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Introduction
In this paper, the following theorem is proved.

Theorem. Assume k is a strongly compact cardinal, k > w, T is a theory in a
fragment ¥ of L., over a language L, and k' =max(k, |¥|). Assume T is
categorical in the cardinal A. Then:

(i) If A is a successor cardinal and 1> ((x')~*)*, then T is categorical in every
cardinal greater than or equal to min(A, Jxy+).

(ii) If A>2,41(x"), then T is categorical in every cardinal of the form 15 with &
divisible by (2*)* (i.e., 6 =(2)" - « (ordinal multiplication) for some ordinal
a>0).

Corollary. If Ay, A, are two cardinals, and either both A,, A, are successor
cardinals >((x'Y~*)", or both are of the form 35 with & divisible by (2<)*, then T
as in the theorem is categorical in A, if and only if it is categorical in A,.

The result should be seen as belonging to the program of classification theory,
undertaken by the first author in [9] (of which the second, enlarged edition is in
print), [13], [10], [11], [15], etc. The present theorem is a partial extension of
Morley’s categoricity theorem [6] for finitary first-order logic to a particular kind
of infinitary language, L., with k a compact cardinal. In the context of ‘large’
infinitary languages, it is intended as a first step towards results of the kind
characteristic of classification theory: dividing lines of structure/non-structure,
determination of spectrum functions, the Main Gap, etc. Let us point out that the
connections notwithstanding, the present paper is largely self-contained.

In order to stay on a desirable level of generality in most of the work, the
categoricity assumption is used only sparingly; instead, in the main part of the
work, more general global assumptions are used, and in Section 5, the
conclusions concerning the problem of categoricity are summarized.

* Supported by NSERC Canada and FCAR Quebec.

0168-0072/90/$3.50 © 1990, Elsevier Science Publishers B.V. (North-Holland)



Sh:285

42 S. Shelah, M. Makkai

We start, in Section 1, with a theory in a fragment &% of L, ; very soon, the
assumption of k being a compact cardinal is introduced. At the beginning of
Section 2, we introduce the assumption of the amalgamation property and the
joint embedding property for the class K of all models of T of power =k’,
relative to the relation of ‘%-elementary substructure’. In Section 4, four
numbered assumptions (4.0, 4.4, 4.11, 4.16) are introduced. Each assumption is
held valid for all the subsequent work, except the summary, Section 5. Each
assumption is a consequence of hypotheses in the main results, as pointed out at
the appropriate places, and in Section 5.

After a glance at the main definitions, the reader may profitably look at the
short Section 5 where the various strands of the paper are brought together in the
proof of the main result. Reading Section 5 will make it clear that the proofs of
the two parts of the theorem are, to a large extent, disjoint from each other.

Section 1 aims at showing, in essence, the amalgamation property (familiar
from model theory for finitary logic) for the class K of models of T of cardinality
=k’ (see the statement of the Theorem above), with respect to %-embeddings,
under either of the categoricity hypotheses in (i) and (ii). The proof for the case
of (i) is easy (Proposition 1.9); for (ii), it is harder, and it occupies the rest of
Section 1 after 1.9.

Section 2 is a study of types, both in an abstract sense, and in a more familiar
formula-oriented sense, under the assumption of the amalgamation and joint
embedding properties. This section is a more detailed restatement, for the
context at hand, of Section II.3 of [15]. It is here that the need to extend the
discussion from L, to L,, arises.

Section 3 collects the arguments needed using order-indiscernibles. Some of the
material is folklore, and is included to fix notation and terminology. The more
involved arguments, notably Propositions 3.3 and 3.6, are needed only for part
(ii), not for part (i), of the Theorem.

Section 4, which is entirely for the purposes of part (i) of the Theorem (part (ii)
is independent of this section), starts by building up an extension of a rather
elementary part of stability theory for finitary stable theories, the theory of
non-forking of types over models only. Therefore, the first part of this section
should look familiar to people who have seen stability theory as given in [9]. The
starting point of this section is the non-structure theorem 3.14 of Chapter III of
[15], restated here as Proposition 4.3. It allows one to conclude that, under a
suitable categoricity assumption, the class K is 1-stable (see 4.4), from which the
existence of a good notion of independence (non-forking) over models is
deduced. What this shows is that the axiomatic framework of Chapter II of [15] is
reproduced to a considerable extent in the present context, although there are no
direct references to that framework in this paper. Some arguments in this section
have a place in a more general context of classification theory, notably in the still
unpublished further chapters of [15].

The results of this paper are all due to the first author; the exposition is the
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work of the second author. The second author thanks the Lady Davis Fellowship
Trust and The Hebrew University of Jerusalem for their support and hospitality
during the work on this paper.

Finally, we would like to thank the referee for his careful reading of the paper.
Following the referee’s advice, we have expanded this introduction.

1. Preliminaries, and the amalgamation property

Throughout the paper, k will denote a fixed infinite regular cardinal, which, for
most of the paper, will be assumed to be (strongly) compact and greater than X,.
(For the definition of ‘compact’, see below, or [4] which should serve as a
reference for all undefined set-theoretic terminology.)

We let L be a set of finitary relation and operation symbols (a ‘language’); L is
fixed throughout the paper. L., denotes the least set of (infinitary) formulas
(‘logic’) which contains the atomic formulas of L (including the ones using
equality), and which is closed under applying the usual logical operators of
finitary first-order logic and under taking the conjunction, or disjunction, of any
set of size <k of formulas, provided the set of free variables of the conjunction
(disjunction) is finite. Note that all formulas of L,,, have only finitely many free
variables. L,, is the larger logic that also allows the formation of Vx ¢, dx ¢,
with x a sequence of length <A of variables; also, in forming conjunctions and
disjunctions of sets of size <k, the result is required to contain <k many free
variables (rather than finitely many); all formulas in L., have <k free variables.

For further details on infinitary logic, see e.g. [2].

As usual, a notation like @(x) indicates a formula with free variables among
those in x;x, y, ... always denote sequences of distinct variables; when @(x) is
assumed to be in L., (in L,,), x is assumed to be finite (of length <k).

We let & be a fragment of L,,: a set of formulas of L, containing all atomic
L-formulas, and closed under finitary logical operators and under taking
subformulas. Also, we let T be a set of sentences (formulas without free
variables) of . % and T will also remain fixed throughout the paper.

By a model of T we always mean an L-structure that satisfies the axioms in T.
From now on, a ‘model’ will mean a model of T, unless otherwise specified; the
symbols M, N, . .. will denote models.

f is an F-elementary embedding (or F-embedding) of M into N, in notation
f:M > N, or more simply, f:M— N (since ¥ is fixed); if f is a function with
domain |M|} (the underlying set of M) into |N| and f preserves the meaning of all
F-formulas:

Megla]l] = NEg[f(a)l

for all ¢(x) € %, all tuples a of elements M matching x (length(a) = length(x)) (if
a=(a;)i<a, f(a)={(f(a;)));<o). Since F is closed under negation, the last



Sh:285

44 S. Shelah, M. Makkai

implication is in fact an equivalence. If, in particular, f is a set-inclusion
|M| < |N|, we write M <g N (or simply M <N) for f: M 2> N, and we say that M
is an F-elementary substructure (submodel) of N, or N is an F-elementary
extension of M, or N is an F-extension of M. We write M <z N to mean that
there is an F-embedding of M into N. We have the well-known Tarski Union
Theorem:

Proposition 1.1. (TUT). (i) The union of a <g-directed system of models is a
model: if (I, <) is a directed partial order, (M), is a family of models satisfying
M; <4 M; whenever i <j, then we have the model \ J);.; M; of T for which

UM,|=UIM,| and M;<g\UM,; foreveryjel
iel iel iel
(ii) If, in the notation of (i), we have, in addition, that M;<g M for a fixed
model M and for all i € I, then
UM, <g M.
iel
(iii) More generally than (ii), if, in addition to (i), we have f;:M; 2> M for all
i €I with f; c f; for i <j, then we have

Ufi:UM > M.

iel iel

Usually, (I, <) in 1.1 will be an ordinal, i.e. the set of ordinals less than a
given ordinal, ordered by the standard ordering of ordinals. A <-chain of models
is a sequence (M) s, With & an ordinal and Mg <M, for § <y < a; we speak of
a continuous chain if Mg =\, M, for all limit ordinals § < a; we write

M= UM,

B<a

to mean that (Mg )<, is a <-chain and M =g, Mp; we write

M= UC Mﬂ
B<a
to mean that (Mg ) s<, is a continuous <-chain and M =g, Mp.
Another piece of notation fixed for the whole of the paper: x’ = max(x, |L|).
Another well-known result is the downward Lowenheim—Skolem Theorem:

Proposition 1.2 (dLST). (i) Given any model M, a subset A c \M| and a cardinal
A with max(kx’, |A|) <A< ||M||, there is a model Nk T with Ac|N|, N<gM and
INIl = A.

(i) Any sentence in any (L')q,, (in any (L')ee) that has a model in a power Ao
has a model in each power A for which max(6, |L'|)<A<A, (and for which
A<f=2).
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We tend to use TUT and dLST without explicit reference to them.
A X, (%)-formula, or more simply, a 2';-formula, is an L, -formula of the form
Ix \/1 /> y; where each y; € %.
iel jel;

If x is (strongly) inaccessible (which is the case when k is compact), then every
L, -formula of the form 3x y where v is an (infinitary) Boolean combination of
F-formulas is logically equivalent to a &;-formula. In this case, any conjunction
or disjunction of less than x many 2)-formulas is logically equivalent to a
X,-formula. A positive primitive (p.p) formula is an L,,-formula of the form
Ix Nies ¥i, with each ¢, € F; every X,-formula is logically equivalent to the
disjunction of <k p.p. formulas.

f:M— N is a X -embedding (in notation: f: M ?N) if

MEgla] & NEg[f(a))

for all X,-formulas @(x) and appropriate a € |M| [a € |M| abbreviates a is a tuple
of elements of |M|]. Note that the ‘=’ direction of the last equivalence is
automatic: a consequence of f being an F-embedding. We write M <, N if
|M| = |N| and the set inclusion of |M| in |N| is a X;-embedding. Note that in the
definition of X),-embedding, or <, we may restrict attention to p.p. formulas ¢.

We say that M is existentially closed (e.c.) if for all NET, M <z N implies
M < N, or equivalently, every ¥-embedding with domain M is a X;-embedding.
Let us call a sentence @(a) with parameters (individual constants) a in M (each q;
in a denoting itself) consistent with M if there is an %-extension N of M such that
NEgla]. Then M is e.c. if every X,-sentence (or, every p.p. sentence) over M
that is consistent with M is in fact true in M.

A well-known elementary argument gives

Proposition 1.3. Every model has an existentially closed F-elementary extension.
More precisely, if A is a cardinal such that A== 1, A=k, and M is a model of
power A, then there is an e.c. model N of power A such that M <z N.

Proof. For any M’ with ||M’||=A, for A of the proposition, we list the pairs
(@(x), a) of Z,-formulas @(x) and matching tuples @ from M’ as {@,, a,) <1
(note that the set of those pairs has cardinality <A), and define, by induction on
o < A the models M, by

M(] = M’,
Ms;= 1 M, for 8 limit (see TUT),
a<<d

M, ., =some model of power A F-extending M, and satisfying
@.(a,) if the latter is consistent with M,, (see dLST),

=M, otherwise.
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Note that (M ’)*qf-fMl is an F-extension of M’, and it satisfies the condition for
‘e.c.’” relative to parameters in M'. Now, let, for o < k, by induction

No=M (given in the Proposition),
*
B<a

Then, since any <k-tuple of elements of N et N, is in some N,, o <K, it is clear
that N is e.c.; clearly, |[N||=A. O

The following generalization of ‘existentially closed’ will also be used. Let
i = Kk be any cardinal. M is called <p-existentially closed (<u-e.c.) if for any set
@(x) of cardinality <u of %-formulas over M (with parameters in M), with free
variables all in x, x a tuple of variables of length <u, Mk 3x /\ ®(x) provided
there is N, M <g N, such that NE3x /A &(x). We use ‘< py-e.c.’ in the sense
‘<pt-e.c..

The following generalization of 1.3 has the same proof as 1.3:

Proposition 1.3'. (i) Suppose p is regular, p =k, A~* =1, A=k'. Then any M of
power A can be F-extended to a <u-e.c. model of power A.

(ii) If in (i), in addition we have M < M* with M* <u-e.c., then N as in (i) can
be found as an ¥-submodel of M*. O

The cardinal k is compact if (L'),, satisfies the <x-compactness theorem, for
any L’ of relation and operation symbols of arities <k: for any set X of sentences
of (L") if every subset of X of cardinality <x has a model [for which we say X
is <k-consistent], then X has a model. For a ‘purely mathematical’ definition, and
further facts concerning compact cardinals, see [4].

R, is compact; we are interested in compact k greater than Xo; of course, the
existence of such is not provable, but hopefully consistent with, ZFC. At one
point in the last section, the assumption that x > X, is of essential help. Let us
make explicit our

Assumption for the rest of the paper. x is a compact cardinal =X,.

Many facts of finitary model theory generalize to L,, with x compact, by
essentially the same ‘compactness’ arguments as in the finitary case. We develop
some of these for later use.

For a model M, Diags(M) denotes the set of sentences ¢(a), with p(x) € #, a
a tuple of elements of M used as individual constar;g (a substituted for x), such

that M k p[a]. The language of Diags(M) is L(M) = L U|M|, with the elements
of |M| treated as new individual constants. Note that

N* = (N; ba)aelMl F Dlagg.-(M)
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iff for f={(a, b,):a€e|M|}, we have f:M > N. Note in particular that the
axioms of T are elements of Diagsz(M), T = Diags(M), since every element of T
is in %. Thus, a model of Diagsz(M) is automatically a model of T. A familiar
application of the %-diagram Diaggz(M) is the proof that if ||[M|| = k, then M has
arbitrarily large %-extensions (upward Lowenheim—Skolem-Tarski Theorem,
uLSTT).

Definition 1.4. M is an amalgamation base (a.b.) (relative to F-embeddings) if
the following holds: whenever f;: M — N, (i =1, 2), there are N and g;:N,— N
such that g, fi = g, fo:

Remember that k is compact.

Proposition 1.5. (i) M is an a.b. iff for any two X\-sentences o,, 0, over M that
are separately consistent with M, &, A 0, is consistent with M as well.

(ii) Suppose M is a model which is not an a.b. Then there is a <k-tuple a e M,
and X\-formulas 0,(x), 0,(x) without parameters such that each of o,(a), o,(a) is
consistent with M, but a,(a) A o,(a) is (logically) inconsistent (has no model).

Remark. Note that (ii) is a strengthening of the ‘if’ part of (i): the inconsistency
of o,(a) A o,(a) with M is strengthened to a logical inconsistency.

Proof. The ‘only if’ part is easily seen, and it does not use the compactness of k.
To prove (ii) (and thus the ‘if’ part of (i) as well), suppose the conclusion of (ii)
fails, and let f;, f, be as in 1.4; we’ll show they can be amalgamated. Without loss
of generality, f; and f, are inclusions.
Consider the following set of sentences

3 ¥ Diags(N,) U Diagg(N,)
where, in the two diagrams, we use the same individual constant for each a € |M|,
but make sure no individual constant other than those in L(M), is common to the
two diagrams. It is immediately seen that any model of X provides an
amalgamation (g, and g, as in 1.4). On the other hand, the <k-consistency of X
reduces to the consistency of

0:(a) A ox(a)

with 0,(a), o,(a) p.p. sentences with parameters a in M, such that o,(a) is true in
N;, hence each o;(a) is consistent with M. By our assumption, each instance of
the latter consistency holds. O



Sh:285

48 S. Shelah, M. Makkai

The following is an immediate consequence of 1.5(i):
Corollary 1.6. If M is e.c., then itisan a.b. O

Corollary 1.7. Suppose M ET is not an a.b. Then there is a € ~* |M| such that for
any N<M, ifaeN, then N is not an a.b.

Proof. Choose a, 0,, 0, as in 1.5(ii). If N <M contains a, then each of o,(a),
o,(a) is consistent with N, and o,(a) A o,(a) is inconsistent with N, since it is
even logically inconsistent. Thus, by 1.5(i), Nis not an a.b. O

Let K denote, for once and for all, the class of models of cardinality =k’
(essentially, we are not interested in models of power <k’'). K; = {M e K:||M| =
A}, Koy =<1 K,, etc. We assume throughout that K is non-empty.

K has the amalgamation property (AP) if every M € K is an a.b.; K has the joint
embedding property (JEP) if for any M;, M, € K there are N and f;:M,— N,
fa: My— N. K is categorical in A if, up to isomorphism, there is exactly one model
in K.

Proposition 1.8. If K is categorical in A= k', then K has the JEP.

Proof. By an easy application of diagrams, if K, has the JEP, then so does K.
By uLSTT, any M e K, has an F-extension of K,; now, the assertion is
clear. O

Proposition 1.9. Suppose A=k', A== A and K is categorical in A. Then every
M e K is e.c. (and hence an a.b. as well).

Proof. Suppose M € K is not e.c. This means that there are @ in M, @¢(x) a
X,-formula and N with M <g N such that Nk ¢[a] and M E—g[a]. All this can be
expressed by saying that the composite structure (N, M, a) satisfies a certain
sentence g of (L').,, with L' = LU {A}U{c;:i<a}, A a unary predicate (for
[M|), ¢; individual constants for a; in @ = {a;);<,). Since ||M|| =k’ =k, o has
models in which the interpretation of A is of an arbitrary cardinality A=k’ (by
<k-compactness and dLST); applying this to our A, we conclude that there is
M, € K, which is not e.c. On the other hand, using A== 1, by 1.3 we have some
M, € K; which is e.c. Of course, this contradicts categoricity in A. O

By a more sophisticated argument, we now show that categoricity of K in a
sufficiently large, but otherwise arbitrary, cardinal implies that K has the AP.
Since for k = R,, by 1.9 we already know this, we may, and do, assume that k (is
compact and) >N,.
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Lemma 1.10. Let u be a cardinal =k’', A a limit cardinal >2* with cofinality
cfA<k. Suppose no MeK, is an a.b. Then there is a continuous <-chain
(M, );<cs, such that for every non-limit i <cf A, M; is <p-e.c. and \ ;. M, is not
an a.b.

Proof. Let (A;),., be a strictly increasing sequence of regular cardinals >2#
with limit equal to A. By induction on i <cf A, we construct M and N, one for
cachae O, {a= (a;);<i:a;€~*|M}|}, such that for all i <cf A:

(i) M} eK,, Ny e K,

(ii) (M} ),—s is <-continuous;

(iii) each N, (a € Q;) is <u-e.c., provided i is non-limit;

(iv) for any a € Q;, the sequence (N ), is <-continuous;

(v) Ny<Mi forallaeQ;

(vi) if a € Q;, then a is in N, (meaning that every term of every term of the
sequence a is in [N5|).

For i =0, we take Ny to be any <p-e.c. model of power 2* (by 1.3'), and M}
any model of power A, F-extending N§. For i limit, i<cfA, we put M=
Uj<: M} and N,=,; N}, for all a e Q;; clearly, all relevant conditions are
satisfied. Finally, let i=j+1. Let M be any <p-e.c. extension of M ; of
cardinality =4, (by 1.3"). For each be~*|M;| and a € Q;, let N;,..5, be a <p-e.c.
F-submodel of cardinality 2* of M containing N, and b (by 1.3'(ii)). Now, the
cardinality of Q, is <|i| X A;* = A, (recall that for all regular v=k, v=*=v; see
[4]). Hence there is an %-submodel M} of M of cardinality A;, containing N’ for
all c=a”(b) € Q,. This completes the construction.

We have that M* = ;) M} is a model of power A, hence it is not an a.b.
Let @ €e=%|M*| witness this fact, in the sense of 1.7. Let us write a in the form
a="(a;);<c With @;€~*|M/|, and define, for each i <cf A, M; = N\, (where we
wrote a for {(a;);.s1). The M; form a continuous <-chain of models of power 2*
such that each M; with / non-limit is <u-e.c. Moreover, | J;c; M; <M*
containing the witness a, hence |J;—¢; M; is not an amalgamation base (see
1.7). O :

Lemma 1.11. Let p be a cardinal, p=x', uy~*=u. Let (M;:i<o) be a
<-continuous chain such that for every non-limit i <o, M; is <u-e.c., and
M, = (Ui<o M, is not an a.b. Assume that (C,:a € S) is a modified square-system
on u* (see Appendix). Then there is a <-continuous tree (N, :1 € <*'2) of models
of power u such that for any n € *2 with otp C, = 0, N, and N, ~1y cannot be
amalgamated over N,,.

Proof. (N, ), being a <-continuous tree means that for all v € <2, (N, 4) a<c is
a <-continuous chain.

Let us modify our system (C,:« € S) by simply discarding all « € S for which
otp C, > o; without loss, we may assume that for all @€ S, otp C, < o0.
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The fact that M, is not an a.b. is witnessed by some a="(a;:i<o0, i is a
successor ), with a; €<% |M;| (see 1.7). For n € *"2, by induction on length(n), we
define N, as in the lemma, and also such that for  with length(n) non-limit, N,, is
e.c. In addition, in case « =length(n) € S (and hence otp C, < 0), we define the
F-embedding h,, : N, = M, c, such that for i <otp C,, i a successor, a; is in the
range of h,, and for B € C, (and hence B € §), h,zch,.

Suppose &« <u™ and all items with indices # with length(n) <« have been
defined. If « is a limit ordinal, the definition of items on level « is forced, and the
new items will continue to satisfy the requirements.

Suppose o = f + 1.

Case 1: B €S and otp Cg = 0. In this case, by the induction hypothesis, for any
nef2, hyN,, <M, contains the full sequence a of witnesses to the fact that M, is
not an a.b.; hence h,)N,, and also N,, is not an a.b. We define N, (), Ny~(1) tO
be two F-extensions of N,, that cannot be amalgamated over N,; by 1.3, we make
sure that N,~.0), Ny~(1y are both e.c. and of power u. Note that now a ¢S, and
we have no obligation to define h, 0y, Ayn(1)-

Case 2: a ¢ S and not Case 1. In this case, we may put N,y = N~y = N, for
any 7 € #2.

Case 3: a€S. Since C, is closed in a, C, has a last element y; if § =otp C,,
then otp C, = §+ 1. We have h,,, as the last h defined before h, to be defined
now, and of course, N,z as the last N. Let us distinguish the subcases y = 8 (Case
3.1) and y < 8 (Case 3.2). In Case 3.1, our task is to extend N,z to an N,, and to
extend h,5: N, g— Mg to some h,:N, —> Mg, so that a; is in the range of h,.
Since M., is (in particular) e.c., by 1.3'(ii) (with g of 1.3'(ii) being k, 4 of 1.3’
being u), there is N < M, which is e.c., and contains (h;sN,,) U {as}; define
N, and h, : N, — Mg, so that h, extends h,g and N=h]N,.

Finally, let us turn to Case 3.2. In this case, by the conditions on (Cy)aes (see
Appendix), v is a successor ordinal, and thus N, is e.c., and an a.b. Consider
the following diagram:

N, N,

)
—
nY  inct. n

oA

My —>

1B > Nn

Let us amalgamate i, with i,°h,,, over N, ,; we obtain an extension M of M;,,
with a copy of N, in it over hy, N,,.

Since M;,, is <p-e.c., N,z is of power u, we can realize the F-diagram of
N, over hy N,; in this way we get g making the square commute. Finally, as
in Case 3.1, we can define N, and h, : N, — M, with range(h,) containing a; so
that the triangle commutes. This completes the inductive definition, and the proof
of the lemma. O

Lemma 1.12. Assume (N, :n € <*'2) is a <-continuous tree of models of power
u, and S < u* is a stationary set for which (weak) (s holds, and such that, for any
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n € <*"2 with length(n) € S, N0y and N,y cannot be amalgamated over N,.
Then there is no model M of power u* such that every N, défU,,<,,+ Ny ve w2,
can be ¥-embedded into M.

Proof (See [11], proof of Theorem 3.5, especially the lower half of p. 436). With
u a cardinal, S < u™*, we consider the following set-theoretic principle:

©s: For any system (f,),cs, of functions f,:u*— u*, there is v € *'2 such
that the set

{xeS: AV e |a=v|a&f, |a=f|a& v (x)#*v(a))}
is stationary.

O is a consequence of (s by arguments in [3]: the one showing that @ follows
from ¢ (p. 239 loc.cit.), and the one showing that a variant of @, 4.1(2) loc.cit.,
implies ©; see 6.1, p. 246 loc.cit. Thus, for our Scu* in the lemma, by the
assumption of {5, O holds.

Turning to the proof of the lemma, note first that we can easily arrange that the
underlying set of each N,, ve*'2, is identical to u*, the set of all ordinals less
than u*. Suppose, contrary to the assertion of the lemma, that there is a model
M e K with underlying set [M| = u* and for each u € *'2 there is an %-embedding
f,:N,— M. Then, in particular, f,:u*— u*. By applying O, there is ve*'2
such that the set displayed in the statement of O is stationary.

Now, note that the set

C={a<p":|N, o= a}

is a cub, by the continuity of the tree (N, ),.<x» of models. Intersecting C with
the above stationary set, we see that there are o € S and v’ € *"2 such that

vViie=v|e, fola=f|a,
v'(a) # v(a), [Nyl = .

If, e.g., v(a) =0, v'(a)=1, then for n=v | a=v'| a and for fO=F, || M, (0],
fr=f | Myriyl we have fO I M, =f'|M,, fO:M,.o,—>M, f':M,..,— M; that
is, we have an amalgamation of M, ..oy and M, ..,y over M, into M, contradicting
length(n) = @ € S, and the assumption on ‘non-amalgamation’ in the lemma. O

Proposition 1.13. Suppose A> 2., (x’), and K is categorical in A. Then K has the
AP.

Proof. Let us write u = 2,(x’). If A has cofinality =k, the assertion is true by 1.9.
Assume that A is a limit cardinal of cofinality o < k.

Assume there is some M € K which is not an a.b. Then the model M, € K, is
not an a.b. either as shown by the following argument. We have contradictory
o:(a), o,(a) Z;-sentences, both consistent with M (a € M) (see 1.7); we can write
down the theory in (L'),,, that expresses, using, in addition to L, ¢ (for @), new
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individual constants for the existentially quantiﬁed variables y; of dy; ¥ = o;, and
also usmg unary predlcates M, M,, M,, that M, M,, M, are models of T,
M<M,, M<M,, cisin M, o,(c) is true in M; witnessed by the appropriate
constants for the y,. This theory is satisfiable so that |M|= k (as given by our M
above), hence by <k-compactness and dLST, it has a model in which M has
cardinality equal to A. This shows that there is a model in K, which is not an a.b.

By 1.10, we have (M,:i<o) satisfying the requirements in the second
sentence of 1.11. Clearly, u=* = u. By the choice of u and the Appendix, we have
the modified square-system {(C,)qcs on pu* such that $* = {a e S:opt C, = o} is
stationary, and {s. holds. By 1.11, we have (N, :n e <*"2) as described there.
We put N, =Up<, Ny for each ve*™2; IN,| < u*

Since T has arbitrarily large models, there is an E-M defining scheme & over T
(see the introductory part of Section 3) in a language L' = Lg, of size <k’ (see
3.1). Consider the model M* = EM(A, @) (with A denoting the well-ordering of
type A); of course, by categoricity, M* | L =M,. By uLSTT, every N, can be
embedded into M* | L; hence for each v, there is a subset X, of A of size su*
such that N, can be #-embedded into EM(X,, @) | L. There is a linear ordering /
of size u* such that every well-ordering of size u* can be embedded in an
order-preserving way into I (take I to be the set of finite sequences of ordinals
<u™, and define < on I by s<t & either t is a proper initial segement of s or
Ja € dom(s) N dom(?) such that s| @ =¢| & and s(&) <t(«)). Hence, every N,
can be F-embedded into EM(I, ¥) | L. But this contradicts 1.12. O

2, Saturation and types

We continue to work in the context of the fixed x, L, %, T, k¥’ and K. Let
us formalize our assumptions for the rest of the paper (except the summary,
Section 5).

Assumption. k is compact; K has AP and JEP.

By convention, ‘model’ means an element of K. The compactness assumption is
not used until 2.7.

First, we restate the essentially classical theory of universal-homogeneous
models in our context. Then we introduce the abstract notions of type and
saturation. Finally, using the compactness assumption, we arrive at the ‘set-of-
formulas’ definition of type. In all this, AP (with JEP) is the basic tool. For a
more general treatment, with less use of AP, see Part II, §3 of [15].

Definition 2.1. (i) Let A be a cardinal, A >k’ and let M € K. M is A-universal-
homogeneous (A-u-h) if the following holds: whenever Ny, N e K_;, f:N;— N,
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and g:N,— M, then there is h:N,— M such that g =hof:

N —L> N,

N A
M

(remember: all arrows are %-embeddings).
(ii) M is universal-homogeneous (u-h) if it is || M||-u-h.

Proposition 2.2 (essentially [5], [8]). (i) A A-u-h model is <A-e.c. (A>k').

(ii) If M is A-u-h, then M is <A-universal: any model of power <A has an
F-embedding into M.

(iii) If M, M, are both u-h, both of power A, ||N|| <A, then for any f;:N— M,
fo: N— M,, there is an isomorphism g: M, > M, with f,=gof:

(iv) For any A> k', up to isomorphism, there is at most one u-h model of
cardinality A.

(v) If Mis u-h, Ny <M, N,<M, ||[N;|| <||M||, then any isomorphism N, = N,
can be extended to an automorphism of M.

(vi) If 6> k', and either 8 = A" =2* or 0 is strongly inacessible, then there is a
u-h model of power 6.

Proof. (i) Suppose M is A-u-h, ®(x) is a set of F-formulas over M, |P(x)| <A,
M<gN, NE3x /\ &(x). Let, by dALST, M, be such that My <M, ||M,|| <A, and
all parameters from M in @ belong to M,. Let N, be such that Ny< N, ||[Ny|| <A,
M, < N,, and N, contains some a for which Nk /\ ®[a]. By M being A-u-h, there
is h:Ny;— M which is the identity on N,. Clearly, Mk /\ ®[h(a)], hence
ME3x A &(x) as desired.

(ii)) Let N be any model of power <A, and let us write it in the form
N =<y N; with ||N;]| <2 for all i <A (this is possible by dLST). Let MJ be any
model with M) <M, ||M{||<A. By JEP, there is M} with M X ML, N,Z M),
Since M is A-u-h, there is My<M with M,= M}, and hence we have some
fo:No— M. Now, by induction on i, 0<i<A, we define f;: N;— M such that f;
extends f; whenever j <i<A. For limit i, we put f,=J;;f; (see 1.1(iii)). For
i=j+1, we apply the condition in 2.1 with N; in place of N;, N, in place of N;,
the inclusion as f, f; as g, to obtain f; as h. |_;<, f; will be the required embedding
of N into M.

(iii) We enumerate |M,|, |M,|, as |M)| = {a}:i <A} (I =1, 2), and we define, by
induction on i <4, models N; <M, of power k' + |i| with isomorphisms g;: N! =>



Sh:285

54 S. Shelah, M. Makkai

N? such that (N%),., is a <-continuous chain, and a!e N, ,. For i =0, we put
No=fiN, go=fefr". For i limit, N5 =U,; N}, g =J<:g; note that ||N}]| <
k' +ji] as a consequence. For i=j+ 1, i even, by dLST choose N} <M with
IN}|| =< k' +|i| such that N} <N}, a; € |N}|; by M being A-u-h and ||N}|| <4, we
can choose g;: N} — M, extending g Fori=j+1, i odd, we do the similar thing
with the roles of M,, M, interchanged.

Clearly, g = _;<, g is the desired isomorphism.

(iv) Let M;, M, be u-h of cardinality 2. By dLST, let N be a model of power
k', Since A> k', by (ii) we have that NX M,, NX M,. Applying (iii), we obtain
an isomorphism M, = M,.

(v) Apply (iii)) with My =M, =M.

(vi) The proof is similar to that of 1.3. First, given any M € K of power <6, we
construct M* > M of power 0 such that for any N;, N, € K_g, any diagram

M, L5 N,

gl l;.

M—I‘)M*

with [ inclusion can be completed as shown with some & to commute. To this end,
note that the cardinality of all isomorphism types of triples (N;, N,, f:N;— N,)
with N, b eKog is <0 ((N,, N,, f:N,—N,) and (Ni, Nj, f:N;{— N}) are
isomorphic if there are f;: N,= N, such that

N, L N

b

N2 A > Né

commutes). Let (N, N5, f');.o enumerate a set of representatives of all of these
isomorphism types. We define the <-continuous chain (M;),.s by putting
My=M, M;=J;; M; for i limit, and for i =j+ 1< 6, applying amalgamation:
we have

: i .
N~ N

incl.
M() T > M,
i

by amalgamating [;og and f, find M; with M;<M,, and h:Nb— M;; M; can be
chosen to be of power <6 by dLST. Having defined (M;),<o, M* =< M,
obviously satisfies the requirements.

Having defined M* for each M e K,, we define the <-continuous chain
{(M;);<¢ by choosing an arbitrary M, e K,, and putting M;., = (M;)*. Quite
clearly, |_i<¢ M; is u-h of power 6. 0O
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It is convenient to use a large u-h model € so that every model we might be
interested in is an %-submodel of €. We assume that 8 is a ‘large’ strongly
inaccessible cardinal greater than any cardinal we are interested in, and we define
€ as the u-h model of power 6 (see 2.2(vi)). By 2.2(ii), every model of power <6
has an isomorphic copy which is an %-submodel of €. By convention, from now
on, a ‘model’ is an ¥-submodel of € of power <. Moreover, A, B, ... denote
subsets of || of cardinality <.

Using €, we define an abstract notion of ‘type’. For any A (< |¥€], |A| < 6),
and any ordinal a, we define the equivalence relation 5 on *|%| by

bic & 3JheAut(€)h(b)=c
(Aut4(%) is the collection of all A-automorphisms of €:h:€ = € with h | A=

identity). It is clear that 5 is an equivalence. An a-type over A is, by definition,
an equivalence class of 5. The set of a-types over A is denoted by S*(A);

S@A)= | 574 STA)= U S(A;

~ is the union of all the 5, a € Ord:
byec © 3FaeOrdbd e

A type p =c¢/ 5 € S(A) is realized in B o A if there is b € B (meaning: b € °B)
with p =b/ % (i.e., b 5 c). Given p € S(A), and Bc A, thenp | B=¢/ 5 for any
(some) ¢ for which p =¢/+ (clearly, p | B is well-defined). Note that, in our
context, any type p € S(A) can be extended, usually in more than one way, to a
type over any superset B of A: for any B o A, there is g € S(B) with g | A = p.

Suppose f: A = B is a bijection that can be extended to an automorphism of 4
(such an f may be called an ‘elementary mapping’). Then f acts on S(A): for every
peS(A), f(p)eS(B) can be defined by f(p)=h(c)/ 5, for any (some)
h € Aut(€) extending f (this is easily seen). This applies, in particular, if
f:M = N is any (%-) isomorphism of models (see 2.2(v)).

We write p = tp(b/A) instead of p = b/ .

Proposition 2.2'. Suppose (M, ), is an increasing <-chain of models, M =
Un<o My, pn€S(M,), pp=Ppns1| M, for n<a. Then there is a type p € S(M)
such that p | M, =p, for all n < w.

Proof. Let ¢ realize p,. By induction on n <@, we construct an elementary
mapping f,: M, = M), f,., extending f,, such that ¢ realizes f,(p,) for each
n<w. For n=0, we put f,=identity on M,. Suppose we have constructed
fi:M,= M, such that c¢ realizes f,(p,). Let c,,, realize p,,,. Since p,=
Pn+1| My, ¢, realizes p,. Thus, we have that the mapping that is defined on M,
as f,, and takes c,.; to ¢, is elementary. Let Ah,,, be an automorphism of €
extending the latter mapping; h,.,|M,=f,, h,,(c,+1) =c. Define f,.,=
huiy| M,y Clearly, f,cf,,.. Also, since ¢,. realizes p,,;, ¢=Hh, 1(crs1)
realizes k., 1(Pn+1) = fre1(Pn+1)- This completes the recursive construction.
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The mapping f =,<,f,: M = M* is elementary, and ¢ realizes f(p,) for
every n < w. Hence, for any automorphism & of € extending f, h~'(c) realizes p,,
for each n<w. p=tp(h~'(c)/M) e S(M) will then satisfy p | M, =p, for all
n<w. 0O

Definition 2.3. Let A>k'. M is A-saturated if for all N <M, ||N|| <A, every
p € SY(N) is realized in M. M is saturated if it is || M||-saturated.

Proposition 2.4. Let A> k', M any model. M is A-saturated iff it is A-universal-
homogeneous. Moreover, if M is A-u-h, for every A —|M| of power <A, every
type in S<*(A) is realized in M.

Proof (see Chapter II, 83 of [15]). Suppose M is A-u-h, Ac|M|, |A|<A,
p € S<*(A). Let My < M be of power <A with A c |M,|, and let N > M, contain a
realization b of p, ||N|| < A. By 2.2(ii), N has an ¥-embedding f into M over M,; f
can be extended to an automorphism 4 of €; clearly, h(b) is a realization of p,
h(b)e M.

Conversely, assume that M is A-saturated, and, to show that M is A-u-h, let
N;, N, be models (<¥) of power <A, N;<N,, N<M. Let |N,|={a;:i<a},
a < A. By induction on i<a, we define b;e M and the <-continuous chain
(M,);<, of F-submodels of M such that ||M,|| <|a| +|i|, b; € M,,,, and also the
isomorphisms f;: M; = M, with f; c f; for j <i such that fi(b;) = a;, as follows. We
let My= M= N,, fo=idy,; for limit i, we let

Mi=jLJ<iA4j: MZ=jU<iM}’ ff=jU<‘_ﬁ-
Having defined M;, M/, f;,, we define b, as an element realizing the type
7 (tp(a;/ M))) € S'(M;) (b; exists since M is A-saturated), define M;,, to be a
submodel of M of cardinality <|a| + |j + 1| containing M; and b;, and define f;,,
as the restriction to M;,; of an automorphism of € extending the mapping
[ U{bj—a;}. Clearly, (U< f)~" maps N; into M over N;. 0O

Stability, in the usual sense, allows us to construct saturated (hence u-h)
models in prescribed cardinalities.

Definition 2.5. Let u=«'. T (or K) is p-stable (stable in p) if for all M e K,,,
S'(M) has cardinality .

Proposition 2.6. Suppose k' <u, u is regular, p <A, and K is stable in A. Then
there is M € K, which is u-saturated (hence p-u-h).

Proof. Given any N € K;, we let N* be a model € K, such that N<N* and all
1-types over N are realized in N*; this is clearly possible by A-stability. Next,
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define a <-continuous chain (N;);<, of length u such that N, =(N;)*, and put
M=), N, Given any N<M of cardinality <u, and pe S'(N), by the
regularity of u, there is i <p with N<N;; let g € S'(N,) extend p; by the
construction, ¢, and hence also p, is realized in N;,, <M. 0O

So far, the compactness of k was not used; using it, we can relate types with
formulas in the usual style. In fact, every type p € S(A) can be specified by a set
of X,-formulas over A. To see this, we make some preparations.

Let us call a mapping f with Adgdom(f)c |€| and Bdéfrange(f)cl‘él 2
elementary if (|A|, |B| <6, and) for every X;-formula @(x) (without parameters)
and any a € A (appropriate for x), € F @[a] implies € F ¢[f(a)]. (Henceforth, we
write F@la] for €F @la], etc.) We write f:A > B to indicate that f is a
X -elementary map, dom(f)= A, range(f)=B. Clearly, any restriction of an
automorphism (to a subset of € of power <8) is a 2;-elementary map. In fact,
we have the converse.

Proposition 2.7. Any ,-elementary map can be extended to an automorphism
of €.

Proof. Suppose f:A =B is X -elementary. Let M, N be such that Ac M,
B < N. Consider the set

X = Diags(M) U Diagg(N)

of sentences, where we use the same constant for a € A and f(a) € B in the two
diagrams, for each a€ A, but otherwise, use distinct constants. The <k-
consistency of X follows immediately from the assumption that f is 2;-elementary,
by quantifying out the constants in |M|—A, and modelling the resulting
Z-sentences in N. By the compactness of k, 2 has a model, say P; P is a model
of 7T, but not yet an F-submodel of €. At any rate, we have F-embeddings
g:M— P and h: N— P with g(a) = h(f(a)) for a € A. By € being u-h, P can be
mapped into € over N, i.e., we may assume that P < €, and that A is an inclusion
N < P. Hence, g: M — N extends f. By 2.2(iv), g: M = g"M < N can be extended
to an automorphism of €. O

Corollary 2.8. If f: A —;—» B, then f':B %A (the notion of X-elementary map
is symmetric). O

It follows from the last proposition, and a remark made above, that any
X -elementary mapping f acts on types over its domain: if p € S(dom(f)), then
f(p) € S(range(f)) is well-defined (f(p) = tp(h(a)/range(f)) if p = tp(a/dom(f))
and h € Aut(%) extending f). If A « dom(f) and p € S(A), f(p)=(f | A)(p).

It also follows that types are determined by the X;-formulas they ‘imply’. For
peS*A), p=tp(b /A), let x be a tuple of length « of variables, fixed once « is
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given, not depending on A or p, and let @, « {@(x) € (21)(A): E@[b]}. (Here,
(21):(A) denotes the set of X;-formulas with parameters from the set A, and with
the free variables x at most.). It is clear that @, is well-defined (it does not
depend but on p). Also, for p, g € S(A), ¢, =P, implies p=q: P, = P, says
that, with b =(b,);<a, ¢=(C;)i<q realizing p and g, respectively, f &f idg U
{(b;, ¢;):i < &} is a T -elementary mapping, hence by 2.7, it can be extended to
an automorphism /. of 4; which means that A(b) = ¢ for an A-automorphism A of
€ ie,p=q.

For A c €, Diags,(A) denotes the set of 2 -sentences over A that are true in
€. In particular, always T c Diagg (A).

Lemma 2.9. Suppose @ < (X,),(A) is <k-consistent, and Diagz (A) = @. Then
there is b € € such that @ < Pyyp/4).

Proof. Let M be any model, A< |M|, M <%. Consider the following set of
formulas:

Diags(M) U &.

This is consistent, since any <k-subset of Diagg(M) gives rise, after quantify-
ing out the constants in |M|— A, to a 2;-sentence in Diagy (A), hence in . Let
(N, a, b),em model Diagg(M) U @, with b standing for x. Using the universal-
homogeneity of €, we may arrange that N <C and @ =a for all a € |M|. Then
NE @[b] for @(x) € P, and since @ is 2, and N <6, €k @[b], hence @ = Dy,
as desired. [

Next, we characterize the sets arising as @,.
@ (X)), (A) is maximal consistent over A if Diags(A)< P, and for any
PY(x) € (Z1)(A), if @U {y(x)} is consistent (satisfiable), then yp(x) € P.

Proposition 2.10. @ < (2,),(A) is'equal to @, for a (necessarily unique) p € S(A)
iff @ is maximal consistent over A.

Proof. Assume first that &= @,, p =tp(b/A). It is clear that Diagy (A)c P.
Suppose Y(x) € (2,),(A) and @ U {y(x)} is consistent. By 2.9, there is ce €
satisfying all formulas in @ U {y(x)}. It follows that the mapping f for which
f|A=id, and f(b) = c is Z,-elementary. But then, by 2.8, f ! is X,-elementary
as well. Since Eyc], it follows that Ey[b], i.e. Yy e .

Conversely, assume @ c (X)),(A) is maximal consistent over A. By 2.9, there
is b such that & c Py, Clearly, P4y is consistent; by the maximality
assumption, @ = P,y [

From now, we will identify p with &,, for every p € S(A), A = €. For any tuple
x of (distinct) variables, S,(A) denotes the set of all p = (Z).(A) that are
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maximal’ consistent over A. S*(A) is the same as S.(A), for a (definite) x with
length(x) = a. tp(b/A) = {@(x) € (2,).(A) : E @[b]}; of course, this is the same as
D514y, With tp(b/A) in the previous sense. For p € S,(A)) and b matching x (for
length), to say that b realizes p is to say that b satisfies all formulas in p; this
corresponds exactly to the previous ‘abstract’ notion because of the maximal
consistency over A of each p € S(A).

For peS,(A) and Bc A, p|B=pN(Z,),(B), and this is in agreement
with the ‘abstract’ notion of p | B. Finally, for a X,-elementary f, and p e
S.(A), f(p)={@(x f(a)):(x,y) € (Z1):,(#), y any tuple of variables, a e A
matching y}.

Corollary 2.11. A set p = (X,),(A) belongs to S.(A) iff for all subsets y of x
of size <k and for all Bc A of size <k, we have that (p|y)|B €S,(B).

def

((p1y)I1 B=pnN(Zy),(B).)

Proof. The ‘only if’ direction is clear. Assume the condition after ‘iff’, and we
show that p is maximal consistent over A. Since Diags (A) = {Diags (B):B €
P..(A)}, we clearly have Diags (4) c p. Since

p=U{(ply)|B:y e P_(x), Be P_(A)}

and every subset of p of size <k is contained in a term of the union, p is
<k-consistent. If p U {9(x)} is consistent, y(x) € (Z,),(A), then y(x)=y(y) €
(2)),(B) for some ye P_.(x), BeP_(A), and since (p|y)|BU{y(y)} is
consistent, by (p|y)|BeS,(B), we have yx)=y(y)e(p|y)|Bcp as
desired. O

The next proposition relates the truth of X)-formulas in arbitrary models with
truth in 6.

Proposition 2.12. Let M <€, ae M, ¢(x) a X,-formula without parameters, x
matching a. Then the following are equivalent:
(i) €Fela],

(ii) Diags(M) U {@(a)} is consistent,

(iii) for any X\-formula y(x) (without parameters), if Mk y[a], then p(a) A
y(a) is consistent. (Note that in (ii) and (iii), a is used as a tuple of individual
constants; those constants are the same as the ones denoting the terms in a in
Diagg(M).)

Proof. (i) > (iii). This is clear since € with a witnesses consistency; note that
ME y[a] implies 6 £ y[a] since y is X;.

(iii) = (ii). Any <k-subset @ of Diagz(M) gives rise, after taking its conjunc-
tion and quantifying out existentially all constants not in a, to a 3;-sentence y(a)
true in M; the consistency of @ U {@(a)] is implied by that of @(a) A y(a). This
shows the assertion.
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(ii)= (i). Let (N, @)ucia be a model of Diagsz(M)U {@(a)}; by € being u-h,
we may assume M <N <%, a=a for all ae|M|. Since Nkp[a] and ¢ is a
2-formula, €F@la]. O

Corollary 2.13. For a, be M <%, if a and b satisfy the same X,-formulas in M,
then they satisfy the same X\-formulas in € (i.e., tp(a/@) = tp(b/®)).

Proof. Immediate by the equivalence of (i) and (iii) in 2.12. [

In what follows, we sometimes neglect to denote tuples in bold type. Thus
‘a € M’ may mean that a is a tuple of elements of M.
Moreover, the tuples a, b, c, . . . are tuples of elements of €, a€ %, . . .

Definition 2.14 (compare [9]). (i) (a3)s<, is a sequence of indiscernibles over
the set B (ag: tuples in €) ifforall ke w, B <P, < - <P <a, 71 <y, <---<
Yx < &, we have

A A

A A N —~ A “ ..
ag, dg, ap. 5 Gy, Ay, Ay,

(if the latter is required only for k=2, we talk about a sequence of 2-
indiscernibles).

(i) Let Bc Ac|¥4| and p € S(A). p splits strongly over B if there are tuples
ay, a, € A of length <k such that ao#a,, with ¢ some (any) realization of
p [ao = a, means a, & a; with C =range of c], but there is a sequence (a, )., of
indiscernibles (in €) over B with the prescribed first two members ag, a,. (If the
indiscernibility is replaced by 2-indiscernibility, we talk about 2-strong splitting.)

Proposition 2.15. Let A be a strong limit cardinal, 4> k'. Suppose T is stable in A.
Then for any M, every type p € S~“(M) does not split strongly (even, does not split
2-strongly) over some N < M of cardinality x'.

Proof. We show the contrapositive. Suppose p = tp(c/M) € S<*(M) is a counter-
example to the conclusion. Let 6 =cf(A), and (A;),<o a strictly increasing
sequence of regular cardinals limiting to A, with 2%< A, ,. Using 0 times the fact
that p splits 2-strongly over all N <M with ||N| =k’, we easily obtain, by
induction on i < 6, items

M, a, a, I
such that

M, <M, ||M|=«k'; (M;) ;.o is <-continuous; )

ap#ay; @y, ai€ MM, ;
and I' = (a’,) 4, is a sequence of 2-indiscernibles over M, [note that @), a’ are the
first two members of I’; note also that by <kx-compactness, we can make the I’ to
be of length A instead of k].
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Next, we define, for every ne<?{(a, B)eAxA:a<pB} a Z,-elementary
mapping f, with domain M, and another one, g,, with domain M;UT (here
i = length(n); I also denotes the set of elements involved in all a%,) such that

fac 8y 7, is an initial sequment of 1, f, cf,;
an(a,ﬁ)(afl) =gn(aix): an(u,B)(ail) =gn(a;3)

where i = length(n) and o < 8 <A.

The definition is by induction on length(n) € 8. For n =@, we make f;, g4 both
identities. Let i < 6. Having defined f, for n of length i <6, we take g, to be an
arbitrary extension of f; to M; U I'. As for the definition of the f;, if length(n) =
is a limit ordinal <6, we are forced to put f,, = ;<; f, ;- Finally, if length(n) =,
a<fB <A, and f,, g, have been defined, we define f, .., g) as follows. Since g, is
3-elementary and extends f,,, we have by 2-indiscernibility

a{]/\ajl/\MNa]"x/\ajﬁ/\Alj
~8&n (a};:v) Agn (a]ﬂ) Aﬁ1 (Al])

with M; a tuple enumerating M;. This means that the mapping with domain
M; U {a), a}} which is f, extended by a,— g, (%), @ g,(a}) is = -elementary.
We define f,~(4,p) to be an arbitrary F-extension of the latter mapping to M;,,

This completes the definition of the f,, g,; they clearly satisfy the requirements.

With UL (&, B) eAxA:a<B), for veU, let f, be U;<of,u; note that
since the domains of the f,; form a <-chain, f, is a ;-elementary mapping. Let c,

be a realization of the type f,(p | Ui<¢ M;). Note the following property of c,: for
any i < 6 and for n=v|i, (&, B) = n(i), we have

84(a%) 7 &, (ak); 2

This follows from (1).

Let A= {g/I':i =length(n) < 8}. A is a set of cardinality A. We claim that
the elements c, realize more than A many distinct types over A, which will show
the desired unstability in A.

Suppose not, and let X = U be a set of cardinality <A such that for any ve U
there is v’ € X with ¢,y c,.. Let us write X as X =J;., X; with |X;|<4,, and
define a specific ¥ € U as follows. Suppose n=+%|i has been defined, and
consider the set B = {c, : v € X;} of cardinality <A,. The number of <k-types over
B is <2< };,, (since u=*=pu for all regular u = k), hence there are a <g <A
such that

g,,(af,) Egn(a%) (3)

for all ve X, Put #(i)={a, B). This defines ¥ ¢ U. By assumption, there is
v € X with

Coy 7 Cy- 4)
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There is i < 0 such that v € X;. Let n=9i, (a, B) =n(). (2) gives that

(al) o (ai)
\Ma) L on\*"p/

v

o
o7

Since g, (%), g,(a5) € A, (3), (4) and (5) give a contradiction. [J

3. Indiscernibles

First, to fix notation, we review the basics of the well-known Ehrenfeucht—
Mostowski method of building models by using order-indiscernibles.

Let L* be a finitary language: a set of finitary relation and operation symbols.
If M* is an L*-structure, X < |M*|, the substructure of M* generated by X is
called the Skolem hull of X (in M*), and is denoted by H,,.(X), or more simply,
H(X).

An Ehrenfeucht—Mostowski (E-M) scheme in L* is a set @ of atomic and
negated atomic formulas over L* with free variables all in the fixed set {v;:i < w}
of variables such that

(i) @ is maximal consistent: @ has a model (an L*-structure with distingu-
ished elements interpreting the variables v;), and for any atomic formula
@(vg, . . ., U,_y), either (v, ..., V,_1) €D, or @V, ..., V,_1) € D.

(i) @ is homogeneous: for any atomic formula ¢(v,, ..., v,—;) and any

h<ip<-- <i, <o,

oo, ..., V,1)e® & @,...,v;, )eP.

(iii) @ is non-degenerate: v; #v;€ @ for all i #j in w.

Given any E-M scheme @ in L*, and any linear ordering I = (I, <), we can
define the L*-strucure EM(I, @) so that I < |EM(I, ®@)| [because of the non-
degeneracy assumption, @ does not collapse elements of I], EM(I, @) is
generated by I, and EM(Z, @)k ¢fay, . . . , a,_;] whenever @(vy, ..., v,_1) € P,
and gg<a,<---<a,_, in I. EM(I, @) is uniquely determined by ¢ and I: any
two structures answering the description of EM(Z, &) have a unique isomorphism
which is the identity on 1.

Clearly, whenever J is a sub-ordering of I, the Skolem hull H(J) of J in
EM(1, @) is (isomorphic to) EM(J, @). Obviously, ||[EM(I, @)|| = ||I||, whenever
1)1 =[L*].

Let I=(I, <) be a linear ordering. For a = (ag)p<qs b= {bg)p<q tuples of
elements of I, we write a=,b in [ if ag<a, iff bg<b, for all B, y<a. An
important, but obvious, fact about E-M-models is the order-indiscernibility of
elements of I in M* = EM(I, &) with respect to atomic formulas: if a=,b in I,
then for any atomic L*-formulas @(x), M*k ¢[a] iff M*E @[b]. The reason for
this is that for a strictly increasing a, M*k @[a] iff ¢(v) € @. Notice that the
above order-indiscernibility automatically extends to ¢ any quantifier-free formula.
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With also writing a for the standard well-ordering of ordinals <&, we have, in
particular, the E-M models EM(a, @), for a € Ord. Note that & is nothing but
the atomic diagram of EM(w, ).

An abstract version of Morley’s omitting types theorem can be stated as
follows.

Proposition 3.1 [7]. Let u=|L*|+R,. Suppose M is a family of L*-structures
such that for every a < (2*)*, there is M € M with ||M|| >3, (e.g., M= {M} with
|M|| = 2auy+). Then there is an E-M scheme @ in L* such that for every n <w,
EM(n, @) is isomorphic to a substructure of some M € M.

Remark. In the notation of 3.1, suppose T* is a universal theory in (L*).,, (that
is, the axioms of T* are sentences Vx @(x), with @(x) quantifier-free in (L*).,,)
such that every M € A is a model of T*. Then, for @ given by 3.1, every E-M
model EM(I, &) will be a model of T*: this is true for EM(n, @) if n < o, since it
is isomorphic to a submodel of a model of T*; since EM(/, @) is the directed
union of copies of EM(n, ®)’s, n <w, and the truth of universal axioms in
(L*)., is obviously preserved under such unions, EM(I, @)k T*.

Let us say that the E-M scheme is over T if all EM(I, @) are models of T.

To draw conclusions from 3.1 for models of our theory (T, %) of Sections 1 and
2, we use Skolem functions. Let us summarize the well-known method of Skolem
functions. Depending on the fragment &, there is a canonically constructed
finitary language Lg, of cardinality <|%|, L c Lg, and there is a universal theory
T in (Lsy )« depending also on T satisfying (i) to (v) below.

(1) The L-reduct of any Lg.-model of T is a model of T.

(ii) Whenever N* is an Lg,-model of Tg,, M* is a submodel of N*, then
M*|L <4 N*| L.

(iii) Any L-model of T can be expanded to an Lg,-model of Tgy.

(iv) Given M <z N, there are Lg.-expansions M*, N* of M, N, respectively,
such that M* c N* E Tg,.

(v) To any formula @(x) of %, there corresponds a quantifier-free formula
@*(x) of (Lg ), Which is equivalent to @(x) under T (i.e., To FVx (@(x)
@*(x)))-

Let us call a formula a X}-formula if it is of the form Iy y*(x, y), where
P*(x, y) is a quantifier-free formula of (Lgy).. It follows from (v) that every
X,-formula (over L) is equivalent in Ty, to a X}-formula.

Proposition 3.2. Suppose u=x', MeK, |M||=2uy, My<M, |IMyll =g,
p €S™°(M,), and M omits p. Then p is omitted in arbitrarily large F-extensions
of M.

Proof. With (Lg,, Ty,) the Skolem theory associated to (T, %), let M5, M* be
expansions of M,, M respectively, which are Lg,-models of Tg,, so that Mg is a
submodel of M*.
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Let us apply 3.1 with L* = Lg, U |M,| (the elements of |M,| used as individual
constants), and with # = {(M*, a),¢ s, }; note that the cardinality assumptions of
3.1 are satisfied. Let @ be the E-M scheme given by 3.1. For any linear ordering
I, and for N** = EM(/, ®), we may assume that every a € |M,| denotes itself in
N** [in every EM(n, @), n < w, the denotations of distinct a € |[M,| are distinct,
since EM(n, @) is isomorphic to a substructure of (M*, @)emyl; hence, for
N=N**|L, My<N. If x is a finite subset of I, |x|=n, then Hy..(x)=
EM(n, @), which is isomorphic to a substructure of (M*, a),. - In the latter, p
is omitted; since the isomorphisms involved are identities on |My|, p is omitted in
Hpy.(x). Since |N] is the union of all the sets |Hy-+(x)|, x a finite subset of 1, p is
omitted in N. ||N|| is at least as large as ||/||, which is arbitrary. O

The next proposition is proved by similar but more complicated arguments than
those for 3.1 (not given) and 3.2. The improvement in it with respect to 3.2 is the
better bound on ||M||.

Some terminology, to facilitate the proof of 3.3. Let B, M* be Lg,-structures,
B c M* (B a submodel of M*), n<w, a an n-tuple of elements of M*. The
quantifier-free type of a over B in M*, tp{ (a/B) (or just tp,{a/B)) is the set of
atomic and negated atomic formulas @(vy, ..., v,_,) with parameters in B for
which (M*, b),.5F pla]. A quantifier-free n-type over B is any tp}f (a/B) for any
M* extending B and a € "|M*|. The set of all quantifier-free n-types over B is
denoted by SG(B). If g € Sq¢(B), and f: B = B’, then f(q) € S5(B’) is defined in
the obvious way, by replacing each parameter b € |B| in any formula in g by f(b).
IfgeSi(B)andscn, s={iy, ..., b1}, o<+ <in_;<n, then g |s € ST(B)
is defined by

oo, .-, VUn_1)€q|s & @, ...,v )eEq.
For the same s, and an n-tuple a, a |sd§f(a,-0, R
als, withscn.

); a subtuple of a is any

im—1

Proposition 3.3. Suppose u=xk', M e K, ||M||=2,0y(1), Mo<M, ||M|l = p,
p € S=°(M,), and M omits p. Then there are a model My, ||Mg|| = k', and a type
p' € ST“(Mg) such that p' is omitted in arbitrarily large F-extensions of M.

Proof. Let Mj, M* be expansions of M,, M, respectively, which are Lg,-models
of Ty, and also such that M{ is a submodel of M*. We define, for every finite
tuple a of elements of M, a submodel B, of M§ of cardinality k' such that
B, < B, for every subtuple b of a and H(a U B,) | L omits the typep | B,. [aUB,
abbreviates range(a) U |B,|; H refers to Skolem hull in M*.] To construct the B,,,
we proceed by induction on length(a). For a fixed a, assuming that B, has been
defined for every proper subtuple b of a, we let B> be a submodel of M§ of
cardinality ' containing B, for every proper subtuple b of a, and by induction on
n>0, we let B? be a submodel of M§ of power k' such that B2 !'< B%, and
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H(aU B?™Y) | L omits p | B%: since for every b € H(a U B%™"), there is A, = |M,|,
|Apl <k, such that M ¥ (p | A,)[p], we may let B be any submodel of M of
cardinality x’ containing the set

B2 YUl {A,:be HaUB2™"H}.

Finally, let B, =\, -, B, Since H(a U B,) =U,.~, H(a U B}), it is clear that B,
satisfies the requirements.

For a linear ordering X, let X" denote the set of all strictly increasing
n-tuples of elements of X.

Let < be a linear ordering of |M|. For every n < w, we construct a family of
subsets I of |M| (a<(2%)*), of cardinality |I”|=3,(u) with the following
properties and additional items:

(i) For any fixed & < (2*)*, B, (see above) has a constant value on (I7)¢~"):
for all a € (I2)™, B, = B’; and also, tp,{a/B?%) is constant:

tpoa/B7) = q% for all a € (I73)<".

(ii) For varying o <(2*)*, the B”, are all isomorphic to each other: we have
the Lg,-structure B", and isomorphisms f7: B" => B7 (a < (2*)*); moreover, the
isomorphism (f72) ' takes q7 into a constant type g” over B":

9" =4q%
and (f72)~! takes the type p | (B%| L) into a constant type p” over B" | L:
(fAp™)=p | (BLIL).

(iii)) Furthermore, for any 0 <n < o,
(a) Bn—l c Bn,
(b) for any a<(2*)* there is B<(2*)" such that I2c I} ', and the
diagram

incl.

B” -1 3 Bn

fﬁ"l lf’&
-1

B’;; incl. B:’

commutes (note that B} ' < B since By '=B,, B%=B, for any a e (I7)~"
and for b, any subtuple of a of length n — 1; recall that B, ¢ B,).
For n =0, put I, = |[M| for all a, B®= B, = By, f? = identity, q° = tp}"(#/B°),
p°=p | B°. Suppose n >0, and that for n — 1, all items have been defined.
Given a < (2*)*, let, by the Erdés—Rado theorem, [” be a subset of 1271 of
cardinality 2,(u) such that the functions

a—B,, a—tp}'(a/B,)

defined for ae(/2)" are constant. Since these functions, defined on
(I23L) ™, have ranges of size <u*, and |I72;.|=132,,.,(n), this is possible.
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Define B”. to be the constant value of B, for a € ("), and let g" be the
constant type tqu(a /B%) (a e (7)™~ ”))

Let & <(2)*, and pick any a (I*)&™, and b, subtuple of a of length n — 1.
Then B,= B!, B, =B", and since B,, c B,, we have B”;. < B For
@, a' <(2)*, let us write & ~ o' if there is an isomorphism g that makes the
diagram

Bn—l
f':y wl
—1 -1
B'¢;+w B':x +w
incli lincL

pn
B,

commute, and for which also g(q?)=gq" and g(p|(B%|L))=p|(B%|L).
Clearly, the number of equivalence classes of ~ is <2*' (since ||B%|| = k'). Let
X < (2%)* be an equivalence class of ~ of cardinality (2<')*. Let us ple a fixed
a € X, and define the Lg.-structure B” with the isomorphism f7: B” => B". so that
B"~'c B", and in the diagram

incl

B"™
fn 1
atw a+w
n 1 n—1
Ba+w incl. Ba +o
n
G

P!

Bn

r m

the left-hand side quadrangle commutes. For any other a’€ X, there is an
isomorphism g,  that makes the outer pentagon commute, and for which
8.(q?) =q% and go.(p | (B%|L))=p|(B% | L). Define f7 to make the lower
triangle commute this will make the right-hand side quadrangle commute as well.

Let =) g = (%) q:)  (independent of a'), p"=
Y p | (B;',IL)). Let X be enumerated as X = {y,:a <(2*)*} with a<y,,
and put B';défl?;',ﬂ, fo= f;’,a It is clear that all requirements in (i) to (iii) are
satisfied: B = y, + @ can be taken in (iii)(b).

As a consequence mainly of (iii)(b), we have

=(g"1B" s )

whenever s < n, |s|=n — 1, in particular, g" "' = ¢”: the reason is that, for o and

ﬁ as in (iii)(b), and for ae (I <M, b=al|s, we have be(l;)"™, and
= (f57)" (tpat®/B5™), 4" = () (tbora/ BL).
For the same reason, we also have p”"~'cp” for all n=1.
Consider the set ® =_J,,, q" of formulas. @ is a set of atomic and negated
atomic formulas with variables all in {v;:i <®} over the language Lg(B®) «f
Lg U U< |B"| (the elements of U, |B"| being used as individual constants).
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Since each ¢” is consistent, ¢" ' cq”, @ is consistent; the ‘maximality’ and
‘non-degeneracy’ of @ are also clear. Finally, it is easily seen by (1) that @ is
homogeneous. Thus, & is an E-M scheme in Lg, (B *).

Let My* =\, B”, an Lg,-structure; M= My* | L. By 2.14, let p’ € $™“(My)
be a type extending each p”, n < w.

Let I be any linear ordering, N* = EM(I, @) | Lg,, N=N*| L.

We may assume that the interpretation in EM(Z, @) of each b € B” is b itself;
this ensures that My < N. We will show that N omits p'.

Let x ={x;);<, € ™. Then the definition of @ as | J,-,q" tells us that
q" =tpi*(x/B"). Take any a<(2*)* and a=(a;);c,€ (%) ™. Then q%=
tpyt (a/B%). The isomorphism f7,: B” = B, takes ¢" into q%; this means that we
have an isomorphism

Hy+(x U B") = Hyy-(a U BY)

taking x; to a;(i<n), and acting on B" as f,. Since p|B7 is omitted in
Hyy+(a U B%) (B = B,; this is the defining property of B,), p” =p’ | B" is omitted
in Hy.(x UB"); in particular, there is no realization of p’' in the subset
|Hy«(x U B™)| of |N|. But, of course,

INl = U HY(xUB").
n<w
xelm

Thus, p' is omitted in N. O

Given any linear ordering I = (I, <) and tuples a, b € I, we write
a=.b inl

if for all ¢ € =*I there is d € =*I with a*c=,b"d, and for all d € <~I there is
ce~*I with a"c=,b"d.

Lemma 3.4. Assume @ is an E-M scheme in Lg,, and a=, b in I. Then a and b
satisfy the same XY-formulas in EM(I, ®).

Proof. Let M*=EM(I, ). Let @(x) be a {-formula, ¢(x) =3y ¢(x,y),
quantifier-free, and assume M*E @[a]. Since M* is generated by I, there are
Lg-terms #(z) matching x, and elements ¢ €l matching z such that M*E
Y(x, t(z))la/x, ¢/z]. Find d such that a“c=¢b"d in I. By the order-
indiscernibility of elements of I in M* with respect to quantifier-free formulas,
M*Ey(x, t(2))[b/x, d/z], hence M*E @[b]. O

For Acl, b, cel, let us write b=, c(mod A) if A"b=,A"c for some (any)
tuple A enumerating A.

The following proposition is a varient of Morley’s theorem [6] stating that
categoricity in uncountable powers implies stability in X, in the case of countable
first-order theories.
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Proposition 3.5. Suppose A > k', T is categorical in A. Then for any u, k' s u <
A, T is stable in u.

Proof. Since K has arbitrarily large models, an application of 3.1 (with the
remarks following it) gives an E-M scheme @ in L over T. Consider the models
M*=EM(A, &), M=M*| L. Let Ac|M| be of power <u. We claim that the
number of types in S=“(A) realized in M is at most u. Let B = A be such that
|B|=u and A< H(B). If ¢,de ~“(1), and ¢=,.d (mod B) in A, then ¢ and d
satisfy in M* the same X}-formulas with parameters in B, by 3.4; hence, for any
finite tuple #(x) of Lg.-terms, £*[c] and #¥[d] satisfy in M the same X,-formulas
with parameters in A ¢ H(B), and hence, by 2.13, *[c] and ¢¥[d] have the same
type over A in the sense of €. Since, as it is easily seen (see below), the number
of equivalence classes of =, (mod B) restricted to finite tuples is at most u, and
the number of finite tuples #(x) is <k’, the claim follows. [The equivalence class
of ¢ = (¢;);~, with respect to =, (mod B) is determined by which Dedekind cut C
of B in I the ¢; fall in, and by the order-type modulo k of the two parts of C into
which ¢; cuts C; two order-types are equal modulo x if either they are equal and
both are smaller than k, or else both are at least k.]

If we had |$=“(A)| > u for some set A = || of power u, then realizing u* <A
many of the types in $°“(A), and including these realizations in a model M’ of
power A, we would have the situation of some A < |M’| of power u, with M’
realizing more than u many types in S=“(A); thus, certainly, M’ is not isomorphic
to the above M, contradiction to the assumed categoricity in A. O

Proposition 3.6. Let A, A, be singular cardinals such that x' <A, <A, cfd,=
cf A<k, A, is strong limit. Assume T is stable in A,. Then there is M € K, such that
[S=“(M)| = A.

Proof. Following the referee’s advice, we give a preview of the proof (which, in
the referee’s words, “is long but not hard’). The required model M will be an
Ehrenfeucht—Mostowski model based on an ordered sum =7}, ., I, of satur-
ated dense linear orderings I; of appropriate powers, without endpoints; || = A.
M will inherit all the numerous partial and total automorphisms of I; we will
consider only partial automorphisms, that is, order-preserving mappings g of
subsets of I into I that respect levels: for x € I;, g(x) € I, We call a type p over M
* -definable over a set A < I if any two tuples b, ¢ of length <k of elements of /
behave with respect to p in the same way in the natural sense provided they
behave the same way with respect to the ordering of I, the elements of A, and
with respect to membership in the sets I; (see the precise definition before Claim
3). Claim 3 below asserts that every type (in finitely many variables) is
* -definable over some set of cardinality =<k'; this is a consequence of the
non-strong splitting provided by 2.15. =*-definability allows forming the
translation g(p) of any type p along a partial automorphism g of the ordering if g
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is defined at least on the set over which p is *-definable; this is the content of
Claim 5.

Now, the important question concerning a type is whether it is *-definable
over a bounded set of size <k’, where a set is bounded if it is a subset of )}, I;
for some « <cf A; if the answer is “Yes”, we call the type bounded. It is easy to
see that the number of bounded types is <A (Claim 6 and following passages).
Assuming now that the conclusion of the proposition fails, there is an unbounded
type p; p is still *-definable over a necessarily unbounded, set A of size <k’'. The
main point is Claim 7 which asserts that for any partial automorphism g of the
ordering that moves all but a bounded part of A to a position entirely above A,
we have that g(p) # p; the reason is that the assumption g(p) = p would lead to
the conclusion that p is *-definable over the bounded unmoved part of A.

The last conclusion gives us a tool of an orderly construction of many distinct
types, in virtue of the existence of many appropriate g’s. In particular, we can
construct a ‘tree’ of distinct types for which the fact that they are distinct is
witnessed on a subset I' of I having a small intersection with each I, We have
that |I'j < A4, and using the restrictions of the types to the Skolem hull of I’, we
get a conclusion contradicting the stability assumption on A,. This is the subject
of the rest of the proof. '

Assume the hypotheses. Let (Lg,, Ty) be the Skolem theory associated with
(T, #); |Lg| <k’. Since (by <k-compactness) T has arbitrarily large models, a
‘weak’ application of 3.1 gives us an E-M defining scheme & over (7, %) in the
language L.

If J is a sp-saturated dense linear ordering without endpoints, in the usual
sense of the model theory of finitary logic, then, since the finitary first-order
theory of (J, <) admits elimination of quantifiers, a=¢b in J implies
(J, @) =, (J, b) (elementary equivalence in (Lo)wy, Lo = { <}) provided a, b are
of length <. In particular, a, b € =*J and a =, b imply that for any ¢ € =*J there
is d such that a"c=,b"d. As a special case, a=, b implies a=, b.

The general existence theorem for saturated models (see {1]) gives, for every
infinite cardinal p such that p* = p, a < u-saturated ordering of cardinality p.

Let @ =cfA=cfA,, and let (u,);<o be a strictly increasing sequence of regular
cardinals limiting to A, uo= A{ (note that A{ =2" since A, is strong limit, A, > K;
see [4]). By Theorem 4 in [16], u}' = u;. Let I, be a <A,-saturated dense linear
ordering without endpoints of power y;, and let I =}, _,I;, the ordered sum of
the I’s; the linear orderings J; are disjoint subsets of I, and I, <I; (meaning for all
xel, and yel. x<y in I) whenever i <j< 0. Define M* =EM(I, ¥), and
M =M*|L; we may, and do, assume that M < €.

A function f with dom(f)c1, range(f)c1! is proper if f is one-to-one,
order-preserving, and for all i <0, a e dom(f), a € I, iff f(a) € I, We also write
f:A S B for f proper, dom(f) = A, range(f) = B. We write b=, ¢ (mod A) when
Id, U {(bg, cg): B <a} is proper; here b = (bg)p<a, €= {Cs)p<a
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Ciaim 1. Any proper function preserves the meaning of X5-formulas: if f:A>> B,

a€~"A, @(x) is a XY-formula, then M*k pla] & M*Eg@[f(a)].

Hlll(

Proof. This follows from 3.4, once we see that a=,f(a), for a € *A. This
follows easily from the fact a=,b implies a=,b in <k-saturated orderings
(separate @ into parts, each in one ;). O (Claim 1)

Claim 2. For any Acl of cardinality <k’ and any b, c in =*I such that
b=, ¢ (mod A), there are d, (1 < « < k) such that both

b {d ) 1<aex and ¢ {dy)1<a<x
are sequences of indiscernibles with respect to the relation =, (mod A), i.e.
b*d, - --"d,, =¢c"dy"--"d, (mod A)
=,dg,"- - -"dg, (mod A)

whenever k< w, a,<-: < a; <Kk, fo<-: <P <k.

Proof. It is easily seen that the special case of the claim for the case when b, ¢
and A are all in a fixed I, implies the general case; one uses the properness
involved in the assumption b=, ¢ (mod A). Accordingly, assume i< 6, b, ce
<*L, Acl, b=¢c(modA). Let b= (b;);<,, ¢=(¢j)j<y; Wwe want to define the
d,=(d")j<,(«¢<k). Whenever b;e A, and hence ¢;=b;, we put df=b,=
¢ (@ <k).

Let C be a Dedekind cut of A, i.e. a maximal convex subset of [, — A (‘X is
convex’ means that x, y € X, x <z <y imply z € X). Consider the set I = {j <
y:b;e C} = {j <v:c; e C} of indices. For j € I, we define d;* (o < k), so that for
all a <k,

dfeC,

(d7)jere=0{b;)jer.=0{C;) jer

di>b;,di>c; forallj,j elg,
and when < a <k,

dF>df forallj,j erl.

By the <k'-saturativity of [, this is easily done. Since for every j <y, there is a
unique Dedekind cut C of A such that b; € C and c; € C, unless b; =c; € A, the
above will specify d;* for all @ <k, j<y. It is clear by inspection that the d; so
determined will satisfy the requirements. O (Claim 2)

Let f be a function with dom(f) c I, range(f) < I, and let p, q € S,(M). We say
f is a partial similarity between p and q, in notation f:p ~gq, if the following
holds: whenever @(x, y) is a 3-formula (in L) and #(z) is a tuple of Lg,-terms of



Sh:285

Categoricity of theories L., 71

the same length as y, then

e, Mahep & o M[f(a))egq

for all tuples a matching z of elements of dom(f). We also write (a, p) = (b, q) if,
with @ = (a;)ica, b= (b;)ica, f ={{a;, b;):i<a}, we have f:p~q. We say p is
* -definable over A I if for all b, ¢ from I,

b=,c(modA) = (b,p)=(cp)
Claim 3. Every p € S“°(M) is *-definable over some A c I of cardinality <xk'.

Proof. By 2.15 (applied to A, as the A of 2.15), p does not split strongly over
some Ay |M| of cardinality <k’. Let A =/ be a set of cardinality <k’ such that
Ay is a subset of the Skolem hull of A. We show that p is *-definable over A.
Assume b, ¢ are <k-tuples in I, and b=, ¢ (mod 4). Use Claim 2 to get d,,
1= a <k, as there. By Claim 1, the tuples
b d," - d,,
c’d, " - "d,,,

dg,"dg”- - -"dg

k

all satisfy the same X7-formulas over A, whenever k<w, a;<-:-<gq, <k,
Po<Pi<---<PBi<k. Now, let ¢(x, y) be any X,-formula (over L), £(z) a tuple
of Lg.-terms matching y. Using the given ¢, we conclude from the last-made
statement that the tuples

tM[b]A‘M[da,]A' ' 'AtM[dak]’

Mc] e[, ] - MM d,),

tM[dg )" t[dp,]"- - " t¥[dy,]
all satisfy the same X}-formulas over A, whenever k<w, a;<---<aq, <K,
Bo<---<PBi <k. Since the Lg,-translation of a X;-formula is a X{-formula (see
the introductory part of this section), and A, is in the Skolem hull of A, the

last-listed three tuples satisfy the same X';-formulas over A, in M, hence also the
same X;-formulas in €, by 2.11. This says that the two sequences

M(b), Md,), - .., tM[d,], ... (a<k),
Mec), Md), ..., Md.),... (a<k)

are both sequences of indiscernibles over A, in 4, in the sense of 2.14. Since p
does not split strongly over A,,

o(x, tM[bep © @, M[di])ep,
ox, tMchep © @x, t[d])ep.
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It follows that

olx, t"[b)ep &  o@lx, M[c]) ep.
Since @ and ¢ were arbitrary, this proves that (b, p) = (¢, p). O (Claim 3)

Claim 4. For any f:A S B with |A|<«', and any set C I of cardinality <K',
there is an extension g:AUC>BUD of f.

Proof. Easy; left to the reader. [ (Claim 4)

Claim 5. Suppose f:A <> B, and p € S,(M) is *-definable over A. Then there is a
unique type, denoted by f(p), in S.(M), which is *-definable over B and for
which the following holds:

(*) g:AUC»BUD,fcg > g:p=f(p)

Proof. Let us first see that there exists a set f(p) < (Z)),(M) satisfying the
conclusion ( *), regardless of whether it is a type. The problem is whether for any
2 -formula @(x, y) and tuple v of elements of M, the requirements in the claim
can give contradictory answers to the question “@(x, v) € f(p)”. To show this
cannot happen, suppose

g:AUCDBUD, ¢))
g':AUC'S>BUD/, )

both extending f, #(z), #'(z’) are tuples of Lgc-terms, ¢ € C matching z,¢' e C
matching z’,

v =[g(e)] = r™[g'(e")]; 3)
we need to show

o, Mchep © o tMcDep. (4)
To do so, let, by Claim 4, C" and g" be such that

g:BUD'UD"H>AUC” ()
extending f. Then for ¢; = g"(g(c)) and ¢; =g"(g'(c")), we have

¢, =, c(mod A) (6)
by (1) and (5),

¢;=;¢' (mod A) @)

by (2) and (5), and
gle)"g'(c")=1¢"¢c; (8)
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by (5) alone. Thus
¢, tM[chep & @lx, tM[(c)]ep ®
by (6) and the *-definability of p over A,
e, t'M[c'Dep & @l t'Mc))ep (10)
by (7). Now, by (8), (3), and indiscernibility,
tM[e,] = t'M[e]]. (11)

Thus, on the right-hand sides of (9) and (10), we have identical formulas, hence
(4) follows from (9) and (10).

We have shown that f(p) as a set of formulas is well-defined and satisfies ( *).
To show f(p) € S,(M), let V be an arbitrary subset of M of size <k; we’ll show
that f(p) |V € S(V). For every v eV, let us choose a term t,(z,) and a finite
tuple d, of elements of I such that v = t¥[d,]. Let D be the set of all members of
all the tuples d,, veV, and let, by Claim 4, g be an extension of f such that
8:AUCSBUD (C=g7'(D)). The mapping h:U =V defined by

h7'(v) =1[g7"(d.)]

is a X7-elementary map in M* by Claim 1, hence, by 2.13, it is a 3;-elementary
map in the sense of €. Therefore, h(p|U)eS, (V). However, h(p|U)=
f(p)|1V:by (*), g:p=f(p); this, applied to an arbitrary ¢, and the particular
tuple ¢ = (, ),y gives the desired equality.

Since f(p) | V is a type, for any V of cardinality <k, by 2.11, f(p) € S,(M). The
uniqueness of f(p), and its definability over B, are clear. [ (Claim 5)

Claim 6. For any set A c I of cardinality <K', the number of types in S<“(M) that
are *-definable over A is <2,

Proof. Using that k is strongly inaccessible, 6 < k, we easily see that the number
of equivalence classes of <k-tuples with respect to the relation =, (mod A) is <k.
The number of X;-formulas is <(x')~" =< k'*. Notice that a type *-definable over
A is determined by a function whose arguments are pairs, each of an equivalence
class of =, (mod A) and a X;-formula, and whose values are 3,-formulas, hence
the number of such types is <(x'*)**®'" =22 O (Claim 6)

The number of bounded subsets (those in some |, I, i < 8) of I of cardinality
=K'1is

K’ + _
sup p; <sup p; = A
i<8 i<0

(by Theorem 4 of [16] quoted above). Hence, by Claim 6 (and 27 < 4, <4),
the number of types in S~“(M) *-definable over some bounded subset of I of
cardinality =k’ is =A.
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Assume now, contrary to the conclusion of the proposition, that [S<“(M)| > A.
Hence, there is p € S~“(M) that is not *-definable over any bounded subset of 1.
Let us fix such a p. Let A < I be a set of cardinality <k’ such that p is *-definable
over A (by Claim 4). For any set X [, let X_; mean X N, [, X;=X N1,

For proper functions f, g, and i <, let us write f<, g to mean:

f<ig © fllgu=gl|landf |, <g|l forallk,isk<@.

(fIJ=fN x1I), even if J ¢ domf; for subsets A, B of I, A< B means for all
xe€a,yeB, wehave x<y; I = 1I.)

Claim 7. Let i <6, g a proper function with domain A such that id, <;g. Then
p+g(p).

Proof. Suppose p =g(p). We derive from this that p is *-definable over
A, (=g"A.), in contradiction to the choice of p. The tool for this derivation will
be the fact that p is *-definable over both A and g"A (see Claim 5). Let
b= {(bg)p<a €={(cs)p<a and assume b=, c (mod A_), to show that (b, p) =

(¢, p)-
Let S<,.d=°f{ﬂ< a:bgel }={B<a:cgel.}, and for any k such that i<k <

6, let S, & {B<a:bgel}={B<a:cgel}. For each BeS,, use the satura-
tivity of ., and choose an element dg € I; such that

Ak < dﬁ <g"Ak)
and
<dﬂ )ﬂeSk =0 (bﬁ >ﬁeSk =o <Cﬂ >ﬁsSk-

Define
d=(bg)pes.,UUick<o (dp)pes-

We are going to show that

(b, p)=(d, p) 1)
and

(¢, p)~(d, p), 2
which will suffice. To see (1), let

Si={B€S::bs <g'Ai},

$:=8, — Sk
We then have

(dg)pestU (bp)pest =0 (bp)pest U (bg) pesz (mod g"A,)

= <bﬁ >ﬁsSk;
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and hence, for

d’ qﬁ—f<b/3>/3~55<,.u istJ<9 <dﬂ>ﬂes,1 U is&ie <bﬁ>ﬁes:’

we have
d’' =, b (mod g"A). 3)
But also,
(dg)pest U{bp)pes2=0(dp) pes: U (dp) pes2 (mod A,)
= (dﬁ>ﬁesk
and hence
'=,d (mod A). )]

Since p is *-definable over both g”"A and A, (3) and (4) give that (d', p) = (b, p)
and (d’, p) = (d, p), hence (1). For proving (2), we use

(cg >ﬁeS<i =, (b )ﬂes<,. (mod A.)

(which follows from ¢=, b (mod A_.;)), but otherwise, the proof of (2) is the same
as that of (1). 0O (Claim 7)

In Claim 5, we defined f(p) for any proper function f with dom(f) = A. If fis a
proper function with A « dom(f), f(p) will mean (f | A)(p).

Claim 8. There is a set B of cardinality <k’ such that A c B c I, and such that for
any two proper functions f, g with dom(f) =dom(g) =B, and any i <0, if f<,g,
then f(p) | H(f"BUg"B)#g(p) | H(f"B U g"B). (H(X) is the Skolem hull of X.)

Proof. For every i < 8, choose C; c I, and h?:Ai? C; such that A, < C;; let

CEUC, hr=UHh.
i<@ i<@
For any i<, let h®” be the proper function with domain A for which
hOD| A_; = identity, h'®? | A, =h% for i<k <. By Claim 7, there is D® <[
such that |[D®| <k and p | H(DV)#h®(p) | H(D®). Let D =|J;.o D¥. Thus
Dcl1, |D|<k, and

p | H(D)#h®"(p)| H(D) 1)

for all i < 6. By Claim 4, choose B/ and h:A U B°3> C U D extending h° let
hy=h|I,. Define B=AUB°UD; clearly, |B|<k’; we show B satisfies the
requirements of the claim.

Let i < 6, and let f, g be proper functions with domain B, f<;g. Let h® be the
function with dom A =B, h®|B_;=identity, h®|B,=h|B,; h® extends
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h®9. By (1), there are de <D, a X -formula ¢(x,y), and a tuple #(z) of
Lg,-terms such that

¢l tMd)ep & @, [d]) e " (p) 2

By possibly rearranging d and y, we may assume that d=d°"d' "d? and
d'="{d})ickco, d*>="{d});<x<o With d’ € I,, d} € I, d € I,, and moreover

di<d:, €))
Ak < dl%) (4)
d, < C, 5)

for all k, i < k < 8; this is possible since A; < C,. (Of course, e.g. (3) means that
d<d' for all members d,d’ of the tuples d}, di, respectively.) Let bi=
(R "Y(dD), b*="{b})i<k<e- We have the following two relations:

Ard* d " d? =, f(A)"f(d") f(d")"g(b?), (6
hO(A) d"d'"d* =, g(A)"f(d°)"f(d") "g(b"). (M
Concerning (6): within I_;, it reduces to
A d = f(AL)"f(d")
which is obviously true; and within 7, (i < k < 8), it reduces to
Al d ;=0 f(A)f(di)"g(b)
which is true since A, d} <dZ by (3) and (4), and f(AL)"f(d}) <g(b?) by f<.g.
Concerning (7): within I, it reduces to
h(AL) d°=,g(A)"f(d"),

which is true since h® is the identity on I_;, and g and f agree on I_; within
L (i <k < 0), it reduces to

hO(A) " hO(bY) =0 8(AL)"f (di) " (b)
(since d?=h¥(b2)), which is true since dj <h”(A,)"h¥(b3) by (3) and (5) and
f(di)<g(AL)"g(b) by f<:g.
Let us write e =f(d°)"f(d")"g(b*). Note that eef"BUg"B. (6) and (7) say,
respectively, that A*d=, f(A)"e, and h'’(A)"d=,g(A)"e. By the definition of
f(p) (see Claim 5), the first of these relations implies that

(d, p)= (e, f(p)) (8
and similarly, the second implies that
(d, K(p)) =~ (e, 8(P))- )]

(for the latter, note that g(p)=(ge(h?¥) ") (h*’(p)) in the sense of the
construction f(p) of Claim 5). (8), (9) and (2) imply that

ox, e ef(p) & olx, t"[e]) eg(p).
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Since e f"BUg"B, f(p) | H(f"BUg"B) #g(p) | H(f"BUg"B). [(Claim 8)

Now, we complete the proof of the proposition as follows. Find strictly
increasing cardinals p; for i<6 such that [, pu'<p/(i<6), and A=
SUp;<g M7 - .

For any j <i< 6, and 0, 0’ € [1x<; ux, let us write n<jn' for: n(j) <n’'(j) and
n(k) = n'(k) for all kK <j. Then the relation <’ on [I;.; ui defined by

n<‘'n’ <& thereisj<isuch that n<in’

is the lexicographic linear ordering.
By induction on i < 6, we define, for all n e[l u, a proper function with
dom f, = B_,, with B from Claim 8, such that

n<§n’ > h<fw
(where the latter means, as before, f, | I;=f, | I, faB« <fy By for j <k <i).
For n =9, fy=9; for i limit, length(n) =i, f, = U< f,,; the induction hypothesis
clearly persists.

Let us assume that i <6, and f, has been defined for all nell,;u;; we
define f,.(,y for all aeyu’. We claim that there is a family of functions

<h(n,a)>nen,-<,- ur, aep’s
h('l,a’) :Bi%) C(r],a)’

such that C(, ,y < C(, oy whenever n<'n’ or (n =7’ and a < «’). Indeed, the
claim is equivalent to saying that a certain (quantifier-free) type over Lo={ <} in
[II;<; 1| X vi = p/" variables can be realized in I; since I, is <A,-saturated, this is
possible [so far, we used only <(x')-saturation of the I; this is the place where
< A;-saturation is used]. Define

Foray =f Uh(n ay-

It is clear that we have satisfied the requirements. This completes the definition of
the f,, for nell,;u}, i<6.

For vellicou!, let f,=i<of.;- Then each f, is a proper function with
domain B, and v </ v’ implies that f, <,,; thus, Claim 8 can be applied to f, and
f.-- We conclude that for any v, v’ € [I,co ', if v# v’ (hence v<?v’, or v' <’v,
for some i < ), then

LY H(fyBUSB)#f,(p) | H(fyB U B).
Let N=H(U{f;B:nell;<;nf, i<6})|L; clearly, ||N||=4,, and N<M. By
the last inequality, the types f,(p)|NeS~“(N), vell,couf, are pairwise
distinct. Since, by Konig’s inequality, |Il;< 7| > A4,, we obtain that T is unstable
in A;, contrary to the hypothesis of the proposition. 0O

Formally, for the next conclusion, the assumptions of Section 2 are lifted, but
those of Section 1 are still in force. In particular x is a compact cardinal.
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Conclusion 3.7. Suppose A>21,,1(x’) and K is categorical in A. Then all M € K
are existentially closed.

Proof. By 1.13, K has the amalgamation property; by 1.8, it has the joint
embedding propety. Thus, Sections 2 and 3 are applicable.

If ¢f A=k, the conclusion is known by 1.9. Assume 6 =cfA<k. Then, let
A1 =2(k’). By 3.5, T is stable in A4,. Thus, 3.6 is applicable, and we get, using
again that T is categorical in A, that T is stable in A. By 2.6, the model M € K| is
u-saturated, for all regular u <A, i.e., M is saturated. By 2.2(i), M is existentially
closed. Using the argument of 1.9, it follows that every model in K is existentially
closed. O

4. Stability

We continue with the conventions and assumptions introduced in Sections 1
and 2. Another assumption we make is

Assumption 4.0. Every M € K is existentially closed.

Note that, by 1.9 and 3.7, if K is categorical in A, and either A>k’ and
cf A=k, or A>2,,1(k'), the last Assumption holds.

For a sentence ¢ of L., let us write K F o to mean that Mk ¢ for all M e K.
Let T’ be the set of all 3;-sentences o such that €k o; T’ includes T. Then, for
any sentence 7 € L,,, or more generally, any 7 of the form Vx ((/\ ¥(x))— ¢(x))
with ¥(x) = L,,, ¢(x)€ L,,, KFtiff T'E1, and in fact, the ‘if’ direction holds
for any 7 € L..... Since every M € K is (isomorphic to) a X-substructure of €,
KET’, hence the ‘if’ direction follows for any 7 € L.... Conversely, if KF 7 then,
picking any fixed M, € K, Diags(Mo)F 7, since every F-extension of M, is in K.
Hence, by applying <kx-compactness, we find o € X;, such that MyF o, hence
oeT’, and ok 7; this shows T’k . By another compactness argument, we obtain

Proposition 4.1. (i) For any X\-formula @(x), there is a Z\-formula y(x) such
that "@(x) is equivalent to Y(x) in K: K EVx ((O@(x)) © ¢(x)).

(i) For any @(x)€ L,,., there is a Z\-formula y(x) such that ¢(x) is equivalent
to Y(x) in K.

(iii) For any M, Nin K M<NSM<, NoSM<,, N (where M <., N means:
ME gla]l© Nk @la] for all (x) € L, and a € |M}).
Proof. (i) Let @(x) be a X -formula, and let vE Aypx):px)eZ;, E
Vx (¢(x)— 1y (x))}. We claim that K FVx ((/\ ¥(x))— @(x)). Suppose, to the
contrary, that there is M € K and a € |M| such that Mk A\ ¥[a] and M F¢[a].
Consider the set X =Diagg(M)U {@(a)} of sentences. If there were X'e
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P_.(Diagz(M)) such that 2’ U {p(a)} had no model, then, by existentially
quantifying out the |M|-constants other than those in a in the conjunction A X',
we would get a X'-sentence y(a) with M F y(a) and EVx (@(x)— y(x)), hence
Y(x) € ¥, contrary to the choice of M. But, any model N of X' is an %-extension
of M, M <N, with Nt g[a]; since MEgp[a], this means that M £; N. This
contradicts the assumption that M is e.c.

The claim having been proved, we have T'EVx ((/\¥(x))— @(x)) (by
remarks made above), hence by compactness, T'kVx ((/\ ¥'(x))— @(x)) for
some ¥'(x) = W(x) of cardinality <x. The conjunction /\ ¥’(x) is equivalent to
—1yp(x) for a X -formula y(x); the definition of ¥’ gives T’k Vx (@(x)— vy (x));
the way W' was obtained gives T'EVx ((0y(x))— @(x)). Thus, T'FVx (p(x) <
=y (x)), which suffices.

(ii) This follows from (i) by an induction on the complexity of formulas in
L...

(iii)) Immediate from Assumption 4.0 and (ii). O

Definition 4.2. K has a long definable order, or simply, K has order, if there are a
formula @(x, y) € L,,, with length(x) = length(y)(<k), and a sequence {(a;);,
of length k of tuples in € such that for all i, j <k,

Fola, a;] iff i<j.

Proposition 4.3. If K has order, then for all A>x', I(A, K)( = the number of
isomorphism types of models in K,) is equal to 2*.

Proof. This is essentially a special case of Theorem 3.14, part (2) of Chapter III
in [15]. In detail, let @(x, y) be a formula defining a long order in €. By 2.1, ¢
and ¢ are equivalent in K to X,-formulas, say, 3z, ¢(x,y,z;) and
3z, ¥,(x, ¥, 2,), respectively; here, ¥, 9, are Boolean combinations of formulas
in ¥ c L,,,. Introduce new and disjoint tuples ¢;, ¢, of individual constants; let
the similarity types 7;, 7, be obtained by adjoining the constant ¢,, respectively
¢, toL; 1,N1,=L. Let ¢i(x, y) = yy(x, y, ¢;) (i = 1, 2). Take vy of loc.cit. to be
the conjunction of the axioms of T'; y € L(.y+ ., thus x of loc.cit. can be taken to
be x’. odgllength(x)l <k, hence 6" <k =< K’'. Notice that, by <k-compactness,
once we have a @-order of length x in €, we have @-orders in € of arbitrary
lengths. The assumption (*) in loc.cit. is satisfied: every large enough model of T
is in K, so the orders defined by ¢ translate into sequences related to ¢, ¢, as
needed for (*). The conclusion of loc.cit. is the assertion of the proposition. [J

Since we are interested in the case when K is categorical in some A > k', it is
reasonable to make the following assumption for the rest of this section:

Assumption 4.4. K does not have (long, definable) order.
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In the case k =X, this is the usual condition of stability for T' (for T', see
above before 4.1; it is a complete theory in the usual sense if Kk = X;). We also call
K 1-stable if the last Assumption holds for it. On the basis of the assumption of
1-stability, we develop a generalization of a part of the theory of forking of types
originally developed in [9] for stable first-order theories. The part in question is
the one that concerns forking of types over models, rather than types over
general sets. Although, for technical convenience, our definition of non-forking
(independence) will be for a general base-set, we will be essentially restricted to
using the notion with base-sets that are models, because of similar restrictions in
the properties we can prove for the notion. It is to be noted that the notions to be
introduced will coincide with the ‘usual’ ones for xk = ¥, only if the base-set is a
model.

In the rest of this section, a ‘formula over A’ means one of L,,(A), that is, an
L, -formula with parameters in A.

Definition 4.5. (i) For sets A, B, C (subsets of ¥, of cardinality <||€| as
always), we say that A and B are independent over C, and write NF(C, A, B), or
A W B, if the following holds: whenever @(x) is a formula over C U B (with
parameters in CUB), a€ A, then F ¢[a] implies there is @’ in C such that
Fpla’]).

(ii) For C ¢ B and p € S,(B), we say that p does not fork (dnf) over C if for all
@(x) € p, there is a’ € C such that k ¢[a’].

Clearly, A W B iff tp(A/C U B) dnf over C (where A is any tuple enumerating
A). The notation a L b (or NF(C, a, b), or a and b are independent over C) is
used in the natural sense: k ¢@[a, b] implies k @[a’, b] for some a’' € C, whenever
@(x, y) is a formula over C; a ¢ b is equivalent to saying A Lc B with A, B the
ranges of the tuples a, b, respectively. The mzz2ning of @ we B should be clear.

In the next proposition, a, b, ¢, . . . may denote (not just elements of {€|, but
also) tuples of length <k of elements of |€|.

Proposition 4.6. Suppose a Lcb, bbca', and axa’ [i.e. tp(a/C)=tp(a’/C)].
Then

Ay oo ot A
a*b za'"b.

Proof. Suppose the hypotheses, and assume that, contrary to the conclusion,

(i) Fe(a, b),

(ii) F—e@(a’, b)
for some ¢(x,y) over C. By induction on i <k define tuples a;, b, from C
satisfying the following:

(i) F@(a;, b),

(iv) E-@(a;, b;) when j<i,

(v) Eog(a, by),
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or equivalently to (v), since a za' and b; e C

) Ene(a’, by),

(vi) Eo@(a;, b;) when j<i.
Let i < x and assume a;, b; have been defined for all j <i satisfying the relevant
parts of (iii) to (vi). Note that, by (i) and (v) (for j <i rather than i),

E@(a, b) Aj/<\4—|(p(a, b;).
Here, we have a formula ¥(a, b) over C, hence by a L b, there is a; € C with

F (p(ai’ b) A /\ _'(p(ai’ bj)’

j<i

that is, we have satisfied (iii) and (iv). Next, by (ii), (iii) and the choice of a;, we
have

E-gla’, b) A /\ @(a;, b).

j=i
Therefore, by b Lca’, there is b; € C such that
Engla’, b)) A ,/<\, @(a;, b,),

that is, we have satisfied (v') (=(v)) and (vi).
Having completed the construction, (iv) and (vi) show that there is a long order
defined by ¢, in contradiction to Assumption 4.4. O

Proposition 4.7. Given sets A, B and a model M(!), there is a X-elementary
mapping f with domain M U A such that f | M = identity, and f"A Wy, B.

Proof. Let us introduce a new individual constant b for each b e M U B, and
another one, @ for each a€ A~ M such that b#b', a#a’', b #a whenever
b#b', bothin MUB, and a+#a’, bothin A — M. Let

SO ={@@ ¢):pk, y)eLy, acA—M,ceM, Fg|a, c]},
S®={pb):p(x)e L, be MUB, t¢[b]},
>®={y@a, b):y(x,y)eL,acA—M beMUB,

and for all ¢ € M matching x, k y][c, b]}.

Let T =XMWYy IZ@ U 3®:; we claim that X is <k-consistent. Let =’ be a subset of
X of cardinality <k. Let A= {a € A — M :a occurs in some formula in 2'}. Since
M <. €6, there is an assignment a~—>a*, ac€ A;>a* € M, such that (6, a* for
a, cfor &)gea—mcemEZ' N ED, Thus (6, a* for 4, b for b)E X' since in ?, no @
occurs, and the definition of =™ ensures that (4, a* for a, b for b) £ = with any
a* e M. We have shown that 3 is <k-consistent.

Let (N, a** for @, b* for b),c4_p.pemun be a model of =. By the universality of
%, we may assume that N < €. Because of the fact that (N, b* for b),cpus is a
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model of @, the mapping b* — b (b € M U B) is a 3;-elementary mapping; let g
be an automorphism of € extending this mapping. By passing from N to g"N,
from a** to g(a**), and from b* to g(b*) = b, we may assume that M U B = N <
% and b* = b for all b e M U B. Let the function f with domain M U A be defined
by f(a)=a** forae A—M, f(c)=c for c e M. Since (N, a**, b),ca—mpemunkF
M, f is I -elementary, and of course, f|M =identity. If y(x,y)eL,,,
acA—-M, be MUB, and Fy(f(a), b), then 7y(a, b) ¢ =, since otherwise,
(N, @**, b)ea—mpemupF = would say that E—p(f(a), b). The definition of
3® says that there is ¢ € M such that § 7y[c, b], i.e. Eylc, b]. This shows that
f'AuyB. O

Proposition 4.8. Properties of the independence relation (A denotes a tuple
enumerating A, etc.)
(I) (Invariance under X-elementay maps)

A"B"C~A'AB”‘C’,A%;B > A’g{B’

(M) (Monotonicity)
A'gA,CgC'gB’gB,A%»B > A'gB’

(T) (Transitivity)
CcC,ALB C'LB > AWB
(ol C C

(C)<x (<K-continuity)

() [VA' € P.,(4), VB € P (B)A' Bl > AWLB,

(i) [{Ai)icw (Ci)icx are increasing, Vi<kA; &, B] > U A, LY B

i<k

(E) (Existence) For any A, B, M there is A’ such that

A'"5A and A' LB

M

(S) (Symmetry)

ALB > BuyA.

M M

(U) (Uniqueness)

A'5A A LB, ALB > A" ~ A

MUB
(B), Suppose p~*=pu=«k'.
(i) For any A, B, if |B| < u, then there is C € P<,(A) such that A uc B.
(ii) For any A, M, if |Al<u, then there is N<M such that ||[N||<p and
ALy M.
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Proof. (I), (M). Clear.

(T). Suppose @(x) is a formula over C U B, and k ¢|[a], a € A (again, here and
below, a, b, . . . may denote tuples of length <k of elements of 6, x, y, . . . tuples
of variables). Since C = C’' and A W¢ B, there is @’ € C’ such that k @[a’]. Since
C’ Le B, there is a” € C such that k @[a”], as required.

(C)<x. Clear.

(E). This is 4.7.

(S). This follows from the special case a Ly b = b Wy a (by (C).,); in turn, the
latter follows from 4.6 and (E): assume a @y, b; by (E), let b’ be such that b’ ;; b,
b’ Ly a; by 4.6, a”b 57 a”b’; thus, by (I), b Wy, a follows from b’ Ly, a.

(U). By (C)«,, this follows from the special case

a’ﬁa,a'hljb,adM,-b > a'“bzya’h.

In turn, this follows by 4.6 once we note that, by (S), a’ Ly, b implies by a’.

(B), (i). Define, by induction on i <k, subsets C; of A such that |C,]< k' as
follows. Having defined C; for j <i, consider all formulas @(x) over BUJ,; C;;
since u=* =y, there are <u many such formulas; for each such @(x) such that
E pla] for some a € A, choose a particular such a = a,, and define C; as the union
of all the tuples a,, @ as above. This completes the definition of {(C;);.,; put
C =J;<x Ci. Any formula @(x) over BU C is over BUJ;; C; for some i < k; if
E @[a], a € A, then a, € C witnesses that A L¢ B.

(ii). In the proof of (i), if A is a model, then, by dLST, each C; can be made
into a model. This means that, under the conditions in (ii), we can find N <M,
[IN|| =< u, such that M Ly A. By (S), A Ly M as follows. [

Remark. Most of the properties of & in 4.8 have useful forms in terms of
non-forking of types:

(I). CcB, fis a X;-elementary map with domain B, p € S(B), p dnf over
A> f(p) dnf over f"A.

(M). peS(B), CcC'cB'cB, pdnfover C> p| B’ dnf over C’ (and ¢q | B’
dnf over C’ for any subtype qeS(B) of p:qeS,(B) for some x'cx if
p € S:(B)).

(C)<x- For peS(B), Cc B, if p|(B'UC) dnf over C for all B' € ?_(B),
then p dnf over C.

(T). CcC'cB, peS(B), pdnfover C’', p|C’ dnf over C= p dnf over C.

(E). For any M c B, p € S(M), there is q € S(B) such that g | M = p and q dnf
over M.

(U). f McB, p,qeS(B) bothdnfover M, p| M =q | M, then p =gq.

(B)<x~ Any p € S=¥(M) dnf over some N<M of cardinality <x”"(k"=
(k')=%).

Proposition 4.9. Suppose p € S<(I__M,), where a < k. Then p dnf over M, for
some i < .
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Proof. Let U be a k-complete ultrafilter on a set I. For any model M, the
ultrapower MY =[I;,;M/U of M is a model in K again, with the canonical
L,.-elementary embedding M — MY mapping each a € |M| into (a) ¥ (a),./U.
If M<%, we may take MY to be an F-substructure of 4, by applying an
F-embedding f: MY — € over M, that is, for which f({a))=a. Below, we will
mean by MY the copy f”M" for such an f; note that the canonical embedding has
become an inclusion M < MY; also, by (a,);.,/U (a typical element of MY) we
will mean f({a;);c;/U), with {a;);,/U here in the original sense. Note, however,
that MY is not uniquely determined within €; it is determined up to an
M-isomorphism.

For A c € (JA| <||€|l), we define AY such that A c AY = € (AY is somewhat
ambiguous as MY above is) as follows: we consider any M with A c M < €; we
take

AYE ((a,);e)/U:a;e Aforalliel} = MY,

with MY meant in the original sense; we finally let A be f”AY for any f: MY — €
over M.

Suppose A  B; consider the ultrapower BY, and the canonical copy of AY
inside BY; by AY below, we mean this canonical copy. Then, we claim, we have

AY WB.
A

Indeed, assume that k ¢@[c, b}, with be B, ce AY, ¢={(cg)p<a ¢s=(a?):cslU.
By Los’s theorem on ultraproducts, we have F@[(af)gs-,, b] for all i € P, with
some P e U, hence for at least one i. This shows what we want since af € A for all
B<a

Turning to the data given in the proposition, let M =_J,., M, and let U be a
k-complete ultrafilter on some set I such that p is realized in MY by d e MY, say.
[Such U exists, since k is compact, by the familiar argument: we let I be the set of
all subsets of p of cardinality <k, and U a x-complete ultrafilter on I such that for
every i€l [i]q—gf{j el:icj} belongs to U; since (g<a[ig] = [Up<aip] (@ <kK),
and thus the intersection of <k many [{]’s is non-empty, such U exists by k being
compact (see [4]). For any i € . (p) =1, let g, € |[M| be such that k(/\ i)[a;].
Then d = (a;);.;/ U will realize p.] Let M’ mean the canonical copy of M/ inside
MUY, then, as it is easily seen, MY =_J;c, MY, since M =\, M;, a <k, and [ is
x-complete. Thus, since d is a finite tuple, d € M{ for some i € I. Applying our
above general observation, we have M v Lp, M, hence duwy, M, hence p =
tp(d/M) dnf over M;, as desired. [

Proposition 4.10. With « an arbitrary ordinal >0, assume p €S <UL M),
Cc M,, and p | M; dnf over C for every i < . Then p dnf over C.

Proof. If cf o=k, then every Be 2. (. M,) is contained in some M,
i < @, hence the assertion follows from (C).,. Otherwise, if cf & <k, then we
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may assume without loss of generality that & =cf &« <k, and by 4.9, we have
that p dnf over C. O

All along, we have been interested in the case when k is a compact cardinal
greater than Ny, although so far, the assumption x > X, was not essential. At this
point, we can make an essential use of that assumption, and we formally make the

Assumption 4.11. x > X, for the rest of this section.

Under 4.11, ‘superstability’ is a consequence of (1-) stability unlike in the
finitary case.

Proposition 4.12. Suppose o is an arbitrary ordinal >0, and p € S<*(U]_, M)).
Then p dnf over M; for some i < «.

Proof. For a <k, this is 4.9. The case cf @ <k is now an immediate conse-
quence. Assume cf & = k, and assume, contrary to the assertion, that p forks over
M; for all i<a. By induction on n <w, we define the increasing sequence
(in)n<w Of ordinals <ay. i, is arbitrary. Having defined i,, by (C),, there is
BcUL_M; of cardinality <k such that p | (BUM,) forks over M,. Since
of @ = k, there is i, 41 =i, with B M, _; we have that p | M,  forks over M; (by
(M)). Having defined the i,, we let M*=Jl_,M, <M. By (M), q=p | M*
forks over each M; , n < w; i.e., we have a situation when the assertion of 4.9
fails to hold, with @ = w. But w < k; contradiction to 4.9. O

Corollary 4.13. (i) For M =\U]__M,, and finite tuples a and b, if a . b for all
i<a, thenas;b.

(i) For M =JI__ M, and p € S=“(M), if p | M; dnf over M, for all i < &, then
p dnf over M,.

(iii) (B)x® For any type p € S=*(M), there is N <M of power k' such that p
dnf over N.

Proof. (i) By 4.12 there is i < a such that a Ly, M, b Ly, M. By a 3 b and (U),
a 37 b follows. '

(i) By 4.12, p dnf over M, for some i < . Since p | M; dnf over M,, by (T), p
dnf over M,.

(iii) By (B)+, there is N<M with ||N||<(x’)* such that p dnf over N.
Write N =<+ N; such that ||N;|| = kx’. By 4.12, there is i <(x')* such that
p | N dnf over N,, hence, by (T), p dnf over N;,. O

Proposition 4.14. Let k; = sup{|S™“(M)|:||M|| = k'}. Then
|S=“(M)| < max(|M|, x;) forall MeK.

Proof. By induction on [|[M|| (=k’). For ||M| =k’', the assertion is obvious.
Suppose ||[M|| > k’'. Then M=U,.T<aM,~, with a < ||M]||, |IM;|| <||M]| for every



Sh:285

86 S. Shelah, M. Makkai

i<a. Any p € S=“(M) dnf over M, for some i, < «; by (U), p is the unique nf
extension of p | M, to M. It follows that the mapping

S§<(M)— [] $=“(M;) (disjoint sum)
<a

p—plM,

is an injective mapping. Since, by the induction hypothesis, |S=“(M))| <
max(||M;||, x,), we conclude that

IS=(M)| < |a| X max(||M|l, k) = max(|| M|}, k). O
Corollary 4.15. If K is stable in k', then it is stable in all p=x’'. [
Assumption 4.16. X is stable in x’.

Remark. In view of 3.5, and the fact that we are interested in the case when K is
categorical in some A > k’, the last assumption is reasonable.

Lemma 4.17. Let us write A @, [B]~” to mean that A &b for all finite tuples b of
elements of B. Let k" = (x')~*. Then, for any A, M and B c M with |B| < u, there
is N <M such that

BcN, IN|| = max(||A]|, k") and A %[M]“’.

Proof. Let u=max(|A|, ¥”). If u=*=pu, then, by (B),, we can find N with
|IN|| =< u satisfying the stronger condition A Ly M. Otherwise, u > k" (since k”
satisfies (k")“*=k"), and p is a limit cardinal. Let u =lim;., 1;, with the p,
increasing successor cardinals, each =k". Let us write B as B =|J\., B; with
|B;| = ;. Let P be a model, P <%, containing the set A, of power pu, and let
P= U,LaP,- with models P, each of cardinality y;. By induction on i < a, define
N; <M such that B, = N,, ||N;|| < u;, N; <N, for j<i, and P, wy, M: this is easily
done by (B),. Let N=J)i<o N;. Then Bc N. By (M), we have P, uy M for all
i < a. Now, let a be any finite tuple of elements of M. Then (by (S)), a WLy Py
hence, by 4.13(ii), a wy P (since P=UJ_P), hence Puwya. Since a was an
arbitrary finite tuple from M, we have P wy[M]™®, and a fortiori A Wy [M]™*.
Note that ||N|l=u. O

Proposition 4.18. Ler A be a cardinal >k" = (kx')~*. Suppose that M = UM,
and that each M, is A-saturated. Then M is A-saturated.

Proof. If cf a = A, then every subset of M of cardinality <A is included in some
M;, thus the assertion is clearly true in this case. We thus may assume that
of & < A; then, by taking a suitable subsequence of (M;);.,, Wwe may assume that
a=cfa<A Let Ac M, |A|<A. Let u =max(]|Al}, ", |a|); we have u <A. We
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construct, by induction on 8 < k, for each i < & a <-continuous chain (N¥),_, of
models N? < M; of cardinality <y such that A < J,., N?,
U N @ [M]° (1)

j<a
(see 4.17) and
NF<NP  (B<k j<ii<a),

as follows. We choose N? < M; of power <u to contain A N M;; at limit ordinals
B, we take unions. Suppose 8 <k and the N have been defined (i < a). We
define Nf*' by induction on i< a. Assuming i <a and that Nf*' has been
defined for every j <i, we let N°*! be an %-submodel of M, of power <y such
that (1) holds and such that |, N®*' < N#*+': N#*! exists by 4.17, the choice of
p, and |i| < g, [[IN?*'|| < . This completes the definition of the N? (B <k, i < ).

Let N; =< N? and N=J,.,N.. Then AcN, N,<N<M, ||[N||<p, and
by (C).,, from (1) we obtain

N g M= @)

Now, consider any p € $=“(A). Extend p to some g € S(N), and choose, by 4.12,
some i < o such that g dnf over N,. Since ||N,|| <A, and M; is A-saturated, there is
a € M; realizing q | N;. From (2), we obtain

Ndula
N;

hence (by (S)), a realizes the unique non-forking extension of g | N; to N, which is
q. Thus, a realizes p, and the proof is complete. O

Proposition 4.19. For every A > k'’ there is a saturated model of cardinality A.

Proof. By 4.15 and 4.16, K is stable in all x4 = x’. For A a successor cardinal, the
assertion follows from 2.6 (put =2 in 2.6). Assume A is a limit cardinal:
A =lim;, A; with strictly increasing successor cardinals 4, > k’. Let, by induction
on i <a, M; be saturated of power A; such that U,.T<,.M,~ <M; (see 2.2(ii)); M;
exists by 2.6 since A, is a successor cardinal. Consider M =\J]__M,. For any
ip<a, M;is A;-saturated for all i, i{;<i < e, hence, by 4.18, M is A;,-saturated.
Since this is true for all i{,<a&, and A=1lim;,A;, M is A-saturated; clearly,

IM]|=4. O

Lemma 4.20. Let A be an infinite cardinal such that A~ = A, and A= k'. Suppose
(N;)i<a+ is @ <-continuous chain of models N; of power <A, (M,),—,+ is an
increasing chain of models such that M; < N, for all i < A*. Let

N+ = Lg N;, M;-=UJ M.
i<\t

i<A

Then there is i <A" such that M, Ly, N;.
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Proof. For each A c N;+ of cardinality <A, let i(A)<A* be chosen so that
M, Wy 4y Az such i(A4) exists, by (B), and (M). Given any i <A*, the number
of subsets of N; of cardinality <k is <A™*= A, hence

i* d=°fsup{i(A) tAe P (N)} <A™

Define the sequence (iy)a<i bY i0=0, ipr1=(a)*, is =lim,si, for & limit.
Since k <4, i, <A*. Any A c N, = U<« N, with |A| <k is in some N;, « <k,
and thus

M+ &L A, and M) b A by (M) and (S).

Ga)*

It follows (by (C)<,) that M;+ dp, N;. O

Definition 4.21. Let A, Bc €, M <¥%. A dominates B over M if for any C,
A Wy, C implies AU B Wy, C.

Proposition 4.22. (i) Let M be saturated, of power A, such that A== A and
A> k", and let ¢ be any finite tuple of elements in €. Then there is a saturated
model N > M U {c} of power A, dominated by c over M.

(ii) Let, in addition to the data of (i), M* be an F-substructure of M of power
<A such that C by« M, and r a type, r e S*(M* U {c}), with « <A. Then N can be
found as in (i), and also such that it realizes r.

Proof. It suffices to show (ii): by 4.13(iii) (or even (B),-), we can find M* with
[[M*|| <A and ¢ by« M; take r to be any 1-type, say.

Let us assume the hypotheses of (ii). We will exploit the obvious fact that if f is
a X;-elementary map with a domain including M and c, then f(c), f"M, f"M* and
f(r) satisfy the conclusion iff ¢, M, M* and r do.

Let M<M’', M' saturated of power A, and cuw, M'. Then there is a
3,-elementary map with domain including M and c for which f"M =M’, f(c)=c
and f | M* = identity: by (T), c wy- M'; since M, M’ are both saturated of power
A, and ||M*||<A, there is an automorphism g of € such that g'M=M’,
g | M* =identity (see 2.2(iii)); we have g(c) Ly~ M', hence by (U), c 3 f(c); it
follows that the function f with domain M U {c} for which f | M =g|M and
f(c) =c is Z,-elementary.

Assume that the assertion fails for the given M, ¢, M* and r. Then, by the
above, it also fails for M’ and the same ¢, M* and r, whenever M <M’', M’ is
saturated of power A, and c Wy M'.

We construct <-continuous chains (M;);.;+, {N;);<,+ of saturated models M;,
N, of power A such that

M; <N, M,=M, cuw M, N, w M,
M, M;

0

for all i <A*. We put My =M, N, any saturated model of power A containing M,
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and ¢, and realizing r. Suppose we have constructed all items with indices up to
and including i. Since the assertion of the proposition fails for M;, c, M* and r, N;
realizes r, (since N, does), we have that N, fails to be dominated by c over M;. It
follows that there is B with ¢ Wy, B, but N, &), B. By (C).., B may be chosen to
be of power <k; we choose a saturated model M, of power A containing B U M;
such that ¢ Wy, M, by (E) and (U); we will have N; by, Ny We define N;,; to
be any saturated model of power A containing N, and M, ., (see 2.2(ii)).

Finally, let i <A™ be a limit ordinal, and assume the construction done below i.
Let M, =U;<;M;, N;=U},;N;. M; and N, are saturated of power 4 by 4.18. The
property ¢ Wy, M; follows from the induction hypothesis and 4.13(ii).

We have constructed items making up a counterexample to 4.20; this
contradiction proves the assertion. [

Definition 4.23. (i) p, g € S(M) are weakly orthogonal, pl,q, if alyb
whenever a realizes p and b realizes q.

(ii) p, q € S(M) are orthogonal, p 1 q, if for all N> M, and any non-forking
extensions p’, ¢’ of p, q, respectively, to N, we have p’ 1, q’.

Proposition 4.24. (i) If M c N, p, q € S(N) both do not fork over M, and p 1, q,
thenp | MLl,q|M.
(ii) If p, q € S=“(M), M is (x')*-saturated, then p 1, q implies that p 1 q.

Proof (compare Theorem V.12 in [9]). (i) Assume the hypothesis in (i), and let
a, b realize p | M, q | M, respectively. Let a’, b’ be such that

a' b’ b N and a'"b'3a™b.

Then, since a’' and b' realize p and ¢q, respectively, we have a’ Ly b’. Since
a’ Ly N, by (T) we conclude a’ Ly b'; since a’"b’ 37 a”b, a Ly, b follows.

(ii) Note, first of all, that for types p, g over a model M, p € S, (M), q € S,(M),
x and y disjoint tuples of variables, p 1, ¢ means that p(x) U q(y) is complete,
that is, there is a unique r € S,,,(M) with p(x)Uq(y)cr(x, y). Assume the
hypotheses of (ii), and contrary to the assertion, p 1 q. There is a model N
extending M such that for the nonforking extensions p’, g’ of p, g, respectively,
to N, we have p' 1, q'. Since by (i), for any ¥-extension of N, the non-forking
extensions of p’, q' remain non-weakly-orthogonal, we may assume that N is
(x')*-saturated.

Note that the definition of non-forking implies that if a type p € S(N) does not
fork over M, then p does not split over M: for any tuples a, b from N and for
c realizing p, if a3 b, then a+ b: if we had a formula ¢ such that £ @(c, a) A
—p(c, b), then by cuwy N, there would be ¢' e M with E@(c’, a) A—@(c’, b),
contradicting a 37 b.

The fact that p’ 1, q" means that there is a formula @(x, y, z) and atuple ce N
such that both p'(x) Uq'(y) U {@(x, y, ¢)} and p'(x) Uq'(¥y) U {m¢(x, y, ¢)} are



Sh:285

90 S. Shelah, M. Makkai

consistent. By 4.13(iii) and (M), there is My, < M of power k' such that p and g do
not fork over M,. Since M is (x')*-saturated, there is d € M such that c~ d.

We claim that p'(x)Uq'(y) U {e(x, y, d)} and p 'x)Uq'(y)U (@, y, d))
are both consistent. Let P, Q be subsets of p’ and q’, respectively, of power <k.
Let a be a <k-tuple of elements of N containing all the parameters mentioned in
P or Q. By N being (kx')*-saturated, there is b in N such that d "a ~c”b. Let
P, O be obtained from P and Q, respectively, by replacing each parameter from a
in any formula by the corresponding parameter in b. Since a ;; b, and p’, ¢’ do
not split over M,, Pcp’, Q cq'. It follows that P(x)U Q(y) U{e(k,y, o)},
P(x)UO(y)U {g(x, y, c)} are both consistent; since d “a ~ c “b, we conclude
that P(x) U Q(y)U {@(x, y, d)} and P(x)U Q(y)U {ne@(x, y, d)} are both con-
sistent, which was to be shown.

Of course, the claim implies that p(x) Ugq(y)U {g(x, y, d)}, p(x)Uq(y)U
{—¢(x, y, d)} are both consistent; since d € M, this contradicts the assumption
plwg. O

Proposition 4.25. Suppose there is a model which is (x')*-saturated, but not
saturated. Then, for M* the saturated model of power (x')", there are types
p*, q* € S'(M*), neither realized in M*, such that p* L q*.

Proof. Suppose M is not saturated, but (k')*-saturated. Let My <M, p, € S'(My)
such that udéf [IMo]l < ||IM|| and p, is not realized in M; p = (x')".

We claim that there is M;, My <M, <M, ||M;|| = u, and an extension p, of p,
to M, such that all extensions of p, to M do not fork over M,. Suppose not, and
define by induction on n<w, My=Mi<Mi<---<Ms<---, p°=p,, p"€
SY M3, p" cp™*!, such that ||M§|| = p and p"*' forks over Mg; by the indirect
supposition, this is clearly possible; let M*=J,.,M; and by 2.14, let
p*eS'(M*) be such that p*| Mg=p"; then, by (M), p* forks over each
M} (n < w), in contradiction to 4.12; this shows our claim.

Note that saying that all extensions of p; to M do not fork over M; means that
p1 has a unique extension to M, and to any set A with M,c Ac M.

We can easily construct M, such that M, <M,<M, ||M,||=pn, and M, is
(x')*-saturated: let M, = i<, M5, where M3 = M,, each M has power yu, and
M+ realizes all types over M5 (we have stability in ). Let p, be the unique
extension of p; to M,. Since ||M||=u <||M]||, there is be M — M,; let g, =
tp(b/M,). We claim that p, 1, g,: indeed, if a realizes p,, then tp(a/M) must be
the unique, hence the non-forking, extension of p,, i.e. au, M, and thus
a Wy, b, as desired.

Let N <M, be of power k' such that p, and g, dnf over N (by 4.13(iii)). By
2.2(ii) applied to Diags(N) and 4.19, let M* be saturated of power (k’)* such
that N < M* <M,, and let p* =p, | M*, q* = q,| M*. Since p,, g, dnf over M*,
by 4.24(i), p* L, ¢*, and by 4.24(ii), p* 1 g*. It is clear by the choice of p* and
q* that they are not realized in M*. [
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Lemma 4.26. Suppose there is a model which is (k')*-saturated, but not saturated.
Then, for any p > k" (= (x')~%) there is a pair M, N of saturated models of power
u such that M =N, and there is a type q € S'(M) not realized in M which has a
unique extension to N.

Proof. First, let 4 be a successor cardinal. Let M be any saturated extension of
M*, the saturated model of power (kx’')*, with |M|| = u; note u=(x')". Let p, g
be the non-forking extensions of p* and g*, respectively, to M, where p* and ¢*
are from 4.25. We have that p and g are orthogonal to each other. Let a € €
realize p, and, by 4.22(i), let NoM U {a} be a saturated model of power u,
dominated by a over M. Let b be any realization of g; since p 1 q, we have
ady b, and since N is dominated by a over M, N W, b; this shows that any
extension of g to N dnf over M, that is, g has a unique extension to N, as desired.

Secondly, let 4 be a limit cardinal. Since u > k", and either k" =k’, or
k"= (x')", necessarily u>(k')*. Let (i;);<ct, be a strictly increasing sequence
of cardinals such that g =sup;cs, t;, o= (k')", p;4, is a successor cardinal for
all j <cf u, and y; = sup;, u; whenever i <cf y is a limit ordinal. Let M, = M* be
the saturated model of power (k')*, a an element realizing p* (from 4.25), N,
any model of power (k’)* containing M, U {a}.

We construct, by induction on i, 0 <i <cf u, models M;, N, such that

1) (M, ),<Cf w {Ni)i<et, are continuous <-chains; and, for all i, j < cf u,

(ii) M;.,, N;,, are saturated of power ;. ;

(iii) M; <N;;

(iv) awpy, M;;

(v) N;.. is dominated by a over M;.,,

Suppose 0 <i<cfu and M;, N, have been defined for all j <i with the required
properties. Let first i be a limit ordinal. Put M; =_;; M;, N, =<, N;. Property
(iii) for i follows from the same for j <i, and (iv) for i follows from the same for
j <i, and 4.13(ii).

Next, let i =j + 1. Let M be any saturated model of power y;., extending M;
such that a Wy, M, and let r = tp(N;/M; U {a}); we will use 4.22(ii) with y;,, as
A Mas M, aasc, M; as M*, and r as r. 4. 22(11) is apphcable and we get the
saturated model N of power u;,; such that M <N, aeN, N is dominated by a
over M, and N realizes r. Let N be a realization of r in N. There is an
automorphism 4 of € which is the identity on M; U {a}, and for which g(N;) = N,.
Let MH =g"M, N;,,=g"N. Then, since a iy, M, and (iv) holds at j, we have
aud MOM hence a Wy, M., as required for (iv). Since N is dominated by a over
M, and g(a)=a, (v) holds. The construction also ensures that M;<M;,,,
N; <N, (for (i)) and M;,; <N, (for (iii)). This completes the construction.

Having the M;, N; with (i) to (v), we put M =;cc, M;, N=U;<s, N;. As
a by, M (by 4.13(ii)), and a ¢ M,, we have a ¢ M [if a € M, the formula x =a
belongs to tp(a/M), hence there is a’ € M, with a’ = a]. Thus, M < N. Now, with
g* € S'(M*) (M* = M,), the type from 4.25, let ¢ be the non- forkmg extension of
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g* to M. 4.13(i) says that any type ¢’ € S'(N) = S"(U;<cr, Niz1) is determined by
its restrictions g’ | N; for i <cf u. But, since N,,; is dominated by a over M,,,
and tp(a/M,,,), the non-forking extension of p* to M, is orthogonal to g | M, ,,
q | M;. has a unique extension to N,,,, by the argument at the beginning of this
proof. It follows that g has a unique extension to NV as promised. Since ¢* is not
realized in M*, its non-forking extension g to M is not realized in M (for the
same reason as a ¢ M). [

Proposition 4.27. Suppose there is a model which is (k')*-saturated, but not
saturated. Then for every successor cardinal u* > (k") (k"= (x’)=%), there is a
non-saturated model of power u*.

Proof. By 4.26, there is a pair M < N of saturated models of power u with a type
q € S'(M), not realized in M, such that ¢ has a unique extension to N. Let
MP° < M be a model of power k' such that g dnf over M°. By induction on i <pu*,
we define M;, a saturated model of power u, such that Mo=M, (M), is
<-continuous, as follows. We put M, =N. If { is a limit ordinal <u™, we put
M;=U;;M;; by 4.18, M, is saturated of power u. For i=j+1, having
constructed M;, note that, by 2.2(iii), there is an isomorphism g : M, = M; which
is the identity on M% with kA any automorphism of € extending g, we let
M; ., = h"N; in other words, there is an automorphism g; leaving M, fixed, taking
Mto M, Nto M;,,.

We claim that g has a unique extension to degUK,ﬁ M;; in fact, by
induction on i < pu™, we show that ¢ has a unique extension to M. For i a limit
ordinal, the induction step follows by 4.13. Let i =j + 1; let the unique extension
of g to M; be g;. q; dnf over M,. With g; the isomorphism mentioned in the
construction, g;(q) € S'(g7/M) has a unqiue extension to g;N. But also, g;(q) dnf
over ¢'M° = M°. Since g/M = M;, g/N = M., we have g; = g;(g) (since they are
both nf extensions of g), and g; has a unique extension to M;, . It follows that g
has a unique extension to M;_,. This proves our claim.

Since ¢ is not realized in M, its unique nf extension to M,,- is not realized in
M. M|l =p<||My| =p" (since M; <My, for all j<u™); M,+ is a non-
saturated model of power u*. O

5. Summary

Conclusion 5.1. = Theorem of the Introduction.

Proof. (i) Assume T is a theory in a fragment & of L,,,, k is a compact cardinal
>w, and T is categorical in the successor cardinal u* > (x)", Kk'=

max(k, |%|). By 1.9, every M € K is existentially closed, hence (by 1.6), K has the
amalgamation property. By 1.8, K has the joint embedding property. This means
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that the assumption stated at the beginning of Section 2, and Assumption 4.0 are
true. By 4.3, K does not have long definable order (K is 1-stable), i.e.,
Assumption 4.4 holds true. K is stable in k' by 3.5; Assumption 4.16 holds true.
By 4.19, for every A > k', there is a saturated model of cardinality A; it is unique
up to isomorphism by 2.2(iv) and 2.4. It now suffices to show that, for every
A=min(u*, Jexy+), every model of power A is saturated. Since T is categorical in
u*, the only model of T of power u* is saturated.

Assume A= min(u”, Jox)-), ||M|| = A. Either A= pu*, or A= Iy« In the first
case, M is u*-saturated: if it were not, by an obvious downward Lowenheim—
Skolem argument, there would be a non-saturated model of power u*, in
contradiction to the categoricity of T in u*. In the second case, M is
(k') *-saturated: otherwise, there are My <M, ||My|| = k', and a type p € S'(M,)
omitted in M; by 3.2, p is omitted in some model of power u™, which contradicts
the categoricity of T in u*. Thus, in either case, M is (k)" -saturated (u > k'). If
M were not saturated, then by 4.27, there would be a non-saturated model of
power u”, again in contradiction to the categoricity of T in u™.

(ii) The proof of this part does not use Section 4, however, unlike part (i), it
uses the more difficult arguments of Sections 1 and 3. Assume 7, L, ¥ and k' are
as before, and T is categorical in A where A>23,,,(x"). In the proof of
Conclusion of 3.7, we concluded that, under the given hypotheses, the unique
model of T of power A is saturated. Suppose u =3, with & divisible by (2)*,
and assume, for reaching a contradiction, that M is a non-saturated model of T of
power u. Since clearly, for any a <8 we have « + (2)* <, for any cardinal
o < u, we have J,ey+(0) < .

There is M, < M with o %' ||M,)] < u and there is p € S<“(M,) omitted by M. By
3.3 (with o for u of 3.3), in every power >k’ there is a non-(k')*-saturated
model; this applied to A, we get a contradiction.

We conclude that for any u of the kind we are considering, all models of u have
to be saturated; this says (by 2.2(iv) and 2.4) that T is categorical in u. O

Appendix: Squares on stationary seis

This section contains set-theoretic material used in Section 1.

For a set X of ordinals, X' denotes the set of limit points of X :a € X' iff « >0
and sup(aNX)=a. A subset X of A (A any ordinal) is closed in A if
X' —{A} = X; it is unbounded in A if Ae X'; it is a club in A if it is both the
above; it is stationary in A if it meets every club in A.

A square-system on A (in the ‘limit formulation’) is a system C = (C,:a € S} of
sets C, such that § < lim(A) ( = the set of limit ordinals <), C, is a club in « and
(C)' 8 for all @€ S, and finally, Cs =C, N B whenever o €S and B e(C,)
(and hence B € S). When § is to be mentioned with the square-system, we call the
square-system S-indexed. Of course, the square-system C is of interest only if S is
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large enough (e.g., stationary in A), and if the C, are small enough (e.g., have
small ordertypes). We call C a <y-square-system if each C, is of ordertype <y.

A simple argument in [14] (2, Lemma 1), using a lemma due to Engelking and
Karlowich, provides square-systems via the following

Proposition A.1. Suppose u, x are infinite cardinals with u~* = u. Then we can
find a family (S¢)e-,, of subsets Sg of u* such that

U Ss={d<u*:cfd<y)

E<p

and for each § < p, there exists an Sg-indexed <y-square-system on A.

For the application in Section 1, we need a modified kind of square-system,
also incorporating a controlled role for successor ordinals.

Definition A.2. A modified square-system on A is a system (C,:a €S) of sets
such that S < A, and, for all a € S,
(i) C, is a subset of a which is closed in «, and if « is a limit ordinal, C, is a

club in «.

(i) C, cS.

(iii) peCo,>Cs=C,NB.

(iv) If C, has a last element 8 which is a limit ordinal, then a =8 + 1.

The main difference is that (ii) and (iii) now apply to all elements of C, rather
than to its limit points only as before.

Proposition A.3. Suppose u, x, o are infinite cardinals such that p~*=pu, o is
regular, 0 <yx. Then there is a modified square-system (C,:a € S) on u* such
that {a € S :otp(C,) = o} is stationary in u™.

Proof. We start with the square-systems (C5:a € S:) given by A.1(&<p); in
particular, otp(C3) < x for all & € S;; also, Ug<, S = {0 <pu*:cf 8 <x}. The set
{a<u*:cf @ =0} is a stationary set contained in | Jg, S¢; therefore, there is &
such that SE d=°f{af € S; :cf @ = o} is stationary. For notational simplicity, assume
§=0.

Let us assume that 0 > w. (The case o = w is essentially trivial.) The stationary
set S, is the union of the less than u* many sets S” = {a € §,: otp(C%) = v} (y<
x); hence there is v < x such that S7 is stationary; let us fix such a y. Since for any
a € S?, cf @ =0 and C%is cofinal in a, we have that cf y = 0. Let D, < v be a club
in y of order-type otp(D,) = o such that every element of Dj is a limit ordinal (D,
exists since o is a regular cardinal >w). Put D = Dy U {y}. Now, let

§** < {aeSy:otp(CY) e D'},
CrE(CY) —{ap)NS* for aesS™.

Claim 1. If o € S*, then CJ is closed in «, and if « € $**, C is a club in «.
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Proof. Indeed, let a € $*. D Notp(CY) is closed in otp(C%); and if a € S**, itis a
club in otp(C2). Since C% is a club in «, it follows that the set

C: = (B e Ch:otp(Can B)e D)
is closed in a, and it is a club in « in case a € $**. As we now show,
Ct=Ck,

this will show the claim.

Suppose first B € CZ. Since otp(C% N B), being in D, is a limit ordinal, and CY,
is closed in a, sup(C%N B)=pB. This means that B e (C%)’, hence BeS° and
C%=C%N B, and thus otp(Cy) = otp(CoN B) € D. We have shown that §eS*
and BeCL.

Secondly, assume B € C%. Then B € (C%)’, hence B € S° and C = C% N B. Since
also BeS* otp(C% eD; it follows that otp(CANB)eD; hence BeC; as
desired. O (Claim 1)

Claim 2. If a € S*, then (C) — {a} = CEN S**.

Proof. Indeed, by the above, C} = Cj. Assume that g€ (C}) =(C;), B<a.
Then otp(C%N B) is a limit point of D and B e (C2)’; hence CoN B=C}, and
otp(Cp) € D', and thus § € S**. This shows that the left-hand side is contained in
the right-hand side.

Conversely, if e CtNS**, then Be(CY)’, hence Ch=C%NB; otp(CoLN
B)e D', and B is a limit point of C, which suffices. [0 (Claim 2)

We also have
CicS* forall aeS* ?3)
Ci=C;NpB whenever feCy, aeS*; 0]
(3) is clear, and (4) follows from B € (C%)' = Ci=CoLNB.

In Claim 1, for (3) and (4) we have analogs of (i), (ii), (iii), respectively, of A2,
with $* for S, CZ for C,, and in (i), with “a € $**” for “a is a limit ordinal”. To
arrive at the final set S, we replace in $* every o € §* —S** by o+ 1 (thereby
forcing every limit ordinal in S to be in $**), and to make (iv) hold, we also add
a+1to S for all « € $**; we define C, accordingly. In more detail:

SES*U{a+1:aeS*—S*}U{a+1:aeS5*)},
C.E(CENS* ) U{B+1:BeCEN(S* —S*)}

U{+1:eC;NS**} foraeS*,
C, ée-fC for o € $**,

def

C,in=C, foraweS*—5**,

def

Con1=C,U{a}) forweS**;

the last three definitions specify C, for every o € §.
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Since C, is obtained from CZ by replacing some elements by their successors,
and adding successors of some other elements, we have (C,)’ = (C%)'. Since, by
Claim 2, (C%)’ — {@} c $**, and by Claim 1, C:NS** < C,, we see that C, is
closed in a. It is also clear that sup C, =sup C% in case C* has no largest
element; by Claim 1, it follows that sup C.=a, hence C, is a club on a, in case
aeS** If €S and « is a limit ordinal, then necessarily & € $**. Thus, we see
that A.2(i) holds as desired. (ii) is clear from the definitions and (3), (iii) from the
definitions and (4).

Finally, for (iv), assume that 6 € S, B is the largest element of Cs, and B is a
limit ordinal, to show that 6 = 8 +1. 6 € $** is impossible since then C,; has no
largest element. If 6 =a+1, o€ S**, then B=a, thus =8+ 1 as desired.
However, if 6 =a+1 and o€ $* —S5** then « is a limit ordinal and 8 < a;
since all limit ordinals in Cs are in $**, B € S8**; but then f§+ 1<« and thus
B + 1€ Cs, by the presence of the third term in the union defining Cs = C,; this
contradicts the assumption that § is maximal in C5. O

Let us quote

Proposition A4, If u is a strong limit cardinal with 2* = pu™, then (s holds for
every stationary Sc{d<u*:cfd+u}.

Proof. See the end of [12]. O

Conclusion A.5. Let k¥ be compact >X,, k' any cardinal, u = 2,(x'), o a regular
cardinal <k. Then there is Scu* and an S-indexed modified square-system
(Cy:aeS) on u* such that S* < {a e S:otp(C,) = a)} is stationary; also, (s
holds.

Proof. By A.3 and A.4, since p~*= p is clear, and 2 = u™ is true by (16]. O
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