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THE JOURNAL OF SYMBOLIC LOGIC 
Volume 35, Number 1, March 1970 

ON THEORIES T CATEGORICAL IN ITI 

SAHARON SHELAH1 

ABSTRACT. Morley conjectured that if an infinite first-order theory T is cate- 
gorical in the power I TI > N0, then it has a model of power <I IT. Here we affirm 
this conjecture for the case IT Io = ITI. 

?0. Introduction. Morley conjectured in [3] that if a theory T is categorical in the 
power ITI, ITI > N0, then it has a model of power < ITI. (The power |TI of a 
theory is the number of its sentences plus N0.) Keisler (as mentioned in Ressayre [5]) 
proved this conjecture for the case IT I < 2mo, IT I regular. 

The aim of this article is to prove the following theorem: 
THEOREM 0.1. If a theory T is categorical in the power ITI and TI = ITINo, 

then T has a model of power < ITI . 
DEFINITION 0.1. Theory T is categorical in power A if all its models of this 

power are isomorphic. 
In this article we will not attempt to present all the possible results of the methods 

employed here. Fuller developments will appear in [6], [7], [8]. It can be proved, by 
Theorem 6.3, that if T is categorical in ITIo = I TI, then T is a definable extension 
of a theory of smaller power. Also, by slight changes in ??2, 3, it can be proved that 
if T has only homogeneous models in the power ITI > No, then T has a model of 
power <TI. 

In ?1 we will define our notation and mention several known theorems which we 
shall use. In ?2 we define the rank of a type, and we define a theory to be super- 
stable if every type has rank < co. (This is a generalization of Morley's definition 
in [3].) 

In ?3 we will show that a nonsuperstable theory has a model of power I TI which 
is not Xl-saturated. From this we conclude that if T is categorical in ITI = ITNo, 
then T is superstable. 

In ?4 we define prime model over a set A, A c IMI (M a model of T) and we 
prove the existence of prime models for superstable theories. 

In ?5 we prove some properties of indiscernible sequences. 
In ?6 we use the results of ?5 to prove the main theorem. 

?1. Notations. Every ordinal is the set of all smaller ordinals, and every cardinal 
(power) is the first ordinal of its power. We shall use a, A, y, ij, k, 1, for ordinals, 
K, A for cardinals, m, n for natural numbers. 8 will be a limit ordinal. If A is a set, 
its power is denoted by AIj. The domain of a function F is denoted by Dom(F) 

Received March 27, 1969. 
1 I would like to thank my friend Leo Marcus for translating this paper and finding many 

errors. I would like to thank Mr. Victor Harnik for suggesting the simplified proof of Theorem 
6.2, which appears here. 
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74 SAHARON SHELAH 

and its range by Rang(F). If F, G are functions, then F is said to extend G. or to 
be a continuation of G if Dom(G) ? Dom(F) and for all a in Dom(G), F(a) G(a). 
If F is one-one, F' will denote the inverse function. F = G/A if Dom(F) A and 
G extends F. A sequence i is a function whose domain is an ordinal, which is called 
its length and will be denoted 1(t). If I is a sequence, then i = 1(i) (= the value of 
the function at i). The sequence I will sometimes be denoted and defined as 
<4t: i < 1(t)>. We shall frequently not distinguish between to and <to: i < 1>. If 
A,Bare setsA - B = {aeA:atB}. 

Twill designate a fixed first order theory in the language L with the equality sign. 
We shall use x, y, z for variables, x, y, 5 for finite sequences of variables, 4, 4 for 
formulas of L. We shall write O(xo , - *, x,- 1) for 0 if all the free variables occur- 
ring in b are in {xo, - * *, xn 1}. M, N will denote models of T. If M is a model, JM J 
will be the set of its elements, and thus IM1j will be its power. We write M 1 
b[ao,* , an.-] if ao, , a,~, E IMI and 0[ao, , a,,L] is satisfied by M. The 

model M is said to be A-saturated if for every sequence of formulas 
<Kj(x, y)): i < io < A> and sequence <b1: i < io < A>, of sequences of elements of 
M, if for every finite set I s io there is a c E jMI s.t. i E I implies M k #i[c, 6j, then 
there is a c E IMI s.t. for all i < io, M h Objc, EJ]. Let AO be 221T' and let MO be a 
(2k) +-saturated model of T of power > I TI. (The proof of the existence of such 
a model, and information about other properties of saturation can be found in 
[4], [2]. The definition of saturation in [4] is slightly different from ours.) 

M, is an elementary submodel of M2 if IM,1 I IM21 and for every formula ({x) 
and every sequence 5 of elements of M,, M, k 0[5] iff M2 k 4[4]. If we do not 
specify otherwise, every model will be an elementary submodel of Mo. It is easy to 
see that M, is an elementary submodel of M2 iff IM1, IM21. 

A, B, C will designate sets included in I Mo; a, b, c will denote elements of 
IMoI, and a, 6, c will denote finite sequences of elements of 1Mo1. 6 is "'from A" if 
all the members of the sequence belong to A. Instead of M h f[4] we can write 
kf[6] since the particular model M (which is an elementary submodel of MO) does 
not matter. For a set A there is a model M such that MI = A (i.e., such that M is 
an elementary submodel of Mo) if for every sequence S and formula +(x, 5) if 
k(]x)#(x, 6) then there is a E A such that k4[a, b]. (This is the Tarski-Vaught test.) 
If not mentioned otherwise, when writing M or A we demand implicitly DIM1!, 
AI ? 2-o. 
A function F will be called an elementary mapping if Dom(F), Rang(F) c IMO 

and for everyformula (xo, . * *, x,- 1) and bo, * - *, b, 1 E Dom(F), ko [bo, * - *, b,_-] 
iff I=#[F(bo),. ... F(bn -)]. (Clearly an elementary mapping must be a one-one 
function.) F, G will denote elementary mappings. From the properties of saturated 
models it is known that if Mo is Al-saturated, IAtI A,, IDom(G)jI < A, then there 
is an extension F of G s.t. Dom(F) = A U Dom(G). F is an automorphism of M if 
Dom(F) = Rang(F) = I MI. Without loss of generality we assume that every 
elementary mapping F with finite domain can be extended to an automorphism of 
MO(see [4]). 

Actually, we shall frequently use a language wider than L which contains, in 
addition, for every a E IMoI a name which will be a itself. p is an n-type over A if p 
is a set of formulas of the form i(x0,.. * , ,n~, 5) where S is a sequence from A. 
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ON THEORIES T CATEGORICAL IN IT| 75 

q, p, r will designate types over IMo 1. p extends q if q ' p. c realizes p if for every 
O(XO,. , * * Xn 1, ii) E p, hi[e, 5]. When we say type we shall mean a noncontradic- 
tory type, i.e., for every finite subset of it, there is an element which realizes the 
finite subset. (From the definition of MO it follows that if p is a type over A, 
IA I < (2Ao) +, then there is a sequence b realizing p.) p is a complete n-type if for 
every sequence 5 from A and every formula i, O(xo, * * * Xn-1, 5) E p or 
---(xoI * * *X xn, 5) E p. Unless mentioned otherwise, every type is a 1-type. 
S(A) will be the set of complete (1-) types over A. Every sequence <bo,... * , bn, -L> 
realizes a complete n-type over A, which will be called " the type that <bo, . * ., bn - 1> 
realizes over A." If n = 1, this type belongs to S(A), i.e., every element b realizes a 
type in S(A). It is known that every n-type over a set A has an extension which is 
a complete n-type over A. Define p/A as {0 - ep: {/} is a type over A}. Define 
F(p) as 
+XXos *... * xn- .. F(ao), * * *, F(am)): (xo * **, Xn - . ao, ... , am) ep; 

ao, * * *, am E Dom(F)}. 
The definition and properties of ultrapowers can be found in [1], [2]. Assume D 

is a nonprincipal ultrafilter on c (the set of the natural numbers). It is known that 
there is an elementary mapping from M into M0'/D; thus without loss of generality 
we can assume that this mapping is the identity, and that M'?/D is an elementary 
submodel of Mo. It is known that Mco/D is an X1-saturated model. It is also known 
that ifPn is a type over IM I which is realized in M and pn + 1 P en (this for all n < c), 
then Un<coPn is realized in McoID. 

It is known that if M is a model of T, A c MI, then M has an elementary sub- 
model M1, A c IM11, of power < ITI + JAl. Clearly if M omits (i.e., does not 
realize) a type p over A, then M1 also omits it. 

?2. Ranks of types. 
DEFINITION 2.1. (1) We define TR,, by induction on a: TR,, is the set of types p 

over IMMo such that there is q ' p, IqI < No, and q has < A0 continuations in 
S(IMoI) -U,<6TR6. (Clearly a > P implies TR,, 2 TRY.) 

(2) If p E TR, - U,<6TRy then Rank(p) = and if for all A, p 0 TR0, then 
Rank(p) = oo. 

(3) The ranks are ordered by the natural ordering of the ordinals with the addi- 
tional stipulation that oo > a for all ordinals a. 

(4) If for all p Rank(p) < oo, we say that T is superstable. 
THEOREM 2.1. (1) If p c q then Rank(p) > Rank(q). 
(2) For every type p there is q c p, kqt < No, such that Rank(p) = Rank(q). 
(3) There is ao such that for every p, Rank(p) < ao or Rank(p) = 00. 
(4) If Rank(p) = 0o, IpI < No, then p has > A0 continuations in S( MoI) which 

are of rank oo. 
(5) If {pj: i < io} is a set of > A0 continuations of p in S(MO), Rank(p) < 0o, 

then there is an i < io such that Rank(p) > Rank(pi). 
PROOF. (1) If Rank(q) = a, then for every P < a, q 0 TRY. Thus for all qL c q 

such that IqLI < No, qL has > A0 continuations in S( IMo I) - U,<OTRy. Thus for 
every q1 c p, IqL I < g0, qL has > A0 continuations in S( IMo I) - Uy <TRy. Thus 
p 0 TR,6, and Rank(p) > P. Since this is true for all P < a, Rank(p) 2 a = Rank(q). 
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76 SAHARON SHELAH 

(2) If Rank(p) = a, then by definition there is q c p, IqI < No, such that q has 
< A0 continuations in S( Moj) - U,<,TR,. Thus Rank(q) < a. On the other hand, 
since q c p, Rank(q) 2 a. This proves Rank(q) = Rank(p). 

(3) Since the types over IMO I form a set, the a's for which TR, - U,0fl'TRo = 0 
form a set, and thus there is an ordinal a0 larger than all of them. This a0 satisfies 
the required condition. (It is not hard to find a bound for a0 and to show that if it 
is the last one to satisfy the condition then for every a < a0 there is a type p with 
Rank(p) = a.) 

(4) Since Rank(p) = co, p 0 TRaO; and thus every q c p with VqA < No, in 
particular, has more than A0 continuations in S( jMO) -TRaO. Each one of them 
has rank co, since its rank is > a0. 

(5) Assume Rank(p) = a and for all i < io, Rank(pi) 2 a; thus by 
(1) Rank(pi) = a. By definition there is a q c p, IqI < Rog which has < AO con- 
tinuations in S(jM0j) - U,<,TR,. Since all the pi's are such continuations, we 
have a contradiction, thus proving (5). 

THEOREM 2.2. If p is a type over A, then there is a type q, jqj < No. such that 
p U q is a type over A which has no continuation of smaller rank in S(A). (Clearly if 
p is finite then p U q is finite, and ifp is a type over a finite set then p U q is a type 
over afinite set.) 

PROOF. Since the ranks are well ordered, there is a q, 2 p in S(A) of minimal 
rank. By Theorem 2.1(2) there is q c qj, jqj < No. such that Rank(q) = Rank(qj). 
Clearly p U q is a type over A. If q2 2 p U q, q2 E S(A), then 

Rank(q2) < Rank(p U q) = Rank(qj) 
= inf{Rank(q3): q3 2 p U q, q3 E S(A)} < Rank(q2). 

Thus Rank(q2) = Rank(p U q). Thus all the continuations of p U q in S(A) are of 
the rank Rank(p U q). This clearly implies also that all the continuations of p U q 
to a type over A are of the same rank. 

THEOREM 2.3. (1) IfF is an automorphism of Mo andp is a type, then Rank(p) = 
Rank(F(p)). 

(2) If F is an elementary mapping and p is a type, then Rank(p) = Rank(F(p)), 
where p is a type over Dom F. 

PROOF. (1) We will prove by induction on a that p E TR,, iff F(p) E TRa. As- 
sume that this is true for all P < a (for a = 0 this is a void assumption). If p E TRc, 
then there is Pi C p. pj I < No. and P, has < A0 continuations in S( IMo) - 

Us <UTR. If F(pl) has > A0 continuationsin S( IjMO I U0<TRi, and{pi: i < A +} 
is a set of A+ such continuations, then, since F-' is also an automorphism, 
F-'(pi) 2 P, and i zA j implies pi zA p1 for all i, j < A . 

pe S(jM0j) and pi 0 U,<,TRi, and hence by induction hypothesis F-1(pt) e 

S(IMO), F-'(pi) 0 U,<,TRJ. Thus Pi has >A0 continuations in S(jM0j) - 

U8<,TR8, contradiction. Thus p e TRa, implies F(p) e TR. In the same way 
F(p) e TRa, implies p = F-'(F(p)) E TR,. Thus Theorem 2.3(1) is proved. 

(2) By Theorem 2.1(2) there is Pi c p, jpji < Rog such that Rank(p) = 

Rank(p). Clearly there exists a finite set A s.t. Pi is a type over A, and thus F/A 
can be extended to an automorphism G of Mo. Thus, using (1), 

Rank(p) = Rank(pl) = Rank(G(pl)) = Rank(F(pl)) 2 Rank(F(p)). 
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Thus Rank(p) > Rank(F(p)). In the same way, since F-' is also an elementary 
mapping, Rank(F(p)) ? Rank(F-'(F(p))) = Rank(p). Thus we have proved 
Theorem 2.3(2). 

THEOREM 2.4. (1) If p is a type, there exists an r E S( (MO f) such that Rank(r) 
Rank(p), p c r. 

(2) If p is a type over A, and p has > A0 continuations in S(A), Rank(p) < Go, 
then at least one of them is of rank < Rank(p). 

PROOF. (1) Suppose there is no such r. Let a = Rank(p), and let 
{p1: i < k ? E1MOII} be the set of types such that 1pil < No, at = Rank(pi) < a; 
and let hi = Aept+4. Suppose q rp, q 2 {-if:i < k} and qeS(IM0|). Since 
q 2 p, Rank(q) c a. If Rank(q) < a then there is aq, ' q, IqI < go, Rank(qj) < a. 
Thus q, = pso for some io < k, and (A epe0 5) eq q, {l: 54 pip, = q,} C q. Hence 
q is not consistent, so Rank(q) = a, a contradiction. 

Therefore there is no such q, and by the compactness theorem there exists a finite 
contradictory subset of p u{-i: i < k}. Hence there exist 01, *, On ep, 
' = o, - - *, n= 0im such that A?-=5i 4 -* VI"4'. Let i = maxim ac1 = 

maxi = 1,m(Rank(pi,)) < a. Every {5J} has ? AO continuation in S( IMO ) - Uy <TJRy. 
Hence also {VjYL ,54} and {54: i =1, * - , n} have < AO continuation in S(I MO) - 

Uy<8TRY. We can conclude Rank(q) ? Rank({54: i = 1I- , n}) < fi < a, a 
contradiction. 

(2) If {pi: i < A 4} are continuations ofp in S(A), such that Rank(pi) = Rank(p), 
then by (1) each of them has a continuation of the same rank in S( 1MO I, and we 
get a contradiction by Theorem 2.1(5). 

?3. A theory which is not superstable has a model which is not 91-saturated. 
THEOREM 3.1. If Rank(F) = -o, IfI < No, then there is a sequence of formulas 

{05(xOx, as): i < (2ITI)+} such that for all j < (21TI)+ 

Rank(j U {05(xO, di): i < j} u {I-, 5(xO, da)}) = oo. 

PROOF. By Theorem 2.1(4)fp has > AO continuations of rank oc in S( IMO j). Let 
{PT: i < A& } be A& of these continuations (all different). For a formula 5 define 
050 = 5, 01 =-m5 and let vj denote a sequence of ones and zeroes. 

Define Din =5(xo, &n) by induction on 1(v) so that if the formula 0,# is defined for 
all i < 1(q) then the type q, = {(5,1)"(I): i < 1(q)} is contained in one of the pj's. 

If 1(X) = 0, since p, # P2, there is 0, 54 epl, --I5 C P2. Let , = 54. If Only is defined 
for all] < 1(,q), and there are at least two types p', p2 e {pj: i < A+ } which continue 
qn, then there is a 0, 0 ep', - Ep2. Then we define 5, =54. If there are no two 
such types, 5, will be undefined. 

Now for allp e {pi: i < A+} we can easily find - = fl, such that q,, n p and is the 
only continuation of q, among the pi's. If for all p, 1(rqm) < (21ITI)+, then 

A+ = j{ps: i < Aj}f < 1{v: 1(,q) < (21 T1)+}I - {21"': i < (21TI)+} = 22 ? AO. 
(Here we used the definition of AO as 221TI.) Contradiction. Thus there is a p such 
that l(qp) ? (212)+. Define, for i < (2ITi)+, _4xo, it)=[+npi(x0, 1 7p,,)]Yt(. Since 
for all I < (2ITo)+, f u {541(xo, at): i <.j} U {-4i(x0, ii)} is included in one of the 
pi's, its rank is ? Rank(p1) = so. This proves the theorem. 
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THEOREM 3.2. If T is not superstable then it has a non-81-saturated model of 
power ITI. 

PROOF. Define by induction N, and pe, for n < c such that N, is an elementary 
submodel of N, ,1 jjNnjj = ITI. pO, is a type over INnI, I PI < N0, there is no ele- 
ment in N,-1 which realizes p n, p (-- p + 1, and Rank(p^) = 00. It is easy to see 
that in this case Un<coNn is a model of T of power ITI, and Uncopn is a type of 
power No over Un < 0,Nn which is not realized there. This will prove the theorem. 

For n = 0 let No be an elementary submodel of MO of power ITI, po = { }. 
(Since T is not superstable, there is a p with Rank(p) = oo. But po = { } c p and 
thus Rank(p0) ? Rank(p) = co, Rank(p^) = oo.) 

Assume that N,, pa, are defined. Since Rank(pj) oo, by Theorem 3.1 there is 
{Q/'(Xo, a,): i < (21T1)+} such that for all j < (21T1)+, Rank(qj) = 00 where qj is 
defined as qj = pe, U {#i(xo, di): i < j} U {-- #j(x0, i>)}. (And, of course, qj is a 
type, i.e. consistent.) For a E N, define Ia = {i < (21TI)+: k0b(a, ai)}. Since there 
are < ITI sets 'Ia and (21T1)+ i's, there are k, 1 < (21T1)+, k < 1, and a E IN I implies 
k I, iff I I,,a. Define Pn + 1 = Pn U {V-0k(Xo, ak), -- 1(xo, a,)}, and let Nn+ 1 be an 
elementary submodel of Mo of power ITI which includes INnI U Rang(ak) u 
Rang(d1). 

Since for all a e INnI we have kFk(a, adk) + #1(a, al), it is clear that no a realizes 
Pn + I Also Pn C Pn +1 C ql and thus Pn + 1 is a consistent type of rank oo. Of course 
IPn + II < No. Thus all the conditions of the definition are satisfied and the theorem 
is proved. 

THEOREM 3.3. If ITINo = ITI then T has a X1-saturated model of power ITI. 
PROOF. Let M be a model of T of power ITI, and let D be a nonprincipal ultra- 

filter on co (the set of natural numbers). Then, as stated in the introduction, M'0/D 
is a RI-saturated model, and JJMCO/DJJ < JJMJJt o = ITIlto = ITI. 

THEOREM 3.4. If T is categorical in ITI o = ITI then T is superstable. 
PROOF. Immediate from Theorems 3.2 and 3.3. 

?4. On prime models. 
DEFINITION 4.1. (1) p will be called an isolated type over A if p is a type over A 

and there is a finite set B c A such that Rank(p) = Rank(p/B) and p/B has no 
continuation in S(A) of smaller rank, and Rank(p) < oo. 

(2) B 2 A will be called prime over A if B = A U {aj: i < io} and for every 
i < io, ai realizes an isolated type over A U {aj: j < i}. 

(3) M will be called a prime model over A if I MI is prime over A and every type 
over a finite set contained in IMI is realized in M. 

THEOREM 4.1. (1) If T is superstable, then over every A there is a prime model 
M (such that IMI = A U {a2: i < i0}, where aj realizes an isolated type over AS = 
A u {ai: i < j}). 

(2) In the above model for every 1 < i0 there is n andjo < jl < * < j = 1 such 
that for all m < n ajm realizes an isolated type over A u {ajo, 0 * *, aj. l}. 

PROOF. (1) Define ik for k < co and aj for i < ik by induction on k such that 
i,, = Ukcoik and k < 1 implies ik < il. Assume that it is defined for all k1 < k. 
If k = 0, io = 0. If k = 1 + 1, let ik be any ordinal such that {pj: i4 < j < is} is 
the set of types over finite subsets of A U {aj: j < iQ}. Define by induction a3 for 
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il < i < ik. Assume that it is defined for all i < j and let q be an isolated type in 
S(A U {ai: i < j}) which continues pj (the existence of such a type was proved in 
Theorem 2.2). Let aj be an element which realizes q. By definition, A1 = A u 
{ai: i < in} is prime over A. 

Assume q is a type over a finite set B c A1. We must show that q is realized.by a 
member of A1. Since B is finite there is n < co such that B c A u {ai:,i < ij, and 
thus there is j, in < j < in + , with q = pj. Clearly aj will realize q. 

It remains to be proved that there is an M with I MI = A1. By the Tarski-Vaught 
test (see ?1) it is sufficient to prove that if k(3x)b(x, i), and a is a sequence from Al, 
then there is b E A1 such that lo[b, a]. But {+(x, a)} is a type over a finite set c Al. 
Thus, by the above, there is a b as required and that proves (1). 

(2) By the definition of {ai: i < i0}, for every i there is a finite set Ii c {k: k < i} 
such that if pi is the type that a, realizes over A U {a1: j < i} then p1/(A u {a,: j e Ij}) 
has no continuation in S(A U {aj: j < i}) of smaller rank. If we find Jo., 'In = I 
such that for all m < n, Ijm c {jo, ... * .im-1} this will clearly prove the theorem. 

Define En by induction on n < co: Eo = {l} and En + 1 = U{1I: i E En}. It is easy 
to see that En is a finite set since the finite union of finite sets is finite. Let an 
max{i: i E En}. Since En is finite, the maximum exists. Also for every n, an + 1 < an 
since an + 1 E En + 1 = U{Ii: i E En} and thus there is an i E En, an + 1 l Is and hence 
an+ 1 < max En = an. (We have used the fact that Is {k: k < i}.) Since the 
ordinals are well ordered, there is no descending sequence of ordinals, and there- 
fore there is no for which E,,o is the empty set. If UncnoEn = {jo, - * , jm} and jo < 
j, < * - * < j.i then jm = 1 and this proves Theorem 4.1(2). 

?5. Indiscernible sequences. 
DEFINITION 5.1. (1) The sequence i = <ai: i < k> is indiscernible over A if for 

all n < c and every io < ... < in < k, jo < .. < jn < k, the sequences 
<a0,.-. * *, ain>, <ajo, . * * , as,> realize the same type over A. We shall always assume 
that k 2 co and for 1 ? k let a' = <a1: i < 1> and Al = A U {ai: i < 1}. We use 
this notation when it is clear what A and a are. Also, we shall always assume that 
ao # a1. 

(2) In the above notationp,(Q) will be the type {/(xo, aoy *** a, bn): 5 a sequence 
from A; for m < n, i? l I andI ?nformlm2 < i > nm2 iffIml > jIm2 and 
h/[a,+1, ajo, ... , an, 5]}. (For I < k p1(d) is the type that a, realizes over Al.) 

THEOREM 5.1. If a = <ai: i < k> is an indiscernible sequence over A then p1(a) 
is a complete (consistent) type over Al for all ? < k. 

PROOF. If I < k, a, realizes pi(a) and the claim follows. Assume 1 = k. If there 
is a contradiction in Pj(a) then there is a contradiction in a finite subtype q of 
Pl(a). By changing the order of the variables of the formulas in q and adding dummy 
variables, there will be a contradiction in {Im(X0, ai, * . ., aim, b): m < no} where 
b is a sequence from A, io < ... < in. Thus km (9x)(A m <noIm(xo, aim,. * * as, 5)) 
and K1 (3x)(Am<nObm(XO, a0 ,... , an, 5)). But kAm< nobm(an +I ao .*.* , an, b), con- 
tradiction. Thus Theorem 5.1 is proved. 

THEOREM 5.2. Assume T is superstable. 
(1) If <a1: i < k> is an indiscernible sequence over A and k0 + co ? k, then 

Ka1: k0 ? i < k> is an indiscernible sequence over Ak0. 
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(2) If p is a type over A, and <as: i < k> is an indiscernible sequence over A, then 
p has no continuation in S(A4,) of smaller rank if p has no continuation in S(Ak) of 
smaller rank. 

(3) If p E S(A), <ai: i < k> an indiscernible sequence over A, p has no continuation 
in S(Ak)of smaller rank, p c q E S(Ak), io < ... < in < k, jo < ... < in < k, and 
L a sequence from A then 

0(xo, aj, ... ,aio,6)eq ff /(x0,a1o, -,aJ,5)eq. 
(4) If a realizes type p e S(Ak) and p/A has no continuation in S(Ak) of smaller 

rank where <as: i < k> is an indiscernible sequence over A, then <at: i < k> is an 
indiscernible sequence over A U {a}. 

PROOF. (1) Immediate. 
(2) Assume that p has a continuation q in S(Ac,) of smaller rank. Let q1 be any 

continuation of q in S(Ak). Then Rank(q1) < Rank(q) < Rank(p); and thus p has 
a continuation in S(Ak) of smaller rank. 

Assume p has a continuation q in S(Ak) of smaller rank. In this case there is 
q, c q, [qI < XO, such that Rank(q1) = Rank(q) (by Theorem 2.1(2)). Thus there 
exist io < ... < in, such that q1 is a type over B = A U {aim: m < n}. Define an 
elementary mapping F such that Dom(F) = B, for a in A F(a) = a and F(atm) = am 
for m ? n. It is easy to see that F(q1) 2 p and F(q1) is a type over A4; thus it has 
a continuation q2 e S(A). We have Rank(q2) ? Rank(F(q1)) = Rank(qj) = 
Rank(q) < Rank(p), i.e. p has a continuation in S(A,,) of smaller rank. Thus we 
have finished the proof of (2). 

(3) Without loss of generality, assume k < (22o) +. By Theorem 5.1(2), and since 
MO is (22o) +-saturated, it is easy to see that it is possible to define a1 for k < i < 
(2"o)+ = kt such that <as: i < k1> is an indiscernible sequence over A (at will be 
an element realizing p1(<a: j < i>)). 

Assume #(x0, a,0,,* - *, ain, b) E q, -4(xO, ajo, * * *, ate, L) E q. Let q1 be a continua- 
tion of q in S(Ak1), / an ordinal < k1, in, jn < 1. Without loss of generality assume 
0(xO, a,, * * *, a+ n, b) e q1 (for otherwise take ib0 instead of # and interchange the 
i's and j's). For every 8 < k1 let d6 = /(x0, a6,* , a6+n, Li). Since for every 
81 < 82 < k1 the sequence 

<all**, .ab1+nqa629 ...*,a62+n>9<ajog.. *aj., a,.*, a,+n> 

realize the same type over A, we have that for all 81 < 82 < k1, qL U {I--c061, 062} is 

a consistent type over Ak1, thus having a continuation q(81, 82) in S(Ak1). 
On the other hand p has no continuation in S(Akl) of smaller rank (by part 2 

of this theorem) and thus by Theorem 2.4 p has ?5 A0 continuations in S(Akl)- 

For every such continuation p corresponds a set I(f) = {8: 8 < k1, #6 ef}. Since 
there are < A0 such sets and 1{8: 8 < k1}I = (22o)+, there are 81 < 82 < k1 such 
that for every continuation P of p in S(Ak), 061 Eft iff 062 E f. But q(81, 82) con- 
stitutes a counterexample. Thus, the claim is proved. 

(4) Follows directly from (3). 

?6. On theories T categorical in iT. 
THEOREM 6.1. There is an indiscernible sequence c7 = <a1: i < 8> over A = 0. 
PROOF. See [9]. 
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THEOREM 6.2. If T is superstable and ad = <at: i < 8> is the sequence mentioned 
in Theorem 6.1 then there is a prime model over Ask = {ai: i < co} omitting 
p,(<ai: i < co>). 

PROOF. By Theorem 4.1(1) there is a prime model M over A,,m such that IM = 
{bi: i < i0} u Aoo and for all] < io, bj realizes an isolated type over {bi: i < j} U Am. 

If ps,,#!') is realized in M then there is j < io such that bj realizes it, and thus by 
Theorem 4.1(2) there is a sequence jo < *** < jf = j such that for all m ? n, 
Cm = bjm realizes an isolated type qm over A U {C * * , cm -}. Thus, there are 
finite sets Bm c Am, such that qm/(Bm U {co, 0 * * , cm -}) has no continuation in 
S(Amo u {co, - - *, CmiL}) of smaller rank. Let B = Um5nBm c {ao, - - *, aj, / < co. 

Let am, = c,; since Cn realizes pm,(ii), <at: i < co + 1> is an indiscernible sequence. 
We shall show by induction on m ? n + 1 that <at: 1 < i < co + 1> is indiscernible 
over {ci: i < m} U {ai: i ?< }. Form -0, by Theorem 5.2(1), <at: / < i < to + 1> 
is an indiscernible sequence over {ai: i ? l} = {cj: i < m = O} U {aj: i ? 1}. Now 
assume validity for m and we shall prove for m + 1. By definition, the type which 
Cm realizes over {ci: i < m} U {fai: i ? l} has no extension in S(AO U {ci: i < m}) 
of smaller rank. Thus, by Theorem 5.2(2), this type has no extension in 
S(A+ U {cu : i < m}) of smaller rank. By Theorem 5.2(4) it follows that 
<at: / < i < co + 1> is an indiscernible sequence over {ai: i 1 l} U {ca: i < m} u 
{cm} = {ai: i < l} U {cj: i < m + 1}. 

We have proved that for every m ? n + 1, <at: I < i < Cl + 1> is an indis- 
cernible sequence over {ai: i 1 l} U {ci: i < m}. In particular, this is true for 
m = n ? 1, and since cn E {ai: i 1 l} U {c1: i < n + 1} it follows that for all l < i, 
/ < co + 1, Vat = Cn iff taj = Cn. But Cn = a,,; therefore a,1I = Cn = am. Since 
<ai: i < to + 1> is an indiscernible sequence, ao = a,, in contradiction to the 
definition. Thus p,(dim) is omitted in M. 

THEOREM 6.3. If T is categorical in TIT =T IjO then T has a model of power 
< ITI. Furthermore, this model can be chosen so that every type over a finite set is 
realized. 

PROOF. By Theorem 3.4, Tis superstable. By Theorem 6.2, Thas a prime model 
M in which there is a sequence jjm = <at: i < a> indiscernible over the empty set 
A, and in which pmOQm) is not realized. Since M is a prime model every type over a 
finite set is realized in it and thus if jIMJJ < |TI the theorem is proved. Assume 

JMIJ > ITI. Then by the downward Lowenheim-Skolem theorem there is an 
elementary submodel M1 of M such that {as: i < cv} s IM,1I, J1M,1 = I TI, and 
pj(jim) is omitted. We will show that T has a model of power ITI which cannot be 
isomorphic to M1. 

Let NO be any model of T of power ITI. By induction define Ni for i < N1: No 
is defined, Nli+1 = Nj'/D (D is a nonprincipal ultrafilter over co), and if i = 8 limit 
number then INS = Ui<61N2I. Clearly IIXNRII = IT!. Assume d'? = <as: i < co> is 
an indiscernible sequence in NK1. Then there is i < RI such that INil {at: i < cv}. 
Since po,(d'O) = Un < mPn(i'?) and U. < Pn(iit) is realized in Ni for all m < a, clearly 
pm(jdtm) is realized in Ni +L. Therefore NK1 is not isomorphic to M1 in contradiction to 
the categoricity of Tin ITI. Thus the theorem is proved. 

REMARK. It can be proved similarly that if T is categorical in A, Ago = A, then T 
has a model of power < A. 

6-J.S.L. 
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