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True first-order arithmetic is interpreted in the monadic theories of certain chains and 
topological spaces including the real line and the Cantor  Discontinuum. It was known that 
existence of such interpretations is conslste~',t with ZFC. 

O. Introduction 

The first-order theory of linear order is far from trivia!. The monadic (second- 
order) theory of linear order is much stronger. Stil~ surpr,Mng decidability results 
were proven in that direction. Rabin proved in [10i that the monadic theory of 
the rational chain is decidable. Hence the monadic theory of all countable linear 
orders is decidable. Biichi proved in [I] that the monadic theory of ordinals of 
cardinality at most Nt is decidable. The decision problems for the monadic theory 
of the real line R, the monadic theory of linear order, the monadic theory of Nz 
and the monadic theory of ordinals were long open. The last two theories are 
taken care of in [5] and will not be discussed here. 

Let us recall the definition of the monadic theory of order. The pure monadic 
(second-order) language has two sorts of variables: for points and fo:: sets of 
points, Its atomic formulas have the form x~ ~ X/. The :est of its tormulas are built 
from the atomic ones by means of ordinary propositional connectives and 
quantifiers for variables of either sort. Augmenting the pure monadic language by 
the symbol < for an order on points we get the monadic lang,:age of o~"der; the 
new atomic formulas have the form :q <X~. For the sake of brevity linearly 
ordered chains are here called chains. The monadic theory of a chain C is the 
theory of C in the monadic language of order when the set variables range over 
all subsets of C. 

One specific chain of special interest to us is the real line/i '. Recall that a set of 
reals is called meager if it is a union of ~<No nowhere dense sets. We call it 
pseudo-meager if it is a union of <2 ~o nowhere dense sets. The Contimmm 
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t80 Y. Gurevich, S. Shelah 

Hypothesis implies that every pseudo-meager set is meager and that R is not 
pseudo-meager. It is well known that neither "Every pseudo-meager subset of R 
is meager" nor '"R is not pseudo-meager" can be proved or disproved in 
Zermelo-Fraenkel set theory with the axiom of choice (ZFC). 

The first undecidability result about the monadic theory of R appeared in [11]. 
Assuming that R ,s not pseudo-meager, Shelah reduced true first-order arithmetic 
(i.e. the ~rst-order theory of (~o, +, .)) to the monadic theory of R. Litman noted 
that the monadic theory of R is easily interpretable in the monadic theory of 
linear order (Lemma 7.12 in [11]), thus both the monadic theory of the real line R 
and the monadic theory of linear order are undecidable if R is not pseudo- 
meager. Under a very weak set-theoretic assumption we reduced the full second- 
order legic to the monadic theory of linear order, see [7]. (Note that the monadic 
theory of linear order is easily interpretable in the second order logic.) In this 
paper we are interested only in those chains that embed neither ~01 nor w* (the 
order dual to w0. We call them short. In what follows we use the term "chain" to 
mean "short chain". 

In order to axiomatize the monadic theory of countable chains Gurevich 
introduced in [3] p-modest chains where p is a positive integer. The correspond- 
ing definition can be found in Section 7 below. For every p, p-modesty is 
expressible in the monadic theory of order. A ,;hain is called modest ff it is 
p-modest for every p. The modest chains are exactly the chaLqs monadically 
equivalent to countable. Thus: 

(i) The monadic theory of modest chains is decidable. 
The statement (i) is r~roved dilectly in [6]. Moreover, generalizing Shelah's 

undecidability result tl~e paper [6] 7roved: 
(ii) Assume that every pseudo-meager subset of R is meager. There is a 

uniform in p algorithm that reduces true first-o~der arithmetic to ,qae monadic 
theory of non-.p-modest chains. 

Note that (i) and (ii) together form a kind of dichotomy. 
Now about topology. In [2] Grzegorczyk conaidered a topological space as a 

Boolean algebra of subset~ with the closure operations (a closure algebra). The 
language of closure algebras looks poor; its expressive power is not trivial 
however, see [2-4]. Let us give a formal definition. 

Augmenting the pure monadic language by a symbol for the closure operation 
we get the monadic topological language. The new atomic formulas have the form 
X~ = J~i. The monadic theo~ of a topological space U (or the monadic topology of 
U) is the theory of U in the monadie topological language when the set variables 
range over all subsets of U. The monadic theory of the order topology of any 
chain C is easily interpretable in the monadic theo~r of C, ~I3ae converse is not true 
generally (the monadic topology of a chain 

n0+ (w* +to)+ nl + (oJ* + w ) + .  • ' 

is decidable, the monadic theory can be undecidable). However the monadic 
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theory of the chain R is interpretable in the moaadic topology of R. (Using 
connectivity express the relation "y is located between x and z" in topological 
terms. This relation allows the definition of order using parameters, and up to 
isomorphism itl is the same order for any parameters. More details can be fouv:d in 
Section 4 of [9].) 

Analyzing Shelah's reduction of true first-order arithmetic to the monadic 
theory of R, Gurevich noted the prominent role of topology. The same construc- 
tion allows reduction of true first-order arithmetic to the monadic topology of the 
Cantor Discontinuum (under the same assumption that R is not pseudo-meager), 
which is a stronger result (and the negative answer to an old questiov in [2]). 

Assuming Godel's Constructibility Axiom V = L Gurevich reduced true third- 
order arithmetic to the monadic theory of any nonmodest chain and to the 
monadic topology of the Cantor Discontinuum or any other topological space in a 
certain class of topological spaces, see [4]. All these monadic theories are easily 
interpretable in true third-order arithmetic. 

In spite of these undecidability results one could hope still to prove that "The 
monadic theory of R is decidable" is consistent with ZFC. In Shelah's original 
interpretation almost all set variables ranged over perfect sets. The assumption 
"R is not pseudo-meager" was used to build a diagonal set intersecting "bad" 
perfect sets and avoiding "good" ones. It seemed quite possible that 0"e diagonal 
set may not exist. As for a possibility to eliminate the assumptio~ "R is not 
pseudo-meager',  a natural approach could be to define a special kind of perfect 
set such that R is not a union of <2 ~o special perfect sets and such that replacing 
"for every perfect set" by "for every special perfect set" does not change too 
much the meaning of formulas used in the interpretation. Shelah tried several 
possibilities (sets coding game strategies, and so on) till he came across the 
following question of Harvey M. Friedman: Is there a set W =  R of cardinality 2 ~,, 
such that for every perfect P there is a perfect Q c p avoiding W? He answered 
the question, positively, and the solution, described in Section 1 below, gave him 
an idea of an appropriz.te kind of special perfect set. He figured out how to 
interpret true first-order arithmetic in the m(,nadic theory of R just in ZFC, 
published an abstr~et [12] and sent an amendment to [ t l ]  to the first author. In 
the hands of the first author it grew to this paper. 

The main result of thL paper about chains is proved in Section 7. It is the 
following theorem in ZFC completing the above mentioned dichotomy. 

Theorem 0.1. There is a uniform in p algorithm that reduces true first-order 
arithmetic to the monadic theory of non-p-modest chains. 

Corollary 0.2. True first-order arithmetic is reducible to the monadic theory of 
linear order. 

The theory of R with quantification over countable subsets (i.e. the theory of R 
in the monadic language of order when the set variables range over countable 
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subsets of R) is decidable, see [20], [11] or [6]. Therefore the theory of R with 
quantification over sets of rational numbers is decidable. In contrast to this we 
prove in Section 4: 

Theorem 0.3. The set of sentences F = V W F ' ( W )  in the monadic language of 
order such that F holds in R, when the bound set variables of F'  range over sets of  
rational numbers while W ranges over arbitrary sets of reals, is undecidable. 

By analogy with p-modest chains Gurevich introduced p-modest topological 
spaces in [3], here p is a positive integer. The corresponding definition can be 
found in Section 8 below. The Cantor Discontinuum is not even 1-modest. The 
main result of ,-his paper about monadic topology is the following theorem proved 
in Section 8. 

Theorem 0.4. There is a uniform in p algorithm reducing true ]irs~-order arithmetic 
to the monadic theory of non-p-modest metrizable spaces. 

Most of this paper deals simultaneously with chains and topological spaces. If 
you are interested only in undecidability of the monadic theory of the real line R, 
note that the monadic topology of the Cantor Discontiuum is easily interpretable 
in the monadic theory of R. Read the paper having in mind the non-l-modest  
case and topological applications only. 

Unfortunately, topology fails to identify modest chains whereas this indentifica- 
':ion is of local nature and all-important in the monadic thoery of chain';. In order 
to provide the right frame to handle the monadic theory of chains the paper [4] 
introduces vicinity spaces. Vicinity spaces are defined in such a way that topologi- 
cal 3paces form a special case; this allows a unified treatment of chains and 
topological spaces. We borrow the notion of vicinity spaces, the techmque of 
towers and certain proofs from [4]. For the reader's convenience we make this 
paper self-contained however. (The oly exception is Theorem 2.1.) 

Let us mention that a later paper [8] strengthens results of this paper and 
explains them in a way. 

We thank the referee for the shorter proof of Claim 1.3. 

1. A problem of Friethnan 

Theorem 1,1. There is a sub:~et W of the real lino R such that W i~ of the 
cardinality of continuum and for every perfect set P c R there is a perfect set Q ~_ P 
avoiding W. 

Theorem 1 answers positively a question of Harvey M. Friedman. We prove it 
in the rest of this section. 
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It suffices t,~ p , .we  "fheorem 1 for the Cantor Discontinut~m because it is 
homeomorphic  to a pertect subset of R. For  us here the Cantor  Disco~tinuum is 
the set " 2  (the collection of functions from ~ into {0, 1}) wi~:h the prodt~c~ 
topology. 

We  don ' t  distinguish between a~ and N o but we do distinguish between "~2 and 
2", the latter is the cardinatity of " 2  i.e., the cardinality of continuum. Here  is 
some more notation. If a, /3 are ordinals, then "13 is the collection of functions 
from a into /3, 

<'*/3 = U {"/3: ~r < a } ,  ~'~,~ = U {'/3: v ~ } .  

Of course an ordinal is considered here as the set of smaller ordinals. Now, ~ ' 2  
with the inclusion relation forms a tree. For each a E .... 2 let [a]  = {x ~ .... 2: a ~ x}. 

We consider ~ ' 2  as a topological space whose open subbasis consists of sets In} 
and [a]  where a c < ' 2 .  Thus " 2  is the collection of limit points of ~"~2 and it 
suffices to prove Theorem 1.1 for ~ 2  instead of R. We work below in .... 2. An 
e lement  a E <~2 is considered also as sequence a0 . . . . .  a ( 1 - i )  where l is the 
domain of a, l is called the length of a and denoted th(a). For i < 2 ,  aAi is the 
sequence aO . . . .  , a ( l -  1), i. 

Let S be a subset of oJ such that both S and o ) - S  are infir&e. A p~rfect set P is 
constant  on S if x l S  = y f S  for every x, y in P. P is one- to -one  ~n S if 
x I S = y l S ~ x = y  for every x ,y  in P. 

C!ai~-u 1.2. For every perfec~ set P ~here is a i)effect O ~ P which is either constant or 
one - to -one  on S. 

Proof,  Without toss of generality there is no clopen (ctosed and open) set K such 
that K A P  is non-zero and constant on S. Define e:<~2---~, <"2 such that 

(i) every [ea] meets P, and 

(ii) for every a e <~2 there is 1-~lh(a) such that l c= S and e(a"O), e(aA1) differ 
at L 

The set of limit points of the range of e is the desired set Q, 

Claim 1,3o Let  K <2:% and  for every a < K  let P ,  be a perfect set constant  or 
one~to-one on S. Then U {P~ : a < K} ~ ~2. 

Proof. If I~  is constant on S, then there i s /~  : S -* 2 such that x I S = /4  for all 
xEP~.  Since K < 2  ~,,, there is h : S - 7 2  such that h,&fo for any a. The set 
X = { x E ° ' 2 :  x t S = h }  has power 2~% If the union of sets P ,  exhausts ~2, then 
some P~ contains two distinct elements of X, say x and y. Since x t S = y I S, P~ is 
constant on S. But hT~f,~, Claim 1.3 is proved. 

Pt'oof of 1.1. Let (P= :a  < 2  ~,,) be a sequence of all perfect sets constant or one- 
to-one on S. By Claim 1.3 it is possible to select x~ in ' ~ 2 - U  { P ~ : / 3 < a }  for 
,:t < 2 ~,,. We prove that W =  {x,, :,'~ < 2 ~,,} is the desired set. 
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By Claim 1.2 arbitrary perfect set P includes some P¢~. But [P,~ 7/W[ ~ [at < 2~", 
Any perfect set can be partitioned into cont inuum many disjoint perfect subsets. 
Hence some perfect subset of P,~ avoids W, 

2. Vicinity spaces and guard spaces 

Vicinity spaces were defined n [4] in order to prove simultaneously results 
about topological spaces and cha; ns. For the reader 's convenience we repeat here 
the definition in slightly differen~ form. 

A vicinity space is a non-empty set (of points) together with a function (the 
vicinity function) associating a cd/lection of non-empty points sets (vicinities of x) 
with each point x in such a way that 

(V1) x doesn' t  belong to any vicinity of x, 
(V2) if the ir~ersection of two vicinities of x is not empty then it includes 

another vicinity of x, 
(V3) the relation " X  meets Y" on the vicinit: s of x is transitive, and 
(V4) if x belongs to a vicinity X of another point and Y is a vicinity of x then 

X includes a vicinity of x meeting Y. 
For each vicinity X of a point x the union of all vicinities of x meeting X will 

be called a direction around x. By (V3) different directions around x are disjoint. 
(V4) can be reformulated as follows: if x belongs to a vicinity X of another point 
then X includes a vicinity of x in every direction around x. 

Example 2.1. U is a T1 topological space. Isolated points of U have no vicinities, 
if x is not isolated, then {G-{x}:  G is an open nbd of x} is the collection of 
vicinities of x. Thus there is at most one direction around any point. 

Example 2,2, U is a chain. If x is the left (resp. right) end cf U or x has a left 
(resp. right) neighbor in U, then x has no left (resp. right) vicinities. Otherwise 
{GN{y:  y<x} :  Gisanopennbdofx} ( resp . {GN{y:  x < y } :  G is an open nbd of x}) 
is the collection of left (resp. right) vicinities of x. Every vicinity of x is either left or 
right. Thus there are at most two directions around each point of U. (Example 2 
corrects the corresponding place in [4].) 

The monadic vicini~ language is obtained from the pure monadic language by 
adding a symbol Vic of the vicinity function and new atomic formulas .~. ~ Vic(xi). 
Its formulas will be called vicinity formulas. The monadic theory of a wcinity space 
U is the theory of U in the monadic vicinity language when the s~:'~t variables 
range over all point sets in U. In Example 1 (resp. Example 2) the monadic theory 
of the vicinity space is easily interpretable in the monadic theory of the topologi- 
cal space (resp. the chain). 

We define topology (the natural topology) in vicinity spaces as follows: a point 
set X is open iff it includes a vicinity of each point x ~ X in every direction around 
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x. This definition restores the original topology (resp. the order topology) in 
Example  1 (resp. Example 2). By (V4) any vicinity of any point is open. 

The  number of directions around a point is the degree of this point. The degree 
of a vicinity space is the supremum of the degrees of its points. In the rest of this 
paper we restrict our attention to vicinity spaces satisfying the following condi- 
tions: the natural topology is regular and first-countable, the degree of the space 
is 1 or 2, and for every point  x of the maximal degree any other  point belongs to a 
vicinity of x. 

Let  U be a vicinity space of degree r. The repletion of X c__ U is the set rp(X) of 
points x such that the degree of x is equal to r and every vicinity of x meets X. A 
set X is replete if 0 ~ X = r p ( X ) .  X is coherent if 07~Xc_rp(X) .  If X meets every 
vicinity of every one of its points it forms a subspace of U in the following natural 
way: Vicx(x)  = {X (7 Y: Y e  Vicu(x)}. 

In topological applications 
(i) the leplet ion of a set X is the set of nonisolated points in the closure of X, 

(ii) repl~ t e  means perfect, 
(iii) coherent  means dense in itself, and 

(iv) X forms a vicinity subspace iff every point isolated in the topological 
subspace X is isolated in the whole space. 

If you are interested in topological applications only, use this translation and 
think in toplogical terms. The vicinity approach does not give you any additional 
insight. The situation is different if you are interested in chains. Translating 
vicinity terms into the language of chains appears to be cumbersome and, what is 
more irnpc, rtant, the order  makes less natural some necessary definitions and 
constructions. 

We say t~aat a point set X is dense in a point set Y if X f7 Y is dense in Y, i.e. if 
the closure of X(7 Y includes Y. " E w d "  abbreviates "everywhere dense," and ~ 
is of course the closure of X. 

Theorem 2.3. Suppose 1 ~ ~: ~ ~o and X,, is a coherent ewd point set for n < K. Then 
there are a coherent countable B __ U {-'(,, : n < K} and a family S of coherent subsets 
of  B such that S is of the cardinality of continuum, and every Y ~  S is closed and 
nowhere dense in the subspace B, and every X,~ is dense in every Y c S, and Y N Z 

is a scattered subset o]" B for an}' different Y, Z in S. 

Proof .  See Theorem 1 in 5;ection 1 of [4].' 

The monadic theory of a vicinity space of a positive d e ~ e e  can be decidable, 
see [6], In order to prove undecidability of the monadic theory of U we want U 
to be rich. The following definition will be of help. Let p be a natural number~ 
Point sets Xu . . . . .  Xv_~ form a guard if they are coherent,  disjoint, ewd and there 
is no replete Y such that y_c U {X~: q < p }  and every X~ is dense in Y. (When 
we say that a collection of sets is disjoint we mean it is pairwise disjoint3 

Sh:123



186 Y. Gurevich, S. Shetah 

Suppose that {X,~:q <p}  is a guard of U. A set Y is guarded if every Xq is 
dense in Yo 

Claim 2,4. Every guarded replete set is of ithe cardinality of continuum. 

Proof.  By contr.idiction suppose that Y !is guarded and replete but I Y ] < 2  ~o. 
Without loss of generality Y =  U. Let B, S be as in Theorem 2,3. {Z , -  B:  Z ~  S} is 
disjoint hence there is Z E S with 2 = Z _c B _~ U {Xq : ~ < p} which is impossible. 

A vicinity space together with a guard consisting of p guardians will be called a 
p-guard space. The monadic p-guard language is obtained from the monadic 
~icinity language by adding set constant Gdo . . . . .  Gdp_ ~. Its formulas will be 
tailed p-guard ,tbrmulas. The monadic theory o]: a p-guard space is the ~heory of it 
in the monadic p-guard language when the set variables range over  all point sets. 

3. Imposition and exlPtoita~on of a tree structure 

How can one tran~,latc arithmetic into the monadic language of the real line? 
The line seems to be too homogeneous to help us. (Translating arithmetic into the 
monadic topology of the Cantor Discontinuum seems to be even more problema- 
tic.) The idea is to slice a countable everywhere dense set D into everywhere 
dense siiees Ao, A~ . . . .  and to code this decomposit ion of D by an appropriate 
parameter W, Later we will envision the decomposed D as a tower and the slices 
A~, Al  . . . .  as levels of the tower. These slices will represent natural numbers 
0, i . . . .  respectively. There is however no monadic formula with parameters that 
will define the slices up to, say, nowhere dense sets. (Nondefinability of slices will 
be proved in one of our %rthcoming papers.) However  there is a formula (the 
formula Storey in Section 4) defining slices locally: if Storey(X, D, W) holds, then 
every interval has a subinterval where X coincides with one of the slices. In this 
section we define a formula Code(X, D, W, G) and prove Theorem 3.1 stating 
thai every nonempty open set inside G has a nonempty open subset where X is a 
part of a slice. The proof of Theorem 3.1 is the main novelty of this paper and its 
most sophisticated part. You may omit  it at the first reading. 

Lei p be a positive natural number and U bc a second-countable,  zero- 
dimensional p-guard space with r > 0 directions around any point. Suppose every 
guardian of U is countable. Let D " =  U {Gdq: q < p }  and Code(X, D, W, G) be a 
p-gtiard formula saying the following: For every G ~ g G  and every X~c- 

GdoC'lX, . . . .  X~, ~cAGdp_~NX, Xr, c=X dense in G~ there is a coherent Y% 
D N G1 with X~, . . . . .  Xi, dense in Y and Irp(Y) ~ W[ ~ 1. 

From here on letters G, H with or without subscripts denote  non-empty open 
sets. 
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Theorem 3.1, Let D be a countable subset of  U such that D ° c _ D  and D - D  ° is 
ewd. Let  P = {P~: n < o)} be a partition of D into ewd parts in such a way that D O is 
the union of guarded parts, Let F be a family of subsets of D such that each A ~ F is 
a union of  members of  P, each A ~:, F meets D ° and {A  N D°: A ~ F} is disjoira. 
Then there is W c U - D  such that for every G and every guarde, d X ~ D dense in 
G, Code(X~ D, W, G) holds in U iff far every Go ~- G #tere are A c~ F and H ~:~ G~ 
with H N X ~_ A .  

Theorem 3.1 is proved in the rest of this section. In Section t we  spoke about a 
tree "~'2. Now we are !~terested in another tree, namely <'%~. An arbitrary 
etement  a of <°'o9 is a funcdon from some l<~o (i.e. from {k: k </})  into o~, a can 
be considered as a sequence a(0) . . . . .  a ( l -  1) and with respect to this l is called 
the length of a and is denoted lh(a). For every i< to ,  a~'i is the sequence 
a ° . . . . .  a( l--  1), i. 

Let D, P, F be as in Theorem 3.1. We impose a tree structure on D. Let  
{O,:  n<e3} be a partition of to into infinite parts in such a way that 

(f) if P,~ is guarded, then Q,, avoids { i ( p + l ) + p : i < ~ o }  and Q,,N 
{i(p+ 1 )+q :  i < w }  is infinite for q <p ,  and 

(ii) if P,~ is not guarded, then Q , _ ~ { i ( p + ~ ) + p :  i<co}. 
Let {B,,: n< to}  be an open basis of U consisting of clopen sets. Order D by 

type o). 
To  each a c <~eo we assign a nonempty clopen subset [a] of U and a point ea in 

[a]r3D as follows. If a is empty, then [ a ] = U .  Suppose [a] is chosen and 
t - i l l ( a )  ~ (),,. Choose ea to be the minimal d ~ D such that d ~ [ a ] A  P,, and if P,, 
is guarded, then d belongs to Gd, with q ~ l modulo p + 1. Let Go . . . . .  G,_ l be 
the directions around ea in the subspace [a] of U. Se!ect clopen sets [ a ] - H ~  

H~ D . - .  ~uch that 
(i) {H~: i< to}  is a neighborhood basis for ca, 

(ii) every H,-Hi--L meett; every G~ and 
(iii) if ea c Bi but [ a ] -  BI meets G~, then G., N H~ = (}~ N BI, and if e a t  B, but 

B, meets G~, then G~ N H~ ~- G~ - B~. 
Set 

[aA( i r+s ) ]=G~f f l (~ i -H i~ , )  for i<ce,  s < r .  

The  range of the map e is equal to D, we identify each a ~ <'%0 with ea. Thus 
[ a ] N D  ={b~_D: a c_b}, arbitrary nkd of a includes [_J {[aAi]: i~-j} for some i, 
and arbitrary vicinity of a includes [.J {[a"(ir+s)]: i ~ i }  for some j, s. 

Clopen sets [a] and ( U  {[a^i]: i~j}) t - !{a}  form an open basis for U. For, let 
x c Bi. If x = a ~ D, then Bt includes some U {[a"i]: i ~ j} .  tf x~ D, then there is 
b c~ D such that lh(b) = 1 + 1 and x ~ [b]_c B~. Thus for every x, y in U -  D there is 

a with fa iN{x,  y}={x}. 
For X c _ D  let log(X)={lh(a) :  a e X } .  3"hen l o g ( G d ~ ) = { i ( p + l ) + q : / < t o }  for 

q < p  and log(P,,)= Q,,. 

Sh:123



i88 Y. Gurevich, S. Shelah 

We adopt the following terminology. A subset X of D varies on level l if there 
are a, b in X with lh(a), lh(b) > l and a(1) 7 ~ b(l). X is of color A ~ F ff X varies 
o~ly on l e v e l s / c l o g ( A ) .  X is mono if there is A ~ F  such that X is of color A. X 
is nowhere mono if there is no G with non-empty mono G AX.  X is colorless if 
for every mono {a, b} c X either a _~ b or  b _c a. 

Claim 3.2. For every coherent, guarded, nowhere mono X ~_ D there is a coherent, 
guarded, colorless Y ~_ X. 

Proof.  It suffices to build a map E : < ~ - - >  X such that: 

(i) E(a"rn)ClE(a^n) = E(a) if m:P n, 
(ii) if E(a%n)e[(Ea)An], then m e n  modulo r, 

(iii) i~a ~ Gdq if lh(a) ~- q modulo p, and 

(iv) if N a s A  ~ F  and tn7 ~ n, then {E(a^rn), E(a^t~)} varies on some level 
1 c ~o - iog(A ). 

We prove that the range Y of such map has all desired properties. By (i), E 
preserves the tree order. 

An arbitrary vicinity V of Ea includes I,_J {[(Ea)A(ir+ s)]: i >~j} for some s < r  
and j. By (i) and (ii), V contains E(aA(ir+s)) for sufficiently big i. Hence  
Y is coherent. 

An arbitrary nbd G of Ea includes U{[(Ea)~i]: i ~ j }  for some j. By (i), 
G contains {E(a^i): i >~ k} for some k. Given q < p take b ~. D such that ~ ' k  ~ b and 
lh(b) ~ q modulo p. By (i) and (iii), Eb ~ G. Hence Y is guarded. 

If {Ea~, Ea2} is of color A ~ F let a = a~ f3 a2. By (i), {Eal, Ea2} varies on level 
Ih(a) hence Ea ~ A. By (i) and (iv), {Eal, Ea2} varies on some level l~  ~o- log(A) 
hence it cannot be of color A. Therefore  Y is colorless. 

We build now a map E satisfying conditions (i)-(iv). Choose EOcGd~r lX .  
Suppose b = Ua is already chosen end M o = { m : [ b ^ m ]  meets X}. 
Mo C? ~,ir+ s : i <  (o} is infinite for s < r because X is coherent.  If 6¢ U F choose 
E(a^(ir+s)) in [b^mi]NXC3Gd,~ where m~ is the itb element  of MoO 
{jr + s: j < ~o} and q -= lh(a) + 1 modulo p. 

Suppose b ~ A c F. We define E(a^i),  L~ ~ o~ and M~+l _ ~o by induction on i. 
Suppose that E(a"j),  L~., M i , ~ are defined for j < i, and Ea c E(a^j),  L i is finite 
for j< i ,  and M~N{kr+s:k<~o} is infinite for s<t ;  and m~Ivf~ implies that 
Ibm'm] avoids {E(aAj): j<i}  and there is cc-:[b~m]C'lX with c I Li defined and 
different from E(a^j)  I Lj. 

Let n =min{m~M~:  m=-i modulo r}, c ~ [ ~ " n ] N X  and c [Lq is defined and 
different from E(a~j) t Li for j < i. ~ks X is nowhere mono there are co . . . . .  c~ in 
[c ]NX and Li c-: ~o - l o g ( A )  such that c~[Li . . . . .  c~ t Li are defined and different. 
Let 

N, = I m a M , :  there is d ~ [bAm]~ X with d l L  ~ defined and differ- 
ent from E(a^j) for / < i  and d IL  ~ defined an,] 
different from c,} 
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for s ~<r. For  any r ' <  r there  is at most  one  s ~ r  such that  N~ C'l{kr + r ' :  k <a~} is 
finite. Choose  s ~ r such that  N~ N {kr + r': k < o3} is infinite for r '  < r. Let q < p 

and  q ~ i h ( a ) +  1 modulo  p. Choose  E(a"i) in [c~]N Gda ~ X  (which is not  empty  
because X is guarded)  and  set Mi+~ = N ~ - { n } .  Claim 3.2 is proved.  

Cla im 3,3, There is We_ U - D  such that for each coherent guarded X c  D: 
(i) ]rp(X) N W 1~ 1 if X is mono, and 

(ii) rp(X)  meets W if X is colorless. 

Proof .  Ar range  all c(,k~'rent, guarded,  colorless subsets of D into a sequence 

(X,,:o~<2~,,). A point  x,~rp(X_,~)--D is selected by induction.  Suppose 
{x~ :/3 < ~} is already selected. For  every x e U - D a n d  every n < oJ there is a ~ D 

such that  i h ( a ) = n  and  x~[a], this  a will be  deno ted  x ln .  Let Y~ = 
{y~ U - D :  x~ I n and  y [ r form a m o n o  pair  for every n <to} for ¢ <c~. Then  

]rp(X,~) r~ Y~]---< 1. (For, suppose x and y are different e lements  in rp (X~) f l  Y¢. 
The re  is l such that  x 1 l ¢- y [ I. Take  a ~ [x [ t] C) X,, and b e [ y  I l] Vl,¥~ to form a 
nontrivial  m o n o  pai r  in X,~.) By Claim 2.5, I rp (X~) l=2  "~,,. Pick x,, in 
(rp(X~) - D ) -  U { Y~:/3 < o~}. Let  W = {x~: ~ < 2s,,}. Every rp(X~) meets  W by 

choice of x,~. If /3<t~,  then  { x ~ [ n , ~ ! n }  is not  mono  for some n hence 
Irp(X) O W t ~  1 for any m o n o  X. Claim 3.3 is proved. 

Let  W be as in Claim 3.3, G be an arbi t rary non-empty  open  set, X c_ D be 

guarded  and dense  in G. We prove the  equ ivNence  stated in Theorem 1. First 
suppose that  for every Go ~ G there  are A e F and  H_~ G,~ with H O X c_ A. Let  

G~ ,Xo  . . . . .  Xp be as in the  formula  Code.  We took for an appropr ia te  "K 
W.l.o.g. G~ 71X is included into some A ~ F. 

Cons t ruc t  a sequence  (a ,  : n < ~o} of e lements  of D such that  lh(a , )  <~ n and for 

every a c D, q ~ p there  is n ~-~ q modulo  p + I with a,, = a. We build f :  ~o ~ oJ and 

E:D--~ G~ Cl X as follows. Choose  E 0  in such a way that  [E0]c_ G >  set f0  = 
lh(E0).  Suppose fn and E I%9 are defined and h(Ea)=fn  if l h ( a ) =  n. Let q<~p 
and q --= n modulo  p + 1. Choose  a ~ %0 extending  a,~ and b ~ lea  ] N X,~ - {Ea}, set 

f (n  + 1) = lh(b). For  every c <- ",J and m < o~ define E(c%n) = 
Ec U {(fn, n0}t0{(/, b/): fn  < I<f (n  + 1)}. 

Let  Y be  the range of E. Y is coheren t  because for any Ea it meets  all 
[(Ea)"m]. Each Xq is dense  in Y because for any E a  there  are n -=-q modulo  p +  1 

with a,, - a  and b~[Ea]NXq N r a n g e ( E  f"+~o). Y is of color A because it varies 
on!y on levels fn and every fn~log(G~C'tX)c_log(A). By Claim 3.3, 
trp(Y) V1 W[ ~ 1. ~[%us Code(X,  D, W, G t hohts  in U. 

Now suppose that  there  is Go ~ G such that  any H c_ Go meets  X -  A for any 
A c E  

Lemma 3.4. There is G I c_ Go and there are Xo ~ Gdo N X, . . . .  Xr,_ l ~ Gd,_1N X, 
Xp ~_X dense in G~ such that each A ~ F avoids some G~ NXq. 
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Proof.  If there are A ~ F, G i g  Go, q < p  with A C3 Gdq N X dense in G~ set 
Xq = A n Gdq N X ,  X~ = Gd~ n x for q ~ i < p and Xp = X -  A. Xi is dense in G~ 
for ~/:/: i < p  because X is guarded and dense in Gt .  Xp is dense in G~ be::ause any 
/:! g G~ meets X - A .  A avoids G~ n Xp, any B ~ F - { A }  avoids Xq. 

Suppose that A n Go cl Gdq r'l X is nowhere dense for A e F, q < p. Construct a 
sequence (a,~: n < ~o) of points in Go n X such that: 

(i) {a,,: n -= q modulo p + 1} is dense in Go for q ~ p, 
(ii) n -~ q modulo p + 1 implies a, ~_ Gdq for q < p, and 

(iii) if A ~. F meets {a,~ : m < n} then a,, avoids A. 

Set G~ = Go and X~4 = {a,~ : n ~ q modulo p + 1} for q ~ p. Lemma 3.4 is proved, 

We prove that Code(X, D, W, G) fails. Let G~, Xo . . . . .  X~, be as in Lemma 3.4 
and Y be a coherent  subset of D N G~ with Xo . . . . .  Xp dense in Y. 

Y is nowhere mono. For, suppose A ~ F and H meets  Y. By Lemma 3.4, A 
avoids some G~NX~.  Let a ~ H n X q  n Y, l = lh(a) .  Then H n  Y varies on level a 
(because Y is coherent) and l~  Co- log(A)  hence A N Y is not of color A. 

By Claim 3.2 there is a coherent,  guarded, colorless Z c 1/. There are two 
coherent, guarded, disjoint subsets of Z. By Claim 3.3, [rp(Z)A WI ~ 2. 

4.  P r e q o w e r s  and ~nterprefing a f initely a ~ o m a f i z a b l e  'arithmetic 

We work in the p-guard space of S,et ion 3. Let Storey(X, D, W) be a p-guard 
formula saying: X ~ D, and X is ewd. guarded, and Code(X, D, W, U) holds, and 
there are no G, y c .  G - X  such that Y is dense in G and Code(X U Y, t:), W; G)  
holds. 

T h e o r e m  4,1. Lel D, P, F be as in Theorem 3.1. '1[here is W c U -  D s~.~ch that an 
arbitrary X c D satisfies Storey(X, D, W)  iff for every G there are A c F and H G G 
with A n H = H r~ X. 

The proof is straightforward. 

Recall that letters G, H denote non-empty open sets. Any G forms a subspace 
of U whose guard is {G C~ Gd,,: q < p}. Let ~(V~ . . . . .  V,,) be a p-guard formula 
whose only free variables are the set variables V = , . . . ,  V,,. Let X,  . . . . .  X,, be 
subsets of U. We say that q)(X~ . . . . .  X,,) holds in G if ~(Gf ' IX1  . . . . .  GI '3X , )  
holds in the subspace G. The union of those G where ~0(X1 . . . .  , X , )  holds will be 
called the domain of ¢ ( X i , . . . ,  X,,) and denoted do(~(X~ . . . . .  X,~). 

Definition 4.2. Let t be a sequence (D, D ~ . . . . .  D l, W) of subsets of U where 
! ~ l < ~ o .  A set X = D  is a storey of t if Storey(X, D, W) holds in U. t is a 
pre-tower if: 

(i) D ° c D ,  D - D  ° is ewd, W ~ U - D ,  
(ii) D ~ . . . . .  D ~ are ewd subsets of D - D  ° , 
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(iii) do (A  - - B  or A N B  A D  o =  0) is ewd for every t-s toreys A,  B, and 

(iv) do (A  = B or A N D ~ ~ B or  B r i D  1 ~ A )  is ewd for  every t-storeys A,  B. 
(Writ ing X c  Y we m e a n  X~_ Y and X¢:  "g. 

W e  need  some more  definitions. Let  t = (D, D ~ . . . .  , D ~, tz~) be a p re - tower  and 

A,  B, C range over  s toreys of t. A ~ B  modulo  t means  that  do (A C ? D ~  B) is 
ewd. A < B  modulo  t means  that  A ~ B  modulo  t and ( B - A ) N D  ~ is ewd, A 

collection S of t -s toreys is a skeleton of t if do(.A = B)  is empty  for every distinct 

A,  B in S, and U {do(A -=B): A ~ S }  is ewd for any B. 

Cla lm 4,3. There are a pre-tower t~-(D, DI,  D2, D3, W) and a 
{A,, : n < o)} of t such that for every i < j  < k < ¢~ 

(i) A~ n A i N Ak N D" is ewd if i + j = k and is empty ~gthelwise, and 
(ii) A~ A A j  n A k  O D 3 is ewd if i .  j = k ",nd is empty otherwise. 

skeleton 

ProoIo Let  D be a countab le  subset  of U such that  D ° c  D arid D - D  O is ewd. 

Part i t ion D -  O ° into ewd parts  D ~, D 2, D 3. Part i t ion D ° into ewd guarded parts 
D~ ° with n < oJ~. Par t i t ion D ~ into ewd parts  D],. Par t i t ion D 2 into ewd parts  D 2 iik 
where  i < j < /c  < ca and  i +/" = k. Par t i t ion D 3 into ewd parts  D~k where  i < j  < 

k < ~ o  and  i - ] = k .  Let A,, be the s ' lbset  of D such that  A , , A D  ° -D~, ,  and 

A,~ N D  ~= U {D~,,: re<n} ,  and A ,  N D '  = U {D~/I~: n~{! ,  j, k}} for e -~2 .  3. Set 
F := {A~ : n  < ~} and use T h e o r e m  4.1. 

Let I. be the f irst-order language whtnse oniy non-logical  constants  are ternary 

predicate  symbols A dd  and  Mlt. Let M = (o~, Add,  Mlt) be the model  for E with 
Add: : { ( i , j , k ) :  i < j < k  and i + j = k }  and M t t - { ( i , j , k ) :  i < i < k  and i . ] = k }  

Claim 4.4. "['here is an L-sentence g)o such thai ~ holds in M and the theory in L. 
whose only non-logical axiom is ~ is essentiaUy undecidabIe. 

The  proof  is clear. 
Given  a pre - tower  t = (D, D I, D e, 0 3, W) we interpret  variab es of L as subsets 

of D and define t -domains  of L-formulas  as follows: 

do , (Add(X,  Y, Z) )  = d o ( X  N D l c y and Y n D ~ c Z and 

X N Y N . . O D  e i sewd) ,  

do, (Mlt(X, Y, Z) )  = d o ( X  N D l ~= Y and Y N D t ~ Z 

and X P, Y O Z N D 3 is ewd), 

do , (~  or O)=do~(q~)Udo,(qJ).  

do;(-~q~) is the complement  of the closure of do:(¢) ,  
do~(3Xq~(X, Yl . . . . .  Y,,)) = U {do~q)(X. Yl . . . . .  Y,): X is a storey ¢-, t}. 

C lahn  4.5. Suppose t is a pre-tower. The collection of L-sentences with ewd do,(~)  
is a theot~y in L. In other words this collection includes the logical axioms anti is 

closed under the rules of inference. 
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The proof is easy. 

Claim 4.6. Let t, Ao, A~ . . . .  be as in Claim 4.3. Let q~(x~ . . . . .  x.,) be an L-  
formula whose cnly free variables are ~:1 . . . . .  x,,. I f  q~(il . . . . .  i ,) holds in M then 
do,(~o(A~,, . . . .  A~,)) is ewd. I f  q~(i~ . . . . .  i,) fails in M then do,(q~(A~ . . . . .  A , )  is 
empty. 

ProoL An easy induction on ~ simultaneously for U aad any (open) sub:~pace 

of U. 

Theorem 4.7. The monadic theory of U is undecidable. 

Proof.  By Claim 4.4 there is an L-sentence q~o such that q~o holds in M and the 
theory To in the language L, whose only non-logical axiom in q~o, is undecidable. 
Let  T be the collection of L-sentences ¢ such that for every pre- tower t, if do,(~o) 
is ewd, then dot(g~) is ewd. By Claim 4.5, T is a theory and T h a T .  By Claim 4.6, 
M is a rnodel of T, hence T is consistent. Any  consistent extension of an 
essentially undecidable theory is undecidabte, hence T is undecidable. But T is 
obviou.~ly interpretable in the monadic theory of U. 

It is easy to see that we have proved actually: 

Theorem 4.8. Le t  D be a countable subset of U such that D°  c D and D - D  ° is 
ewd. Then the set of p-guard ~brmulas F(D, W),  such that V W F ( D ,  W) holds in 
U, when the bound set variables of F range over subsets of D while W range,:, over 
arbitrary subsets of U, is undecidable. 

Corollary 4.9. The set of sentences F = ~ I W F ' ( W )  in the monadic language of  
order such that F holds i~ the real line R, when the bound set variables of F'  range 
over sets of rational numbers while W ranges over arbitrary sets of  reals, is 
undecidable. 

Proof.  Consider R as a vicinity space with respect to Example 2,2. Let D be the 
set of rational numbers and D ° be an ewd subset of D such that D - D  ° is ewd. 
D ° forms a 1-guard of R. Now use Theorem 4,8. 

S. Towers and interpreting true aritlunetlc 

We still work ir~ the p-guar6 space U of Section 3. a, pre-tower t - -  
(D, D ~ . . . . .  D I, W)wil l  be called a tower if there are no G and W ' ~  G - D  such 
that t ' =  (D A G, D"Ci G, W') is a pre- tower in G, and t' has at least one storey, 
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and for every t '-storey A '  there is a t-storey A with A ' =  A n G, axed for every 
d-storey A '  there is a t ' -storey B '  with B ' < A '  modulo t'. As in [4.] we can prove 
that every tower has a well ordered skeleton. However,  a simpler result suffices 
for us in this paper. 

Definition 5 . i .  Let t -- (D, D ~ . . . . .  D t. W) be a tower, and A, B, C be storeys of 
t. A = 0  modulo ~ means A ~ B ~aodulo t for any B. A + 1 = B modulo t means 
that A < B  modulo t and 

do(C ~ A modulo t) U do(B ~< C modulo t) 

is ewd for any C. t is arithmetical ff there is A = 0 modulo t, and for every A 
there is B = A + 1 modulo t, and for every B there is A such that 

do(A + 1 = B modulo t) U do(B = 0 modulo t) is ewd. 

Theorem 5.2. Suppose t = (D, D ~ . . . . .  D ~, W )  is an arithmetical tower, ~then there 
is a skeleton {A, :  n < w} of t such that Ao = 0 modulo t and A,, + 1 = A . +  l modulo 
t for every' n. 

Proof.  Build a sequence Ao, A~ . . . .  of t-storeys such that / to  = 0 modulo t and 
A ,  + 1 = A,~+~ modulo t for every n. By contradiction suppose that this is not a 
skeleton. Then there are a t-storey Bo and some G such that do(A,  = Bo) avoids 
G for aay n. Build a sequence Bo, B~, B2 . . . .  of t-storeys such that do(B~+~ + 1 = 
B, )  is dense in G for every n. By Theorem 4.1 there is W ' ~  G - D  such that 
arbitrary X c D f') G satisfies Storey(X, D fq G, W') in G iff for every H ~ G there 
are n and H ' g H  with B , , N H ' = H ' N X .  Then ( = ( D N G ,  D~f3G,  W ~) is a 
pre- tower  in G contradicting the fact that t is a tower. 

Let  L~ be the first-order language with equality whose non-logical constants are 
a unary predicate symbol Ze, a binary predicate symbol Sue and ternary predicate 
symbols Add, Mlt. Thus L~ extends the language L of Section 4. Let  MI be the 
model  for L~ such that the reduction of M1 into L is the model  M of Section 4, 
and Ze(i) holds in M~ iff i = 0, and Sue(i, j) holds in M~ iff j = i + 1. 

Claim 
model 

(i) 
(fl) 

(iii) 
under 

5,3. There is an L1-semence o;~ such that ~ holds in M~ and for every 
N of q~l: 
there is exactly one element in N satisfying Ze, 
for every x ~ N there is exactly one y ~ N such that Suc(x, y) holds in N, and 
the minimal submodet of N, containing the element satisfying Ze and closed 
Suc, is isomorphic to M1. 

The proof is easy. 

We have defined in Section 4 t-domans of L-formulas where t is a pre-tower. 
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The fo l low~g clauses extend the definition of t-domain for Lwformulas. 

do , (X = Y) = do (X = Y), 

dot (Ze(X)) = do(x = 0 modulo t), 

do,(Suc(X, Y)) = d o ( X +  1 = Y modulo t). 

Claim 5.4. Suppose that t is an arithmetical tower (D, D ~, D 2, D 3, W),  q~l is as in 
Claim 5.3 and do~(~¢~) is ewd. Then there is a skeleton {A, :  n <os} o f t  such that 
A~ = 0 modulo t and A,~ + 1 = A,, . ~ modulo t and for every i < j < k < w: 

(i) A~ Cl A~ ('l Ak ct D a is ewd of i + j = k and is empty otherwise, and 
(ii) A~ A Aj N Ak N D -~ is ewd if i • ] = k and is empty otherwise. 

Proof.  Use Theorem 5.2 and Claim 5.3. 

Theorem 5.5. True arithmetic is interpretable in the monadic theory of U. 

Proof. True arithmetic is the first-order theory o! the standard model  of Peano 
Arithmetic. True arithmetic is easily interpretable in the the(~ry of model  3//. Thus 
is suffices to check that an arbitrary L - s e n t e n c e ,  holds in M iff d%(q~) is ewd for 
every arithmetical tower. Now use Claim 4.6 and Claim 5.4. 

6. Non-modest vicinity spaces 

Let p be a positive integer. We recall the definition of p-modest  vicinity spaces. 
A vicinity space U is perfunctorily p-modest if for every coherent everywhere 
dense subsets X;~ . . . . .  X~,._, of U there is a replete subset Y of U such that 
Y c _ X o U .  • • UXp_~ and every Xq is dense in Y. U is p-modest if every coherent  
subspace of U is perfunctorily p-modest.  Let r be a positive integer. All vicinity 
spaces in this section are of degree r. 

Definition 6.1. Let U be a vicinity space. Subsets X, Yo,~ . . ,  Y~-~ of U witness 
that U is not p-modest  if X is coherent,  and Y ~ , . . . ,  ~ _ ~  are coherent subsets of 
X dense in X, and there is ao Z~_ Y O U ' "  U Y~,_~ such that Z is replete in the 
subspace X and Ya . . . . .  Yr,< are dense in Z. 

Lemma 6.2° Suppose U is a second-countable vicinity space and X, Yo . . . . .  Yp-~ 
witness that U is not p-modest. Then there are countable disjoint sets Zo . . . . .  Z~,_ 
such that Z ,  ~ Yq for q < p  and X, 7.o . . . . .  Zv_ ~ witness that U is not p-modest 

Proof. Let {Gl : i<~o}  be an open basis of X. Build a sequence xo, xt . . . .  of 
different points such that if k = i p + q  and q <p  then xu~ G~f3 Yo. Set Z,~= 
{xk: k ~ q modulo p}. 
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lDefinitkm 6.3. Let T be a theory in a language L m~d K '  be a collection of models 
for a language L'. T is uniformly interpretable in the theory of K '  if there is an 
algorithm assigning an L'-sentence ~ '  with each L-sentence w in ~u~'h a way that 
for every M'~K ' ,  q~ is a theorem of T iff q / h o l d s  in M' .  

Theorem 5.5 can be reformulated as follows. Let /~r be true first-order 
arithmetic. 

Claim 6.4. Ar  is uniformly interpretable in the monadic theory of coherent, second- 
countable, zero-dimensional p-guard spaces with countable guardians. 

Or:r aim in ~his section ~s: 

Theorem 6.5. Ar  is uni]:ormIy imerpletable in the monadic theory of second- 
countable, zero~d~mensional, non-p-modest vicinity spaces. 

Proof.  Given a sentence q~ in the language of Ar  compute a p-guard sentence ~ '  
interpreting q~ with respect to Claim 6.4. q¢' is ~o"(Gdo . . . . .  Gd~_~) for some 
vicinity formula q~". Let  q~* be a vicinity sentence saying that there are 
X, Y o , . . . ,  Y.~-~ witnessing non-p-modesty and such that ~,"(Zo . . . . . .  Z~_/) holds 
in the subspace X for every coherent Zo--- Yo . . . . . .  Zp~, ~ Yp_~ dense in X. We 
check that q~* is an appropriate interpretation of q~. 

Let U be a second-countable zero-dimensional  vicinity space which is not 
p-modest .  First suppose that ~ is a theorem of Ar, Let X, Yo . . . . .  Yp_~ witness 
that U is not p-modest.  In virtue of Lemma 6.2 we can suppose that Yo . . . . .  Yo- 
are countable and disjoint. If Zq is a coherent  subset of Yq dense in X for q<p,  
then Zo . . . . .  Zp-.l form a p-guard of X and q/'(Zo . . . . .  Zp._~) holds in the 

subspace X. 
Now suppose that ~* holds .n U and X; Yo . . . . .  Yv_a are as in q~*. By Lemma 

6.2 there are countable disjoint Zo_cYo . . . . .  Zp_~'i '~,_~ dense in X. Then 

q/'(Zo . . . .  Zp_~) holds in X, hence ¢ is a ti"~eorem of Ar. 

We will use the following: 

Lemma  6.6. Every non-p-modest vicinity space has a coherent, separable, non-p- 
modest subspaceo 

Proof.  Suppose that A,  Ao . . . . .  Ap-1 witness that the space is not p-modest.  
Without  loss of generality A is the whole space. By Theorem 2.3 there is a 
countable coherent B ~_ Ao U. . .UAp_~ such that every A n is dense in B. The 

repletion of B is the desired subspace. 
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7. N0n-modest chains 

A chain is a linearly ordered set. A chain is short if it embeds neither oJ~ nor 
~oi. Only short chains are considered here. 

With respect to Example 2.2 we assign a vicinity space to each chain U, it will 
be called the vicinity space of U. Warning: ~et X be a subchain of a chain U, the 
order topology of X (which is the topology of the vicinity space of X) can differ 
from the inherited topology of X. For example, let P be a nowhere dense perfect 
subset of the real line R. Form X ~  R - P  by choosing one point from every 
maximal interval of R - P. The subchain X has no isolated points, in the inherited 
topology every point of X is isolated. 

Suppose 1 ~p<o~. We say that a chain U is p-modest if the vicinity space of 
any subchain of U is p-modest. 

Lemma 7.1, Every non-p-modest chain has a subchain whose vicinity space is 
second-countable, zero-dimensional and not p-modest. 

Proof. Let U be a non-p-modest chain. It has a subchain whose vicinity space is 
not p-modest. Without loss of generality the vicinity space of U is not p-modest. 
In virtue of Lemma 6.6 we can suppose that the vicinity space of U is coherent 
and separable. It means in particular that U is densely ordered. Every densely 
ordered separable chain is embeddable into the real line. Henc ~. U is second- 
countable. Let A, Bo . . . .  , Bo_ ~ witness that U is not p-modest Without loss of 
generality A = U. Let B = B0 U " .  U Bv_~. There is C c B such that C and B -  C 
are den~e in B, and every Bq is dense in C as well as in B -  C. The subchain 
U - C  is the desired one. 

Theorem 7.2. Ar is uniformly interpretable in the monadic lheoty of non-p-modest 
chains, 

Proof. Given a sentence q~ in the language of Ar compute a monadic vicinity 
sentence ¢'  coding q~ according to Theorem 6.5. Let q~* be a sentence in the 
mcmadic language of order saying that there is a subchain X such that the vicinity 
space of X is zero-dimensional and not p-modest, and every non-p-modest 
vicinity subspace of X satisfies q/, 

8. Non-modestt topology 

Speaking about topological spaces we mean first-countable regular T1 spaces, 
We consider them as vicinity spaces with respect to Example 2.1. In particular a 
topological space is p-modes~ if the corresponding vicinity space is p-modest. Sup- 
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pose l~ -p<~o .  Theorem 6.5 gives: 

Corollary 8.1, Ar  is uniformly interpretable in the monadic theory of second.- 
countable, zero-dimensional, non-p-modest topological spaces. 

The ~ext le.'nma can be easily generalized for more general vicinity spaces, 

Lemma 8.2. Every second-countable non-p-modest topological space has a zero- 
dimensional non-p-modest subspace. 

Proof.  Let A, Xo . . . .  Xp_.~ witness that the space is not p. modest. Without toss of 
generality A is the whole space. Let  {B~: i < oJ} be an open basis of A. To every 
sequence a ~ <~o we assign an open set [a]_¢ A and a point ea e [a]  as follows. If 
a is empty, then [a]  = A and ea is an arbitrary point in A. Suppose that i = lh(a) 
and [a], ea are already chosen. Select a basis Ho ~ H~ ~ • - • of open neighbour- 
hoods of ea such that Ho_c[a]  and ~ + ~ c H ~  for i<o) .  As usual a:'k is tt~e 
sequence aC, . . . . .  a(1-- 1), k. Suppose k = ip +q where q <p .  Choose [a"k] in 
such a way that the closure of [a:'k] is included into ~ - / - I  i+1 and either 
In^k] ~= B~ or In^k] ~ A -B,,. Choose e(a^k)  in [a~k ] N Xq. Let E be the range of e 
and C be the closure of E. C and E N X o  . . . . .  FCf3Xp_~ witness that C is not 
p-modest.  We check that C is zero-dimensional.  ' 

By induction on th(a) prove that [a]NC is clopen in C. Let G be an open 
subset of C and x e G .  We have to find a ctopen subset K of C such that 
x~_K~_G, If x =ea for some a, then there is n such that [a"k]c_G for k > n .  
Choose K = [a]  fl C -  (.J {[a~k]: k ~ n}. If x e C -  E take I with x ~ Bt N C_~ G. 
Clopen sets [a] with lh(a) = I + 1 partition C -{eb :  lh(b)-<- l}, choose K = In] N C 
with l h ( a ) =  l +  1 and x c [a], By the construction [ a ] _  Bl. 

Theorem 8.3, Ar  is uniformly interpretable in the monadic theory of second- 
countable non-p-modest topoiogicaI spaces. 

Proo | .  Use Corollary 8.1 and Lemma 8.2. 

Lemma  8.4, Every non-p-modest  metrizable space has a second-,:ountable non- 
p-modest  subspace. 

Proof.  Use Lemma 6.6 and the fact that every separable metric space is seco~d- 
countable. 

Theorem 8.5. At  is unif mnty interpretable in the monadic theory of non-p-modest 
metrizable spaces. 

Proof .  Given a sentence ~¢ in the language of Ar  compute a monadic topological 
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s e n t e n c e  qg' c o d i n g  q~ a c c o r d i n g  to  T h e o r e m  8.3.  L e t  q~* s a y  t h a t  t h e r e  is  a 

n o n - p - m o d e s t  sub ,space  X s u c h  t ha t  e v e r y  n o n - p - m o d e s t  s u b s p a c e  y _ c  X sat is f ies  

q9 * . 
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