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True first~order arithmetic is interpreted in the monadic theories of certain chains and
topoiogical spaces including the real line and the Cantor Discontinuum. It was known that
existence of such interpretations is conststent with ZFC.

9. Introduction

The first-order theory of linear order is far from trivial. The monadic {second-
order) theory of linear order is much stronger. Stili surprising decidability results
were proven in that direction. Rabin proved in [10] that the monadic theory of
ihe rational chain is decidable. Hence the monadic theory of all countable linear
orders is decidable. Biichi proved in [1] that the monadic theory of ordinals of
cardinality at most ¥, is decidable. The decisicn problems for the monadic theory
of the real line R, the monadic theory of linear order, the monadic theory of ¥,
and the monadic theory of ordinals were long open. The last two theories are
taken care of in [5] and will not be discussed here.

Let us recall the definition of the monadic theory of order. The pure monadic
(second-order) language has two sorts of variables: for peints and for sets of
points, Its atomic formulas have the form x; € X. The -est of its formulas are built
from the atomic ones by means of ordinary propositional connectives and
quantifiers for variables of either sort. Augmenting the pure monadic language by
the symbol < for an order on points we get the monadic language of order; the
new atomic formulas have the form x; <x,. For the sake of brevity linearly
ordered chains are here called chains. The monadic theory of a chain C is the
theory of C in the monadic language of order when the set variables range over
all subsets of C.

One specific chain of special interest to us is the real line R. Recall that a set of
reals is called meager if it is a union of =K, nowhsre dense seis. We call it
pseudo-meager if it is a union of <2™ nowhere dense sets. The Contimyum
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Hypothesis implies that every pseudo-meager set is meager and that R is not
pseudo-meager. It is well known that neither “Every pseudo-meager subset of R
is meager” nor “R is not pseudo-meager” can be proved or disproved in
Zermelo-Fraenkel set theory with the axiom of choice (ZFC).

The first undecidability result about the monadic theory of R appeared in [11].
Assuming that R .s not pseudo-meager, Shelah reduced true first-order arithmetic
(i.e. the first-order theory of {w, +, -)) to the monadic theory of R. Litman noted
that the monadic theory of R is easily interpretable in the monadic theory of
linear order (Lemma 7.12 in [11]), thus both the monadic theory of the real line R
and the monadic theory of linear order are undecidable if R is not pseudo-
meager. Under a very weak set-theoretic assumption we reduced the full second-
order logic to the monadic theory of linear order, see [7]. (Note that the monadic
theory of linear order is easily interpretable in the second order logic.) In this
paper we are interested only in those chains that embed neither w; nor w¥ (the
order dual to w,). We call them short. In what follows we use the term “chain’ to
mean ‘‘short chain”.

In order to axiomatize the monadic theory of countable chains Gurevich
introduced in [3] p-modest chains where p is a positive integer. The correspond-
ing definition can be found in Section 7 below. For every p, p-modesty is
expressible in the monadic theory of order. A chain is called modest if it is
p-modest for every p. The modest chains are exactly the chains monadically
equivalent to countable. Thus:

(i) The monadic theory of modest chains is decidable.

The statement (i} is proved dizctly in [6]. Moreover, generalizing Shelah’s
undecidability result the paper [6] nroved:

(ii) Assume that every pseudo-meager subset of R is meager. There is a
uniform in p algorithm that reduces true first-order arithmetic to the monadic
theory of non-p-modest chains.

Note that (i) and (i) together form a kind of dichotomy.

Now about topology. In [2] Grzegorczyk considered a topological space as a
Boolean algebra of subsets with the closure operations (a closure algebra). The
language of closure algebras looks poor; its expressive power is not trivial
however, sce [2-4]. Let us give a formal definition.

Augmenting the pure inonadic langu-ge by a symbol for the closure operation
we get the monadic topological language. The new atomic formulas have the form
X, = X. The monadic theory of a topological space U (or the menadic topology of
U) is the theory of U in the monadic topological language when the set variables
range over all subsets of U. The monadic theory of the order topology of any
chain C is easily interpretable in the monadic theorv of C. The converse is not true
generally (the monadic topology of a chain

ne+ (@* +w)+n;+ (@ +aw)+- -

is decidable, the monadic theory can be undecidable). However the monadic
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theory of the chain R is interpretable in the monadic topology of R. {Using
connectivity express the relation *y is located between x and z” in topological
terms. This relation aliows the definition of order using parameters, and up to
isomorphism it is the same order for any parameters. More details can be fourd in
Section 4 of [9].)

Analyzing Shelah’s reduction of true first-order arithmetic to the monadic
theory of R, Gurevich noted the prominent role of topology. The same construe-
tion allows reduction of true first-order arithmetic to the monadic topology of the
Cantor Discontinuum (under the same assumption that R is not pseudo-meager),
which is a stronger result (and the negative answer to an old question in [2]).

Assuming Godel's Constructibility Axiom V =1 Gurevich reduced true third-
order arithmetic to the monadic theory of any nonmodest chain and to the
monadic topology of the Cantor Discontinuum or any other topological space in a
certain class of topological spaces, see [4]. All these monadic theories are easily
interpretable in true third-order arithmetic.

In spite of these undecidability resuits one could hope still to prove that “The
monadic theory of R is decidable” is consistent with ZFC. In Shelah’s original
interpretation almost all set variables ranged over perfect sets. The assumption
“R is not pseudo-meager” was used to build a diagonal set intersecting “’bad”
perfect sets and avoiding “good” ones. It seemed quite possible that tre diagonal
set may not exist. As for a possibility to eliminate the assumption “R is not
pseudo-meager”, a natural approach could be to define a special kind of perfect
sct such that R is not a union of <2™ special perfect sets and such that replacing
“for every perfect set” by “for every special perfect set” does not change too
much the meaning of formulas used in the interpretation. Shelah tried several
possibilities (sets coding game strategies, and so on) till he came across the
tollowing question of Harvey M. Friedman: Is there a set W< R of cardinality 2%
such that for every perfect P there is a perfect Q © P avoiding W? He answered
the question positively, and the solution, described in Section 1 below, gave him
an idea of an appropriste kind of special perfect set. He figured out how to
interpret true first-order arithmetic in the monadic theory of R just in ZFC,
published an abstract [12] and sent an amendment to [11] to the first author. In
the hands of the first author it grew to this paper,

The main result of thi. paper about chains is proved in Section 7. It is the
following theorem in ZFC completing the above mentioned ‘lichotomy.

Theorem Q.1. There is a uniform in p algorithm that reduces true first-order
arithmetic to the monadic theory of non-p-modest chains.

Coroltary 9.2. True first-order arithmetic is reducible 10 the monadic theory of
linear order,

The theory of R with quantification over countable subsets (i.e. the theory of R
in the monadic language of order when the set variables range over countable
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subsets of R) is decidable, see [20], [11] or [6]. Therefore the theory of R with
quantification over sets of rational numbers is decidable. In contrast to this we
prove in Section 4:

Theorem 0.3. The ser of sentences F=VW F' (W)} in the monadic language of
order such that F holds in R, when the bound set variables of F' range over sets of
rational numbers while W ranges over arbitrary sets of reals, is undecidable.

By analogy with p-modest chains Gurevich introduced p-modest topological
spaces in [3], here p is a positive integer. The corresponding definition can be
found in Section 8 below. The Cantor Discontinuum is not even 1-modest. The
main result of +his paper about monadic topology is the following theorem proved
in Section 8.

Theorem 0.4. There is a uniform in p algorithm reducing true first-order arithmetic
to the monadic theory of non-p-modest metrizable spaces.

Most of this paper deals simultaneously with chains and topological spaces. If
you are interested only in undecidability of the monadic theory of the real line R,
note that the monadic topology of the Cantor Discontiuum is easily inierpretable
in the monadic theory of R. Read the paper having in mind the non-1-modest
case and topological applications only.

Unfortunately, topology fails to identify modest chains whereas this indentifica-
wion is of local nature and all-important in the monadic thoery of chaims. In order
to provide the right frame to handle the monadic theory of chains the paper {4]
introduces vicinity spaces. Vicinity spaces are defined in such a way that topologi-
cal spaces form a special case; tiis allows a unified treatment of chains and
topological spaces. We borrow the notion of vicinity spaces, the technique of
towers and certain proofs from [4]. For the reader’s convenience we make this
paper self-contained however. (The oly exception is Theorem 2.1.)

Let us mention that a later paper [8] strengthens results of this paper and
explains them in a way.

We thank the referee for the shorter proof of Claim 1.3.

1. A problem of Friedman
Theorem 1.1. There is a subset W of the real line R such that W is of the
cardinality of continuum and for every perfect set P& R there is a perfect s2t Q< P

avoiding W.

Theoremn 1 answers positively a question of Harvey M. Friedman. We prove it
in the rest of this section.
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Tt suffices 1o pr.ve Theorem 1 for the Cantor Discontinuum because it is
homeomorphic to a perfect subset of R. For us here the Cantor Dscontinuum is
the set “2 (the collection of functions from @ into {0, 1}) with the product
topology.

We don’t distinguish between @ and 8, but we do distinguish between “2 and
2%, the latter is the cardinality of “2 i.e., the cardinality of contimum. Here is
some more notation. If a, B are ordinals, then “B is the collection of functions
from « into B,

“B=U{B:vy<al, TB=U{B:v=al

Of course an ordinal is considered here as the set of smaller ordinals. Now, =2
with the inclusion relation forms a tree. For each a e "2 ket [a]={xe=*2: a o x}.
We consider ™2 as a topological space whose open subbasis consists of sets {a}
and [a] where ae™“2. Taus “2 is the collection of limit points of 2 and it
suffices to prove Theorem 1.1 for 2 instead of R. We work below in 2. An
element a€ ™2 is considered also as sequence a0,..., a(l—1) where [ is the
domain of g, [ is called the length of a and denoted th(a). For i <2, a”i is the
sequence a0,...,a(i—1), 4

Iet S be a subset of @ such that both S and w — S are infirite. A perfect set P s
constant on S if x|[S=y|[8§ for every x, y in P. P is one-to-one on § if
x|{S=y!8—>x=yforevery x.y in P.

Clatm 1.2, For every perfect set P there is a perfect Q & P which is either constant or
one-to-one on 5,

Froof. Without loss of generality there is no clopen (closed and open) set K such
that KNP is non-zero and constant on S. Define ¢: 22— <*2 such that

(i) every [ea] meets P, and

(i) for every a e =2 there is [ =1h{a) such that e S and e(a™0), e(a”1) differ
at L

The set of limit points of the range of ¢ is the desired set Q.

Claim 1.3. Ler «<2% and for every o<\« let P, be a perfect set constant or
one-to-one on S. Then |J (P a<kl#“2.

Proof. If P, is constant on S, then there is f,: S — 2 such that x| S={, for ali
xe P, Since w<2%, there is h:S->2 such that h#f, for any a The set
X={xe“2:x|$=h} has power 2%, If the union of sets P, exhausts ®2, then
some P, contains two distinct elements of X, say x and y. Since x |S=y |8, P, is
canstant on S. But h#f,. Claim 1.3 is proved.

Proof of 1.1. Let (P,: o <2™) be a sequence of ail perfect sets constant or one-
to-one on S. By Claim 1.3 it is possibie to select x, in “2~ U {Ps: B <a} for
a < 2%, We prove that W= {x,: o < 2%} is the desired set.
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By Claim 1.2 arbitrary perfect set P includes some P,. But |P, N W] |a| < 2%,
Any perfect set can be partitioned into continuum many disjoint perfect subsets.
Hence some perfect subset of P, avoids W.

2. Vicinity spaces and guard spaces

Vicinity spaces were defined n [4] in order to prove simultaneously results
about topological spaces and cha:ns. For the reader’s convenience we repeat here
the definition in slightly differens form.

A vicinity space is a non-empty set (of points) together with a function (the
vicinity function) associating a co:lection of non-empty points sets (vicinities of x)
with each point x in such a way that

(V1) x doesn’t belong to any vicinity of x,

(V2) if the irtersection of two vicinities of x is not empty then it includss
another vicinity of x,

{(V3) the relation “X meets Y on the vicinit. s of x is transitive, and

(V4) if x belongs to a vicinity X of another point and Y is a vicinity of x then
X includes a vicinity of x meeting Y.

For each vicinity X of a point x the union of all vicinities of x meeting X will
be called a direction around x. By (V3) different directions around x are disjoint,
(V4) can be reformulated as follows: if x belongs to a vicinity X of another point
then X includes a vicinity of x in every direction around x.

Example 2.3. U is a T, topological space. Isolated points of U have no vicinities.
If x is not isolated, then {G~{x}: G is an open nbd of x} is the collection of
vicinities of x. Thus there is at most one direction around any point,

Example 2.2. U is a chain. If x is the left (resp. right) end of U or x has a left
(resp. right} neighbor in U, then x has no left (resp. right) vicinities. Otherwise
{GN{y: y<x}: Gisanopennbdofx}(resp.{G N{y: x <y}: Gisanopennbdof x})
is the collection of left (resp. right) vicinities of x. Every vicinity of x is either left or
right. Thus there are at most two directions around each point of U. (Example 2
corrects the corresponding place in [4].)

The monadic vicinity language is obtained from the purs monadic language by
adding a symbol Vic of the vicinity function and new atomic formulas X, € Vie(x;).
Its formulas will be called vicinity formulas. The monadic theory of a vicinity space
U is the theory of UJ in the monadic vicinity language when the sct variables
range over all point sets in U. In Example 1 (resp. Example 2) the monadic theory
of the vicinity space is easily interpretable in the monadic theory of the topologi-
cal space (resp. the chain).

We define topclogy (the natural topology) in vicinity spaces as follows: a point
set X is open iff it includes a vicinity of each point x € X in every direction around
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x. This definition restores the original topology (resp. the order topology) in
Exampl= 1 (resp. Example 2). By (V4) any vicinity of any point is open.

The number of directions around a point is the degree of this point. The degree
of a vicinity space is the supremum of the degrees of its poinis. In the rest of this
paper we restrict our attention to vicinity spaces satisfying the following condi-
tions: the natural topology is regular and first-countable, the degree of the space
is 1 or 2, and for every point x of the maximal degree any other point belongs ¢ a
vicinity of x.

Let U be a vicinity space of degree r. The repletion of X € U is the set rp(X) of
points x such that the degree of x is equal to r and every vicinity of x meets X. A
set X is replete if 0 X =rp(X). X is coherent if 0# X <p(X). If X meets every
vicinity of every one of its points it forms u subspace of U in the following natural
way: Viex(x)={XNY: Ye Vicy(x)}

In topological applications

(i} the 1epletion of a set X is the set of nonisolated points in the closure of X,

(i} replite means perfect,

(iii) cohevent means dense in itself, and

(iv) X forms a vicinity subspace iff every point isolated in the topological
subspace X is isolated in the whole space.

If you are interested in topological applications only, use this translation and
think in toplogical terms. The vicinity approach does not give you any additional
insight. The situation is different if you are interested in chains. Translating
vicinity terms into the language of chains appears to be cumbersome and, what is
more impertant, the order makes less natural some necessary definitions and
constructions.

We say that a point set X is dense in a pointset Y if XN Yisdense in Y, te. if
the closure of X N Y includes Y. “Ewd” abbreviates “‘everywhere dense,” and X
is of course the closure of X.

Theorem 2.3. Suppose 1<k <w and X, is a coherent ewd point set for n <k. Then
there are a coherent countable B < |} {X,,: n <«} and a family S of coherent subsets
of B such that S is of the cardinality of continuum, and every Y S is closed and
nowhere dense in the subspace B, and every X, is dense in every Ye S, and YNZ
is a scattered subset of B for any different Y, Z in S.

Proof. See Theorem 1 in Section 1 of [4].

The monadic theory of a vicinity space of a positive degree can be decidable,
see [6]. In order to prove undecidability of the monadic theory of U we want U
to be rich. The following definition will be of help. Let p be a natural number.
Point sets Xq, ..., X, form a guard if they are coherent, disjoint, ewd and there
is no replete Y such that Y UJ {X,: q<p} and every X_ is dense in Y. (When
we say that a collection of sets is disjoint we mean it is pairwise disjoint.)
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Suppose that {X,:q<p} is a guard of U. A set Y is guarded if every X, is
dense in Y.

Claim 2.4. Every guarded replete set is of the cardinality of continuum.

Proof. By contradiction suppose that Y ‘is guarded and replete but |Y]< 2%,
Without loss of generality Y = U. Let B, S be as in Theorem 2.3. {Z—~B: Ze S} is
disjoint hence there is Ze S with Z=Z < B |J {X,: ¢ <p} which is impossible.

A vicinity space together with a guard consisting of p guardians will be called a
p-guard space. The monadic p-guard language is obtained from the monadic
vicinity language by adding set constant Gd,, ..., Gd, . Its formulas will be
called p-guard formulas. The monadic theory of a p-guard space is the theory of it
in the monadic p-guard fanguage when the set variables range over all point sets.

3. Imposition and exploitation of a tree structure

How can one translate arithmetic into the monadic language of the real line?
The line seems to be too homogeneous to help us. (Translating arithmetic into the
monadic topology of the Cantor Discontinuum seems to be even more problema-
tic.) The idea is to slice a countable everywhere dense set D into everywhere
dense shices Ag, Ay, ... and to code this decomposition of D by an appropriate
parameter V. Later we will envision the decomposed D as a tower and the slices
Ao, Aq, ... as levels of the tower. These slices will represent natural numbers
0.1, ... respectively. There is however no monadic formula with paramaters that
will define the slices up to, say, nowhere dense sets. (Nondefinability of slices will
be proved in one of our forthcoming papers.) However there is a formula (the
formula Storey in Section 4) defining slices locally: if Storey(X, D, W) holds, then
every interval has a subinterval where X coincides with one of the slices. In this
section we define a formula Code(X, D, W, G) and prove Theorem 3.1 stating
that every nonempty open set inside G has a nonempty open subset where X is a
part of a slice. The proof of Theorem 3.1 is the main novelty of this paper and its
most sophisticated part. You may omit it at the first reading.

Let p be a positive natural nomber and U be a second-countable, zero-
dimensional p-guard space with r> 0 directions around any point. Suppose every
guardian of U is countabie. Let D= | {Gd,: g<p} and Code(X, D, W, G) be a
p-guard formula saying the following: For every G, and every X, <
GdyOX,... . X, ,cGd, \NX, X, € X dense in G, there is a coherent Y g
DNG, with X, ..., X, dense in Y and rip(Y)NW|=1.

From here on letters G, H with or without subscripts denote non-empty open
sets.
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Theorem 3.1. Let D be a countable subset of U such that D°< D and D—D° is
ewd. Let P={P,: n < w} be a partition of D into ewd parts in such a way that D is
the union of guarded parts. Let F be a family of subsets of I3 such that each A€ F is
a union of members of P, each A ¢ F meets D° and {AND": AeF} is disjoint.
Then there is W< U~ D such that for every G and every guarded X < DD dense in
G, Code(X, D, W, G) holds in U iff for every G, < G there are Ae F and H¢: G,
with HNX < A.

Theorem 3.1 is proved in the rest of this section. In Section 1.we spoke about a
tree =2, Now we are ‘nterested in another tree, namely ““w. An arbitrary
element a of ““w is a funciion from some [ <o (i.e. from {k: k <1}) into @, a can
be considered as a sequence a(0), ..., a(l—1) and with respect to this [ is called
the length of a and is denoted Ih(a). For every i<w, a™i is the sequence
a® ... a(l-1),0

Let D, P, F be as in Theorem 3.1. We impose a tree structure on . Let
{0,: n <} be a partition of w into infinite parts in such a way that

(iy if P, is guarded, then Q, avoids {i{p+D+pri<e}l and QN
{{{p+1)+¢g: i <e} is infinite for ¢ <p, and

(i1} if P, is not guarded, then Q,c{i(p+1)+p: i<w}.

Let {B,: n <w} be an open basis of U consisting of clopen sets, Order D by
type .

To each a € ““w we assign a nonempty clopen subset [a] of U and a point ea in
{alMD as follows. If a is empty, then [a]=U. Suppose {a] is chosen and
[ =ti(a)e Q,. Choose za to be the minimal d € I such that de[a]NP, and if P,
is guarded, then « belongs to Gd, with g=1 modulo p+1. Let Gy, ..., G, be
the directions around ea in the subspace [a] of U. Select clopen sets [al= H, >
H, > -+ such that

(i) {H;: i< w} is a neighborhood basis for eq,
(ii) every H,—H,_, meets every G,, and

(iif) if ea e B, but [a]— B, meets G, then G, NH, = G, N B, and if ead B, but
B, meets G, then G,NH, =G, — B,

Set

[a"(ir+sY]=G,N(H, ~F,,,) fori<aw s<r

The range of the map e is equal to D, we identify each a € ““w with ea. Thus
[alND={beD: qa< b}, arbitrary ntd of a includes U {{a™i]: i=j} for some j,
and arbitrary vicinity of a includes U {a~(ir+s)}: i =} for some |, s.

Clopen sets {a] and (I {{a"i}: i=jhU{a} form an open basis for U. For, let
x€ B. If x=aeD, then B, includes some |J {{a"i]: i =j}. If x¢ D, then there is
bz D such that Th(b)= [+ 1 wnd x e[b]< B, Thus for every x, y in U— D there is
a with [a]lN{x, y}=1{x}

For X< D let log(X)={lh{(a): a e X}. Then log(Gd,) ={i{p+1)+q:i<w} for
g<p and log{P,)=Q,.
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We adopt the following terminology. A subset X of D varies on level 1 if there
are a, b in X with th(a), Ih(b)>>1 and a(l)# b(i). X is of color A € F if X varies
only on levels I elog(A). X is mono if there is A € F such that X is of color A. X
is nowhere mono if there is no G with non-empty mono G NX. X is colorless if
for every mono {a, b} < X either ach or bca.

Claim 3.2. For every coherent, guarded, nowhere mono X < D there is a coherent,
guarded, colorless Y < X.

Proof. It suffices to build a map E:““w — X such that:

(iy Ela"m)NE(a"n)=E(a) if m#n,

(ii) if E{a"m)e[(Ea)*n], then m =n modulo r,

(iti) £a < Gd, if Ih(a)=g modulo p, and

(iv) it EacAeF and m#n, then {E{(a"m), E(a"n)} varies on some level
le w—iog(A).

We prove that the range Y of such map has all desired properties. By (i}, E
preserves the tree order.

An arbitrary vicinity V of Ea includes 'J{{(Ea)"(ir+ 5)]: i =]} for some s<r
and j. By (i) and (i), V contains E{a"(ir+s)) for sufficiently big i. Hence
Y is coherent.

An arbitrary nbd G of Ea includes | J{[(Ea)"i]: i=j} for some j. By (),
G contains {E(a”i): i = k} for some k. Given q < p take b & I? such that a”k < b and
Ih(h)=¢q modulo p. By (i) and (iii), Ebc G. Hence Y is guarded.

If {Ea,, Ea,} is of color AeF let a=a,Na, By (i), {Ea,, Ea,} varies on level
Ih(a) hence Ea e A. By (i) and (iv), {Ea,, Ea,} varies on some level le w ~log{A)
hence it cannot be of color A. Therefore Y is colorless.

We build now a map E satisfying conditions (i)-(iv). Chouse E0e Gdy M X,
Suppose b=FEa is already chosen and M,={m:[b"m] meets X}
MyN{ir+s: i <e} is infinite for s <r because X is coherent. If b¢ UF choose
Eta™ir+s)) in [b"m]NXNGd, where m; is the ith element of M,N
Ur+s:j<w} and g=1h{a)+ 1 modulo p.

Suppose be A e F. We define E(a™), LS w and M,,, S w by induction on i.
Suppose that E{(a"f), L, M,,, are defined for j<i, and Ea < E(a™j), L; is finite
for j<i, and M, N{kr+s:k <} is infinite for s<r, and me M, implies that
[b"m] avoids {E(a"f): j<i} and there is ce[b"m]NX with ¢ |L; defined and
different from E(a"j)| L,

Let n=min{meM,: m=imodulor}, ce[)n]NX and ¢ L; is defined and
different from E(a"j}| L; for j<<i. As X is nowhere mono there are Cos ..., ¢, 10
[c]MX and L, ©o—log(A) such that ¢g| L, ..., ¢ | L; are defined and different.
Let

N, ={meM,: there is de[b"m]N X with d | L, defined and differ-
ent from E(a™j) for j<i and d|L; defined and
different from ¢,}
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for s=<r. For any v’ <r there is at most one s <r such that N, Nkr+r" k <w}is
finite. Choose s=r such that N,N{kr+r": k <} is infinite for ' <r. Let q<p
and g =ih(a)+ 1 modulo p. Choose E(a"i} in [c,]1N Gd, M X (which is not empty
because X is guarded) and set M., =N, —{n}. Claim 3.2 is proved.

Claim 3.3, There is W< U~ D such that for cach coherent guarded X < I
B pGONWI=1 if X is mono, and
(i) rp(X) meets W if X is colorless.

Proof. Arrange all coliwent, guarded, colorless subsets of D into a sequence
(Xera<2%). A point x emp(X,)-D is sclected by induction. Suppose
{xg: B <al}is already selected. For every xe U—D and every n<<w there is ae D
such that th(a)=n and xefg], this a will be denoted x |n. let Y, =
{yeU~-D:xg|n and y|r form a mono pair for every n <} for <. Then
Irp(X.) " Yel=<1. (For, suppose x and y are different elements in rp(X, )N Yg.
There 1s { such that x [ l#y |l Take ae[x|[IINX, and bely | IINX, 0 form a
nontrivial mono pair in X,.) By Claim 2.5, jrp(X, )}=2% Pick x,  in
p(X ) - D)~ U {Ys: B<a). Let W={x,: a <2}, Every rp(X,) meets W by
choice of x,. f B<a, then {x,{n xs|n} is not mono for some n hence
p(X)NW|=1 for any mono X. Claim 3.3 is proved.

Let W be as in Claim 3.3, G be an arbitrary non-empty open set, X< D be
guarded and dense in G. We prove the equivalence stated in Theorem 1. First
suppose that for every Go< G there are AeF and HE G, with HNXc A, Let
G, Xy, ..., X, be as in the formula Code. We look for an appropriate Y.
W.leo.g G;NX is included into scme AcF.

Construct a sequence (g,: n <w) of elements of D such that th(a,)=<n and for
every a € D, g < p there is n=q modulo p+1 with o, = a. We build f: @ — @ and
E:D— G;NX as follows. Choose EO in such a way that [E0Glc G,, set f(=
h(E0). Suppose frn and E |"w are defined and h(Ea)=fn if Ih(a)=n. Let q<p
and g =n modulo p+ 1. Choose a € "w extending a, and b e[Ea]N X, —{Ea}, set
fin+1=1h(b). For every ce"w and m<ew define FE{c"m)=
Ee U{(fn, m)y U, bD): fn<i<f(n+1}}L

Let Y be the range of E. Y is coherent because for any Ea it meeis all
[(Ea)*m]. Each X, is dense in Y because for any Ea there are n =g modulo p + 1
with a, =a and be[Ea]N X, Nrange(E | 'w). Y is of color A because it varies
only on levels fn and every fnelog(G,NX)clog(A). By Claim 3.3,
rp(YYN W]t 1. Thus Code(X, D, W, 73} holds in U.

Now suppose that there is G,< G such that any H< G, meets X— A for any
AeF.

Lemma 3.4. There is G, < G, and there are X, GdyNX, ..., X, cGd, ,NX,
X, € X dense in Gy such that each A € F avoids some G, NX,,.
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Proof. If there are AeF, G,& Gy, q<p with ANGd,NX densc in G, set
X, =ANGI,NX, X, =GdNX for g#i<pand X, =X—-A. X is dense in G,
for q#» i <\p because X is guarded and dense in G,. X, is dense in G, because any
Hg Gy meets X—A. A avoids G,N X, any Be F-{A} avoids X,

Suppose that A NG,NGd, N X is nowhere dense for A € F, g <p. Construct a
sequence {a,: n<w) of points in GyM X such that:

(i) {a,: n=q modulo p+1} is dense in G, for g=<p,

(i) n=g moduto p+1 implies a, € Gd, for g<p, and

(iii) if A € F meets {a,,: m <n} then a, avoids A.

Set G, = Gy and X, ={a,: n=q modulo p+ 1} for g =< p. Lemma 3.4 is proved,

We prove that Code(X, D, W, G) fails. Let G, X, ..., X, be as in Lemma 3.4
and Y be a coherent subset of DM G, with X,,..., X, dense in Y.

Y is nowhere mono. For, suppose A< F and H meets Y. By Lemma 3.4, A
avoids some G NX,. Let ac HNX, NY, I =1Ihta). Then HN'Y varies on level a
(because Y is coherent) and e w—1log(A) hence ANY is not of color A.

By Claim 3.2 there is a coherent, guarded, colorless Z< Y. There are two
coherent, guarded, disjoint subsets of Z. By Claim 3.3, [rp(Z)NW|=2.

4. Pre-towers and interpreting a finitely axiomatizable arithmetic

We work in the p-guard space of Srction 3. Let Storey(X, D, W) be a p-guard
formula saying: X € D, and X is ewd, guarded, and Code(X, D, W, U) holds, and
there are no G, Y& G — X such that Y is dense in G and Code(XUY, D, W, G}
holds.

Theorem 4.1. Let D, P, F be as in Theorem 3.1. There is W< U~ D such that an
arbitrary X < D satisfies Storey(X, D, W) iff for every G there are Ac Fand He G
with ANH=HNX.

The proof is straightforward.

Recall that letters G, H denote non-empty open sets. Any G forms a subspace
of U whose guard is {GNGd,: g <p}. Let o(V,...,V,) be a p-guard formula
whose only free variables are the set variables V..., V,. Let X,..... X, be
subsets of U. We say that o(X,,..., X)) holds in G if o(GNX,,...,GNX,)
holds in the subspace G. The union of those G where ¢{X,, ..., X,) holds will be
called the domain of ¢(X,,...,X,) and denoted do(e(X,,..., X,

Definition 4.2. Let 1 be a sequence (D, D', ..., DY\ W) of subsets of U where
Isi<w Aset XcD is a storey of ¢ if Storey(X, D, W) holds in U. 1 is a
pre-tower if:

() D°eD, D-~D"is ewd, We U~D,

(i) D',..., D" are ewd subsets of D—D°,



Sh:123

Monadic theory of order . ud topology in ZFC 191

(iii) do(A =B or ANBND%=0) is ewd for every i-storeys A, B, and

(iv) dolA=Bor AND*cBor BND'< A)is ewd for every t-storeys A, B.

(Writing X< Y we mean Xc Y and X# Y.

We need some more definitions. Let t=(D, D*, ..., D', W) be a pre-tower and
A, B, C range over storeys of . A<B modulo ¢ means that do(AMD ¢ B) is
ewd. A< B modulo t means that A<D modulo t and (B—A)NDY is ewd. A
collection S of t-storeys is a skeleton of t if do(A = B) is empty for every distinct
A, B in S, and {J {do(A =B): Ac S} is ewd for any B.

Claim 4.3. Therz are a pre-tower t={[, D' D* D> W) and a skeleton
{A,: n<w} of t such that for every i <j<k<w

i) AANANAND? isewd if i+j=k and is empty otherwise, and

(i) AiNANA,ND® isewd ifi-j=k 2nd is empty ctherwise.

Proof. Let D be a countable subset of U such that D°< D and D~ D is ewd.
Partition D — 0% into ewd parts D', D?, D’. Partition D° into ewd guarded parts
DY with n <. Partition D" into ewd parts D). Partition D? into ewd parts D3,
where i <j<k<w and i+ =k Pariition D® into ewd parts D}, where i <j<
k<w and i-j=k Tet A, be the sabset of D such that A, ND°=DY and
A ND ' ={Dl:m<n}, and A,ND" = J{D5:nelijk}} for £ =2, 3. Set
F={A,: n<w} and use Theorem 4.1.

Let L be the first-order language whose only non-logical constants are ternary
predicate symbols Add and Mlt. Let M = {w», Add, Mlt) be the model for L with
Add={( jkyi<j<k and i+j=k}and Mli={(i,j, k) i<<i<k and i -j=k}

Claim 4.4, There is an L-sentence @, such that @, holds in M and the theory in L,
whose only non-logical axiom is ¢, is esseniially undecidable.

The proof is clear.
Given a pre~tower t = (D, D', D?, D, W) we interpret variabies of L as subsets
of D and define t-domains of L-formulas as follows:
do (Add(X, Y, Z)=do{XNP'aY and YND'<Z and
XNYN..NnD?%is ewd),
do,(MI(X, Y, Z)=do{XND'<= Y and YND'eZ
and XN YNZND? is ewd),
do (¢ or ¢)=do,{¢)Udo(¢).

do,(~¢) is the complement of the closure of do,{(¢),
do, (X (X, Y., ..., Y. 0= U {dow(X. Y,..., ¥,): X is astorey o: {}.

Claim 4.5. Suppose t is a pre-tower. The collection of L-sentences with ewd do,(¢)
is a theory in L. In other words this collection includes the logical axioms and is
closed under the rules of inference.
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The proof is easy.

Claisn 4.6. Let t, Ay, Ay, ... be as in Claim 4.3. Let ¢{x1,...,X,) be an L-
formula whose cnly free variables are xy, ..., %, If @(is, ..., 1) holds in M then
do{@(A,, ..., A)) is ewd. If @liy, ..., &,) fails in M then do(e(Ay, ..., A,) is
empty.

Proof. An easy induction on ¢ simultaneously for U and any (open) subspace
of U.

Theorem 4.7. The monadic theory of U is undecidable.

Proof. By Claim 4.4 there is an L-sentence g, such that ¢4 holds in M and the
theory T, in the language L, whose only non-logical axiom in ¢, is undecidable.
Let T be the collection of L-sentences ¢ such that for every pre-tower 1, if do,(¢g)
is ewd, then do,(¢) is ewd. By Claim 4.5, T is a theory and Ty T. By Claim 4.6,
M is &« model of T, hence T is consistent. Any consistent extension of an
essentially undecidable theory is undecidable, hence T is undecidable. But T is
obviously interpretable in the monadic theory of U.

It is easy to see that we have proved actually:

Theovem 4.8 Let D be a countable subset of U such that D°< D and D - D" is
ewd. Then the set of p-guard formulas F(D, W), such that VW F(D, W) holds in
U, when the bound set variables of F range over subsets of D while W range. over
arbitrary subsets of U, is undecidable.

Corollary 4.9. The set of sentences F=VWF'(W) in the monadic language of
order such that F holds in the real line R, when the bound set variables of F' range
over sets of rational nimbers while W ranges over arbitrary sets of reals, is
undecidable.

Proof. Consider R as a vicinity space with respect to Example 2.2. Let D be the
set of rational numbers and D° be an ewd subset of D such that D~ D" is ewd.
DY forms a 1-guard of R. Now use Theorem 4.8.

5. Towers and interpreting tvue arithmetic
We still work in the p-guard space U of Section 3. A pre-tower =

(D, D', ..., D', W) will be called a tower if there are no G and W< G — D such
that t'=(DNG, D'NG, W' is a pre-tower in G, and " has at least one storey,
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and for every t'-storev A’ there is a t-storey A with A'= A NG, and for every
t'-storey A’ there is a t'-storey B’ with B’ <A’ modulo t’. As in [4] we can prove
that every tower has a well ordered skeleton. However, a simpler result suffices
for us in this paper.

Definition 5.1. Let t=(D, D', ..., D" W) be a tower, and A, B, C be storeys of
t. A =0 modulo 1 means A <B modulo ¢ for any B. A+1=B modulo ¢ means
that A <B modul» r and

do(C'= A modulo 1)U do(B < C modulo 1)

is ewd for any C. t is writhmetical if there is A =0 modulo ¢, and for every A
there is B= A +1 modulo ¢, and for every B there is A such that

do{A + 1= B modulo 1) Udo(B =0 modulo ) is ewd.

Theorem 5.2. Suppose t=(D, D’,. .., D', W) is an arithmetical tower. Then there
is a skeleton {A,: n <w} of t such that Ag=0 modulo t and A, +1= A, ., modulo
t for every n.

Proof. Build a sequence A, Ay, ... of t-storeys such that Ay =0 modulo ¢ and
A.+1=A, ., modulo ¢ for every n. By contradiction suppose that this is not a
skeleton. Then there are a t-storey B, and some G such that do{A, = B,) avoids
G for cay n. Build a sequence B, B;, B,, .. . of t-storeys such that do(B,,.,+1=
B,) is dense in G for every n. By Theorem 4.1 there is W' G~ D such that
arbitrary X ¢ D M G satisfies Storey(X, DN G, W) in G iff for every H< G there
are n and H'g H with B,NH =H'NX Then ¢ =(DNG D'NG, W) is a
pre-tower in G contradicting the fact that ¢ is a tower,

Let L, be the first-order language with equality whose non-logical constants are
a unary predicate symbol Ze, a binary predicate symbol Suc and ternary predicate
symbols Add, Mlt. Thus L, extends the language L. of Section 4. Let M, be the
model for L; such that the reduction of M, into L is the model M of Section 4,
and Ze(i) holds in M, iff i =0, and Suc(i, j) holds in M, iff j=i+1.

Claim 5.3. There is an L;-sentence @, such that ¢, holds in M, and for every
model N of ¢y:
(i) there is exactly one element in N satisfying Ze,
(if) for every x € N there is exacily one y € N such that Suc(x, y) holds in N, and
(iil} the minimal submodel of N, containing the element saiisfying Ze and closed
under Suc, is isomorphic to M,

The proof is easy.
We have defined in Section 4 t-domans of L-formulas whers ¢ is a pre-tower.
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The followiug clauses extend the definition of t-domain for L;-formulas.
do(X=Y)=do(X=Y),
do,(Ze(X)) = do(x = 0 modulo ),
do, (Suc(X, ) =do({X+1=Y modulo1).

Claim 5.4. Suppose that t is an arithmetical tower (D, D', D?, D?, W), ¢, is as in
Claim 5.3 and do,(o,) is ewd. Then there is a skeleton {A,: n <w} of t such that
Ay=0 modulo t and A, +1= A,y modulo t and for every i <j<k <w:

i ANANA, ND? is ewd of i+j=k and is empry otherwise, and

(iiy ANANAND? isewd ifi-)j=k and is empty otherwise.

Proof. Use Theorem 5.2 and Claim 5.3.
Theorem 5.5, True arithmetic is interpretable in the monadic theorv of U,

Proof. True arithmetic is the first-order theory o! the standard model of Peano
Arithmetic. True arithmetic is easily interpretable in the theory of imodel M. Thus
is suffices to check that an arbitrary L-sentence ¢ holds in M iff do,(¢) is ewd for
every arithmetical tower. Now use Claim 4.6 and Claim 5.4.

6. Non-modest vicinity spaces

Lei p be a positive integer. We recall the definition of p-modest vicinity spaces.
A vicinity space U is perfunctorily p-modest if for every coherent everywhere
dense subsets X, ..., X,.,; of U there is a replete subset Y of U such that
Yo X,U- - UX,_ | and every X, is dense in Y. U is p-modest if every coherent
subspace of U is perfunciorily p-modest. Let r be a positive integer. All vicinity
spaces in this section are of degree r.

Definition 6.1. Let U be a vicinity space. Subsets X, Y, ..., Y,_; of U witness
that U is not p-modest if X is coherent, and Y, ..., Y, are coherent subsets of
X dense in X, and there is no Z& YU -UY,_, such that Z is replete in the
subspace X and Yy, ..., Y,., are dense in Z.

Lemma 6.2, Suppose U is a second-countable vicinity space and X, Yy, ..., Y,y
witness that U is not p-modest. Then there are countable disjoint sets Z, . .., Z,_;
such that Z, = Y, for q<p and X, Z,, ..., Z,_, witness that U is not p-maodest

Proof. Let {G:i<w} be an open basis of X. Build a sequence x,, x,,... of
different points such thar if k=ip+q and q<p then G NY, Set Z,=
{x,: k =g modulo p}.
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Definition 6.3. Let T be a theory in a language L and K’ be a collection of models
for a language 1I'. T is uniformly interpretable in the theory of K’ if there is an
algorithm assigning an L'-sentence ¢’ with each L-sentence ¢ in such 2 way that
for every M'e K', ¢ is a theorem of T iff ¢ holds in M,

Theorem 5.5 can be reformulated as follows. Let Ar be true first-order
arithmetic.

Claim 6.4. Ar is uniformly interpretable in the monadic theory of coherent, second-
countable, zero-dimensional p-guard spaces with countable guardians.

Ovr aim in “his section is:

Theorem 6.5. Ar is uniformly interpretable in the monadic theory of second-
countable, zero-dimensional, non-p-modest vicinity spaces.

Proof. Given a sentence ¢ in the language of Ar compute a p-guard sentence ¢’
interpreting ¢ with respect to Claim 6.4. ¢’ is ¢"(Gd,, ..., Gd,.,) for some
vicinity formula ¢". Let ¢® be a vicinity sentence saying that there are
XY, ..., Y, witnessing non-p-modesty and such that ¢"(Z,,..., Z,_,) holds
in the subspace X for every coherent 2,5 ¥o,...,Z,.. & Y, dense in X We
check that ¢* is an appropriate interpretation of ¢.

Let U be a second-countable zero-dimensional vicinity space which is not
p-modest. First suppose that ¢ is a theorem of Ar. Let X, Y,...., Y,_, witness
that U is not p-modest. In virtue of Lemma 6.2 we can suppose that Yo, ..., Y,
are countable and disjoint. If Z, is a coherent subset of Y, dense in X for g <p,
then Zy,..., 2, form a p-guard of X and ¢"(Z,,...,Z,.,) holds in the
subspace X.

Now suppose that @™ holds n U and X, Yy, ..., Y,., are as in ¢™. By Lemma
6.2 there are countable disjoint Zy& Ys . ., Zpo1 & Y,y dense in X Then
¢"{Zy, ... Zy-1) holds in X, hence ¢ is a theorem of Ar.

We will use the following:

Lemma 6.6. Every non-p-modest vicinity space has a coherent, separable, non-p-
modest subspace.

Proof. Suppose that A, Aq, ..., A, witness that the space is not p-modest.
Without loss of generality A is the whole space. By Theorem 2.3 there is a
countable coherent B AU+ +UA,_; such that every A, is dense in B. The
repletion of B is the desired subspace.
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7. Non-modest chains

A chain is a linearly ordered set. A chain is short if it embeds neither @, nor
w¥. Only short chains are considered here.

With respect to Example 2.2 we assign a vicinity space to each chain U, it will
be called the vicinity space of L. Warning: et X be a subchain of a chain U, the
order topology of X (which is the topology of the vicinity space of X) can differ
fromn the inherited topology of X. For example, let P be a nowhere dense perfect
subset of the real line R. Form X< R~—FP by choosing one point from every
maximal interval of R — P. The subchain X has no isolated points, in the inherited
topology every point of X is isolated.

Suppose 1=p<<w. We say that a chain U is p-modest if the vicinity space of
any subchain of U is p-modest.

ELemma 7.1. Every non-p-modest chain has a subchain whose vicinity space is
second-countable, zero-dimensional and not p-modest.

Preof. Let U be a non-p-modest chain. It has a subchain whose vicinity space is
not p-modest. Without loss of generality the vicinity space of U is not p-modest.
In virtue of Lemma 6.6 we can suppose that the vicinity space of U is coherent
and separable. It means in particular that U is densely ordered. Every densely
ordered separable chain is embeddable into the real line. Henc: 7 is second-
countable. Let A, By, ..., B,_, witness that U is not p-modest Without loss of
generality A=U. Let B=ByU---UB,_,. There is C = B such that C and B-C
are dense in B, and every B, is dense in C as well as in B—C. The subchain
U-C is the desired one.

Theorem 7.2. Ar is uniformly interpretable in the monadic theoty of non-p-modest
chains.

Proof. Given a sentence ¢ in the language of Ar compute a monadic vicinity
sentence ¢ ceding ¢ according to Theorem 6.5. Let ¢* be a sentence in the
manadic language of order saying that there is a subchain X such that the vicinity
space of X is zero-dimensional and not p-modest, and every non-p-modest
vicinity subspace of X satisfies ¢,

8. Non-modest topology
Speaking about topological spaces we mean first-countable regular T, spaces.

We rconsider them as vicinity spaces with respect to Example 2.1. In particular a
topological space is p-modes: if the corresponding vicinity space is p-modest. Sup-
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pose 1= p<w. Theorem 6.5 gives:
é’

Corollary 8.1, Ar is uniformly interpretable in the monadic theory of second-
countable, zero-dimensional, non-p-modest topological spaces.

The uext lemma can be easily generalized for more general vicinity spaces.

Lemma 8.2, Every second-countable non-p-modest topological space has a zero-
dimensional non-p-modest subspace.

Proof. Let A, X, ... X,., witness that the space is not p- modest. Without loss of
generality A is the whole space. Let {B;: i <w} be an open basis of A. To every
sequence g € ““w we assign an open set [als A and a point ea €[a] as follows. If
@ is empty, then [a]= A and ea is an arbitrary point in A. Suppose that | = Ih(a)
and [a}, ea are already chosen. Select a basis Hy> H,; > - - - of open neighbour-
hoods of ea such that Hyc[al and H,,cH, for i<w. As usual a™k is the
sequence al, ..., a{l—1), k. Suppose k =ip+q where g<p. Choose [a"k] in
such a way that the closure of [a“k] is included into H,—H.,, and either
[a"k]= By or [a"k]s A — B, Choose e{a”k) in [a"k]N X, Let E be the range of e
and C be the closure of E. C and ENX,,...,FNX,_, witness that C is not
p-modest. We check that C is zero-dimensional,

By induction on lh(a) prove that [a]NC is clopen in C. Let G be an open
subset of C and xeG. We have to find a clopen subset K of C such that
xeKc G I x=ea for some a, then there is n such that [a"k]g G for k >n.
Choose K=[alNC-J{{a"klk=sn}. If xeC—E tzke | with xe BNC<G.
Clopen sets [a] with h{a)=[+1 partition C~{eb: h(b)=1}, choose K =[aINC
with Ih(a)=1+1 and xe[al By the censtruction [a]g B,

Theorem 8.3. Ar is uniformly interpretable in the monadic theory of second-
countable non-p-modest ropoiogical spaces.

Proof. Use Corollary 8.1 and Lemma 8.2.

Lemma 8.4. Every non-p-modest metrizable space has a second-rountable non-
p-modest subspace.

Proof. Use Lentma 6.6 and the fact that every separable metric space is second-
countable.

Theorem 8.5. Av is unifsrmly interpretable in the monadic theory of non-p-modest
metrizable spaces.

Froof. Given a sentence ¢ in the language of Ar compute a monadic topological
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sentence ¢ coding ¢ according to Thecrem 8.3. Let ¢* say that there is a
non-p-modest subspace X such that every non-p-modest subspace Y & X satisfies

,

Q.
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