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O. I n t r o d u c t i o n  

In [7] we introduced the notion of a [5]<~ ideal on P~(A). We gave 

necessary and sufficient conditions for the existence of such ideals and described 

the smallest one, denoted by N S  [~]<~ Furthermore, we determined the cofinality 

of this ideal. In the present paper the centre of our investigations is the reduced 

cofinality of N S  [5]<~ For an ideal J on P~(A), its reduced cofinality co--f(J) is ~ , ~  �9 

the smallest size of any subcollection Y of J such that  every element of the ideal 

is covered by the union of less than ~ many members of Y. This notion permits 

a finer analysis, as we have cof(NS~ 1"~ [ A) = cof(NS~l~ "~ for all A, whereas 

there may exist a set A such that  co f (NS~ , l ' ~  ) - "  < cof(NSt~]~'~).-'" Moreover, 

it seems more appropriate than the classical notion of cofinality for handling 

situations when A or 5 is a singular cardinal of cofinality less than ~. 

Johnson [4] was the first to show that  there may exist a set A such that  

NS~,~IA = I~,~ ] A. He was quickly followed by Baumgartner (see [4]) whose 

example is more widely applicable. P@an asked in his thesis whether it is consis- 

tent that  NS~,~ = I,~,~ t A for some A. Donder, Koepke and Levinski [2] proved 

that  there is no such A in case cf(A) _> ~, a fact which was rediscovered by 

Shelah [10] and Shioya [11]. Shelah [10] also obtained a positive result. Namely, 

he established that  NS,~,~ = I~,~ I A for some A if A is a strong limit cardinal of 

cofinality less than ~. So under GCH, there exists A such that  NS,~,~ = I,~,~ ] A 
if and only if cf(A) < ~. The present paper can be seen as a continuation of 

[10] in the more general framework of [~]<~ We use the concept of 

reduced cofinality as a tool for dealing with the question of whether there exists 

a set A such that  N S  [5]<~ = Ix ~ [ A, or even N S  [~]<~ [ A = Ix ~ [ A. We will t%A , t%)~ , 

give a complete answer to this question under GCH. 

In Section 1 we review basic material concerning [(~]<~ ideals on P~(A). 

In Section 2 we list some simple properties of cof(J) .  Sections 3 and 4 are 

concerned with the evaluation of -c-~(NS[5,1~'~ and -c~(NS[~,~ "~--~ [ A). We give 

an estimate for cof (NS ) in the case that  ~ _< ~ < A and present some 

applications. We prove that  cof(NS~,x) = A in the case that  A is a strong limit 

cardinal of cofinality less than ~. Furthermore, we show that  if # is a singular 

strong limit cardinal and ~ is large enough, then cof(NS2,x) = A. We also 

establish some lower bounds. In particular we prove that  if A E NS~,x, then 

cof(NS~,x I A) _> A. Moreover, this inequality is strict in case cf(A) = ~. 
Sections 5 and 6 deal with the problem of whether there exists a set A such 

that  cof(I~,x [ A) < co--f(I~,~). We show that  if A ~ ~+~o or A E NS~,:~, then 

cof(I~,~ I A) = A. For ~ = Wl, A = ~+(~+~) and a = t~ +~, we establish 
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the following: (a) If either ro* holds, or 2 <~ < a and A < a <~, then there 
N + 2 is A E S~,~ such that  cof(I~ A I A) = a. (b) A ----4 [~]~,<~ implies that  

cof(I~ ~l A) = k for all A E I + In Section 7 we give a necessary and sufficient 

condition for the existence of a set A such that  N S  [a]<e = I~,~ I A. We sum up 

the situation under GCH in a table that  lists all quadruples (~, A, a, ~) such that  

NS[6]<~ ~,~ I A = I~,~ I A for some A. We also discuss the problem of whether, for 

_> t~, there exists a set A such that  cof(NS[5, ]<~ ] A) < A. Finally, in Section 

8, we show that  if GCH holds, ~ _> ~ and P is the notion of forcing for adding 

(A<~)+ Cohen subsets of ~, then in V P, we have N S  [5]<e ~,~ I A ~ I~,~ I A for all 
A. 

1. [5]<~ ideals  on  P~(A) 

In this section we review basic definitions concerning [~]<~ ideals on 

P~(A), as well as various results which will be used in later sections, often 

without quoting them. 

Given a set A and a cardinal r ,  we let P~(A) = [A] <~ = {a C_ A :lal < ~}. 
T h r o u g h o u t  t h e  p a p e r  ~ d e n o t e s  a r e g u l a r  u n c o u n t a b l e  ca rd ina l ,  

a n d  ~ a c a r d i n a l  w i t h  ~ >_ ~. 

For a E P~(A), we set ~ = {b E P~(A) : a  C b}. 

I~,x is the set of all B C P~(A) such that  B n ~  = 0 for some a E P~(A). 

By an ideal on P~(A) we mean a collection J of subsets of P~(A) such that  

(i) P(B) C_ J for all B E J,  (ii) UY E J for all Y _C J with 0 < IYI < ~, (iii) 

I~,a c_ J,  and (iv) P~(A) ~ J. 

Given an ideal J on P~ (A), we let 

J + = P ( P ~ ( A ) ) - J  and J * = { B C P ~ ( A ) : P ~ ( A ) - B E  J}. 

For A E J+,  we let J ] A = {B C_ P~(A) : B n A  E J}. cof(J)  is the least 

cardinality of any S C_ J with J = UBES P(B). 
It is simple to see that  I~,x is an ideal on P~(A). u(~, A) is the least cardinality 

of any A C P~ (A) with A E I + 

PROPOSITION 1.1 ([7]): 

(i) u(~, A) _> A. 
+ (ii) cof(I~,~ ] A) = u(~, ~) for every A E I~,~. 

Given four cardinals r, p, X and a, let X(r, p, X, a) be the set of all X C_ Pp(T) 
with the property that  for every a E Px(r), there is x E P~(X) \ {~} such that  
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a C_ Ux. If •(T, p, X, a)  ~ 0, then  we let COY(T, p, X, a)  be the least cardinal i ty  

of any member  X of E(T, p, X, a).  

PROPOSITION 1.2 ([8]): 

(i) Let  V be a cardinal. Then coy(v, T +, r +, 2) = 1. 

(ii~ Let T be a regular infinite cardinal, and a be a cardinal with 2 < a < r. 

Then COY(T, T, % a) = 7. 

(iii) Let  T be an infinite cardinal, p be a cardinal with 2 <_ p < T, and a be a 

cardinal with a >_ 2. Then COY(T, p, 2, a)  _> T. 

PROPOSITION 1.3 ([8]): 

(i) coy(A, n, n, 2) = u(n,  A). 

(ii) Let  p be a cardinal with a <_ p <_ A. Then 

cov(~ +, p, p, n) = A + .  cov(~, p, p, ~). 

(iii) Let  p be a cardinal with n <_ p < A. Assume that A is a limit cardinal and 

either cf(A) < a, or cf(A) >_ p. Then 

coy(A, p, p, ~) = sup cov(~-, p, p, n). 
p<T<~ 

(iv) Let  p be a cardinal such that c f (p)  < n < p < A. Then 

cov(A, p, p, n) = coy(A, p, p+, ~). 

COROLLARY 1.4: Let  p be a regular cardinal such that ~ < p <_ A < p+~. Then 

cov(A, p, p, n) = A. 

T h r o u g h o u t  t h e  p a p e r  $ d e n o t e s  a n  o r d i n a l  w i t h  1 < 6 < A, a n d  0 a 

c a r d i n a l  w i t h  2 < 0 < ~;. 

W e  se t  0 = 0 i f  0 < Ir o r  0 = ~ a n d  ~ is a l im i t  c a r d i n a l ,  a n d  0 = v i f  

O----~=V+. 
Given Xe C_ P~(A) for e E Po(5), we let 

VeSp.(~)Xe = U {a E Xe:e  s Planol(anS)}. 

Given an ideal J on P~(A), V[6]<~ J is the set of all B C_ P~(A) for which one 

can find Be E J for e E Po (5) so tha t  

B C_ {a E P~(A) : a M 0 = 0} U (VeePo(a)Be). 

We say tha t  J is [5]<~ if J = V[a]<~ J .  
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PROPOSITION 1.5 ([7]): 

(i) Assume that 5 < ~, or 0 < ~, or ~ is not a limit cardinal. Then there 

exists a [5]<~ ideal on P~(A) i f  and only i f  ]PF(p)[ < ~ for every 

cardinal # < ~ M ((S + 1). 

(ii) Assume that ~ >_ ~, O = t~ and ~ is a limit cardinal. Then there exists a 

[5]<O-normal ideal on P~(A) i f  and only i f  r~ is Mahlo. 

(iii) Assume that 5 >_ ~ and there exists a [5]<O-normal ideal on P~(A). Then 

~<~ = ~. Moreover, (#<e) <e = p<a for every cardinal # > ~. 

If there exists a [5] < e _ normal ideal on P~ (A), then N S [~1 < ~ 

such ideal. 

denotes the smallest 

PROPOSITION 1.6 ([7]): 

(i) N S  [~1<~ = V[a]<~aI~,~. 
(ii) N S  [~]<~ = N S  [~]<~176 ;~/~ ~ �9 

(iii) IY(S < ~, then N S  [5]<~ = I~,~. ~,)~ 

For f :  Po(~5) > P~(A), r:~'~ denotes the set of all a E P~(A) such that  

aM0 ~ 0 and f (e)  C a for every e E Planol(aN~). 

PROPOSITION 1.7 ([7]): 
~,A 

N S  [~]<~ if  and only i f  B M Cf = ~ for some (i) Given B C_ P,~(A), B E ,~,~ 

f:  Po.a((s) ~ P,~(,~). 
N S  In]<~ i f  and only i f  (ii) Suppose 5 > to. Then given B C_ P~(A), B E ~,~ 

BN {a E C; 'X:  a N ~  E ~} = O forsomeg:  Pa.a((s) ---+ P3(A). 

Given X~ g P~(A) for a < (S, we let V~<aXa = Ua<a(x~ M {a}). 

Given an ideal J on P~(A), VaJ  denotes the set of all B C_ P~(A) for which 

one can find Ba E J for a < (S so that  B _C (P~(A) \ {0}) U Va<aBa. J is called 
&normal if J = V5J. 

NS~,~ denotes the smallest (S-normal ideal on P~(A). 

Note that  NS2,x = NS~,a. 

PROPOSITION 1.8 ([7]): NSa,x = N S  [~]<2 

Given a cardinal # > 0, ~ is the least cardinality of any family S of 

functions from # to P~(A) such that  for every g: # > P~(A), there is f E $" 

with the property that  g(a) C f ( a )  for every a < #. 
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PROPOSITION 1.9 ([7]): Let # > 0 be a cardinal. Then 

(i) V" >u(~,A). 
(ii) c f ( ~ , x )  > #. 

(iii) I f # > ~ a n d A > 2 " , t h e n ~ "  =A".  

(iv) IrA > 2 <~, then ~" - ~" 

PROPOSITION 1.10 ([7]): 

(i) If  J is a [~]<~ ideal on Pc(A), then cof(J)  > D/~(d)l 

(NS[~]<~ + (ii) cof(Ns[~l<~ l A) = ,~1~(~)1 for every A �9 ) ~ ) ~  ~ �9 

2. cof(J)  

In this section we introduce the notion of the reduced cofinality cof(J)  of an 

ideal J on P~ (A). 

Definition: Given an ideal J on P~(A), cof(J)  is the least cardinality of any 

Z C_ J such that for every B C J,  there is x E P~(Z) with B C_ Ux. 

The following collects some elementary facts. 

PROPOSITION 2.1: Let J be an ideal on P~(A). Then 

(i) ~ _< cof(J)  _< cof(J)  <_ u(~, cof(J)) .  

(ii) I fco f (J)  <_ A, then cof(J)  = u(~, A). 

(iii) cof(J)  _< A <'~ if and only if col(J)  _< A <~. 

(iv) cof(J  [ A) < cof(J)  for all A E J+. 

Proof: The proofs of (i) and (iv) are easy and left to the reader. It is simple 

to see that cof(Y) _> u(~, A). Part  (ii) follows from this and (i). For (iii), use (i) 

and the fact that u(~, A <~) = A <~. I 

PROPOSITION 2.2: Assume A < ~+~. 

Pc(A). 

Then cof(J)  _> A for any ideal Y on 

Proof." Set A = ~+a, and let d be an ideal on Pc(A). Proposition 2.1 gives 

cof(J)  _> ~, so the result is immediate in case a = 0. Now suppose a > 0. We 

have col(J)  >__ u(~, ~+~) > ~+a. It is well-known (see e.g. Corollary 4.2 in [3]) 

that u(t% ~;+'~) = ~+n for all n C w. We can conclude, using Proposition 2.1, 

that  cof(J)  > ~+n for every n E a. 
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a.  oft vs S )  

It was shown in [7] tha t  for 5 _> n, 

cof(NSV', ]<~ ) cof NS [lal]<~ = ( ,~,lal r cov (a, (151<a) § (151<a) § 2). 

Now we establish a similar formula for ~f(NS[a,]<e). 

PROPOSITION 3.1: Assume ~ > ~. Then 

cof(NS[~ ]<~ ) = co f fNS [1~1]~ ] .cov (A, (]6]<~ +, (16] <~ n). 

Proof." Since N S  [~+~]<e : NS~, ]<~ for every { < e; ([7]), wecan  assume w.l.o.g. 

tha t  5 = ~ or a >_ ~ + ~ .  Select ab i j ec t ion  j :  [a[ > 6 so tha t  j ( a )  = c~ for 

all c~ < tc in case 5 = n or 5 > ~+, and let i denote its inverse. Define 

v: Pg3(5) ---4 P~(6) so tha t  

(i) If 0 < ~, the]] v(e) = (0- 3) U j[0-  3]. 

(ii) If n = 0 and either 5 = ~ or a > ~+, then v(e) = {0}. 

(iii) Suppose t~ = 0 and ~ < 5 < n+. Pick a bijection q: ~ > 5 \ t~. Now for 

fl E ~, let v({fl}) = co U {q(fl)} and v({q(fl)}) = w U {fl}. 

F o r a E P ~ ( A ) , s e t ~ = i [ a n h ] .  Now l e t a E C  v . I f 0 < ~ , t h e n 0 . 3 C _ ~ a n d  

0 . 3  C_ a. I f 0  = a a n d e i t h e r  5 =  a o r h _ >  a + , t h e n ~ n ( 0 . 3 )  = a n ( 0 . 3 ) .  

I f 0  = a and a < 6 < t~ +, then we h a v e w  C_ a and q[ana] = ( a n 6 ) \ a ,  
consequently I ~ N ( 0 . 3 ) [  = ]~6 = H aN61 = ] a n ( 0 . 3 ) 1 .  So in any case we get 

Inn (a. 3)1 = I~n (Y. 3)1. 

o.~g~v~[la/] <~, cof(NS~a~<~ CLAIM I :  . . . ~ . .  %~,lal ~ -< 

For the proof of Claim 1, select a family 3~ of functions from P~.3(5) to 

P~(A) so tha t  13~] = cof(NS[5, ]<~ and for every h: Pg3(5) ~ P~(/~), there 

is X E P~(3r \ {1~} with n a E x  Cg '~ C_ C~ 'a. For f :  Pga(6) > P~(A), define 

&~(I51) ~ P~(151) by ~(~) = ~[hnf(j[u])]. ~ow fix h: &.~(151) ---+ P~(151). 
Set A = {a E P~(A) : ~ E Ch'151}. Define h: Pg3(6) ---+ P,~(5) by h(e) = 

j[h(i[e])]. Given a E C~ '~ N ChA and u E /~n(ga) l (g) ,  we have h(j[u]) C a n 6 

since j[u] E Pl~n(ga)l(a N 6), and therefore h(u) C_ & Hence Cv~,~N Ch '~ C_ A. 

(NS[a]<0 * Thus A E ~,a ) , so there is X E P~(:~) \ {r with n ~ x  ~og'~,~ c_ A. 

Let d E C~ 'IalN(NgEXC~'Ial) - I f 0  < n, t h e n 0 . 3  C d a n d  0 . 3  C j[d]. 

If 0 = n and either 6 = n or 6 _> n+, then d N ( 0 . 3 )  = j[d] N ( 0 . 3 ) .  If 

= n and n < 6 < n+, then w C j[a~ and q[j[d]nn] = j [ d ] \ n ,  hence 
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IdM (~. 3)l = Idl = Ij[a~l = Ij[d] n (~. 3)l. In any case Ida (~. 3)1 = IJM M (~. 3)l. 
Now set 

a =  j [d ]u  ( U { g ( e )  : g E X and e E  P~j[d]M(-@.3)l(j[a~)}). 

Then lal < ~ by Proposition 1.5. It is simple to see that g = d a n d  a E 

Cg . H e n c e d E  Ngex ~,x Ch '161. Thus 

,-.~,," t ;XT r  '51]<~ Now we can conclude that w.~. .  ~,1~1 ) -< I:~I" This completes the proof of 

Claim 1. 

_ c o f  N S  [1~1]<"" CLAIM 2: cof(gs[5,]~ <~ < ( ~,1~1 

For the proof of Claim 2, set a = ,~ n I(~I <~. Select z c {z c_ )~ : IzI = a} 
so that IZ] = cov(A,(l(~I<~ and for every y E P~+()~), there is 

Z E Pc(Z) with y C_ UZ. For z E Z, pick a one-to-one tz: z -----+ P~.3((~) and 

define kz: P~.3(5) ~ P~()~) so that kz(tz(3)) = {/9} for all ~ E z. 
Select a family 7-/ of functions from P~.3(Ihl) to P~(151) so that 17-/I -- 

c o f ( g s  [lhl]<~ and for every t: P~.3([(~]) > P~(](~[), there is H E P~(7-/) \ {O} 

with NheH Ch 'lhl C_ Ct  'lhl. For h E H, define h: P~.3(5) > P~(~) by h(e) = 

j[h(i[e])]. 
Now fix g: P~.3(5) ---+ P~(,~). Pick Z E P~(Z) so that  Urang(g) C_ UZ. 

Put r~ = UzeZ U~Ezn~(e) tz(3) for e E P~.3((~). Define g': P~.3((~) ) P~(5) by: 
g'(e) = re if ~ < t% and g'(e) = re U Ire I + otherwise. Also, define g": P~.3 (]61) --+ 

P~(15]) by g"(x) = i[g'(j[x])]. Select g E P~(7-/) \ {~} so that NhEH Ch '151 C_ 

~ C2 '~] M (NzezCk~)  and e E P~an(~.3)l(a n (~). C~,', 151. Now l e t a E C  v' n(NhEH h " 

Clearly ~ E NhEH Ch 'lhl, hence ~ E Cg,', IS1. From this we can infer that  g'(e) C_ 

anh.  So given z E Z, we get that for each 3 E zNg(e), tz(~) E Pl~n(~.3)l(aM(~), 
hence k~ (tz (3)) C_ a. Thus z M g(e) C_ a. Since g(e) = UzEz(Z n g(e)), this gives 

g(e) c a. Thus 

n c F n N c_ . 
hEH zEZ  

It easily follows that cof(NS[5]~ <~ < ]7-{]. ]Z]. This completes the proof of  

Claim 2. 
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CLAIM 3: eov() , (161< ) *, (161< ) *, _< cof(NS[6,]<~ 
To prove Claim 3, select a family 3r of functions from PO.3 ((~) to P~ (A) so 

that 13r I = cof(NS[~5 ]<~ ) and for every h: PK3((~) ~ P~(A), there exists X E 

Pn(3r \ {0} with ngEx C~ '~ C_ C h . For g E X, set B~ = 5U (U ran(g)). Notice 

that IBm[ < 151 <~. 
Now fix A C_ A with IA] <_ 161 <~. Pick h: P~.~(6) ) P~(A) so that A C_ 

Uran(h). Then there is X E P~(~) \ {~} such that n ~ e x  Cg '~ c_ "~hrV~'x" For 

e E P~.a(6), define zr E P~(A) as follows. First suppose 0 < K. Put  p = 0.1% if 

0.  R0 is a regular cardinal, and p = (0.1%) + otherwise. Define sa for a < p by: 

so = c u p  and for a > 0, 

s~= U s~uU{g(d):gEXanddEP~,3(( U s~)NS)}. 
/3<~ " \ f l < a  " 

Now let z~ = U~<p s~. Next suppose 0 = n. Define y~ and G for a < n by: 

(o) y0 = e u 14 § u w. 

(1) = u(y  n 

(2) y~+~ = y~ U ( ~  + 2) U U{g(d) :  g E X and d_C y~ N 6}. 

(3) ya = U~<~ yz if a is an infinite limit ordinal. 

Select a regular infinite cardinal 7 so that ~ = T. Now let zr = y~. It is simple 

to see that ze E n g e x  C~ '~ and e E Piz~n(K3)l(z~ N 6). Hence ze E C~ '~ and 

h(e) C_ ze C_ U g e x B g .  So A C_ UCe~3(5 ) h(e) c_ Ugcx Bg. It follows that 

coy(A, ([5[<~ +, (16[<~ +, ~) _< [3r This completes the proof of Claim 3. I 

COROLLARY 3.2: Assume 5 _> K. Then cof(NS~a,]~ ~ = c-~(NS~yI]<~ 

COROLLARY 3.3: Let # be a cardinal with a <_ # < A. Then 
(i) I f #  <~ > A, then co f (NS  M<~ = cof (NS [']<~ 

(ii) I f #  <~ < A < (#<~)+~, then coUNS M < ~  ~,~ ) =  A. .cof(NS M < ~  ,~., ). 

(iii) I f ,  <~ < A, then coU ~rr176 A + cof(NS[:~<~ 

(iv) I f  A is a limit cardinal and either cf(A) < n or cf(A) > p<~ then 

cof(NS[~]<~ sup cof(NSM<~ 
tt<T<A 

Proof: Use Propositions 1.2 and 1.3 and Corollary 1.4. I 

cof NS[x]<~ = c o f ( N S ~ i  <~ (iv), let It follows from (i) that ( ~,x<~, ). Concerning 

us remark that (by Corollary 4.6 below) if p is a cardinal with ~ _< p < A, 
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_ _ ~ (  ["]<" and A a strong limit cardinal with ~ < cf(A) < #<~ then NS,~,), j > 

-~f( N S[,] <~ 

COROLLARY 3.4: Let # and p be two cardinals with ~ _< # < p < A. Then 
c ( q[,]<0 > _~_d_f(NS~]<o). o f , N ~ , ~  j _  

It can also be shown that  cof(NS~,x) increases with A. 

PROPOSITION 3.5: Let p be a cardinal with ~ _< p < A. Then cof(NS~,x) _> 

cof(NS~,p). 

Proos Select a family /C of functions from Pw(A) to P~(A) so that  I/C[ = 

cof(NS~,x) and for every h: P~(A) ----+ P~(A), there is K E P~(/C) \ {0} with 

N k E K C ~  ''x C C h . For u E P~(]C)\  {0}, define u*: P~(A) > P~(A) by 

u*(e) = Ukeu k(e), ~: P~o(p) > P~(A) by g(a) = N{x �9 Cu ~'x : {0} U a C x}, 

and ~: P~o(p) ~ P,~(P) by ~(a) = ~(a) fl p. 

Now fix f :  P~(p) > P,~(p). Select h: P~(A) ~ P~(p) with f C_ h, and 

K �9 P~(]C) \ {0} with ~'IaEK C~ 'x C_ C~ 'x. Set 

~;,p 
B = {b �9 P~(p): Vu �9 P~(K)  \ {0}(b �9 C~ )}. 

Now let b �9 B. Put  

y = bU U { g ( a ) :  a �9 P~(b) and u �9 Pw(K) \ {0}}. 

We have yNp = b since given a �9 P~(b) and u �9 P~o(K)\{0}, g(a)Np = g(a) C_ b. 

We claim that  y �9 ~keK Ck . To prove the claim, fix k �9 K and e �9 P~(y). 

If e C p, then 
k(e) C {k}*(e) C {k}(e) C y. 

Now suppose e \ p ~ 0. Let e \ p  = {~i : i _< m}. For i < m, pick ai �9 P~(b) 

and ui �9 P~o(K) \{O} so that  ~i �9 ~-7(ai). Set u = {k}UUi<mUi and a = 

(e A p) U Ui<m ai. Since e n p C a C g(a) and ~-7(ai) C_ g(a) for every i _< m, we 

get e C g(a). Consequently, 

k(e) C_ u*(e) C g(a) C y. 

This completes the proof of the claim. 
~,)~ 

From the claim we obtain y �9 Ch . Therefore, for every d �9 P~(b), 

f (d )  = h(d) C y ~ p =  b. 

This yields b �9 Cy m. So B C_ C] '~. It easily follows that  cof(NS~m) _< [~l. 
| 
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PROPOSITION 3.6: Assume -0 <_ cf(A) < ~;, and let v be a cardinal with 

- , - c - ~ ( ~  [ p ] < ~  n < v < A. Then cof(NS[X. ]<~ < sup,__,< a _,_~.~,p ). 

Proof." Set ~- = cf(A). Let < A s : 7 < 7 > be a strictly increasing sequence 

of cardinals greater than or equal to v such that  A = Us<~ As" Given 3' < T, 

select a collection 7-/s of functions from P~.3(As) to P~(As) so that  17/sl = 

cof(NS[~,] <~ and for every k: P~.3(As) > P~(~z), there is H e P~(7/s) \ {O} 

with n h e Y  C~ '~  C ~k . For h E 7-/s, define h': P~.3(,~) ----+ P~(As) by 

r '~ '~  for every a E ~h' " h'(d) = h(d N As). Notice that  a N A~ E --h 

Now fix f :  P~3(A) ~ P~(A). For 7 < v, define ks: P~.3(As) ~ P~(As) by 

ks(e ) = f (e)  n A~, and pick H s E P~(7-/~) \ {O} with nheY~ "~h C - - k ~  " 

Let a E [-}s<~ r'lh6H~ C~/~ and e E Pl~n(~.3)l(a). There is ~ < T such that  

e C_ A~. For ~ _< 7 < T, we havea71A s ~ C2~ ~ ,  hence ks(e ) C ar~A s . 
n~sk Therefore, f (e)  C_ a. So r~s<~ ('lheS~ C'h ;s C_ C/ . Now we can conclude that  

~-t(NS~[ <~ < I U~<,- nsl.  . 

We will see (Propositions 4.3 and 7.7 (ii)) that  if A is a strong limit cardinal, 

and cS(A) < 0 or cf(A) >_ ~, then ~ ( N S ~ ] ~  <~ > sup~_<p< x ~d-f(NS[~P,]<~ 

COROLLARY 3.7: Assume cf(A) < ~. Then cof(NS~,x)=sup,_<~<x cof(NS~,z). 

Proof: Use Proposition 3.5. 1 

COROLLARY 3.8: Let # be a singular strong limit cardinal, v be a cardinal with 

v > #, and W be a cardinal with 2 < T < cf(#) .  Then there exists ~1 < # such 

that c-~ ( N S , ) = v for every regular uncountable cardinal X with 7] < X < #. 

Proo~ By a result of Shelah [9], there is a cardinal a such that  2 _< a < # and 

coy(v, #, #, o) = v. Now let X be any regular uncountable cardinal with a < ~( 

and cf(#)  < X < #. By Propositions 1.2 and 1.3, 

v _< c o v ( v , / , / ,  x) _< cov(u, t~, ~, x) < cov(v, ~, p, a), 

hence cov(u,p+,p+,X ) = u. From Proposition 3.6 we can infer that  
- -  [,1<~ co f (gsx , "  ) < #. Hence by Proposition 3.1 c--o-f(gs[",]S') = u. | 
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4. cof(NS~5,]x<e[A) 

Our aim in this section is to evaluate cof(NS[5,]x<~ [A) for A in t~r + v"  ~ , x  . Let  

us first consider a few cases when c o f ( N S  , [A) does not  depend on A. 

PROPOSITION 4.1: 

(i) Assume tha t  A = a  +, a_< 6, a - -  a <~ a n d a  I~1<~ _< A. Then  for every  
[~<o + 

A ~ (NS~,]~) , cof(NS[5,]<e[A) = cof(NS[~,]x<~[A) = A. 

(ii) Assume tha t  a <_ 5 and A is a limit cardinal such that cf(A) > [6[ <~. 

Assume further that r I~1<~ < A for every cardinal r < A. Then for every  

A ~ (NS~, x [~1<~) +, cof(NS[~,l<~[A) = cof(NS[O,]x<~[A) = A. 

(iii) Assume that cf(A) < ~ <_ 6, and r (1~1<~) < A for every cardinal r < A. 

[a]<o + cof(NS~a,]<e : A ThenforeveryA ~ (NS . ,  x ) , [A) andcof(NS[~5,]<~[A) 
Acf()~). 

(iv) Assume that A is a strong limit cardinal and -~ ~_ cf(A) < ~. Then for 

( N S H < e )  +, ~(NS[~]x<"IA ) = A and cof(NS[~l<"lA) = A ~f(~'). every A ~ t ~,x 

Proof: 
(NS[5]<~) + Then  cof(NS[~]<~ = A since A < ~ , x  - (i) and (ii) Let  A e . ,x �9 , - 

A(I~I <~) -- A. Fhr thermore ,  cof(NS[~,]x~"[A)-- -- A since u( , ,p )  < A for every 

cardinal  p with a _< p < A. 

Since 5 > K and 2 (1~1<~) < A, we get cof(NS     lA)- (iii) Let  A E , ~ ' ~ , x  J �9 

a I~1<~ = A(I ~1<~). Fur thermore ,  since cf(A) < [6] <~ and r (1~1<~) < A for 
---- ~t~,~ 

every cardinal  r < A, we have A (l~l<~) = A cy(~'). With  Corol lary 3.2 and 

Corol lary 3.3 we obta in  

, - co f (NS [l@<~ c o f ( N S S I A )  < sup sup _< T([5[ <~) 

Finally, cof(NS[~,]<~lA ) _> A since u(~,p) < A cf(~) for every cardinal  p 

with K < p < A. 

(NSP']<~ + cof(NS[~]<~[A) ~<~ ~, (iv) Let  A E ~ .,x J �9 Then  = 0~, x = 0.,  x _< (A~) x = 

A cf(x). On the other  hand,  since A _> 2 <~, we have 0~,x = 0~,x<~x _> A<~ __ 

A cf(x). Proposi t ion 3.6 implies 

cof(NS[X,~<e[A) <_ sup cof(NS[~, ]<e) _< sup r (r<~) _< A. 
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Finally, cof(NS~,~ " 1 <  IA) _> A since u(K,p) < A cf(x) for every cardinal p 

with ~ _< p < A. | 

Our assumptions are sufficient but not necessary. To see this, suppose 

that  GCH holds, 6 >_ g and either 6 < A = a + and c f (a )  _> a, or 5 < A and 

is a limit cardinal with cf(A) > 151, or A is a limit cardinal with cf(A) < ~. 

Let r > A be a regular cardinal, and P be the notion of forcing for adding 

r Cohen reals. For each cardinal # > 0 and each cardinal p > a, we have 

(D~,p) V" _< (O~,p) Vp by a result of [7]. It follows that  in V P, ~ ( N S ~ , ~ I A  ) = 

for every A E (NS~,~) +. 

PROPOSITION 4.2: Let # be a cardinal such that-8 < c f ( # )  < ~ < # < A. Then 

cof(NS[~[ ]A) < sup~<j<u-dTi(NS[~.]YlA ) f o r  al l  A E , . .  ~ . ~  , . 

(Tv~[t~j< ~ + Proof: F i x A  E v ' ~ , ~  ) �9 Bet < #~ : {  < cf(p) > b e a s t r i c t l y i n c r e a s -  

ing sequence of cardinals greater than K such that  # = supf<c$(~) #~. Given 

f :  Pa.a(P) ----+ P~(A), set f~ = f r Pa.a(#f) for every { < c f (# ) .  Then 

: N Cf'  Q 

So we get 

cof N [u]<e a ,  70T(NS[~,[ ]<~ ]A)). ( S~,~, ~)  <_ c f ( p ) .  ( sup 
~<cf(,u) 

The desired result follows, since - ~ ( N S  [~]<6 , ~,~ IA) > c f ( # )  by Proposition 2.1. 
| 

Next we investigate lower bounds for c-~(NS~5,]<~ IA ). 

PROPOSITION 4.3: Let it be a cardinal with ~ < # < A, and d be a [#]<Cnormal 

ideal on P~(A). Then 

(i) c f (co f (J ) )  < n or cf(co----{(J)) > #<e. 

(ii) Assume #<e = #~. Then cof(d) > #<e. 

Proof: 

(i) Suppose that  t~ < p < #<e, where p = cf (cof (J) ) .  Pick E _C Pg3(#) with 

IEI = p, and let E = {ea : a < p}. Select X~ C_ J for a < p so that  

(i) [Xa[ < cof(J). 

(ii) X~ C Xa for all fl < a. 
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(iii) For every B �9 J ,  there is S �9 P~(U,~<p X~) with B _C US. 

Given a < p, set da = ea U (0.3) i f0  < ~, and da = ea U lea[ + otherwise. 

Let Ya = {AU (P~(A) \ d'a) : A �9 Xa}, and pick Ba �9 J so that  B a g  UT 

for every T �9 P~(Ya). Now 

~<,o 

put 

{a �9 P~(A): e~ e ~n(a.3)l(a)}). 

Since B E d, we can find a < p and S E P~(Xa) so that  B C_ US. Setting 

T = {A U (P~(A) \ d'~) : A E S}, we have B~ C_ B U (P~(A) \ d~) < UT. 

This yields the desired contradiction. 

(ii) We have cof(J) > ,~<~ #<a tt ~. _ ~ ,~  > = From u(~, #~) = tt ~ we can conclude 

that  cof(J) > #% I 

In particular, if 6 > ~ and 161 is a strong limit cardinal with cf([6[) < 0, 
, t l g ~ [ h ] < ~  + then cof(NS[a.]<~ ) > 2151 for every A E ~.,-~,~ ) . 

Deiinition: Given f :  Pa.a(6) ~ P~(~) and E C_ A, FI (E)  is defined as follows. 

Set p = 0- N0 if 0 .  No is a regular cardinal, and p = (0. Ro) + otherwise. Define 

E a C _ A f o r a < p b y :  

(a) E0 : E. 

(b) E~+l = E~ tO (uf[P~.a(E ~ M 5)]). 

(c) E~ = U/3<~ E/~ if c~ is an infinite limit ordinal. 

Then let F f (E)  = O~<p E~. 

It is simple to see that  

Fy(E) = N { D :  E _ D C__ A and Ve E P-~.a(D A 6)(f(e) C_ D)]. 

LEMMA 4.4: Let a' be an ordinal with 1 <_ 5' <_ A, and 0' be a cardinal with 
2 <_ 0' <_ n. Further, let a be a cardinal such that a > ~-[51 <~ and Fs(E)  # A 

for 511 E E P~(~) and f: P~r.a(a' ) > P~(~). Then -~f(NS[5,]<e[A) >_ er for 
*. 

NS[5]<~ Proof: Let A E (NS[~5,~ <~ and B~ E ~,~, I A for ~ < #, where # 
t%A 

is a cardinal with 0 < # < a. Pick f :  Po,.3(6') > P~(A) with Cf C_ A, 

and for c~ < #, g~: P~.a(6) > P~(A) with (B~MA) MC ~'~ = 0. Set E = g~ 

n U U~<~(uran(g~) ). Since IEI < o, we can find ~ E ~ so that  r • F~(E). 

Now let x E P~(#) \ {0}. Define b as follows. First suppose that  0 < n 

and 0 --7 < n. Set p = (0. No) U (0 --7. N0) if (0. Ro) U (0 --7. N0) is a regular cardinal, 

and p = ((0-Ro) U (0 --7. R0)) + otherwise. Define az for/~ < p by: 
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(a) ao = ( 0 . 3 )  U (0 -7.  3). 

(b) a~+l = aft U v U co, where v = U { f ( d )  : d �9 P~.3(az  M (Y)} and w = 

U{ga(e)  : a �9 x and e �9 P~.3(afi n (~)}. 

(c) az = U~<~ a~ if ~ is an infinite limit ordinal.  

Now let b = Uz<p az.  Next  suppose tha t  0 = ~ or 0 .7 = ~. Define sz and ~ for 

/3 < t~ by: 

(i) I f 0 < t ~ , s o = 0 . 3 .  If 0 --7 < t~, so = 0.7. 3. I f 0 = 0  I = t ~ , s o = { 0 } .  

(ii) 7Z = U(dz M t~). 

(iii) sfi+l = sfi u (Tz + 2) u y u z, where y = U { f ( d )  : d E Plszn(0--;-3)l (dfi M (~')} 

and z = U{g~(e) : a e x and e e P~sjT(~.3)l(8/3 ~ (~)}. 

(iv) SZ = U~<fi s~ if ~ is an infinite limit ordinal.  

Select a regular  infinite cardinal  v < g so tha t  

(0 )  = 

(1) I f 0 < n ,  t h e n 0 _ < 7 .  

(2) If 01 < n, then  0' _< T. 

~'~ (7 C ~'~ Moreover,  ~ ~ b since b C P f ( E ) .  In any case we h a v e b ~  C f  M~ ~ae~ ~ �9 
A 

Hence P~(A) - {~} ~Z U~6z Ba.  I 

PROPOSITION 4.5: Let  51 be an ordinal wi th  1 < ~1 < A, and 01 be a cardinal 

wi th  2 <_ 01 <_ ~. A s s u m e  that  A > ~ .  [fi[<~176 Then c--d(NS[~,J<~ > A 

Proof." The  result follows from Lemma  4.4 since Irf(E)[ < A for all E C P~(A) 

and f :  P~r.3((~' ) > P~(A). I 

COROLLARY 4.6: Let  51 be an ordinal wi th  1 <_ (~i <_ A, and 01 be a cardinal 

wi th  2 <_ O' < t~. A s s u m e  that  tc << 5, ~ <_ cf(A) < 1~[<~ < A and [5'[ <~ < A. 

rNr  6 ] Then -~of(NS [A) > A for every  A C ~ ~ , ~  j . 

Proof: Use Proposi t ion  4.3. I 

PROPOSITION 4.7: Let  O' be a cardinal wi th  2 <_ O' <_ ~, and ~ be the least 

cardinal r such that  r <~ >_ ~. A s s u m e  that  ~ < A and [~[<~ < a. Then  

~of(NS~e]<~ >_ a for  every  A E (NS[~<~ . 

Proof: Suppose tha t  there  exists a [A]<~ ideal on P~(A). Then  a > ~, 

and (u<~ <~ = u <~  for every cardinal  u > ~. Hence for each f :  P~7.3(A ) 
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P~(A) and each E E P~(A) \ {0}, we get IFs(E)I < (~. IEI) <~ < A. Now apply 

Lemma 4.4. I 

In particular, if A > ~. 151 <~ and A E NS*,x ,  then cof(NS[~, ]<~ I A) > A. If 

in addition ~ _> ~ and ~; <__ cS(A) _< ]~]<~ then "~-f(gsl~,]~ "~ !A) > A - -  see the 

next result. 

COROLLARY 4.8: Let O' be a cardinal with 2 < O' < ~. Assume that 

,~ _< (~, ~ _< cf(A) _< I(~[ <~ < A, and #<~ < A for every cardinal # < A. 
<01 * 

Then cof(NS2,1~ > A for all A E (N S~X] x )  . 

Proob Use Proposition 4.3. I 

5. cof(I~,xl A) 

PROPOSrrION 5.1: cof(I~,x) = A. 

Proof'. For each B E I~,x, there is a E P~(A) such that  B C_ U~Ea(P~(A) \ {a} ) .  

15"om this we get at once cof(I.,~) _< A. The reverse inequality is immediate 

from the remark that given fewer than A many sets in P~(A) their union is a 

proper subset of A. | 

The rest of the section deals with the question of whether there exists A 

such that  cof(I~,xlA) < A. 

PROPOSITION 5.2: 

(i) IrA < n +~, then cof(I,~,xlA ) = A for every A E I + 
- -  t ~ , ) ~  ' 

(ii) IfI~l <? < A, then cof(I~,alA ) = A for every A E (NS[~,]x<~ 

(iii) Let a be the /eas t  cardinal r such that ~r <~ >_ A. Then cof(I,~,x [A) _> a for 

every A E (NS[~XI'") * 

Proo~ By Propositions 5.1, 2.2, 4.5 and 4.7. I 

PROPOSITION 5.3: Let  a be a cardinal with ~ < a < A. Set t ing 0 = (c](a))  +, 

assume that 0 < n, there exists a [a]<~ idea/on P~(A), and a is the least 
[~]<o * 

cardinal r such that r <~ >_ A. Then cof(I,~,xlA ) = a for some A E (NS~,x ) . 

Proo~ Pick a surjection j : Po(a) ---+ P2(A). Then given y E A, we have 

o~Er 
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for any  e E Po(a) such t h a t  j (e)  = {7}. Consequently,  cof( /~,~lCy 'A) _< a.  The  

reverse inequal i ty  holds by Propos i t ion  5.2 (iii). I 

If  A = ~, then  by Propos i t ion  2.1, cof(I~,~IA) = A for all A. Now suppose  

A > ~. I f u ( ~ , 7 - )  < A for every cardinal  7 with ~ _< T < A (under  GCH,  

this a s sumpt ion  is equivalent  to: A is ei ther  a l imit  cardinal  or the  successor 

of  a cardinal  of cofinality grea ter  than  or equal  to ~), then  by Propos i t ion  2.1, 

cof(I~,~[A) = A for all A. On the  o ther  hand,  if there  exist two cardinals  ~- < 

and  p < A such tha t  p<~ > A and #<~ < ~ for every cardinal  # < ~ (under  

GCH,  this means  t ha t  A is the  successor of a cardinal  o of cofinality less t han  

and s is not  the successor of a cardinal  of cofinality less t han  cf(a)) ,  then  

by Propos i t ion  5.3, cof(I~,~lA) < A for some A. We will see t h a t  the  same 

conclusion follows f rom the hypothes is  t ha t  A is the successor of a cardinal  a 

such t ha t  c f (a)  < s and  [~; holds. On the o ther  hand,  the conclusion fails if 
2 

A = a +, ~ = u +, 0 ~ = 0, u <~f(") = ~, and  A ~' [~]~,<~. Thus,  the  asser t ion 

"cof(I~,~+, IA) < c~+~ for some A" is consistent  with ZFC, but  so is (relat ive 

to a large cardinal)  its negat ion.  First ,  we reformula te  our problem.  

Definition: For two cardinals  p and 0 such t ha t  2 _< p < ~ < ~r, A:',~ asser ts  

the existence of y~ E Pp(a) for a < A such tha t  [{a < A : y~ _C d}[ < ~ for all 

d E P~(~r). 

LEMMA 5.4: Let p and a be two cardinals such that 2 <_ p ~ ~ ~ o, and let 

Ya E Pp(O) for a < A be such that [{a < A : y~ C_ d}[ < ~ for every  d �9 P~(o) .  

Then I{a < A: y~ C x}[ < n f o r e v e r y x  �9 P~+(o). 

Proof'. Suppose,  to get a contradict ion,  t ha t  there  is e C_ A such tha t  [e[ = n+ 

and [UaEe Y~[ < n+.  Then  I Uaee  y~l = n- Select a bijection j :  n ---+ [ . Ja~ ya- 

For a E e, let ~ be  the  least  /~ < n such that. ya C_ j[/3]. Pick e'  C e and 

< n so t ha t  ]e' I = n+ and ~a = ( f o r  a l l a  E e'. Then  [U~Ee'Ya[ < ~, a 

contradict ion.  I 

PROPOSITION 5.5: Let p and o be two cardinals such that 2 <_ p <_ ~ < g. 

Then a~'P implies A~'+ p 

Proof." This  is an immed ia t e  consequence of L e m m a  5.4. I 

c r ~  Definition: Given a cardinal  g _> ~, J[~,x s tands  for A~I ~. 
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PROPOSITION 5.6:  

(i) Let  ~ be a cardinal with n <_ a. Assume that A~,~ holds, 6 < A and there 

(NS[~]<~ + exists a [5]<~ ideal on P~(A). Then there is D ~ ~,~ ) such 

that cof(I~,~[D) _< (z. 

(ii) Let a be a cardinal with ~ <_ a, and p be a regular infinite cardinal with 

p < ~. Assume that A~',; x holds and there exists a [A]<~ ideal on 

P~(A). Then there is D �9 (NS~,~ ) such that cof(/~,~[D) <_ ~r. 

Proof' .  

(i) The result is trivial in case c~ > A. Now assume a < A. Select ya �9 P~(~) 

f o r a � 9  ] { a � 9  C_d}[ < ~ f o r e v e r y d � 9  Let 

D be the set of all a �9 P~(A) such that  {a r A \ 5 : y~ C_ a} C_ a. Then 

D �9 (NS[S,]~<~) +, since given f :  P~ ~((~). ---+ P~(A), we have 

b U { a  �9 A \ 5: y~ C_ b} �9 D N C f  

for any b C Cf  . Furthermore, cof(I~,~[D) < a since given c �9 P~(A), we 
A 

have D M c' C_ ~, where c' = (c N a) U U~ec\~ Y~" 

(ii) Let us assume that  a < A, since Otherwise the result is trivial. Select 

y~ �9 Pp(a) for a < A so that  I{a < A: y~ C d}] < ~ for every d �9 P~(a). 

Let D be the set of all a �9 P~(A) such that  {a �9 A : y~ ~ a} C_ a. To prove 

( hTq[)~]<~ + that  D �9 v , ~ , ~  ) , fix f :  P~.3(A) ~ P~(A). First suppose ~ < ~. Pick 

a regular cardinal X so that  p .  0 _< X < ~. Now define a~ for 3 _< X by: 

(a) a0 = 0" 3 

(b) az+l = az U { a  �9 A: ya c_ a} u Ue~P~.3(,~,, ) f(e). 
(c) a~ = U~<~ a~ if/~ is an infinite limit ordinal. 

Then we have a x �9 D M C I '  . Next suppose 0 = n. Define b~ and 7Z for 

/~ < n b y :  

(0) b0 = w. 

(1) h'~ = U(b~ f-I n). 
(2) = u + 2) u IbH + u �9 c_ bg} u 

(3) b~ = U~<~ b~ if/3 is an infinite limit ordinal. 

Now select a regular cardinal T so that  p < 7- < t~ and ?~ = ~-. Since 

[b~[ = ~- = b~ tIT, we get b~ �9 D M C~ '~. 

Finally, to see that  cof(I~,~lD ) < a, it suffices to observe that  for any 

c � 9  I 
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PROPOSITION 5.7: Given a cardinal a >_ n, the following are equivaJent: 

(i) A~, x holds. 

(ii) cof(I~,,xlA) < a for some A E J~+a. 

(iii) There is an ideal J on P~(A) such that co l ( J )  _< a. 

Proof." 

(i) ~ (ii) By Proposi t ion  5.6 (i). 

(ii) --+ (iii) Trivial, 

(iii) ~ (i) Let  J be an ideal on P~(,~) such tha t  co l ( J )  _< a. Select D r  J* 

for /~ < cr so tha t  for every D E J*,  there is x E P,~(a) \  {0} with 

~Zex DZ C_ D. For & E )~, pick y~ E P~(a) \ {0} so tha t  ~ZE.v,~ DZ C_ {~}. 

Now let. d �9 P~(a) \ {O}. Then  {a < ,~: Ya C_ d} C_ c for any c E N/3Ed DZ, 

hence ]{a < A : ya C d}l < n. | 

COROI;LARY 5.8: Let cr be a cardinal such that n _< a _< A and A~,a holds. 

Then u(n, a) = u(a ,  A). 

Proo~ By Proposi t ion  5.7, there  is A E I + such tha t  ~ ( I , ~  x[A) < a. Then  

we get. 

u(~, A) = cof(I~,xIA) _< u(n, cof(I~,aiA)) <_ u(n ,a)  < u(n,  A). | 

We now consider tile question of whether  there  exists D E NS+x  such 

tha t  cof(l~,a [D) < A. Proposi t ion  5.6 (ii) gives a positive answer in some cases, 

but  it does not  apply if, e.g., n -- wl and ,\ = w~0+l. To deal with such cases we 

i n t r o d u c e  a (stronger) variant  of A ~ N , ) ~  - 

Definition: For two cardinals p and a such tha t  2 _< p < n <_ a,  B~I~ asserts 

the existence o fy~  E Pp(a) for a < A such tha t  for every nonempty  e E P,~+ (A), 

there  is a < h~-to-one fimction in 1-I~Ee Ya. 

LEMMA 5.9: Let p and ~ be two cardinals such that 2 < p < K, <_ a, and let 

y~ E Pp(~r) for a < A be such that for every nonempty e E P~+(A), there is 

a < h=-to-one function in 1-I~E,,Y~. Then [{ct < A : y~ C_ d}[ < ~ for every 

d e P~(~). 

Proof  We have to show tha t  I U~E~ = ~ for every e C_ A with lel = ~. Given 

such an e, select a < h>to-one, function h E l-IaeeY~" Define by induct ion ~3 E e 

for /3 < n so tha t  h((~) r h ( ~ )  for all 7 < 3. Then  clearly I Ur y ~ l  = h:. 

I 
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PROPOSITION 5.10: Let p and ~r be two cardinals such that 2 ~ p ~_ n ~ a. 
~r,p 

Then B::; x implies A~,~. 

Proof: The result follows immediately from Lemma 5.9. I 

Definition: Given a cardinal a ~ ~, B;,~ stands for B~,~. 

PROPOSITION 5.11: Let a be a cardinal such that a >_ ~ and B~,x holds. 

Assume that there exists a [A]<e-normal ideal on P~(A). Then there is D �9 
(~[~]<~ + 
. , ~ , ~  ) such that cof(I. ,~]D) _< a. 

Proof: Let us assume that  a < A, since otherwise the result is trivial. Select 

ya E P~(~r) for a < A so that  for every nonempty e E P~+(A), there is a 

< n-to-one function in I-[~c~ Ya- Let D be the set of all a E P~(A) such that  

(N [~!<0 + {a < A: Ya C_ a} C_ a. To prove that  D E S~,~ , , fix f :  P~.3(A) ~ P~(A). 

Define ez for 3 < n by: 

(a)  e0 = ~, 

(b) ez+l -- e~ U {a < A: y ,  C e~} U Ubc~.3(e~) f(b). 

(c) e z --- Ue<z e~ if/~ is an infinite limit ordinal. 

Now set E -- U~<~ ez. Then IE I  - -  n and {a < A : y~ c E} C_ E _C A. 

Moreover, f(b) C_ E for every b E P~.3(E). Select a < n-to-one h E [Ia<EYa, 

and let H be the set of all a �9 P~(A) such that  h- l ({~})  C_ a for every ~ �9 

a M ran(h). Clearly, H �9 (NS[~, ]<~ . Pick a �9 { 0 } MH  MC~ '~. It is simple to 

see that  a n E �9 C~ '~. Now suppose that  a �9 A is such that  y~ C a M E.  Then 

we get a E E and h(a) �9 a M ran(h). Since a �9 H,  we can conclude that  a �9 a. 

Thus a M E �9 D, hence D M C~ '~ r ~. Finally, if c �9 P~(A), then D M d C_ ~, 

where c' = U~ecy~. This yields cof(I~,~lD) <_ a. I 

6. A~,~ a n d  /~,~ 

This section is concerned with the t ruth of A~,~ and/3~,~. 

Definition: Given a set A, we set [A] 2 = {a _C A : I al = 2}. 

2 Definition: Given two cardinals X and 7, A > [n]x,< ~ means that  for every 

F: [A] 2 ~ X, there is A _C A such that  IA[ = a and [{F(a) : a E [A]2}[ < T. 
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PROPOSITION 6.1: Let # be a singular limit cardinal such that c f (# )  < t~ < 2 <~ 

and s > [ ]~f(~),<c/(~)" Then setting a = p = (c/(it)) + and A = 2 ~, 

holds. 

Proof: Select a s tr ict ly increasing sequence < #~ : "7 < c f (# )  > of infinite 

cardinals so tha t  # = supT<c/(,)  #~. Let  Q be the set of all X C_ # such tha t  

{It~ : ? < c f (#)}  C_ X .  Pick a bijection j :  U~<c/( , )  P (#~)  ~ a.  For X E Q, 

let yx  = { j ( X  M#7) : 7 < e l (# )} .  Notice tha t  Yx C_ a and ]YxI = cf(It). 

Now fix 3~ C_ Q with ]E I = n. Define F:  [3~] 2 ) c f (# )  by: F ( { X ,  Z ' } )  = the 

least 7 < c f (# )  such tha t  X M # 7  ~ X ' M # 7 .  Select :P C_ 3s and ~/ < cf(It) 

so tha t  ]y] = n a n d F ( w )  < ~ l fo ra l lw  E [y]2. Define k : y  ~ U x e : p Y x  by 

k (X)  = j ( Z  Mpn ). Then  k is one-to-one,  hence ]Uxe3~yx] = n. Since ]Q] = A, 

we can conclude tha t  A~:~ holds. I 

The  following is due to Shelah (see Theorem 6.3 in Chap te r  II of [8]). 

PROPOSITION 6.2: Let  p and a be two cardinals such that c f (a)  < p < n < 

a < A. Assume that u(~ +, A) < cov(a,  a, p, 2). Then r~'P holds. 

Proo~ Select B E I + ~+,~ so tha t  ]B I = u ( a  +, A). For b E B, let b = U~<cf(~) db, 

where Ida] < a for every 7 < cf(a) .  Pick ya E Pp(a) for a < A so tha t  

Ya q: Ucc~nd~ Yr for every b E B and every 7 < cf(a) .  Now let e E P~+(A)\{0} .  

Select b E B so tha t  e _C b. Define g: e ~ el (a)  by: g(a)  = the least "7 < cf(a)  

such tha t  c~ E db. Define h E I-[~Ee Y~ SO tha t  h(c 0 • Uceand~(,) Yr for a E e. 

Given u C_ e with lu] = (cf(a))  +, select v C u so tha t  I v] = (cf(a))  + and g is 

constant  on v. Then  h is one-to-one on v and therefore  not  constant  on u. Thus  

h is < (cf(a))+-to-one. I 

COROLLARY 6.3: Let p and a be two cardinals such that (a) c f (a)  < cf(p),  

(b) p < n, (c) n.  2 <p < a, (d) a + < a <p, and (e) u(p ,u )  < a for every cardinal 

u with p <_ u < a. Then B::~+ holds. 

Proo~ It is simple to  see tha t  a <p = 2 <p �9 u(p, a) and 

a < u(p, a) = cov(a,  a, p, 2 ) .  sup u(p, v). 
p_<~,<a 

So we have 

cov(a, a, p, 2) = a<P > a+ = u(a +, | 
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In par t icular ,  if 2 ~~ < ~ and 1%+1 < ~ o ,  then  B ~~ holds for all n COn ~02w + 1 

with 0 < n < co. 

By  work of Todorcevic  [12] and of Cummings ,  Fo reman  and Magidor  [1], 

if cr is a singular  infinite cardinal ,  and [3* holds (or there  is a very good scale on 

a) ,  then  one can find Ya C_ a for a < a + so t ha t  (a) for every a < a +, Uya = a 

and o.t. (Ya) = c f (a ) ,  and (b) given ~ < a +, there  is g: ~ > a such t h a t  

\ n (y., \ = 0 

for any  a ,  a ~ E fl with a # cd. As an immedia te  consequence we get: 

PROPOSITION 6.4: Let a be a cardinal such that c f (a )  < n < a and [3* holds. 

Then B ~'(cf(~))+ holds. 

T h e  rest  of the  section is devoted  to the proof  of the result  of Todor-  
2 cevic [13] t h a t  cow+l ---+ [ co l ]~ ,<~  implies the  failure of A~]~ For the  

2 consis tency of w~+l > [ co l ]~ ,<~  see [6]. 

2 LEMMA 6.5: Let r be a cardinal such that n <_ ~- < A and A ~ [n]~,<~, and let 

C C_ P(T) with [cI -- ~. Then thereis  b E P~(r) such that [ {cab  : c e C}I _> n. 

Proof: Select a bi ject ion j : A ) C. Define F :  [A]2 ~ ~- so t h a t  F({a ,  3}) E 

j (a )Aj ( /~) .  Pick e C_ A so t h a t  lel = t~ and I{F(x)  : x E [e]2}l < n. Then  

b = {F (x )  : x E [e] 2} is as desired. I 

LEMMA 6.6: Let u and ~ be two cardinals such that co < u < n < a < A and 

A~'"+ holds. Then there  is C C {c C ~<"  : [c[ = c f (u )}  such that IcI -- ~ and  

I{c E C :  IcMb I = c f (u ) }  I < n for every  b E P ~ ( a < ' )  (and hence A : ; [  ' ( c f ( " ) ) + '  

holds). 

Proof: Since z l~ ' '+  holds, there  is A C P . + ( a  \ n) such t h a t  IAI = A and "~t% A 

I U x I = n for every x C_ A with Ixl = n. Fix a s tr ict ly increasing sequence 

< r]~ : ~ < c f (u)  > of ordinals  with sup~<cl(,)r]~ = u. For a E A, select a 

bijection ja:  u ) a U u  and put  ~ = { j a r  u~ : ~ < c f (u)} .  Clearly, B = 

{g : a E A} has size A. Now let d E P~(U~<cf(~) 5v~), where J-~ is the  set of all 

funct ions f rom u( to  a.  Set z = UtEd ran(t) .  Then  z E P~(a) .  Moreover,  for each 

a E A, I~Mdl = c f (u)  implies t ha t  a C_ z. Hence I{b E B :  IbMdl = c f (u )}  I < n. 

T h e  desired conclusion easily follows. I 
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PROPOSITION 6.7: Let u and a be two cardinals such that (a) w _< u < ~ < a, 
2 (b) a <" < A, (c) p<ef(~,) < a for every cardinal # < a and (d) A > [a]~<,,<~. 

Then a~"+ does not hold. 

Proo~ By Lemmas 6.5 and 6.6. 

OJ 2 COROLLARY 6.8: Let a be a cardinal such that wl <_(7 < AandA ) [ 1]a,<a;1. 

Then A~o ~,~ does not hold. 

7. I~,~[A 

In this section we deal with the question of whether for ~ > a, there is A such 

= NS[~]<~ = I~,~[A. Our key tool for getting that  N S  [~]<~ I~,x[A, or even t%/~ ~,~ 
positive results is the following abstract version of a result of Baumgartner 

(Theorem 2.3 in [4]). 

LEMMA 7.1: Let I and J be two ideals on P~(A) such that I C_ J. Assume that 

for any 13 C_ Y with [B[ = cof(J),  there is D E J+ such that D M B E I for every 

B E B. Then there is A E J+ such that JIA = I[A. 

Proof: Select B _C J so that  [B[ = cof(J)  and for every C E J, there is 

x E P~(B) with C C_ Ux. Now let A E J+ be such that  A M B  E I for all B E B. 

Given C e J n P(A) ,  select x E P~(B) so that  C C_ Ux. Then C C_ A n (tAx), 

and since A n (Ux) belongs to I, so does C. Hence I + n P(A)  C_ J+. I 

PROPOSITION 7.2: Assume 6 >_ ~, and let d be an ideal on P~(A) such that 

eof(J)  _< I~l <~ and P~(A) r V[~]<~ Then there is A E (V[~]<~ * such that 

JIA = I~,~IA. 

Proof: If Be E g f o r  e E Py(5), then A n B e  E I~,~ for a l l e  E Py(6), where 

A = P~(A)-  (VdeP~(~)Bd). So the desired assertion can be inferred from Lemma 

7.1. I 

COROLLARY 7.3: Let r be an ordinal with a <_ ~ <_ 5, and ~ be a cardinal with 

[a]<o * thatcof(NS[r ) < 2 <_ ~l <_ O. Assume that  there exists C E (NS~, x ) such 

[5[ <~. Then NS[r = I~,~[A for some A E (NS[~]<~ *. 

Proo~ Set J = NS[r We have 

vE l<~ v E 1  (NsSIC) = vE 1<~ = N s  - -  , , ~ : , ~  - 
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(NS[5]<0 * Hence, by Proposition 7.2, there is D E ~,~ ) such that J[D = I~,~[D. 

Now setting A = C ~ D, we get 

NS[r = (J[D)[C = (I~,~[D)[C = In ~[A. 1 t%)~ 

�9 [ a ]  < ~  
COROLLARY 7.4: Assume that 5 >_ ~ and A (lal<a) = A <a Then NS~,~ [A = 

[~]<~ * 

I~,~IA for some A E (NS~,~ ) . 

since cof( q[a]<e _ Prook The result follows immediately from Corollary 7.3 " , N ~ , ~  j < 

cof(NS[5, ]<~) < A(I<<~). | 

COROLLARY 7.5: Assume that 5 >_ t~ and J is a [5]<O-normal ideal on P,~(A) 

with cof(J) _< I($[ <a. Then J = I~,~[A for some A E I~+~. 

Proof: This is an immediate consequence of Proposition 7.2�9 | 

Suppose 5 _> n. If there is A E I~+~ such that  NS  [~]<~,~ = In,~IA , then by 

a result of [7], I(fl <a _> A. From this and Corollary 7.5 we can conclude that  

cof(NS[a,]~ <e) _< [5[ <a if and only if NS  [a]<e~,~ = I~,~IA for some A. 

PROPOSITION 7.6: Assume that A is a strong limit cardinal and-O < cf(A) < n. 

T h e n  = I , IA s o m e  A 

Proos By Proposition 3.6 and Corollary 7.5�9 | 

Corollary 7.5 can also be used to obtain a lower bound for cof(NS~,~). 

PROPOSITION 7.7: 
(i) Let a be the least cardinal r such that r <~ >_ A. Assume 5 >_ a. Then 

(ii) Assume that cf(A) _> n and #<a < A t'or every cardinal # < A. Then 

c~ NS[x]<~ J~ > A<a" 

Proo[: [~]<~ * 

(i) Suppose otherwise. Then by Corollary 7.5, there exists A E ( N S ~ , ~ )  

such that N S  {a]<~ = I,r Now Proposition 5.2 (iii) tells us that 

cof(I~,~lA) _> a, which is a contradiction. 
[;q<e * 

(ii) Supppose otherwise. Then by Corollary 7.5, there is A E (NS~,;~)  such 

that  N S  [~]<e ~,~ = I~,~IA. Now Proposition 5.2 (iii) says that cof(I~,~lA ) = 

A, contradicting Proposition 4.3. | 
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In particular, cof(NS~,x) _> A. Moreover, this inequality is strict in case 

cf( ) >_ 
If Ns[hl<~ = I~,~[A, then clearly cof(NS[~,l~'~ _< A. Let us next 

discuss the problem whether for 5 _> ~, there is A such that  eof(NS I A) < A. 

LEMMA 7.8: L e t a  b e a c a r d i n a l w i t h a  <_ a < A, ~ b e a n o r d i n a l w i t h 5  <_ ~ <_ )~, 

andr~ b e n  cardinal with 0 <_ ~ <_ ~. Assume that  (a) 5 _> a, (b) there is 
[r * _ ~'~TC'[r * D ~ (NS~, x ) such that cof(I~,alD ) < or, and (c) there is C ~ t~'o~,x ) 

cof(NS[~]<~ ,-~ ~ ~re[r <" * such that . ,~,x ,_,) _< ]r Then there is B ~ ~ o~,~ ) such that 

cof(NS[~,lx<~ ) <_ ~. 

Proof'. We can apply Corollary 7.3 and obtain A ~ (NS[r * such that  

N,q[6] ~ ~ ~,~,a ~ = I,~,xlA. Setting B = DMA,  we get cof(NS~,]~ <~ ]B) _< cof(I~,xlD) <_ 

o-. I 

LEMMA 7.9: Assume that 5 _> ~, A = ~r + a n d  [5[ <~  _< a .  Then there is 

(Ns[dl<~ A e NS*,x  such that for every B e ~,~ M P(A), -~(NS[~)x<~ ]B) _< 

cof(  , lm. 

Proof'. For 3' < A, select two bijections Jr: 3  ̀M a > 3  ̀ and k-y: /~ (a) 

P2(3` U a) so that  

(i) If 3  ̀_< a, then Jr is the identity on 7, and k~ the identity on P2(a). 
(ii) If 3  ̀> a, then k~(0) = 0 and k.y({~}) = {j~(~)}. 

Let q denote the inverse of k5. Set W = {a E P~(A) : a N n E a} and 

A = {5} n W Cl Cg 'x N (A.yexCk~). 

(~,re6u~, and for every 3' E A, ~'~'x * (-7,~')~ C t~ ,~ ,~ ,  x ] We have W E (NS~,x) , _q ~ k .  r E 

rNS[~]<~ (N r Hence A belongs to NS*,~ (and so to t ~,~ j ). Select a col- 
-2--2-i~ct r~r o[6ncr] <~ lection 2 of functions from P~.a (5 M a) to P3 (~) so that  121 = ~ - ~ ,  o~,~ j 

and for every g: P~.3(5 N a) ~ P3(a), there is x e P~(5 c) \ {0} with 

N{a e c V :  an,  �9 c 
J'E~c 

For f E ~', define f :  P~.a(5) > Pa(a) by f(e)  = f(j~-l(e)). 

Now let h: P~.s(5) > Pa(A). Pick3` E A so that  h(e) _C 7 for a l l e  E 

P~.3(6). Define g: P~.a(5 M a) > P3(7 M a) by 9(d) = j~l(h(j~[d])).  Select 
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x �9 P~(r \ {0} so that  N s e ~ { a  �9 c s : a n ~ �9 ~} c_ C;  . Set Y = 

A n {7} N n f c x  C~ '~" We claim that  Y C_ C~ '~. To prove the claim, let b �9 Y 

and set a = b n ( r .  Obviously, a n ( ~ . 3 )  = b N ( 0 - 3 )  and aNt~  �9 ~. Let 

f �9 x and d �9 Pi,n(~.3)l(a n (5 N a)). We have jh[oq �9 Plbn(~.3)l(b N 5), since 

b �9 Ck~ . So it follows from b �9 C~ '~ that  f (d)  C_ bn  a. Thus a �9 nyex  Cf , 
~,a ~ , ~  hence a �9 C~ . Now let e �9 PI~N(~.3)I(bNh). Since b �9 ~q , we have j [ l ( e )  �9 

Plan(-L3)I(aN(hNa)). From a �9 Cg , we can infer that  j~ l (h(e) )  C_ a. It follows 

that  h(e) C_ b, since b �9 Ck~ . This completes the proof of the claim. Now given 

( hT q[5]< o + B �9 v" ~ , ~  ) M P(A),  we get 

n oF  nc; 
fez 

Consequently, cof(NS~,]~ <~ IB) _ I~-I" cof(&,~lB). 

PROPOSITION 7.10: Let a be a strong limit cardinal, and let r = (cf(a))  +. 

Assume that 0 < r < ~ < cr < 5 < or+ < A < 2 ~ and there exists a [a] <~- normal 

rar r * [~]<~ ideal on P,~(A). Then there is T �9 ~ , .~ ,~  ) such that (a) NS~,~ I T = I~,~IT, 
and (b) cof(I~,~lT) = a. 

O.] < T * 
Proof: By Proposition 5.3, there is D C (NS~,~ ) such that  cof(I~,~[D) = a. 

Furthermore, Propositions 3.1 and 4.1 (iv) yield cof(NS[5,]~ ~~ _< a .  A ~ = [5[<~. 

N~[6]<~ ~* such that  cof(NS[6, ]'~ [B) = Therefore, by Lemma 7.8, there is B E ( ~ ~ , ~  / 
[5] <0 

a. From Corollary 7.5 we can infer that  there is C �9 I.+), such that  NS~,~ [B = 

I~,~]C. Then B \ C  �9 NS[6. ]<~ hence P~(A)\C �9 N S  [6]<~ So setting T = BNC,  , e ; , )~  " 

[6]<~ �9 [~]<0 
we have T �9 ( N S ~ , ~ )  and NS~,~ IT = I~,~]T. Proposition 5.2 (iii) gives 

a < co-f(I~,~]T). Conversely, cof(I~,~[T) < a is true because cof(NS[6, ]<~ IT) < 
4,1 ~ ) cof(N B = ~. | 

Note that  i f a  is a strong limit cardinal such that  0 < cf(a)  < ~ < a < ~ < 

a + _< A < a +~, then by Corollary 3.2, Corollary 3.3 and Proposition 4.1 (iv), we 

have cof(NS[a, ]'~ = A, hence by Corollary 7.3 and Proposition 5.2 (iii), there 

[~]<~ * N S  [a]<~ IA -- I~,~IA, and (b) cof(I~,~l A) -- A. is A �9 ( N S ~ , ~ )  such that  (a) ~,~ 

PROPOSITION 7.11: Let a be a strong limit cardinal, and let r = (cf(a))  +. 

Assume that r < ~ <_ ~ < cr and there exists a [cr]<~-normal ideal on P~(A). 

Then 
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[ O ] < 0 . T  * 
(i) Ira  < A <_ 2 ~ then eof(NS~6,1<~ ) = a for some B �9 (NS~,a ) . 

�9 

(ii) / fA  = or+ and ~- < 0, then c o f ( N S  = a for some B �9 ~ r e [ a ] < ' )  

Proof: 
[o1<. * (i) S u p p o s e  a < A _< 2 ~ Then  by Proposi t ion  5.3, there  is D in (NS~, x ) 

O- < 0 . ~  * 
(and hence in (NS,,]~ ) ) such tha t  cof(I~,x]D) = a. Fur thermore ,  we 

have 
(T< 0"~" 

Now the  assert ion follows from L e m m a  7.8. 

(ii) Suppose A = a + and ~- < 0. Then  by Lemma  7.9 and Proposi t ion  4.1 

(NS[6]<~ (iii), there  is A E NS*,a such tha t  for every B E ~,x f / P ( A ) ,  

cof(NS[~5,]~"~ ) -  < a .  cof(I~,xlB ). Moreover,  by Proposi t ion  5.3, there  
[0]<. * is D C ( N S ~ , a )  such tha t  cof(I~,xlD ) = a. Now put  B = A M D .  

Obviously, B C (NS[~]x~")*.--~ Proposi t ion  4.7 gives cof(NS~6,?'~ >_ a. 

On the other  hand,  we have ~(NS[5,]~ ~ I B)  _< a .  c-~(In,x I D) = a. I 

Wi th  GCH, we obtain the following picture.  

PROPOSITION 7.12: Assume tha t  the GCH holds and 5 > a. Then 
[5]<0 + 

(i) If5 = A andcf(A)  < -0, thencof(NS~5]~~ foral lA  e (NS~, x ) . 
[~]<0 + 

(ii) I r a  _< cf(A) <_ 151 <?, then cof(NS~,]~<~ = A+ for ali A e (NS~, x ) �9 
(iii) Assume that (a) 5 < a and cf(A) < n, or (b) 5 = A and -0 <_ cf (a)  < ~, 

or (c) 5 < A = a + and cf(a) _> a, or (d) A is a limit cardinal and 

(NS[6]<~ + 151 <? < cf(A). Then cof(NS[~5,~ <~ IA) = A for all A �9 ~,x ) �9 
(iv) Assume that A = cT+ and either 6 < a and cf(a) < -0, or 6 < A, -0 <_ 

cf(a) < ~ and ~ is not the successor of a cardinal of co~nality less than 
[61<0 + or equal to cf(a).  Then cof(NS[~, 1<~ I A) = cr for some A �9 (NS~, x ) . 

Proof: 

(i) Suppose cf(A) < 0, and let A e (NS[X.]x<~ . Then  ~ ( N S  [~l<~ I A) _< 

cof(NS[X] <~ = A++. ~,), I A) Fur thermore ,  we have cof(NS[~X,]<~ ) > A+ since 
u(~, ~+) < ~++. 

(NS[61<~ + Then  cof(NS~]x<~lA) (ii) Assume ~ < cf(A) < 151 <~, and fix A e ~,~ . 

<_ cof(NS[~6]~<~ ) = A+. But  clearly we have u(n,A) < A+, which gives 

cof NS[6]. <~ ~ ( ~,A ~'J > A. 
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(iii) By Proposition 4.1. 

(iv) By Propositions 7.10 and 7.11. 

Let us next consider the case that  was not dealt with in Proposition 7.12, 

namely the case when )~ = (7 +, a = v +, 0 .  cf(v)  <_ cf(a)  < ~ and (i < )~. 

PROPOSITION 7.13: Let O' be a cardinal with O < O' < a. Assume that 
(a) = ~  (b) > (c) either holds for some regular in,hire cardi- 

nM p < a, or B~,;~ holds, (d) either ~ <_ 6 < a and r (1~1<~) < a for every cardinal 

v < a, or a <_ 6 < )~, 0 <_ cf(a)  < a and a is a strong limit cardinal, and 
(lv ~[x] <~ ~+ 

(e) there exists a [A]<e'-norma/ idea/ on P,(A). Then there is B E --~. ,~ j 

such that cof ( N S~5,]<~ l B ) = a. 

Proof'. By Propositions 5.4 (ii) and 5.11, there is D E (NS[~]<~') + such that  

cof(I~,~iD) <__ a. Prom Lemma 7.9 we obtain A E NS~,~ such that  for every 

B E (NS[~,]~<~) + M P(A),  

cof(NS[5,]<OlB ) <_ cof(I~,~iB), c o f ( N S ~ ] < ~ ) .  

Now put B = A M D. By Proposition 4.1 ((iii) and (iv)) and Corollary 3.2, 

we have cof(NS[5,~ ~]<~) = a. Therefore, cof(YS[~,]<~ <_ cof(I,,~iD) .a  = a. 

Also, -c-~(NS[5, ]<~ ]B) > a, since u(tr u) < A for every cardinal u with a < u < a. 

I 

In particular, with the help of Proposition 6.4, we have: Assume that  

(a) a < 5 < A = a +, (b) a is a strong limit cardinal with cf(a)  < ~, 

and (c) [:]~ holds. Then cof(NS~,~[B) = a for some B E NS~+x. On the 
2 other hand, by Proposition 5.7 and Corollary 6.8, W~+l ) [Wl]o~,<wl im- 

plies that  cof(NS~l,w~+l[B) > woj for each 6 with Wl < 5 < W~+l and each 

B E ( N S  ~ ~+ 
\ ( M I , W w + I  / " 

If the GCH is assumed, then our question of the existence of sets B such 

that  N S  [~]<" I B = I,~,~,IB can be answered completely. 
t r  

PROPOSITION 7.14: Assume that the GCH holds and 6 >_ ~. Let Xo and Xl 
~,]<' ,, denote, respectively, the assertions "NS = I,,~]A for some A E I~+~ and 
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,, [~]<o [5 <o + 
NS,~,x IB = I~,~IB for  some B e (NS,~,]~ ) ". Then 
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-~d-f ( N S['~,] <~ ) cof(NS[~,] <~ ) 

lal < cf(A) A A 

n _< cf(A) _< lal 

5 < A and cf(A) < n A A + 

5 = A and cf(A)  < -0 A ++ A++ 

5 = A a n d - O < _ c f ( A )  < n  A A + 

XO X1 

no yes 

no 

no yes 

n o  

yes 

Proof: See Propositions 4.5, 7.12 ((ii), (iii) and (i)) and 4.1 (iv) for the value 

of ~(NS[~,]~<~ and [7] for that  of cof(NS[d,]<~ If I~1 <~ < cf(,x), or ~ < ~ and 

cf(A) < a, then by Corollary 7.3, X1 holds, but by a result of [7], Xo fails. If 

5 = A and 0 _< cf(A) < ~, then Xo holds by Proposition 7.6. Finally, if either 

<_ cf(A) _< 15] <?, or ~ = A and cf(A) < 0, then co--f(I~,xlB) < cof(NS~,]~<~ ) 
+ 

for every B E ( N S  [~]<~ hence ~1 does not hold. II r;,/X 

8. C o h e n  forc ing 

N [(]<0 A In this final section we construct a forcing extension in which S~,~ 1-1 r 

Ix ~[A for each ( with n < ( < A, and each A E (NS[~r176 + 

LEMMA 8.1: Let R be a K-closed notion of tbrcing. I f  there exists (in V) a 
[6]<O-normal ideal on P~(A), then the same holds in V R. 

Proof: This is clear from Proposition 1.5 (i) in case O < ~ or ~ is not a limit 

cardinal. Otherwise, use Proposition 1.5 (ii) and the fact (see, e.g., Exercise H4 

in Chapter VII of [5]) that  if n is Mahlo in V, then n remains Mahlo in V R. 
| 

LEMMA 8.2: Let # be a cardinal such that ~ .  ([51<~ + G # = #<" < A, 

and O be the notion of  forcing which adds a Cohen subset of  #. Further, let 

A E (NS[~.]~<~ + Then in V Q, P(A)  N r~rr176 + 

Proof:'. Q can be taken to be the set of all functions q such that  dom(q) E 

Pu(# x #) and ran(q) C_ 2. For a @generic set G over V, define Fa:  # ---+ P2(#) 
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as follows. Given a E #, put  eo = {fl E # : (UG)(a,/~) = 1}. Now set 

FG(a) = {Me~} if e~ r q~, and FG(a) = q} otherwise. 

C '~'~ (NS[OI<~ + Thus,  let q E Q and Let  us show tha t  II-Q A \ Fr E n,)~ . 

f :  P~ 3(6) > Pc(A). Pick a E #, a E A and /3  E # so tha t  ({a} x #) M dom(q) 

= 0 ,  a E a E A M C y  ' ~ a n d / ~ a .  Now s e l e c t r E Q s o t h a t q C _ r , r ( a , / ~ )  =1, 

and r(a, "~) = 0 for all ? </3.  Then  clearly, r I~- b ~ C~. 2 .  1 

Suppose tha t  li is a cardinal  such tha t  ~ _< # = #<"  _< A, and for every 

Z C_ A <~ with P , ( # )  C_ L[Z], there  is a subset of # which is Cohen over L[Z]. 
Then  NS2,xlA r I~,xlA for every A E (NS~,x) . To see this, fix A E (NS2,~) +. 
Select Z C_ A <~ so tha t  A E L[Z], P,(#) C_ L[Z] and P~(A) C_ L[Z]. Let G C_ p 

be Cohen over L[Z]. By Lemma 8.1, in L[Z][G] we can find C E I~+~ M P(A) 
and g: Pa(P) > Pa(A) so tha t  C M {a E C~ '~ : a M n E n} = 0. Now C and g 

are like this in V, so we are done. 

PROPOSITION 8.3: Let # be a cardinal such that n .  (151<~ + _~ It = It<*' _< A, 

p be a cardinal such that A <~ < p, and P be the notion of forcing which 
NS[6I<~ adds p Cohen subsets of It. Then in V P, NS["I<~ r [A for all A E ~)~ ~,~ 

( ~  r + 
�9 ~ , ~  ) �9 

Proof: P can be identified with the set of all functions p such tha t  dom(p) E 

Pu(p • It) and ran(p) C__ 2. Now let G be P-generic  over V. For X C p, set 

_ (NS  M<~ G x  = { p E  G : d o m ( p )  C X •  I n V [ G ] , l e t  A E ~ ~,x J �9 Then  there  

is ~ < p with A E V[G~]. Prom Lamina 8.2 we can infer that .  in V[G~][G{~}], 
(~q[~]<o + Nq[~]<o P(A) A ~ " ~ . , x  ) FI ~ , ~  ~r 0. The  same inequality must  hold in V[G]. 

I 

COROLLARY 8.4: Assume that 2 <* = ~ <_ 6. Let p be a cardinal such that 

A <~ < p, and P be the notion of forcing which adds p Cohen subsets of~. Then 

[~]<~ (b) > inVP,(a)  NS~,~ [Ar  I~[dfora11AE, (gs[~]<~ , cof(NS~!]<~ A <~ 
[ ~r <,[;~i< 0 + 

for all B E v'~',~,x ) �9 

Proof; By Proposi t ion 8.3 we have tha t  in V P, NS~,~IA 7s I,~,xl A for all 

A E (NS~ x)+. Par t  (a) foilows, since N S ~  C N S  [~]<~ For (b) use Proposi t ion , , - -  ~:,)~ - 

7.2. I 
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