
an extension which forces that there is a set of order type 4 which is homogeneous 
green for c, while in Case 2, s, itself, forces that there is a set of power i. which is 
homogeneous red for c. Clearly this suffices, since then the empty condition forces 
that -i * (R. C)2. We consider the cases separately. 

CASE 1: THE GREEN CASE. Let Y E []sj be homogeneous green for d. For C < r 
both in Y, note that q,,,. is defined, since d (a,,, a.,) = green. Set 

r = Uf q11,T I q < r both in Y }. 

Once we have argued that r is a function, it will be clear that r E P, s < r 
(since for any q < r which are both in Y, s < quit) and further that r forces 
that { a,, I q E Y } is homogeneous green for c, since, again, whenever q < T are 
both in Y, qQ T forces that c(a,,a, a) = green. But, once again, it follows from the 
conjunction of Lemma 2.9 and (*) that r is a function. This completes the proof in 
Case 1. 

CASE 2: THE RED CASE. As we already noted there, the last part of the argument 
in ?2 is quite similar in spirit to the argument we shall give for this case. Let Y E [,] 
be homogeneous red for d. As in ?2, for q E Y and a E B*, let p" = T(p,,), where 
T is the order isomorphism between He,, and H,. Once again, the p" (a E Y. 
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a C B,*') are pairwise compatible, by Lemma 2.9 and (*), and whenever j < are 
both in Y, a E B*1, EJ E B* and s U p7 U p" < q, q forces that c(a, 6) red, 
by the fact that d (q, =) red and by the argument of the paragraph immediately 
preceding Lemma 2.2. Also, once again, for all s < q C P, q is incompatible with 
at most a of the p.7. 

Now, let G again be the canonical P-name of the generic, and for q C Y, let 
XQ be the P-name {oa E Ba j p7 E G}. Then, since cardB,7 > a, s forces that 
card X = card B,*. We conclude by noting that by the previous paragraph, s also 
forces that "if < <-r are both in Y, a e X,1, f/ E XT then c(a, /3) red". In other 
words, "as promised", s forces that U{ X7 I q E Y } is homogeneous red for c and 
has power A. This concludes the proof of Case 2, and therefore of Theorem 4*. - 
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