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Introduction 

In this paper, the following theorem is proved. 

Theorem. Assume K is a strongly compact cardinal, K > w, T is a theory in a 
fragment 9 of L,, over a language L, and K’ = max(K, IS]). Assume T is 
categorical in the cardinal A. Then: 

(i) Zf 3c is a successor cardinal and A > ((K’)‘“)+, then T is categorical in every 
cardinal greater than or equal to min()r-, +,)+). 

(ii) Zf il > XK+l(~‘), then T is categorical in every cardinal of the form Xs with 6 
divisible by (2”‘)+ (i.e.., 6 = (2”‘)+ - a (ordinal multiplication) for some ordinal 
cu>O). 

Corollary. Zf AI, A2 are two cardinals, and either both 3L1, & are successor 
cardinals >((K’)<“)+, or both are of the form & with 6 divisible by (2”‘)+, then T 
as in the theorem is categorical in A, if and only if it is categorical in AZ. 

The result should be seen as belonging to the program of classification theory, 
undertaken by the first author in [9] (of which the second, enlarged edition is in 
print), [13], [lo], [ll], [15], etc. The present theorem is a partial extension of 
Morley’s categoricity theorem [6] for finitary first-order logic to a particular kind 
of infinitary language, L,, with K a compact cardinal. In the context of ‘large’ 
infinitary languages, it is intended as a first step towards results of the kind 
characteristic of classification theory: dividing lines of structure/non-structure, 
determination of spectrum functions, the Main Gap, etc. Let us point out that the 
connections notwithstanding, the present paper is largely self-contained. 

In order to stay on a desirable level of generality in most of the work, the 
categoricity assumption is used only sparingly; instead, in the main part of the 
work, more general global assumptions are used, and in Section 5, the 
conclusions concerning the problem of categoricity are summarized. 

* Supported by NSERC Canada and FCAR Quebec. 
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42 S. Shelah, M. Makkai 

We start, in Section 1, with a theory in a fragment 9 of L,, ; very soon, the 
assumption of K being a compact cardinal is introduced. At the beginning of 
Section 2, we introduce the assumption of the amalgamation property and the 
joint embedding property for the class K of all models of T of power aK’, 

relative to the relation of ‘L%-elementary substructure’. In Section 4, four 
numbered assumptions (4.0, 4.4, 4.11, 4.16) are introduced. Each assumption is 
held valid for all the subsequent work, except the summary, Section 5. Each 
assumption is a consequence of hypotheses in the main results, as pointed out at 
the appropriate places, and in Section 5. 

After a glance at the main definitions, the reader may profitably look at the 
short Section 5 where the various strands of the paper are brought together in the 
proof of the main result. Reading Section 5 will make it clear that the proofs of 
the two parts of the theorem are, to a large extent, disjoint from each other. 

Section 1 aims at showing, in essence, the amalgamation property (familiar 
from model theory for finitary logic) for the class K of models of T of cardinality 
2~' (see the statement of the Theorem above), with respect to 9-embeddings, 
under either of the categoricity hypotheses in (i) and (ii). The proof for the case 
of (i) is easy (Proposition 1.9); for (ii), it is harder, and it occupies the rest of 
Section 1 after 1.9. 

Section 2 is a study of types, both in an abstract sense, and in a more familiar 
formula-oriented sense, under the assumption of the amalgamation and joint 
embedding properties. This section is a more detailed restatement, for the 
context at hand, of Section II.3 of [15]. It is here that the need to extend the 
discussion from L,, to L,, arises. 

Section 3 collects the arguments needed using order-indiscernibles. Some of the 
material is folklore, and is included to fix notation and terminology. The more 
involved arguments, notably Propositions 3.3 and 3.6, are needed only for part 
(ii), not for part (i), of the Theorem. 

Section 4, which is entirely for the purposes of part (i) of the Theorem (part (ii) 
is independent of this section), starts by building up an extension of a rather 
elementary part of stability theory for finitary stable theories, the theory of 
non-forking of types over models only. Therefore, the first part of this section 
should look familiar to people who have seen stability theory as given in [9]. The 
starting point of this section is the non-structure theorem 3.14 of Chapter III of 
[15], restated here as Proposition 4.3. It allows one to conclude that, under a 
suitable categoricity assumption, the class K is l-stable (see 4.4), from which the 
existence of a good notion of independence (non-forking) over models is 
deduced. What this shows is that the axiomatic framework of Chapter II of [15] is 
reproduced to a considerable extent in the present context, although there are no 
direct references to that framework in this paper. Some arguments in this section 
have a place in a more general context of classification theory, notably in the still 
unpublished further chapters of [15]. 

The results of this paper are all due to the first author; the exposition is the 
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work of the second author. The second author thanks the Lady Davis Fellowship 
Trust and The Hebrew University of Jerusalem for their support and hospitality 
during the work on this paper. 

Finally, we would like to thank the referee for his careful reading of the paper. 
Following the referee’s advice, we have expanded this introduction. 

1. Preliminaries, and the amalgamation property 

Throughout the paper, K will denote a fixed infinite regular cardinal, which, for 
most of the paper, will be assumed to be (strongly) compact and greater than &,. 
(For the definition of ‘compact’, see below, or [4] which should serve as a 
reference for all undefined set-theoretic terminology.) 

We let L be a set of finitary relation and operation symbols (a ‘language’); L is 
fixed throughout the paper. L,, denotes the least set of (infinitary) formulas 
(‘logic’) which contains the atomic formulas of L (including the ones using 
equality), and which is closed under applying the usual logical operators of 
finitary first-order logic and under taking the conjunction, or disjunction, of any 
set of size <K of formulas, provided the set of free variables of the conjunction 
(disjunction) is finite. Note that all formulas of L,, have only finitely many free 
variables. L,, is the larger logic that also allows the formation of Vx q, 3x q, 
with x a sequence of length <3L of variables; also, in forming conjunctions and 
disjunctions of sets of size <K, the result is required to contain <K many free 
variables (rather than finitely many); all formulas in L,, have <K free variables. 

For further details on infinitary logic, see e.g. [2]. 
As usual, a notation like q(x) indicates a formula with free variables among 

those in x;x, y, . . . always denote sequences of distinct variables; when q(x) is 
assumed to be in L,, (in L,,), x is assumed to be finite (of length <K). 

We let 9 be a fragment of LKW: a set of formulas of L,, containing all atomic 
L-formulas, and closed under finitary logical operators and under taking 
subformulas. Also, we let T be a set of sentences (formulas without free 
variables) of 9. 9 and T will also remain fixed throughout the paper. 

By a model of T we always mean an L-structure that satisfies the axioms in T. 

From now on, a ‘model’ will mean a model of T, unless otherwise specified; the 
symbols M, N, . . . will denote models. 

f is an SF-elementary embedding (or S-embedding) of M into N, in notation 
f : M 2 N, or more simply, f : M + N (since 9 is fixed); if f is a function with 
domain IMI (the underlying set of M) into )Nl and f preserves the meaning of all 
S-formulas: 

for all q(x) E %, all tuples a of elements M matching x (length(u) = length(x)) (if 

a = (ai)i<a, f(a) = Cf(ai))i<J. S’ mce 9 is closed under negation, the last 
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implication is in fact an equivalence. If, in particular, f is a set-inclusion 
IMI c IN], we write h4 -C4 N (or simply M < N) for f : M 2 N, and we say that M 
is an S-elementary substructure (submodel) of N, or N is an %elementary 
extension of M, or N is an Sextension of M. We write M ‘7, N to mean that 
there is an s-embedding of M into N. We have the well-known Tarski Union 
Theorem: 

Proposition 1.1. (TUT). (i) The union of a -C *-directed system of models is a 
model: if (I, s ) is a directed partial order, ( Mi)i,l is a family of models satisfying 
Mi <s Mi whenever i s j, then we have the model Uis, Mi of T for which 

I I IJM, =UIMil and Mj<,UMi foreveryjcz. 
id id id 

(ii) If, in the notation of (i), we have, in addition, that Mi <$ M for a fixed 
model M and for all i E I, then 

UMi<,M. 
id 

(iii) More generally than (ii), if, in addition to (i), we have & : Mi 2 M for all 
iEIwith&GAforiCj, then wehave 

Usually, (I, C) in 1.1 will be an ordinal, i.e. the set of ordinals less than a 
given ordinal, ordered by the standard ordering of ordinals. A i -chain of models 
is a sequence (MO),,, with (Y an ordinal and M, < M,, for /3 < y < CY; we speak of 
a continuous chain if MS = UvCB MY for all limit ordinals /3 < a; we write 

to mean that (MO),,, is a <-chain and M = iJBCa M,; we write 

to mean that (Ms)s<a is a continuous c-chain and M = UBCor M,. 
Another piece of notation fixed for the whole of the paper: K’ = max(K, ILI). 
Another well-known result is the downward Lowenheim-Skolem Theorem: 

Proposition 1.2 (dLST). (i) G’ lven any model M, a subset A c (MI and a cardinal 
), with max(K’, IA]) G/I 6 IlMll, there is a model N k T with A c IN(, N xF M and 

IlWl = A- 
(ii) Any sentence in any (L’)ew (’ m any (L’)ee) that has a model in a power & 

has a model in each power A. for which max(8, IL’I) s A. c 3L0 (and for which 
iice = A). 
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We tend to use TUT and dLST without explicit reference to them. 
A Z’,(9)-formula, or more simply, a &-formula, is an L,,-formula of the form 

3~ V A vii 
id jsJ, 

where each vii E 9. 

If K is (strongly) inaccessible (which is the case when K is compact), then every 
L,,-formula of the form 3x q where IJJ is an (infinitary) Boolean combination of 
$-formulas is logically equivalent to a Z,-formula. In this case, any conjunction 
or disjunction of less than K many Z’,-formulas is logically equivalent to a 
&-formula. A positive primitive (p.p) formula is an L,,-formula of the form 
3 x Aiel pi, with each $Ji E 9; every &-formula is logically equivalent to the 
disjunction of <K p.p. formulas. 

f : M-, N is a Z,-embedding (in notation: f : A4 p1- N) if 

Mkdal e Nkdf(a)l 

for all &-formulas V(X) and appropriate a E ]M] [a E ]M] abbreviates a is a tuple 
of elements of ]M]]. Note that the ‘+’ direction of the last equivalence is 
automatic: a consequence of f being an s-embedding. We write h4 4, N if 
]M] c IN] and the set inclusion of ]M] in INI is a 2,-embedding. Note that in the 
definition of &-embedding, or x1, we may restrict attention to p.p. formulas q. 

We say that M is existentially closed (e.c.) if for all N b T, M xs N implies 
M x1 N, or equivalently, every s-embedding with domain M is a 2,-embedding. 
Let us call a sentence q,(a) with parameters (individual constants) u in M (each ai 
in a denoting itself) consistent with M if there is an %-extension N of M such that 
N k ~[a]. Then M is e.c. if every ET-sentence (or, every p.p. sentence) over M 
that is consistent with M is in fact true in M. 

A well-known elementary argument gives 

Proposition 1.3. Every model has an existentially closed S-elementary extension. 
More precisely, if A is a cardinal such that A’^ = A, A 2 K, and M k a model of 
power A, then there is an e.c. model N of power A such that M <s N. 

Proof. For any M’ with IlM’ll = A, for 3, of the proposition, we list the pairs 

(9(x), a > of Z-f ormulas V(X) and matching tuples a from M’ as ( qol, u~)~.,~ 
(note that the set of those pairs has cardinality 4), and define, by induction on 
(Y < A. the models M, by 

M,=M’, 

M6 = =.a M, for 6 limit (see TUT), 

M Lx+1 = some model of power A P-extending M, and satisfying 
q@(u,) if the latter is consistent with M, (see dLST), 

=M, otherwise. 
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Note that (M’)* sf Mn is an S-extension of M’, and it satisfies the condition for 
‘e.c.’ relative to parameters in M’. Now, let, for (Y G K, by induction 

No = M (given in the Proposition), 

N, = (,‘aN,s)* ((~‘0). 

Then, since any <K-tuple of elements of N dgf N, is in some N,, c~ < K, it is clear 
that N is e.c.; clearly, ]]N]l = A. Cl 

The following generalization of ‘existentially closed’ will also be used. Let 
p 2 K be any cardinal. M is called <p-existentially closed (<p-e.c.) if for any set 
G(X) of cardinality -+ of ~-formulas over M (with parameters in M), with free 
variables all in n, x a tuple of variables of length <,u, M k 3x /j Q(x) provided 
there is N, M-C% N, such that N k 3x /j G(x). We use ‘S y-e.c.’ in the sense 
‘<CL+-e.c.‘. 

The following generalization of 1.3 has the same proof as 1.3: 

Proposition 1.3’. (i) Suppose p is regular, p 2 K, A<@ = A, A 2 K'. Then any M of 
power 2 can be S-extended to a <p-e.c. model of power A. 

(ii) Zf in (i), in addition we have M <M* with M* <p-e.c., then N as in (i) can 
be found as an Ssubmodel of M*. 0 

The cardinal K is compact if (I,‘),, satisfies the <K-compactness theorem, for 
any L’ of relation and operation symbols of arities <K: for any set .X of sentences 

of (L’)KK, if every subset of E of cardinality <K has a model [for which we say 2 
is <K-consistent], then 2 has a model. For a ‘purely mathematical’ definition, and 
further facts concerning compact cardinals, see [4]. 

HO is compact; we are interested in compact K greater than X,,; of course, the 
existence of such is not provable, but hopefully consistent with, ZFC. At one 
point in the last section, the assumption that K > No is of essential help. Let us 
make explicit our 

Assumption for the rest of the paper. K is a compact cardinal SK,,. 

Many facts of finitary model theory generalize to L,, with K compact, by 
essentially the same ‘compactness’ arguments as in the finitary case. We develop 
some of these for later use. 

For a model M, Diag,(M) denotes the set of sentences q(a), with q,(x) E 9, a 
a tuple of elements of M used as individual constants (a substituted for x), such 
that M k ~[a]. The language of Diag,(M) is L(M) dzf L W (MI, with the, elements 
of IMI treated as new individual constants. Note that 

N* = (N, b.)a.IMI k Diag,(M) 
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iff for f= {(a, b,) :a~ IMI}, we have f:M 2 N. Note in particular that the 
axioms of T are elements of Diag,(M), T c Diag,(M), since every element of T 

is in 9. Thus, a model of Diag,(M) is automatically a model of T. A familiar 
application of the S-diagram Diag,(M) is the proof that if llMll 3 K, then M has 
arbitrarily large S-extensions (upward Lowenheim-Skolem-Tarski Theorem, 
ULSTT). 

Definition 1.4. M is an amalgamation base (a.b.) (relative to S-embeddings) if 
the following holds: whenever h : M +Ni(i=1,2), there are N and gi:Ni*N 
such that glfi = g,f,: 

Remember that K is compact. 

Proposition 1.5. (i) M is an a. b. iff for any two 2,-sentences ul, o2 over M that 

are separately consistent with M, o1 A o2 is consistent with M as well. 

(ii) Suppose M is a model which is not an a.b. Then there is a <K-tuple a EM, 

and 2,-formulas a,(x), o*(x) without parameters such that each of a,(a), u*(a) is 

consistent with M, but al(a) A a2(a) is (logically) inconsistent (has no model). 

Remark. Note that (ii) is a strengthening of the ‘if’ part of (i): the inconsistency 
of al(a) A u2(a) with M is strengthened to a logical inconsistency. 

Proof. The ‘only if’ part is easily seen, and it does not use the compactness of K. 

To prove (ii) (and thus the ‘if’ part of (i) as well), suppose the conclusion of (ii) 
fails, and let fi, f2 be as in 1.4; we’ll show they can be amalgamated. Without loss 
of generality, fi and f2 are inclusions. 

Consider the following set of sentences 

_Zef Diag,(N,) U Diag,(N2) 

where, in the two diagrams, we use the same individual constant for each (I E IMI, 

but make sure no individual constant other than those in L(M), is common to the 
two diagrams. It is immediately seen that any model of _X provides an 
amalgamation (gi and g, as in 1.4). On the other hand, the <K-consistency of _Z 
reduces to the consistency of 

or(a) A o*(a) 

with u,(a), u2(a) p.p. sentences with parameters a in M, such that al(a) is true in 
Ni, hence each oi(a) is consistent with M. By our assumption, each instance of 
the latter consistency holds. 0 
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The following is an immediate consequence of 1.5(i): 

Corollary 1.6. Zf M is e.c., then it is an a. 6. Cl 

Corollary 1.7. Suppose M k T is not an a.6. Then there is a E <li IMI such that for 
anyN<M,ifaEN,thenNisnotana.b. 

Proof. Choose a, q, a, as in lS(ii). If N < M contains a, then each of a,(a), 
a2(a) is consistent with N, and a,(a) A 02(a) is inconsistent with N, since it is 
even logically inconsistent. Thus, by 1.5(i), N is not an a.b. 0 

Let K denote, for once and for all, the class of models of cardinality 2~' 

(essentially, we are not interested in models of power CK'). Kn = {M E K: IlMll = 

A>, K<,l = lJp<i K,, etc. We assume throughout that K is non-empty. 
K has the amalgamation property (AP) if every M E K is an a.b. ; K has the joint 

embedding property (JEP) if for any MI, M2 E K there are N and fi : MI + N, 
f2 : M2+ N. K is categorical in A if, up to isomorphism, there is exactly one model 
in Kn. 

Proposition 1.8. Zf K is categorical in A. 2 K', then K has the JEP. 

Proof. By an easy application of diagrams, if K,. has the JEP, then so does K. 
By uLSTT, any M E K,, has an $-extension of K,; now, the assertion is 
clear. 0 

Proposition 1.9. Suppose A 3 K’, A’” = il and K is categorical in A. Then every 
M E K is e.c. (and hence an a. b. as well). 

Proof. Suppose M E K is not e.c. This means that there are a in M, (p(r) a 
2,-formula and N with M x9 N such that N k cp[a] and M klq[a]. All this can be 
expressed by saying that the composite structure (N, M, a) satisfies a certain 

sentence u of (L’)Kw, with L’ = L U {A} U {ci: i < a}, A a unary predicate (for 
IMI), ci individual constants for ai in a = (ai)i<=). Since IlMll 2 K' 2 K, u has 
models in which the interpretation of A is of an arbitrary cardinality A 2 K' (by 
<K-compactness and dLST); applying this to our A, we conclude that there is 
MI E Kn which is not e.c. On the other hand, using A’” = 3L, by 1.3 we have some 
M2 E Kn which is e.c. Of course, this contradicts categoricity in rl. 0 

By a more sophisticated argument, we now show that categoricity of K in a 
sufficiently large, but otherwise arbitrary, cardinal implies that K has the AP. 
Since for K = No, by 1.9 we already know this, we may, and do, assume that K (is 
compact and) >X,. 
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Lemma 1.10. Let ,u be a cardinal LK', A. a limit cardinal ~2~ with cofinality 
cf A < K. Suppose no M E KA is an a. b. Then there is a continuous <-chain 

(Mi)i<ti* such that for every non-limit i < cf A, Mi is Su-e.c. and UiccfA Mi is not 
an a. b. 

PrOOfa Let (Ai)i<cfl be a strictly increasing sequence of regular cardinals >2P 
with limit equal to A. By induction on i < cf A, we construct MT and Ni, one for 
eachaEQid~f{(a=(ai)j<i:QiE<rcIMjCI}, suchthatforalli<cfA: 

(9 
(ii) 

(iii) 

(iv) 
(v) 

(vi) 

( MT)i,,f I is <-continuous; 
each Ni (a E Qi) is Gp-e.c., provided i is non-limit; 
for any u E Qit the sequence (N’,,j)j~i is < -continuous; 
Ni<MTforalla~Qi; 
if Q E Qi, then a is in Ni (meaning that every term of every term of the 

sequence a is in IN:]). 
For i = 0, we take Nj to be any =+e.c. model of power 2’” (by 1.3’), and MT 

any model of power A,, S-extending @. For i limit, i < cf A, we put MT = 
Ujci M,! and Nb = Uj<i N’,,j for all u E Qi; clearly, all relevant conditions are 
satisfied. Finally, let i =j + 1. Let M be any Sp-e.c. extension of M,? of 
cardinality SAi (by 1.3’). For each b E<~)M~I and u E Qj, let NLn(b) be a 6p-e.c. 
9-submodel of cardinality 2P of M containing N’, and b (by 1.3’(ii)). Now, the 
cardinality of Qi is Glil x AlyK= pi (recall that for all regular Y 2 K, Y<" = Y; see 

[4]). Hence there is an 5submodel Ml7 of M of cardinality iii, containing N: for 
all c = u”(b) E Qi. This completes the construction. 

We have that M* = Ui<cfl MT is a model of power A, hence it is not an a.b. 
Let u~‘“lM*l ‘t WI ness this fact, in the sense of 1.7. Let us write a in the form 
u = "(uj)j<cfi with Uj l cK IM,‘l, and define, for each i < cf A, Mi = Nh,, (where we 

wrote a for (a.). , ,ccfA). The Mi form a continuous <-chain of models of power 2’ 
such that each Mi with i non-limit is Sp-e.c. Moreover, UiccfI Mi <M* 
containing the witness a, hence IJi<cfl Mi is not an amalgamation base (see 
1.7). 0 

Lemma 1.11. Let u be a cardinal, u 3 K’, pcK = p. Let (Mi: i < a) be a 
<-continuous chain such that for every non-limit i < a, Mi is <u-e.c., and 
M, dgf Uico Mi is not an a. b. Assume that (C, : (Y E S) is a modified square-system 
on u+ (see Appendix). Then there is a <-continuous tree (N,, : 17 E ++2) of models 
of power u such that for any n E “2 with otp C, = u, N,,n(o) and N,,n(,j cannot be 
amalgamated over N,, . 

Proof. (NV ), being a <-continuous tree means that for all Y E “+2, (NM,,),,,+ is 
a <-continuous chain. 

Let us modify our system (C, : LY E S) by simply discarding all (Y E S for which 
otp C, > a; without loss, we may assume that for all (Y E S, otp C, s u. 
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The fact that M, is not an a.b. is witnessed by some Q = h (Ui : i < a, i is a 
successor), with Ui E<~ lMil (see 1.7). For n E ‘p +2, by induction on length(n), we 
define NV as in the lemma, and also such that for tl with length(v) non-limit, N,, is 
e.c. In addition, in case (Y = length(q) E S (and hence otp C, < a), we define the 
g-embedding h, : NV + Motp ,-, such that for i < otp C,, i a successor, Ui is in the 
range of h,, and for /3 E C, (and hence /3 E S), h,,, G h,. 

Suppose LY < p + and all items with indices q with length(q) < (Y have been 
defined. If (Y is a limit ordinal, the definition of items on level (Y is forced, and the 
new items will continue to satisfy the requirements. 

Suppose (1! = B + 1. 
Case 1: /3 E S and otp C, = cr. In this case, by the induction hypothesis, for any 

r,r E @2, htNq KM, contains the full sequence a of witnesses to the fact that M, is 
not an a.b.; hence GN,,, and also N,,, is not an a.b. We define N,,A(Oj, N,,Ac1j to 
be two 5extensions of N,, that cannot be amalgamated over NV ; by 1.3, we make 
sure that N+(,,), N,n(l) are both e.c. and of power p. Note that now a: $ S, and 
we have no obligation to define htlA(o), hqntl). 

Case 2: a 4 S and not Case 1. In this case, we may put NVntoj = NVn(r) = NV for 

any rI E 82. 
Case 3: (Y E S. Since C, is closed in (Y, C, has a last element y; if Zj = otp C,, 

then otp C, = f + 1. We have h,,, as the last h defined before h, to be defined 
now, and of course, NVls as the last N. Let us distinguish the subcases y = /I (Case 
3.1) and y < p (Case 3.2). In Case 3.1, our task is to extend NVls to an N,, and to 

extend h,,,, : N,,,s -ME to some h,:N,,+ME+l so that uE is in the range of h,. 
Since ME+, is (in particular) e.c., by 1.3’(ii) (with p of 1.3’(ii) being K, h of 1.3’ 

being p), there is fi < ME+1 which is e.c., and contains (h,“,BNq,,) U {us}; define 

N,, and h, : N,, + ME+1 so that h, extends h,,, and fi = h;N,,. 
Finally, let us turn to Case 3.2. In this case, by the conditions on ( Cn)nsS (see 

Appendix), y is a successor ordinal, and thus NVIy is e.c., and an a.b. Consider 

the following diagram: 

Let us amalgamate il with i20hq,,, over N,,,,,; we obtain an extension M of ME+1 
with a copy of N,,,B in it over h&N,,,,, 

Since ME+1 is sy-e.c., N,,, is of power p, we can realize the g-diagram of 

NO over KUNG in this way we get g making the square commute. Finally, as 
in Case 3.1, we can define N,, and h, : N,, --, ME+l with range(h,) containing uE so 
that the triangle commutes. This completes the inductive definition, and the proof 
of the lemma. 0 

Lemma 1.12. Assume (N, : q E <p+2) is a <-continuous tree of models of power 
p, and S c p+ is a stationary set for which (weak) OS hol&, and such that, for any 
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TIE <“+2 with length(q) ES, N,,^cO) and N,,A(I) cannot be amalgamated over N,,. 
Then there in no model M of power p+ such that every N,, ‘Ef UlrCP+ NV,,, Y E Mf2, 
can be SF-embedded into M. 

Proof (See [ll], proof of Theorem 3.5, especially the lower half of p. 436). With 
p a cardinal, S c p+, we consider the following set-theoretic principle: 

0,: For any system (fv),,aP+2 of functions fV : pcL++ ,u+, there is Y E P’+2 such 
that the set 

{(YES:@Y’E P+2)(Y’ 1 cl! = Y 1 a & fy* ( Ly = f” ) (Y & v’(Ly) # v(a))} 

is stationary. 

0, is a consequence of OS by arguments in [3]: the one showing that Qi follows 
from 0 (p. 239 loc.cit.), and the one showing that a variant of @, 4.1(2) loc.cit., 
implies 0; see 6.1, p. 246 Zoc.cit. Thus, for our S c p+ in the lemma, by the 
assumption of OS, 0, holds. 

Turning to the proof of the lemma, note first that we can easily arrange that the 
underlying set of each N,,, Y E “+2, is identical to p+, the set of all ordinals less 
than p+. Suppose, contrary to the assertion of the lemma, that there is a model 
M E K with underlying set IMI = p+ and for each p E j‘+2 there is an P-embedding 
fV : N,,+ M. Then, in particular, fV : p+-, ,u+. By applying O,, there is Y E p+2 
such that the set displayed in the statement of 0, is stationary. 

Now, note that the set 

is a cub, by the continuity of the tree (N ,, 1/E<P+2 of models. Intersecting C with ) 
the above stationary set, we see that there are (Y E S and V’ E P+2 such that 

v’ILy=vI(Y, fV, I a! = fV I a, 

y’(4 f y(a), I&4 = a. 

If, e.g., Y((Y) = 0, Y’((Y) = 1, then for ?I = Y I cx = Y’ I a and for f” =fV II MqACojI, 

f1 =fv II M,wI we have f”l M,, =f’I M,, f”:MqnCO)-,M, f’:M,A(lj+M; that 
is, we have an amalgamation of Mqnco) and M,A(I) over M,, into M, contradicting 

length(q) = LY E S, and the assumption on ‘non-amalgamation’ in the lemma. 0 

Proposition 1.13. Suppose A > ZlK+1(~‘), and K . IS categorical in A. Then K has the 
AP. 

Proof. Let us write p = Z,(K)). If A has cofinality SK, the assertion is true by 1.9. 
Assume that I is a limit cardinal of cofinality o < K. 

Assume there is some M E K which is not an a.b. Then the model MA E KA is 
not an a.b. either as shown by the following argument. We have contradictory 
al(a), Us &-sentences, both consistent with M (a EM) (see 1.7); we can write 
down the theory in (L’)KO that expresses, using, in addition to L, c (for a), new 
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individual constants for the existentially quantified variables yi of 3yi $I = ai, and 
also using unary predicates ti, til, i&, that A, &&, & are models of T, 
fi -C Ql, Q -C A&, c is in &f, U,(C) is true in fii witnessed by the appropriate 
constants for the yi. This theory is satisfiable so that Iti1 3 K (as given by our M 
above), hence by <K-compactness and dLST, it has a model in which k has 
cardinality equal to A. This shows that there is a model in Z& which is not an a.b. 

By 1.10, we have (Mi : i < a) satisfying the requirements in the second 
sentence of 1.11. Clearly, 1~~~ = p. By the choice of y and the Appendix, we have 
the modified square-system ( Ca)_s on p+ such that S* = { LY E S : opt C, = a} is 
stationary, and OS* holds. By 1.11, we have (NV : q E <pc2) as described there. 
We put NV = lJn_++ N,,,, for each Y E ‘1+2; IN,,1 G CL+. 

Since T has arbitrarily large models, there is an E-M defining scheme Qi over T 

(see the introductory part of Section 3) in a language L’ = Lsk of size 6~’ (see 

3.1). Consider the model M* = EM(A, @) (with )3 denoting the well-ordering of 
type A); of course, by categoricity, M* I L = MA. By uLSTT, every NV can be 
embedded into M* I L; hence for each Y, there is a subset X,, of A of size <p+ 
such that NV can be s-embedded into EM(X,, @) ( L. There is a linear ordering Z 
of size p+ such that every well-ordering of size pcl+ can be embedded in an 
order-preserving way into Z (take Z to be the set of finite sequences of ordinals 

-9+, and define < on Z by s < t a either t is a proper initial segement of s or 
3a E dam(s) n dam(t) such that s 1 cx = t I a and s((Y) < t(a)). Hence, every N,, 
can be s-embedded into EM(Z, @) I L. But this contradicts 1.12. 0 

2. Saturation and types 

We continue to work in the context of the fixed K, L, 9, T, K' and K. Let 
us formalize our assumptions for the rest of the paper (except the summary, 
Section 5). 

Assumption. K is compact; K has AP and JEP. 

By convention, ‘model’ means an element of K. The compactness assumption is 
not used until 2.7. 

First, we restate the essentially classical theory of universal-homogeneous 
models in our context. Then we introduce the abstract notions of type and 
saturation. Finally, using the compactness assumption, we arrive at the ‘set-of- 
formulas’ definition of type. In all this, AP (with JEP) is the basic tool. For a 
more general treatment, with less use of AP, see Part II, $3 of [15]. 

Definition 2.1. (i) Let A. be a cardinal, A > K' and let M E K. M is A-universal- 
homogeneous (&u-h) if the following holds: whenever N1, N2 E KcA, f : Nl + N2 
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andg:N,+M, thenthereish:Nz+Msuchthatg=hof: 

f 
N, - Nz 

(remember: all arrows are @-embeddings). 
(ii) M is universal-homogeneous (u-h) if it is ](M(]-u-h. 

Proposition 2.2 (essentially [5], [S]). (i) A &u-h model is <A.-e.c. (A > K’). 
(ii) If M is A-u-h, then M is <A-universal: any model of power SAL has an 

g-embedding into M. 
(iii) Zf MI, M2 are both u-h, both of power A, ]]N]] < A, then for any fi : N-, MI, 

f2: N+ M2, there is an isomorphism g : MI % M2 with f2 = g ofi: 

(iv) For any k > K', up to isomorphism, there is at most one u-h model of 
cardinal@ A. 

(v) Zf M is u-h, NI <M, N2 < M, ]]NI]] < ]]M]], then any isomorphism NI 3 N2 
can be extended to an automorphism of M. 

(vi) If 8 > K', a n d either 8 = A+ = 2’ or 8 is strongly inacessible, then there is a 
u-h model of power 8. 

Proof. (i) Suppose M is A-u-h, G(X) is a set of %-formulas over M, I@(x)] < A, 
M i, N, N k 3x /j a(x). Let, by dLST, M,, be such that MO < M, ]]MO]] < A, and 
all parameters from M in @ belong to M,,. Let NO be such that NO < N, ]]N,,]] < A, 
MO < N,, and NO contains some a for which N k A @[a]. By M being A-u-h, there 
is h: N,+ M which is the identity on NO. Clearly, M k A @[h(a)], hence 
M k 3x /J G(x) as desired. 

(ii) Let N be any model of power GA, and let us write it in the form 
N = U& Ni with ]]Ni]] <A. for all i < A (this is possible by dLST). Let ME be any 
model with Mg < M, ]]Mi]] <A. By JEP, there is MA with Mz 7 MA, No ? MA. 
Since M is A-u-h, there is MO< M with M,= MA, and hence we have some 
fO: N,+ M. Now, by induction on i, 0 <i < 3L, we define fi: Ni+ M such that h 
extends 6 whenever j < i < il. For limit i, we put i = Uj<ifi (see l.l(iii)). For 
i = j + 1, we apply the condition in 2.1 with Ni in place of Nr, Ni in place of N2, 
the inclusion as f, 6 as g, to obtain h as h. I&<,& will be the required embedding 
of N into M. 

(iii) We enumerate ]MI], ]M2], as [MI] = {af:i < 12) (1 = 1, 2), and we define, by 
induction on i < A, models Nf < Mt of power K' + Ii] with isomorphisms gi : Ni % 
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NF such that (Nf)i<A is a <-continuous chain, and uf E Nfl,,. For i = 0, we put 
N:,=f;‘N, go=fiof;‘. F or i limit, Ni = Uj<i N,!, gi =&gj; note that IlNfll 6 
K’ + lil as a consequence. For i = j + 1, i even, by dLST choose Nil < M with 
IIN: G K’ + lil such that Ni <N!, uj E IN’I; by M being &u-h and llN’l[ < ,I, we 
can choose gi : Ni+- M2 extending gj. For i = j + 1, i odd, we do the similar thing 
with the roles of Ml, M2 interchanged. 

Clearly, g = IJicl gi is the desired isomorphism. 
(iv) Let Ml, M2 be u-h of cardinality 3L. By dLST, let N be a model of power 

K’. Since A > K', by (ii) we have that N 2 Ml, N 7 M2. Applying (iii), we obtain 
an isomorphism Ml % M2. 

(v) Apply (iii) with Ml = M2 = M. 

(vi) The proof is similar to that of 1.3. First, given any M E K of power G 8, we 
construct M* > M of power 8 such that for any N,, N2 E I&, any diagram 

with 1 inclusion can be completed as shown with some h to commute. To this end, 
note that the cardinality of all isomorphism types of triples (Nr , N2, f : Nl + N2) 

with N,, N2 E K,, is ~8 ((N,, N2, f :Nl.-, N,) and (N;, NI, f :NI- NI) are 
isomorphic if there are fi : N, s N; such that 

N2 - N; fi 

commutes). Let (Ni, Ni, fi)i<O enumerate a set of representatives of all of these 
isomorphism types. We define the <-continuous chain (Mi)i,o by putting 
MO = M, Mi = Uj<i Mj for i limit, and for i = j + 1 < 8, applying amalgamation: 
we have 

by amalgamating Ijog and f, find Mi with Mj < Mi, and h: N$+ Mi; Mi can be 
chosen to be of power <f3 by dLST. Having defined ( Mi)i<e, M* = IJi<e Mi 
obviously satisfies the requirements. 

Having defined M* for each M E Ke, we define the <-continuous chain 
(Mi)i,B by choosing an arbitrary MO E Ko, and putting Mj+l= (Mj)*m Quite 
clearly, Ui<e Mi is u-h of power 0. Cl 
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It is convenient to use a large u-h model % so that every model we might be 
interested in is an .%submodel of %‘. We assume that 0 is a ‘large’ strongly 
inaccessible cardinal greater than any cardinal we are interested in, and we define 
% as the u-h model of power 8 (see 2.2(vi)). By 2.2(ii), every model of power <8 
has an isomorphic copy which is an @-submodel of %‘. By convention, from now 
on, a ‘model’ is an .%submodel of ‘G: of power ~8. Moreover, A, B, . . . denote 
subsets of 1 %I of cardinality < 8. 

Using %, we define an abstract notion of ‘type’. For any A ( c (%I, IAl < f3), 
and any ordinal a, we define the equivalence relation 2 on a I %I by 

b+ e 3heAut,(%‘)h(b)=c 

(AutA( U) is the collection of all A-automorphisms of Ce : h : Vi’ % %’ with h ( A = 
identity). It is clear that 2 ’ is an equivalence. An &-type over A is, by definition, 
an equivalence class of 2. The set of o-types over A is denoted by S&(A); 

z is the union of all the 2, (Y E Ord: 

bxc ($ 3aEOrdb:c. 

A type p = cl 2 E S(A) is realized in B 2 A if there is b E B (meaning: b E aB) 
with p = b/ % (i.e., b 2 c). Given p E S(A), and B E A, then p ) B = c/ z for any 
(some) c for which p = c/ x (clearly, p ) B is well-defined). Note that, in our 
context, any type p E S(A) can be extended, usually in more than one way, to a 
type over any superset B of A: for any B 2 A, there is q E S(B) with q I A =p. 

Suppose f : A 3 B is a bijection that can be extended to an automorphism of 93’ 
(such an f may be called an ‘elementary mapping’). Then facts on S(A): for every 

P E S(A), f(p) E S(B) can be defined by f(p) = h(c)/ z, for any (some) 
h E Aut(V) extending f (this is easily seen). This applies, in particular, if 
f:M %N is any (5) isomorphism of models (see 2.2(v)). 

We write p = tp(b/A) instead of p = bl z. 

Proposition 2.2’. Suppose (M,),,, is an increasing <-chain of models, M = 

l/L<, MW P” E WWA Pn = Pn+l ( M,, for n < W. Then there is a type p E S(M) 
such that p I M,, = p,, for all n < w. 

Proof. Let c realize p,,. By induction on n < w, we construct an elementary 

mapping fn : W, =+ M,*, f,,+l extending fn, such that c realizes f,(p,) for each 
n < o. For n = 0, we put fo = identity on MO. Suppose we have constructed 
fn: M,, 3 M,* such that c realizes fn(pn). Let c~+~ realize P,,+~. Since p,, = 

P,,+~ I M,, G+I realizes P,,. Thus, we have that the mapping that is defined on M,, 

as fn, and takes c,,+~ to c, is elementary. Let h,+l be an automorphism of % 
extending the latter mapping; h,,, I M, =fn, h,+l(c,+l) = c. Define fn+l = 
h,+l I Mn+,. Clearly, fn cf,,+l. Also, since c~+~ realizes P~+~, c = h,+l(c,,+l) 
realizes h n+~(~n+d =fn+l(pn+l). Th’ IS completes the recursive construction. 
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The mapping f = lJ,.& : A4 3 M* is elementary, and c realizes f(p,) for 
every n < o. Hence, for any automorphism h of %? extendingf, h-‘(c) realizes p,, 
for each it < o. p = tp(h-‘(c)/M) E S(M) will then satisfy p 1 M,, =pn for all 
n<w. 0 

Definition 2.3. Let A > K’. M is A-saturated if for all N <M, IlNll <h, every 
p E S1(N) is realized in M. M is saturated if it is I]M]]-saturated. 

Proposition 2.4. Let rZ > K', M any model. M tk ksaturated iff it is )c-universal- 
homogeneous. Moreover, if M is A-u-h, for every A c IMI of power 4, every 
type in PA(A) is realized in M. 

Proof (see Chapter II, 03 of [15]). Suppose M is A-u-h, A c IMI, IAl <A, 
p E S”“(A). Let MO < M be of power <A with A t IMJ, and let N > MO contain a 
realization b of p, IlNll 6 A. By 2.2(ii), N has an s-embedding f into M over M,,; f 
can be extended to an automorphism h of %:; clearly, h(b) is a realization of p, 
h(b) EM. 

Conversely, assume that M is A-saturated, and, to show that M is A-u-h, let 
N,, N2 be models (<%) of power <A, N,< N2, N,< M. Let lNZl = {ai:i< a}, 
a < A. By induction on i < a; we define bi E M and the <-continuous chain 
(Mi)i<, of 5submodels of M such that llMjll s Ial + Ii\, bi E Mi+l, and also the 
isomorphisms L : Mi -7 MI with 5 cf;: for j < i such that f;:(bi) = ai, as follows. We 
let M,, = Mb = N,, f. = id,; for limit i, we let 

Mi=lJMj, Mf=UM;, 
j<i j-3 

f; = ,$. 

Having defined Mj, M,!, 4, we define bj as an element realizing the type 

fi’(tp(ajlM,‘)) E S1(Mj) ( b exists since M is A-saturated), define Mj+l to be a j 
submodel of M of cardinality 6Ioj + ]j + 11 containing Mj and bj, and define f;.+i 
as the restriction to Mj+l of an automorphism of % extending the mapping 
J U {bj++aj}. Clearly, (Ui<aJ)-l maps N2 into M over Ni. 0 

Stability, in the usual sense, allows us to construct saturated (hence u-h) 
models in prescribed cardinalities. 

Definition 2.5. Let p 3 K'. T (or K) is u-stable (stable in u) if for all ME K,, 
S’(M) has cardinality ,u. 

Proposition 2.6. Suppose K' < p, p in regular, u s )L, and K is stable in A. Then 
there is M E Kn which is u-saturated (hence u-u-h). 

Proof. Given any NE K,, we let N* be a model E KA such that N < N* and all 
l-types over N are realized in N* ; this is clearly possible by A-stability. Next, 
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define a <-continuous chain (Ni)i<r of length p such that Ni+, = (Ni)*, and put 
M = IJiCr Ni. Given any N < M of cardinality <p, and p E S’(N), by the 
regularity of p, there is i < ,u with N < Ni; let c~ E S’(Ni) extend p; by the 
construction, 4, and hence also p, is realized in N,+i <M. 0 

So far, the compactness of K was not used; using it, we can relate types with 
formulas in the usual style. In fact, every type p E S(A) can be specified by a set 
of Z,-formulas over A. To see this, we make some preparations. 

Let us call a mapping f with A ‘kf dam(f) c 1 %I and B zf range(f) c 1 %‘I _Zi- 
elementary if (IAl, IBI < 8, and) for every &-formula q(x) (without parameters) 
and any CL E A (appropriate for x), % k ~)[a] implies % k q[f(a)]. (Henceforth, we 
write ~~,[a1 for ‘G: k q[a], etc.) We write f :A 2 B to indicate that f is a 
&elementary map, dam(f) = A, range(f) = B. Clearly, any restriction of an 
automorphism (to a subset of ‘G: of power <e) is a E’,-elementary map. In fact, 
we have the converse. 

Proposition 2.7. Any J?‘,-elementary map can be extended to an automorphism 
of %. 

Proof. Suppose f :A % B is Z,-elementary. Let M, N be such that A c M, 
B c N. Consider the set 

_Z = Diag,(M) U Diag,(N) 

of sentences, where we use the same constant for a E A and f(a) E B in the two 
diagrams, for each a EA, but otherwise, use distinct constants. The <K- 

consistency of _Z follows immediately from the assumption that f is .Zi-elementary, 
by quantifying out the constants in IMI -A, and modelling the resulting 
&-sentences in N. By the compactness of K, 2 has a model, say P; P is a model 
of T, but not yet an 9-submodel of %‘. At any rate, we have 9-embeddings 
g : M+ P and h : N* P with g(u) = h(f (a)) f or a E A. By % being u-h, P can be 
mapped into % over N, i.e., we may assume that P < %, and that h is an inclusion 
N < P. Hence, g : M + N extends f. By 2.2(iv), g : M % g”M < N can be extended 
to an automorphism of %‘. Cl 

Corollary 2.8. Zf f :A 2 B, then f -’ : B 2A (the notion of 2,-elementary map 
is symmetric). 0 

It follows from the last proposition, and a remark made above, that any 
.X1-elementary mapping f acts on types over its domain: if p E S(dom(f)), then 
f(p) E s(range(f)) is well-defined (f(p) = tp(h(a)/range(f)) if p = tp(a/dom(f)) 
and h E Aut(V) extending f). If A c dam(f) and p E S(A), f(p) = (f I A)(p). 

It also follows that types are determined by the &-formulas they ‘imply’. For 
p E S”(A), p = tp(b /A), let x be a tuple of length LY of variables, fixed once (Y is 
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given, not depending on A or p, and let aP sf {q(x) E (&),(A) : k tp[b]}. (Here, 
(&),(A) denotes the set of &-formulas with parameters from the set A, and with 
the free variables x at most.). It is clear that @;, is well-defined (it does not 
depend but on p). Also, for p, q E S(A), aP = G4 implies p = q : ap = aq says 
that, with b = (bi)i<,, C= (Ci)i<a, realizing p and q, respectively, f d&f idA U 
{ (bi, Ci) : i < (Y} is a &-elementary mapping, hence by 2.7, it can be extended to 
an automorphism h of %‘; which means that h(b) = c for an A-automorphism h of 
%, i.e., p = q. 

For A c %‘, Diag,,(A) denotes the set of &-sentences over A that are true in 
%. In particular, always T c Diag,,(A). 

Lemma 2.9. Suppose @ c (&),(A) is <K-consistent, and Diag=,(A) c @. Then 
there is b E ‘G: such that @ c GtpCblAj. 

Proof. Let M be any model, A c IMI, M < 5%‘. Consider the following set of 
formulas: 

Diag,(M) U @. 

This is consistent, since any <K-subset of Diag,(M) gives rise, after quantify- 
ing out the constants in (MI -A, to a &-sentence in Diag,JA), hence in @. Let 

(N, 4 b)os,M, model Diag,(M) U @, with b standing for x. Using the universal- 
homogeneity of %, we may arrange that N < C and ci = a for all a E IMI. Then 

N k q[b] for V(X) E @, and since Q, is _Z1 and N-X %‘, % k q[b], hence @ c @tp(b,Aj 
as desired. 0 

Next, we characterize the sets arising as GP. 
@c (Z:,),(A) is maximal consistent over A if Diagrl(A) c @, and for any 

V(x) E (&MA), if @U {r/~(x)] is consistent (satisfiable), then I#@) E @. 

Proposition 2.10. @ c (Z,),(A) is equal to QP for a (necessarily unique) p E S(A) 
iff @ is maximal consistent over A. 

Proof. Assume first that @ = GP, p = tp(b/A). It is clear that Diag,,(A) c @. 

Suppose V(x) e (&),(A) and @ U {14(x)> is consistent. By 2.9, there is c E V 
satisfying all formulas in Qi U {?p(x)}. It follows that the mapping f for which 
f I A = idA and f(b) = c is Z,-elementary. But then, by 2.8, f-’ is &-elementary 
as well. Since k q[c], it follows that k q[b], i.e. I+!J E Qi. 

Conversely, assume @ c (E’,),(A) is maximal consistent over A. By 2.9, there 
is b such that @c @ttp(b,__,j. Clearly, @ttp(blAj is consistent; by the maximality 
assumption, @ = @ttp(b,Aj. Cl 

From now, we will identify p with QP, for every p E S(A), A c %. For any tuple 
x of (distinct) variables, S,(A) denotes the set of all p c (E,),(A) that are 
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maximal, consistent over A. Sa(A) is the same as S,(A), for a (definite) x with 
length(x) = (Y. tp(b/A) = {q(x) E (Z,),(A) : k cp[b]}; of course, this is the same as 
@ tp(blA), with tp(b/A) in the previous sense. For p E S,(A)) and b matching x (for 
length), to say that b realizes p is to say that b satisfies all formulas in p; this 
corresponds exactly to the previous ‘abstract’ notion because of the maximal 
consistency over A of each p E S(A). 

For p E S,(A) and B CA, p 1 B =p fl (Z,),(B), and this is in agreement 
with the ‘abstract’ notion of p ) B. Finally, for a Z,-elementary f, and p E 

&(A), f(p) = {&x7 f(a)) : cp(x, Y) E (&L,,(@, Y any We of variables, a E A 
matching y }. 

Corollary 2.11. A set p c (Z,),(A) belongs to S,(A) ifl for all subsets y of x 

of size <K and for all B CA of size <K, we have that (p 1 y) 1 B E S,(B). 

((P I Y) I B Ef~ ” G),(B).) 

Proof. The ‘only if direction is clear. Assume the condition after ‘iff’, and we 
show that p is maximal consistent over A. Since Diag,,(A) = U {Diag,,(B): B E 

9,,(A)}, we clearly have Diag,,(A) cp. Since 

P = U {(P I Y) I B :Y E ~‘,,G), B E p’,,(A)) 

and every subset of p of size <K is contained in a term of the union, p is 

<K-consistent. If p U {q(x)} is consistent, V(X) E (Z,),(A), then r/~(x) = t/~(y) E 

(-Q(B) for some Y E I<,, B E P,,(A), and since (p IY) I B U t+(y)} is 
consistent, by (P I Y) I B E Wh we have +h> = V(Y) E (P I Y) I B =P as 

desired. Cl 

The next proposition relates the truth of &-formulas in arbitrary models with 
truth in 55’. 

Proposition 2.12. Let M < %‘, a E M, q(x) a Z,-formula without parameters, x 

matching a. Then the following are equivalent: 

(9 +2 k d4, 
(ii) Diag,(M) U {q(a)} is consistent, 

(iii) for any 21-formulu q(x) (without parameters), if M k ~[a], then q(a) A 

~#(a) is consistent. (Note that in (ii) and (iii), a is used as a tuple of individual 
constants; those constants are the same as the ones denoting the terms in a in 

DiagAW.) 

Proof. (i) j (iii). This is clear since % with a witnesses consistency; note that 
Mb $~[a] implies % R ~[a] since $.J is Xi. 

(iii) + (ii). Any <K-subset Qi of Diag,(M) gives rise, after taking its conjunc- 
tion and quantifying out existentially all constants not in a, to a JZ:,-sentence q(a) 
true in M; the consistency of @U {q(a)] is implied by that of q(a) A I/J(U). This 
shows the assertion. 
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(ii) 3 (9. Let (N, 4,,,M, be a model of Diag,(M) U {q(a)}; by % being u-h, 
we may assume M < N-K %‘, d = a for all u E lA41. Since N F ~[a] and Q, is a 
&-formula, Ce k q[a]. Cl 

Corollary 2.13. For a, b E A4 < %‘, if a and b satisfy the same &-formulas in M, 
then they satisb the same &-formulas in % (i.e., tp(a/0) = tp(b/0)). 

Proof. Immediate by the equivalence of (i) and (iii) in 2.12. 0 

In what follows, we sometimes neglect to denote tuples in bold type. Thus 
‘a E M’ may mean that a is a tuple of elements of M. 

Moreover, the tuples a, b, c, . . . are tuples of elements of Ce, a E %, . . . 

Definition 2.14 (compare [9]). (i) (as)s<lY is a sequence of indiscernibles over 
thesetB(as: tuplesin%)ifforallkEw, /3r<P2<..-<Pk<~, y1<y2<..-< 
yk < a, we have 

(if the latter is required only for k = 2, we talk about a sequence of 2- 
indiscernibles). 

(ii) Let B c A c J%l and p E S(A). p splits strongly over B if there are tuples 
ao, ui EA of length <K such that a, ?-a,, with c some (any) realization of 

P [aoF a, means a, z a, with C = range of c], but there is a sequence ( uru)n<K of 
indiscernibles (in %) over B with the prescribed first two members ao, a,. (If the 
indiscernibility is replaced by 2_indiscernibility, we talk about 2-strong splitting.) 

Proposition 2.15. Let A. be a strong limit cardinal, 3, > K’. Suppose T is stable in A. 
Then for any M, every type p E S’“(M) does not split strongly (even, does not split 
2-strongly) over some N < M of cardinal@ K’. 

Proof. We show the contrapositive. Suppose p = tp(c/M) E S<“(M) is a counter- 
example to the conclusion. Let 8 = cf(A), and (Ai)i<e a strictly increasing 
sequence of regular cardinals limiting to A, with 2”‘s A,+i. Using 6 times the fact 
that p splits 2-strongly over all N < M with IlNl] = K’, we easily obtain, by 
induction on i < 8, items 

Mi, ai, al, P 

such that 

Mi -CM, IlMJ = K’; (Mi)i<e is <-continuous; 

ab?a’,; ai, of E <“IMi+ll ; 
(I) 

and I’ = (ai,),,* is a sequence of 2-indiscernibles over Mj [note that a& ai are the 
first two members of Z’; note also that by <K-compactness, we can make the I’ to 
be of length A instead of K]. 
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Next, we define, for every 17 E <e{ (a, p) E A. x A: a< p} a &elementary 
mapping f, with domain Mi, and another one, g,, with domain Mi U I’ (here 
i = length(q); I’ also denotes the set of elements involved in all a’,) such that 

f, =&J; ql is an initial sequment of r12 j f,, c fq,; 

f?pca.&6) = g,(dA fqqcY,s,(4) =g,@$) 

where i = length(q) and (Y < /3 < A. 
The definition is by induction on length(q) E 8. For r~ = 0, we make f@, go both 

identities. Let i < 0. Having defined f, for r~ of length i < 8, we take g, to be an 
arbitrary extension off, to Mi U I’. As for the definition of the f,, if length(q) = i 
is a limit ordinal ~8, we are forced to put f, = IJj<ifqlp Finally, if length(q) = j, 
a < p < A, and fq, g, have been defined, we define ftlAta,Bj as follows. Since g, is 
E,-elementary and extends f,, we have by 2-indiscernibility 

with Mj a tuple enumerating Mje This means that the mapping with domain 
Mj U {a&, a{} which is fv extended by a& egg, a$ H g,(u$) is z,-elementary. 
We define f,,ncn,s, to be an arbitrary %-extension of the latter mapping to Mj+l. 

This completes the definition of the f,, g, ; they clearly satisfy the requirements. 
With Usf “{ (a; p) E 3, X A: a: < p}, for Y E U, let fv be Ui<e fvli; note that 

since the domains of the fvli form a K-chain, fv is a z,-elementary mapping. Let c, 
be a realization of the type f,(p 1 LJi<e Mi). Note the following property of c,: for 
anyi<OandforrZ=vIi, (cu,B)=q(i), wehave 

g, (a’,) c g, <a;>; 

This follows from (1). 

(2) 

Let A = IJ {g;p: i = length(q) < O}. A is a set of cardinality ,I. We claim that 
the elements c, realize more than 3c many distinct types over A, which will show 
the desired unstability in A. 

Suppose not, and let X c U be a set of cardinality <I, such that for any Y E U 
there is Y’ E X with c, x c,,. Let us write X as X = UiteXi with IX,1 6 Ai, and 
define a specific 0 E ZJ as follows. Suppose r~ = 9) i has been defined, and 
consider the set B = {c, : Y E Xi} of cardinality <Ai. The number of <K-types over 
B is ~2~~<&+~ (since pCK= p for all regular y 2 K), hence there are (Y < ~3 < Iz 
such that 

g,(&) C%#3) (3) 

for all Y E Xi. Put C(i) = (a, p). This defines Q E U. By assumption, there is 
VEXwith 

c+x c,. (4) 
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Thereisi<8suchthatvEXi.Letq=5(i, ((~,P)=n(i).(2)givesthat 

Since g,(a’,), g,(ab) EA, (3) (4) and (5) give a contradiction. Cl 

3. Indiscemibles 

First, to fix notation, we review the basics of the well-known Ehrenfeucht- 
Mostowski method of building models by using order-indiscernibles. 

Let L* be a finitary language: a set of finitary relation and operation symbols. 
If M* is an L*-structure, Xc IM*j, the substructure of M* generated by X is 
called the Skolem hull ofX (in M*), and is denoted by H,.(X), or more simply, 

H(X). 
An Ehrenfeucht-Mostowski (E-M) scheme in L* is a set Qi of atomic and 

negated atomic formulas over L* with free variables all in the fixed set {vi : i < CO} 
of variables such that 

(i) @ is maximal consistent: @ has a model (an L*-structure with distingu- 
ished elements interpreting the variables vi), and for any atomic formula 

q(uo, * . * > II,_~), either (P(v,, . . . , v,_J E @, or lq(v,,, . . . , q-J E @. 

(ii) @ is homogeneous: for any atomic formula ~(v,, . . . , v,_~) and any 
i,<i,<-. .<i,_,<o, 

pl(“O, ’ * f 9 21n-1) E @ e (p(vio* . . * J vin_1) E @a 

(iii) @ is non-degenerate: vi f vj E Qi for all i #j in o. 
Given any E-M scheme @ in L*, and any linear ordering Z = (I, < ), we can 
define the L*-strucure EM(Z, @) so that Z c lEM(Z, @)I [because of the non- 
degeneracy assumption, @ does not collapse elements of I], EM(Z, @) is 
generated by Z, and EM(Z, @) l= r&z,, . . . , a,_,] whenever pl(v,, . . . , v,_J E @, 

and aO<a,<* . . < u,_~ in I. EM(Z, @) is uniquely determined by @ and I: any 
two structures answering the description of EM(Z, @) have a unique isomorphism 
which is the identity on 1. 

Clearly, whenever .Z is a sub-ordering of Z, the Skolem hull H(J) of .Z in 
EM(Z, @) is (isomorphic to) EM(.Z, a). Obviously, (\EM(Z, @)]I = llZ((, whenever 

II41 3 IL*1 * 
Let Z = (I, < ) be a linear ordering. For a = (a,r)B<a, b = (b,),,,, tuples of 

elements of Z, we write a =0 b in Z if a, < uY iff b, <b, for all /I, y < (Y. An 
important, but obvious, fact about E-M-models is the order-indiscernibility of 
elements of Z in M* = EM(Z, @) with respect to atomic formulas: if a =. b in Z, 
then for any atomic L*-formulas q(x), M* b ~[a] iff M* b tp[b]. The reason for 
this is that for a strictly increasing a, M* b ~[a] iff q(u) E @. Notice that the 
above order-indiscernibility automatically extends to Q, any quantifier-free formula. 
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With also writing a! for the standard well-ordering of ordinals <(Y, we have, in 
particular, the E-M models EM(a, @); for (Y E Ord. Note that @ is nothing but 
the atomic diagram of EM(o, a). 

An abstract version of Morley’s omitting types theorem can be stated as 
follows. 

Proposition 3.1 [7]. Let u = IL*1 + Ko. Suppose JU is a family of L*-structures 

such that for every (Y < (2”)+, there is M E .A with IIM 1) > 11, (e.g., .A = {M} with 

IlMll 3 +,+). Then there is an E-M scheme @ in L* such that for every n < w, 

EM(n, @) is isomorphic to a substructure of some M E A. 

Remark. In the notation of 3.1, suppose T* is a universal theory in (L*),, (that 
is, the axioms of T* are sentences Vx q(x), with cp(x) quantifier-free in (L*),,) 

such that every M E .A is a model of T*. Then, for Qi given by 3.1, every E-M 
model EM(Z, @) will be a model of T*: this is true for EM(n, @) if n < o, since it 
is isomorphic to a submodel of a model of T*; since EM(Z, @) is the directed 
union of copies of EM(n, @)‘s, n < o, and the truth of universal axioms in 
(L*),, is obviously preserved under such unions, EM(Z, @) k T*. 

Let us say that the E-M scheme is over T if all EM(Z, @) are models of T. 

To draw conclusions from 3.1 for models of our theory (T, 9) of Sections 1 and 
2, we use Skolem functions. Let us summarize the well-known method of Skolem 
functions. Depending on the fragment 9, there is a canonically constructed 
linitary language LSk of cardinaiity ~191, L c Lsk, and there is a universal theory 
TSk in (LSk),_ depending also on T satisfying (i) to (v) below. 

(i) The L-reduct of any Ls,-model of TSk is a model of T. 

(ii) Whenever N* is an L,,-model of TSk, M* is a submodel of N*, then 
M* IL -+ N*J L. 

(iii) Any L-model .of T can be expanded to an Ls,-model of Tsk. 

(iv) Given M xs N, there are Ls,-expansions M*, N* of M, N, respectively, 
such that M* EN* k Tsk. 

(v) To any formula q(x) of 9, there corresponds a quantifier-free formula 

V,*(X) of (LS&o which is equivalent to q(x) under Tsk (i.e., TSkkVx (q(x) t, 

v,*(x)))* 
Let us call a formula a -X:-formula if it is of the form 3y 1+9*(x, y), where 

q*(x, y) is a quantifier-free formula of (LSk)KK. It follows from (v) that every 
z,-formula (over L) is equivalent in TSk to a _XF-formula. 

Proposition 3.2. Suppose u 3 K’, ME K, (IMI) ==ZI(,~)+, MO< M, llMOll = u, 
p E S’“(M,,), and M omits p. Then p is omitted in arbitrarily large 5extensions 

of Mo. 

Proof. With (L Sk, Tsk) the Skolem theory associated to (T, 9), let M,*, M* be 
expansions of MO, M respectively, which are L,,-models of TSk, so that M,* is a 
submodel of M*. 
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Let us apply 3.1 with L* = LSk W lM,,l (the elements of /MO1 used as individual 
constants), and with .4 = {(M*, a) os,MO,}; note that the cardinality assumptions of 
3.1 are satisfied. Let @ be the E-M scheme given by 3.1. For any linear ordering 
Z, and for N** = EM(Z, CD), we may assume that every a E ]Z&] denotes itself in 
N** [in every EM(n, @), n < o, the denotations of distinct a E ]M,,l are distinct, 
since EM(n, CD) is isomorphic to a substructure of (M*, u)~~,~~,]; hence, for 
N = N** I L, M,, < N. If x is a finite subset of I, Ix]= IZ, then H&X) = 
EM(n, a), which is isomorphic to a substructure of (M*, a)rrs,MO,. In the latter, p 
is omitted; since the isomorphisms involved are identities on l&Z,,], p is omitted in 
Z&(X). Since INI is the union of all the sets ]Z&.(x)l, x a finite subset of Z, p is 
omitted in N. IIN]] is at least as large as ]]Z]], which is arbitrary. 0 

The next proposition is proved by similar but more complicated arguments than 
those for 3.1 (not given) and 3.2. The improvement in it with respect to 3.2 is the 
better bound on ]]Mll. 

Some terminology, to facilitate the proof of 3.3. Let B, M* be Ls,-structures, 
BG M* (B a submodel of M*), n< w, a an n-tuple of elements of M*. The 
quantifier-free type of a over B in M*, tp$*(a/B) (or just tp,r(a/B)) is the set of 
atomic and negated atomic formulas ~(v,, . . . , v,-~) with parameters in B for 
which (M*, b)bsB k q[a]. A quantifier-free n-type over B is any tp$‘(alB) for any 
M* extending B and a E nlM*l. The set of all quantifier-free n-types over B is 
denoted by S”,,(B). If q E S:,(B), and f : B a B’, then f (q) E S”,,(B’) is defined in 
the obvious way, by replacing each parameter b E I Bl in any formula in q by f (b). 
IfqES~f(B)andscn,s={io,...,i,_l}, i,<-..<i,._,<n, thenq]s&Sz(B) 

is defined by 

&%I, * * * 9 %-I) E 4 I s - Q)(Q)’ * * * 9 Vi,_,) E 4. 
For the same s, and an n-tuple a, a I s dgf (a,,, . . . 7 a,_,); a subtuple of a is any 
a ) s, with s c II. 

Proposition 3.3. Suppose p 2= K’, M E K IIMII 2 &j+(~h MO -c M, IlMoll = P, 
p E S’“(M,), and M omits p. Then there are a model MA, llMAll= K’, and a type 
p’ E S’“‘(M$ such that p’ is omitted in arbitrarily large %extensions of MA. 

Proof. Let M,*, M* be expansions of M,,, M, respectively, which are .&-models 

of TSL, and also such that M,* is a submodel of M*. We define, for every finite 
tuple a of elements of M, a submodel B, of M,* of cardinality K' such that 
Bb c B, for every subtuple b of a and H(a U B,) I L omits the type p I B,. [a U B, 
abbreviates range(a) U lB=l; H refers to Skolem hull in M*.] To construct the B,, 
we proceed by induction on length(a). For a tixed a, assuming that Bb has been 
defined for every proper subtuple b of a, we let Bz be a submodel of M,* of 
cardinality K' containing Bb for every proper subtuple b of a, and by induction on 
n > 0, we let Bz be a submodel of M,* of power K' such that Bz-l c B”,, and 
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H(a u I?:+) 1 L omits p 1 Bz: since for every b E H(a U Bi-‘), there is Ab c IMol, 

l&l <K, such that M f (P I &)Pl, we may let B”, be any submodel of M,* of 
cardinality K’ containing the set 

IB;-‘I U u {Ab : b E H(a U B:-‘)}. 

Finally, let B, = U,,, Bz, Since H(a U B,) = U,,, H(a U Bz), it is clear that B, 

satisfies the requirements. 
For a linear ordering X, let X (v) denote the set of all strictly increasing 

n-tuples of elements of X. 
Let < be a linear ordering of IMI. For every n < o, we construct a family of 

subsets Z”, of IMI (a< (2”‘)+), of cardinality IZ”,ls 3.,(p) with the following 
properties and additional items: 

(i) For any fixed a < (2”‘)+, B, ( see above) has a constant value on (I”,)(‘~“! 
for all u E (I”)“+’ n 1 B, = B”,; and also, tp,,(a/B”,) is constant: 

tp&lB”,) = 4: for all u E (I”)‘<+) cc . 

(ii) For varying LY < (2”‘)+, the B”, are all isomorphic to each other: we have 
the &-structure B”, and isomorphisms fz: B” % B”, (a < (2”‘)+); moreover, the 
isomorphism (ft)-’ takes q”, into a constant type q” over B”: 

f”,(f) = 4% 

and (fE)-’ takes the type p I (B”, I L) into a constant type p” over B” I L: 

(f”a(~“) = P I (B”, I L)- 

(iii) Furthermore, for any 0 < it < o, 
(a) B”-’ G B”, 
(b) for any (Y < (2”‘)+ there is /3 < (2”‘)+ such that Z”,c I”,-‘, and the 

diagram 

n 1 -B” 

f;:/ - Inc” / 
f”, 

4-’ i.ci_ B”, 

commutes (note that B2-l E B”, since BzP1 = Bb, B”, = B, for any a E (I”,)(“*“) 
and for b, any subtuple of u of length n - 1; recall that Bb c B,). 

For n = 0, put e = IMI for all (Y, B” = Bt = Be, f”, = identity, q” = tp$*(@/B’), 
p” =p ) B”. Suppose n > 0, and that for n - 1, all items have been defined. 

Given (Y < (2”‘)+, let, by the Erdos-Rado theorem, i”, be a subset of Z;;‘, of 
cardinality 1,(p) such that the functions 

a-B,, (I w tp$‘(alB,) 

defined for 4 E (@(<jn) are constant. Since these functions, 
(Z~;~)(<‘n), have ranges of size sp”‘, and IZz:Ll3 &+&FL), this 

defined on 
is possible. 
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Define & to be the constant value of B, for a E (e)(<*“), and let 4”, be the 
constant type tp,,(a/&) (a E (Pa)(<pn)). 

Let (Y < (2”‘)+, and pick any a E (&)(i,n), and b, subtuple of a of length II - 1. 
Then B,, = B”,SL, B, = &, and since Bb c B,, we have B”,;~E &. For 
a; (Y’ < (2”‘)+, let us write (Y - (Y’ if there is an isomorphism g that makes the 
diagram 

incl. I I id. 

-n B, 
-n 

g Bd 

commute, and for which also g(q”,) = qz, and g(p I(& 1 L)) =p I(& 1 L). 

Clearly, the number of equivalence classes of - is ~2”’ (since ll&ll = K’). Let 
X c (2”‘)+ be an equivalence class of - of cardinality (2”‘)+. Let us pick a fixed 
(Y E X, and define the &,-structure B” with the isomorphism pa: B” 3 &. so that 
B”-’ G B”, and in the diagram 

the left-hand side quadrangle commutes. For any other (Y’ E X, there is an 
isomorphism g,, that makes the outer pentagon commute, and for which 
g,.(qt) = q:, and gar(p ) (& I L)) =p I (& I L). Define p”n, to make the lower 
triangle commute; this will make the right-hand side quadrangle commute as well. 

Let q” = @a)-l(qz) = (f$-l(q$) (independent of cr’), p” = 

@m))-‘(p I (B”, I L)). Let X be enumerated as X = { yII : a < (2”‘)+} with (Y s y=, 
and put B”,Effy,, f”m=fy,. It is clear that all requirements in (i) to (iii) are 
satisfied: /3 = ya + o can be taken in (iii)(b). 

As a consequence mainly of (iii)(b), we have 

4 PI--~ = (q” 1 Bn--l) ) s (1) 

whenever s c n, IsI = it - 1, in particular, qR-’ c q”: the reason is that, for (Y and 
/3 as in (iii)(b), and for a E (I”,(‘,“‘, 6 = a I s, we have b E (Z,)(<z”), and 

4 ,,--l= (f;-‘)-‘(tp,f(blB’,-l), q” = (f”n)-‘(tp&lB”a)). 
For the same reason, we also have p”-’ cp” for all n 3 1. 
Consider the set @ = lJ,<, q” of formulas. @ is a set of atomic and negated 

atomic formulas with variables all in {vi : i < co} over the language L&B”) sf 
Lsk U lJ,<, IB”I (the elements of l-l,,, lB”l being used as individual constants). 
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Since each q” is consistent, q”-’ G q”, @ is consistent; 
‘non-degeneracy’ of Qi are also clear. Finally, it is easily 
homogeneous. Thus, @ is an E-M scheme in L&B”). 

Let Mh* = U,<, B”, an Lsk-structure; A4; = A42 1 L. By 
be a type extending each p”, n -=z CO. 

67 

the ‘maximality’ and 
seen by (1) that @ is 

2.14, let p’ E S’“(MlJ 

Let Z be any linear ordering, N* = EM(Z, @) I LSk, N = N* I L. 
We may assume that the interpretation in EM(Z, CD) of each b E B” is b itself; 

this ensures that M& -C N. We will show that N omits p’. 

Let x = (x~)~.+ e Z(‘Tn). Then the definition of Qi as IJ,,, q” tells us that 
q” = tpF(x/B”). T a k e any (Y < (2”‘)+ and a = (ai)i<n E (I”,)“+‘. Then q”, = 

tp$*(a/B”,. The isomorphism fz: B” % B”, takes q” into qz; this means that we 
have an isomorphism 

Z&.(X U B”) % H&a U B”, 

taking xi to ai (i <n), and acting on B” as fz. Since p 1 B”, is omitted in 
Z-Z,,,,.(a U B”,) (B”, = B,; this is the defining property of B,), p” = p’ ) B” is omitted 
in ZZ,.(x U B”); in particular, there is no realization of p’ in the subset 
]Z&(x U B”)I of ]NI. But, of course, 

]NI = nl_Jm HN’(x U B”). 
x.I(>?4 

Thus, p ’ is omitted in N. 0 

Given any linear ordering Z = (I, < ) and tuples a, b E Z, we write 

u=,b inZ 

if for all c E ‘“I there is d E ‘“I with u”c =O b”d, and for all d E ‘“I there is 
c E ‘“I with uhc =,, b^d. 

Lemma 3.4. Assume @ b an E-M scheme in LSk, and a ey b in 1. Then a and b 

satisfy the same ET-formulas in EM(Z, @). 

Proof. Let M* = EM(Z, @). Let V(X) be a zC:-formula, V(X) = 3y I+!+, y), ‘1’ 
quantifier-free, and assume M* t= ~[a]. Since M* is generated by I, there are 
L,,-terms 1(z) matching X, and elements c E Z matching z such that M * k 

I+!J(x, t(z))[a/x, c/z]. Find d such that Q”c=~ b”d in I. By the order- 
indiscernibility of elements of Z in M* with respect to quantifier-free formulas, 
M* I= I@, t(r))[b/x, d/z], hence M* k cp[b]. q 

For A c Z, 6, c E Z, let us write b =z c (mod A) if A”b =z A”c for some (any) 
tuple A enumerating A. 

The following proposition is a varient of Morley’s theorem [6] stating that 
categoricity in uncountable powers implies stability in X0, in the case of countable 
first-order theories. 
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Proposition 3.5. Suppose A > K’, T is categorical in )c. Then for any p, K' S p < 

A, T is stable in p. 

Proof. Since K has arbitrarily large models, an application of 3.1 (with the 
remarks following it) gives an E-M scheme @ in Lsk over T. Consider the models 
M* = EM(A, @), M = h4* ( L. Let A c IMI be of power <p. We claim that the 
number of types in S’“(A) realized in A4 is at most p. Let B c A be such that 
]B] G p and A c H(B). If c, d E ‘“(A), and c =K d (mod B) in A, then c and d 

satisfy in M* the same z:-formulas with parameters in B, by 3.4; hence, for any 
finite tuple t(n) of Lsk-terms, t”[c] and t”[d] satisfy in M the same z,-formulas 
with parameters in A c H(B), and hence, by 2.13, r”[c] and t”[d] have the same 
type over A in the sense of %‘. Since, as it is easily seen (see below), the number 
of equivalence classes of =K (mod B) restricted to finite tuples is at most p, and 
the number of finite tuples f(x) is CK', the claim follows. [The equivalence class 
of c = (Ci)i<n with respect to =K (mod B) is determined by which Dedekind cut C 
of B in Z the ci fall in, and by the order-type modulo K of the two parts of C into 
which ci cuts C; two order-types are equal modulo K if either they are equal and 
both are smaller than K, or else both are at least K.] 

If we had IS<“(A)1 > p for some set A c I%( of power p, then realizing ZJ+ G )L 
many of the types in S”“(A), and including these realizations in a model M’ of 
power A., we would have the situation of some A c IM’I of power ,u, with M’ 
realizing more than ,u many types in S<“(A); thus, certainly, M’ is not isomorphic 
to the above M, contradiction to the assumed categoricity in A. 0 

Proposition 3.6. Let A, AI be singular cardinals such that K’ <Al < A, cf Ai = 
cf A < K, Al is strong limit. Assume T is stable in AI. Then there is M E K,, such that 
IS’“(M)I = 3r. 

Proof. Following the referee’s advice, we give a preview of the proof (which, in 
the referee’s words, “is long but not hard”). The required model M will be an 
Ehrenfeucht-Mostowski model based on an ordered sum Z = Ci<dK 4 of satur- 
ated dense linear orderings 4 of appropriate powers, without endpoints; ]Z) = A. 
M will inherit all the numerous partial and total automorphisms of I; we will 
consider only partial automorphisms, that is, order-preserving mappings g of 
subsets of Z into Z that respect levels: for x E 4, g(x) E 4. We call a type p over M 
*-definable over a set A c Z if any two tuples b, c of length <K of elements of Z 
behave with respect to p in the same way in the natural sense provided they 
behave the same way with respect to the ordering of I, the elements of A, and 
with respect to membership in the sets 4 (see the precise definition before Claim 
3). Claim 3 below asserts that every type (in finitely many variables) is 
*-definable over some set of cardinality SK'; this is a consequence of the 
non-strong splitting provided by 2.15. * -definability allows forming the 
translation g(p) of any type p along a partial automorphism g of the ordering if g 
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is defined at least on the set over which p is *-definable; this is the content of 
Claim 5. 

Now, the important question concerning a type is whether it is *-definable 
over a bounded set of size SK', where a set is bounded if it is a subset of Ci<,h 
for some (Y < cf A; if the answer is “Yes”, we call the type bounded. It is easy to 
see that the number of bounded types is <3L (Claim 6 and following passages). 
Assuming now that the conclusion of the proposition fails, there is an unbounded 
type p; p is still * -definable over a necessarily unbounded, set A of size SK'. The 
main point is Claim 7 which asserts that for any partial automorphism g of the 
ordering that moves all but a bounded part of A to a position entirely above A, 
we have that g(p) #p; the reason is that the assumption g(p) =p would lead to 
the conclusion that p is * -definable over the bounded unmoved part of A. 

The last conclusion gives us a tool of an orderly construction of many distinct 
types, in virtue of the existence of many appropriate g’s. In particular, we can 
construct a ‘tree’ of distinct types for which the fact that they are distinct is 
witnessed on a subset I’ of Z having a small intersection with each Zi. We have 
that 11'1 < Al, and using the restrictions of the types to the Skolem hull of I’, we 
get a conclusion contradicting the stability assumption on Ai. This is the subject 
of the rest of the proof. 

Assume the hypotheses. Let (L sk, Ts,) be the Skolem theory associated with 
(T, 9); (&( s K’. Since (by <K-compactness) T has arbitrarily large models, a 
‘weak’ application of 3.1 gives us an E-M defining scheme Qi over (T, 9) in the 
language LsL. 

If .Z is a sp-saturated dense linear ordering without endpoints, in the usual 
sense of the model theory of finitary logic, then, since the finitary first-order 
theory of (Z, < ) admits elimination of quantifiers, u =,, b in .Z implies 
(Z, a) s-M (.Z, b) (elementary equivalence in (L&,, LO = { < }) provided a, b are 
of length =GP. In particular, Q, b E “‘J and u zO b imply that for any c E “PJ there 
is d such that a”~ z. b”d. As a special case, a =. b implies u =K b. 

The general existence theorem for saturated models (see [l]) gives, for every 
infinite cardinal p such that pP = p, a 6 ,u-saturated ordering of cardinality p. 

Let 0 = cf A. = cf 3L1, and let ( pi)i<e be a strictly increasing sequence of regular 
cardinals limiting to A, cl0 2 A: (note that A: = 2*’ since hr is strong limit, A, > K; 
see [4]). By Theorem 4 in [16], & = pi. Let Zi be a &,-saturated dense linear 
ordering without endpoints of power pi, and let Z = Cite Zi, the ordered sum of 
the Zi’S; the linear orderings 4 are disjoint subsets of I, and 4 < 4 (meaning for all 
x E Zi and y E 4. x < y in I) whenever i < j < 0. Define M* = EM(Z, @), and 
M = M* 1 L; we may; and do, assume that M < V. 

A function f with dam(f) cZ, range(f) cl is proper if f is one-to-one, 
order-preserving, and for all i < 8, a E dam(f), a E Zi iff f(u) E Zi. We also write 
f:ATBforfp p ro er, dam(f) = A, range(f) = B. We write b =I c (mod A) when 
Id,U {(b,, cs):/3<a} is proper; here b= (b,),,,, c= (c~)~<~ 
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Claim 1. Any proper function preserves the meaning of Cf-formulas: if f :A 7 B, 
a E ‘“A, Q)(T) is a XT-form&a, then M* I= ~[a] e M* k fp[f (a)]. 

Proof. This follows from 3.4, once we see that a Gz f (a), for a E <“A. This 
follows easily from the fact a =O 6 implies u =K b in <K-saturated orderings 
(separate u into parts, each in one 4). Cl (Claim 1) 

Claim 2. For any A c I of cardinal&y SK’ and any b, c in ‘“I such that 
b s1 c (mod A), there are d, (16 cr < K) such that both 

b”(&)lSaCr and ch(d,)lS,<, 

are sequences of indiscernibles with respect to the relation =1 (mod A), i.e. 

b^d,,“- - - ̂ d,, =1 cAdalA. - -^d, (mod A) 

E1 d@,“. . . ̂ dsk (mod A) 

wheneverkcw, q<-~~<a’~<~, /I?~<---<&<K. 

Proof. It is easily seen that the special case of the claim for the case when 6, c 

and A are all in a fixed 4 implies the general case; one uses the properness 
involved in the assumption b e1 c (mod A). Accordingly, assume i < 0, b, c E 

‘“4, A c Zi, b ~0 c (mod A). Let b = (bj)j<r c = (Cj)j<y; we want to define the 
d,= (di”)j<u((Y<K). Wh enever bj EA, and hence Cj = bj, we put dy = bj = 

Ci ((u < K). 

Let C be a Dedekind cut of A, i.e. a maximal convex subset of 4 -A (‘X is 
convex’ means that n, y E X, x < z C y imply t E X). Consider the set r, = {j < 
y : bj E C} = {j < Y : Cj E C} of indices. For j E I& we define d; (a < K), SO that for 
all (Y < K, 

dye C, 

(dy)jsr,=o (bj)jer, ‘0 (Cj)jerc, 

d? > bj*, d; > Cj, for all j, j’ E l& 

andwhen/3<aCK, 

dy>d$ for all j, j’ E I&. 

By the SK’-saturativity of 4, this is easily done. Since for every j < y, there is a 
unique Dedekind cut C of A such that bj E C and Cj E C, unless bj = Cj E A, the 
above will specify dy for all (Y < K, j < y. It is clear by inspection that the dy so 

determined will satisfy the requirements. Cl (Claim 2) 

Let f be a function with dam(f) c Z, range(f) c Z, and let p, q E S,(M). We say 
f is a partial similarity between p and q, in notation f :p = q, if the following 
holds: whenever r&x, y) is a &-formula (in L) and t(z) is a tuple of &-terms of 
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the same length as y, then 

FJ(G fv4) E P = a f+vWl) E 4 

for all tuples Q matching z of elements of dam(f). We also write (a, p) = (b, q) if, 
with u = (Ui)i<a, b = (bi)i,,, f = {(a,, bi) : i < CU}, we have f :p = q. We say p is 
* -definable over A c I if for all b, c from I, 

b =I c (mod A) + (6, p) = (c, p). 

Claim 3. Every p E S’“(M) is * -dejinuble over some A c Z of curdinulity 6~‘. 

Proof. By 2.15 (applied to 3L1 as the )c of 2.15), p does not split strongly over 
some A0 c lit41 of cardinality SK’. Let A c I be a set of cardinality SK’ such that 
A,, is a subset of the Skolem hull of A. We show that p is *-definable over A. 

Assume b, c are <K-tuples in I, and by c (mod A). Use Claim 2 to get d,, 

1 G (Y < K, as there. By Claim 1, the tuples 

b^d,,^- . *“da,, 

chdnlh- . ehd,,, 

d,,^d,,“- . . ̂ d,, 

all satisfy the same ET-fOrm_hiS over A, whenever k < 01, (Y~ < - - * < ffk < K, 

B0<P1<-** < fik < K. Now, let rp(x, y) be any &-formula (over L), t(2) a tuple 
of &,-terms matching y. Using the given C, we conclude from the last-made 
statement that the tuples 

f”[b]“tM[d,,]“. - -^f”[d,,], 

f”[c]^f”[dJ- . -^f”[d,], 

f”[dsJAfM[d,,]‘- . 3”[dsk] 

all satisfy the same _XF-formulas over A, whenever k < w, a1 <. . . < ak < K, 

PO<. * *C&-C K. Since the L s,-translation of a &-formula is a EF-formula (see 
the introductory part of this section), and A0 is in the Skolem hull of A, the 
last-listed three tuples satisfy the same &-formulas over A0 in M, hence also the 
same E,-formulas in %‘, by 2.11. This says that the two sequences 

f”‘[b], f”[d,], . . . , f”[d,], . . . (cY < K), 

f”[c], r”[d,], . . . , f”[d,], . . . (a< K) 

are both sequences of indiscernibles over A0 in %, in the sense of 2.14. Since p 

does not split strongly over A,,, 

rph t”Pl) E P - d-v @Al) E P, 

V(T t”kl) E P - V(G t%l) E P. 
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It follows that 

V(-V ~Vl) EP e V(% ml) EP. 

Since q and t were arbitrary, this proves that (b, p) = (c, p). 0 (Claim 3) 

Claim 4. For any f :A 7 B with IAl s K’, and any set C c I of cardinal@ SK’, 

thereisanextensiong:AUC~BUDoff. 

Proof. Easy; left to the reader. Cl (Claim 4) 

Claim 5. Suppose f :A 7 B, and p E S,(M) is * -definable over A. Then there is a 
unique type, denoted by f(p), in S,(M), which is *-definable over B and for 
which the following holds : 

(*I g:AUCTBUD,f sg 3 g:p=f(p). 

Proof. Let us first see that there exists a set f(p) c (Z,),(M) satisfying the 
conclusion ( * ), regardless of whether it is a type. The problem is whether for any 
&-formula ~(x, y) and tuple u of elements of M, the requirements in the claim 
can give contradictory answers to the question “&K, u) e f (p)“. To show this 
cannot happen, suppose 

g:AUCTBUD, (1) 

g’:AUC’TBUD’, (2) 

both extending f, t(z), t’(z’) are tuples of Lsk-terms, c E C matching z, c’ E C 

matching z’, 

21 = P[g(c)] = t’“[g’(c’)]; (3) 

we need to show 

&, P[cl) e&J e V(& t’W) E P* (4) 

To do so, let, by Claim 4, C” and g” be such that 

g”:BUD’UD”~AUC” (5) 

extending fi Then for cl = g”(g(c)) and c; = g”(g’(c’)), we have 

c1 =r c (mod A) (6) 

by (1) and (5), 

ci =I c’ (mod A) (7) 

by (2) and (5), and 

g(c)^g’(c’) =1 cAc; (8) 
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by (5) alone. Thus 

Q)(K r”M> EP e 94x9 e(CI>I EP (9) 

by (6) and the * -definability of p over A, 

q(x, t’“[c’l) E P = d-v t’%l) E P (10) 

by (7). Now, by (8) (3), and indiscernibility, 

P[Cr] = P[Q. (11) 

Thus, on the right-hand sides of (9) and (lo), we have identical formulas, hence 
(4) follows from (9) and (10). 

We have shown that f(p) as a set of formulas is well-defined and satisfies ( * ). 
To show f(p) E S,(M), let V be an arbitrary subset of M of size <K; we’ll show 
that f(p) 1 V E S,(V). For every TV E V, let us choose a term f,(z,) and a finite 
tuple (i, of elements of Z such that u = tf;‘[d,,]. Let D be the set of all members of 
all the tuples 4, u E V, and let, by Claim 4, g be an extension of f such that 
g :A U C 7 B U D (C = g-‘(D)). The mapping h : U 3 V defined by 

h-‘(v) = c%-l@Ll)l 
is a X:-elementary map in M * by Claim 1, hence, by 2.13, it is a z,-elementary 
map in the sense of 5% Therefore, h(p 1 U) E S,(V). However, h(p 1 U) = 

f(p) ) V: by (*), g:p =f(p); this, applied to an arbitrary IJI, and the particular 
tuple t = (t”) vGv gives the desired equality. 

Sincef(p) 1 V is a type, for any V of cardinality <K, by 2.11, f(p) E S,(M). The 
uniqueness of f(p), and its definability over B, are clear. 0 (Claim 5) 

Claim 6. For any set A c Z of cardinal@ SK', the number of types in S’“(M) that 
are * -definable over A is 62’““‘. 

Proof. Using that K is strongly inaccessible, 8 < K, we easily see that the number 
of equivalence classes of <K-tuples with respect to the relation =r (mod A) is 6~. 
The number of .&-formulas is C(K')<~ C K'+. Notice that a type * -definable over 
A is determined by a function whose arguments are pairs, each of an equivalence 
class of z1 (mod A) and a _X’,-formula, and whose values are ,Y’,-formulas, hence 
the number of such types is C(K I+ KX(K'+) = 2'""). ) q (Claim 6) 

The number of bounded subsets (those in some IJj<i 4, i < 0) of Z of cardinality 
SK' is 

sup p;’ =S sup p,? = I. 
i<B i<B 

(by Theorem 4 of [16] quoted above). Hence, by Claim 6 (and 2’““‘< A, < A), 
the number of types in S<“(M) *-definable over some bounded subset of Z of 
cardinality GK' is Sk. 
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Assume now, contrary to the conclusion of the proposition, that IS<“(M)I > A. 
Hence, there is p E S’“(M) that is not * -definable over any bounded subset of I. 
Let us tix such a p. Let A c Z be a set of cardinality SK’ such that p is * -definable 
over A (by Claim 4). For any set X c Z, let Xcj mean X n Uj<i 4, Xi = X rl 4. 

For proper functions f, g, and i c 8, let us write f-$ g to mean: 

(fiZ=fn(ZxZ), even if .Z # domf; for subsets A, B of Z, A <B means for all 
XE~,YEB, wehavexCy;Z<i=Ui<i4.) 

Claim 7. Let i < 8, g a proper function with domain A such that id,_, Cig. Then 

P #g(p). 

Proof. Suppose p = g(p). We derive from this that p is *-definable over 
A+ ( = g”A,,), in contradiction to the choice of p. The tool for this derivation will 
be the fact that p is *-definable over both A and g”A (see Claim 5). Let 

b = @,),<,, c = (c&3,,, and assume b =1 c (mod A,), to show that (b, p) = 

(c9 P). 
Let S<id~f{(B<~:bS~Z<i}={P<a:cs~Z<i}, andfor any k such that iSk< 

8, let Sk dgf {/3 < (Y : b, E I,} = (~3 < cx : cs E I,}. For each /3 E Sk, use the satura- 
tivity of Zk, and choose an element d, E Z, such that 

Ak Cd, <&‘A,, 

and 

d= (bp)p+UUis/c<~ (&>~es~* 
We are going to show that 

and 
(h P) = (d, P) 

(c, P) = (d, P), 

which will suffice. To see (l), let 

S: = (6 E Sk : b, < g”Ak}, 

s”,=s,-s:. 

We then have 

(1) 

(2) 

(d&&J (b,),,,:~,(b,),,,~U(b,),,,:(modg”Ak) 

= (b, >s.sx, 
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and hence, for 

we have 

d’ =1 b (mod g”A). 

But also, 

(3) 

and hence 

d’ =I d (mod A). (4) 

Since p is *-definable over both g”A and A, (3) and (4) give that (d’, p) = (b, p) 
and (d’, p) = (d, p), hence (1). For proving (2), we use 

(cl3 )OES<, =1 @P )gEs,, (mod A<) 
(which follows from c-i b (mod A,J), but otherwise, the proof of (2) is the same 
as that of (1). •i (Claim 7) 

In Claim 5, we defined f(p) for any proper function f with dam(f) = A. If f is a 
proper function with A c dam(f), f(p) will mean (f 1 A)(p). 

Claim 8. There is a set B of cardinal@ SK' such that A c B c I, and such that for 
any two proper functions f, g with dam(f) = dam(g) = B, and any i < 8, if f -$g, 
then f (p) 1 H(f “B U g”B) #g(p) 1 H(f”B U g”B). (H(X) is the Skolem hull of X.) 

Proof. For every i < 8, choose Ci c Z, and hp : Ai 7 Ci such that A, < Ci; let 

C~f U Ci, ho= U hp. 
i<B i<e 

For any i < 8, let h (OPi) be the proper function with domain A for which 
h(‘z’) 1 Aci = identity, h (Osi) 1 Ak = ht for i s k < 0. By Claim 7, there is D@) c Z 
such that ID@)1 < K and p I H(D”‘) #h’OFi’(p) I Zf(D”‘). Let D = lJiie D”). Thus 
DcZ, IDICK, and 

p I H(D) #h’“~i’(p) I H(D) (1) 

for all i < 8. By Claim 4, choose B” c I and h : A U B” 7 C U D extending ho; let 
hk = h ( Z,. Define B = A U B” U D; clearly, IBI s K'; we show B satisfies the 
requirements of the claim. 

Let i < 8, and let f, g be proper functions with domain B, f <ig. Let h(‘) be the 
function with dom h(‘) = B, h(‘) I Bci = identity, h(‘) I Bk = h I Bk; h(‘) extends 
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Zr(‘*‘). By (l), there are d E <KD, a z:,-formula q$x, y), and a tuple t(z) of 
&,-terms such that 

V(X, t”Pl) E P @ &- > t”[dl) E h”‘(p) (2) 

By possibly rearranging d and y, we may assume that d = do “d’ hd2, and 

d’ = h(d~)i~k<e~ d2= “(&>i<k<e with do E Zci, d: E Z,, dz E Zk, and moreover 

d; < d:, (3) 

Ak < d;, (4) 

d;< C, (5) 

for all k, i s k < 8; this is possible since Ak < C,. (Of course, e.g. (3) means that 
d < d’ for all members d, d’ of the tuples d:, dz, respectively.) Let b: = 
(h(‘))-‘(dz), b2 = ^( bi)i<k<o* We have the following two relations: 

A”doAd1^d2 -lf(A)Af(do)Af(d’)Ag(b2), (6) 

h”‘(A)^doAd’^d2 e1 g(A)^f(d’)^f(d’) ^g(b2). 

Concerning (6): within Z<i, it reduces to 

A<i”d’-lf(A<i)“f(dO) 

(7) 

which is obviously true; and within Z, (i s k < tl), it reduces to 

A,^&“& =of(&)hf(d:)hg(b:) 

which is true since A,^d:<di by (3) and (4), and f(A,)“f(d:) <g(b$ by f <ig. 

Concerning (7): within Z,,, it reduces to 

h(i)(A<i)hdOzl g(A<i)^f (do), 

which is true since h(‘) is the identity on Z<i, and g and f agree on Z<i; within 
Zk (i <k < O), it reduces to 

h”‘(A,)^d:%“‘(b”,) =,g(A,)“f (d:)^g(b;) 

(since dz = h”‘(b~)), which is true since d: < h”‘(A,)“h”‘(b~) by (3) and (5) and 

f Cd:) <g(A/c)“dbZ) by f <ig- 
Let us write e = f(d”)“f(d1)^g(b2). Note that e l f”B Ug”B. (6) and (7) say, 

respectively, that A”d =I f (A)“e, and h(‘)(A)^d =I g(A)“e. By the definition of 
f(p) (see Claim 5), the first of these relations implies that 

(d, P) = (c f (p)) (8) 

and similarly, the second implies that 

(d, h”‘(p)) = (e, g(p))- (9) 

(for the latter, note that g(p) = (g~(h’i’)-l)(h(i’(p)) in the sense of the 
construction f(p) of Claim 5). (8), (9) and (2) imply that 

CP(K t”[el) Ef (p) + v(x, t”kl) E g(P)- 
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Since e cf”Z? U g”B, f(p) I H(fB U g”B) #g(p) ) H(f”B U g”B). 0 (Claim 8) 

Now, we complete the proof of the proposition as follows. Find strictly 
increasing cardinals & for i < 8 such that &<i& GZ.$ (i< e), and Ai = 

suPi< cl,‘. 

For any j < i < 0, and r~, 7’ E IIkci &, let us write rl <j n’ for: q(j) < n’(j) and 
q(k) = q’(k) for all k <j. Then the relation <’ on &<i pl defined by 

n <iv’ e there is j < i such that 17 <i 7’ 

is the lexicographic linear ordering. 
By induction on i < 8, we define, for all rl E nj<i p;, a proper function with 

domf, = Bci, with B from Claim 8, such that 

rl<jrl’ * fq<jfq’ 
(where the latter means, as before, fq 1 Z<j = f,- 1 Z<j, ftBk <f:, Bk for j s k < i). 
For rl = 0, h = 0; for i limit, length(q) = i, fq = LJj<ifqlj; the induction hypothesis 
clearly persists. 

Let us assume that i < 8, and fq has been defined for all 9 E nj<i yf; we 
define ftlhcnj for all (YE PT. We claim that there is a family of functions 

0%?4),4I,<,&. n=lr:, 

h(,,,):BiTC(,,,), 

such that Cttl,o() < CC~,,~,) whenever r~ 411’ or (rl= n’ and a: < a’). Indeed, the 
claim is equivalent to saying that a certain (quantifier-free) type over Lo = { < } in 
I~j<i ZJ,! 1 x Y’ = pzF variables can be realized in 4; since Zi is +-saturated, this is 
possible [so far, we used only <(&)-saturation of the Ii; this is the place where 
<&-saturation is used]. Define 

f o^(ol) =fq “h(lw)- 
It is clear that we have satisfied the requirements. This completes the definition of 
the f,, for n E nj<i z+;, i -=c 8. 

For v E IIi<e /J:, let fv = Ui<Bfvp Th en each fv is a proper function with 
domain B, and Y <f Y’ implies that fv <i fv*; thus, Claim 8 can be applied to fv and 
fVP. We conclude that for any Y, v’ E ni<e PT, if Y # V’ (hence v<e v’, or Y’ <,? Y, 
for some i < t9), then 

f&l I Wf3 Uf 3) ff&) I Wf:‘B Uf ‘3-Q. 
Let N = H(U {f;B : q E IIj<i pi*, i -=c e}) I L; clearly, llN]l = Al, and N < M. By 
the last inequality, the types f&) I NE S<“(N), Y E I&<@ p:, are pairwise 
distinct. Since, by K&rig’s inequality, I~i<B z$]> Al, we obtain that T is unstable 
in A,, contrary to the hypothesis of the proposition. •I 

Formally, for the next conclusion, the assumptions of Section 2 are lifted, but 
those of Section 1 are still in force. In particular K is a compact cardinal. 

Sh:285



78 S. Shelah, M. Makkai 

Conclusion 3.7. Suppose A > XK+1(~‘) and K is categorical in A. Then all M E K 
are existentially closed. 

Proof. By 1.13, K has the amalgamation property; by 1.8, it has the joint 
embedding propety. Thus, Sections 2 and 3 are applicable. 

If cf A 2 K, the conclusion is known by 1.9. Assume 0 = cf 3c < K. Then, let 
A, = &(K’). By 3.5, T is stable in &. Thus, 3.6 is applicable, and we get, using 
again that T is categorical in A, that T is stable in A. By 2.6, the model M E KA is 
p-saturated, for all regular y < A, i.e., M is saturated. By 2.2(i), M is existentially 
closed. Using the argument of 1.9, it follows that every model in K is existentially 
closed. Cl 

4. Stability 

We continue with the conventions and assumptions introduced in Sections 1 
and 2. Another assumption we make is 

Assumption 4.0. Every M E K is existentially closed. 

Note that, by 1.9 and 3.7, if K is categorical in rl, and either A > K’ and 
cf II 2 K, or A. > 1x+1(~)), the last Assumption holds. 

For a sentence CT of L,,, let us write K != u to mean that M I= a for all M E K. 
Let T’ be the set of all &-sentences u such that % k a; T’ includes T. Then, for 
any sentence t E L,,, or more generally, any r of the form Vx ((A Y(X))+ q(x)) 

with Y(r) = L,,, q,(x) E L,,, K tr t iff T’ k z, and in fact, the ‘if direction holds 

for any t E L,. Since every M E K is (isomorphic to) a &-substructure of %, 
K I= T’, hence the ‘if direction follows for any r E L,. Conversely, if K != z then, 
picking any fixed MO E K, Diags(M,,) k t, since every $-extension of MO is in K. 
Hence, by applying <K-compactness, we find u E &, such that MO b a, hence 
u E T’, and u k r; this shows T’ k z. By another compactness argument, we obtain 

Proposition 4.1. (i) For any &-formula q(x), there is a &-formula q(x) such 
that ~QI(X) is equivalent to q(x) in K: K k Vx ((lq~(x)) t, q(x)). 

(ii) For any q(x) E L,,, there is a Z1-formula v&(x) such that q(x) is equivalent 
to v(x) in K. 

(iii) ForanyM,NinK,M<N~MM<,N~M<<,,N(whereM<,,Nmeans: 
M k cp[a]eN k ~)[a] for all v(x) E L,, and a E IM]). 

Proof. (i) Let q(x) be a Zr-formula, and let Yzf {~I+!J(x): IQ(X) E &, b 
Vx (q(x)+lr/~(x))}. We claim that K ~VX ((A Y(x))-, q(x)). Suppose, to the 
contrary, that there is M E K and a E IM] such that M b/j Y[u] and M ~=lq[a]. 
Consider the set _Z = Diag,(M) U {q(u)} of sentences. If there were 2” E 
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~4DiagdW) such that 2’ U {tp(a)} had no model, then, by existentially 
quantifying out the ]MI-constants other than those in a in the conjunction A Z’, 
we would get a &-sentence I/J(U) with M k ~(a) and l=Vx (q(x)+lr/~(x)), hence 
q(x) E Y, contrary to the choice of M. But, any model N of 2 is an g-extension 
of M, M < N, with N != ~[a]; since M i=lq[u], this means that M k, N. This 
contradicts the assumption that M is e.c. 

The claim having been proved, we have T’ kVx ((AY(x))+ q(x)) (by 
remarks made above), hence by compactness, T’ k Vx ((A Y’(x))+ q(x)) for 
some Y’(x) c Y(x) of cardinality <K. The conjunction A Y’(x) is equivalent to 
-n+!~(x) for a &-formula v(x); the definition of Y’ gives T’ ~VX (q(x)+lv(x)); 
the way Y’ was obtained gives T’ k Vx (@r/~(x))+ p(x)). Thus, T’ FVx (q(x) ++ 
11/~(x)), which suffices. 

(ii) This follows from (i) by an induction on the complexity of formulas in 
L 

K&i) I mmediate from Assumption 4.0 and (ii). •i 

Definition 4.2. K has a long definable order, or simply, K has order, if there are a 
formula q(x, y) E L,,, with length(x) = length(y)(<K), and a sequence (11~)~~~ 
of length K of tuples in % such that for all i, j < K, 

b fp[f&, Uj] iff i < j. 

Proposition 4.3. Zf K has order, then for all A > K’, I(& K)( = the number of 

isomorphism types of models in K,) is equai to 2’. 

Proof. This is essentially a special case of Theorem 3.14, part (2) of Chapter III 
in [15]. In detail, let cp(x, y) be a formula defining a long order in %. By 2.1, q 
and TQ, are equivalent in K to E,-formulas, say, 3z1 qr(x, y, zi) and 

322 1v*(x, Y, zz), respectively; here, t/~r, & are Boolean combinations of formulas 
in 9c L,,. Introduce new and disjoint tuples c i, c, of individual constants; let 
the similarity types tl, r2 be obtained by adjoining the constant ci, respectively 
c2, to L; tl II ~2 = L. Let qi(X, y) = IJJ~(X, y, Ci) (i = 1, 2). Take q of Zoc.cit. to be 
the conjunction of the axioms of T; 11, E L,,.,+,,, thus x of loc.cit. can be taken to 
be K’. adgf [length(x)] <K, hence o+ < K S K’. Notice that, by <K-compactness, 
once we have a q-order of length K in %, we have q-orders in %’ of arbitrary 
lengths. The assumption ( * ) in loc.cit. is satisfied: every large enough model of T 

is in K, so the orders defined by Q, translate into sequences related to vi, cp2 as 
needed for ( * ). The conclusion of loc.cit. is the assertion of the proposition. Cl 

Since we are interested in the case when K is categorical in some A. > K’, it is 
reasonable to make the following assumption for the rest of this section: 

Assumption 4.4. K does not have (long, definable) order. 
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In the case K = rC,, this is the usual condition of stability for T’ (for T’, see 
above before 4.1; it is a complete theory in the usual sense if K = i-4,). We also call 
K l-stable if the last Assumption holds for it. On the basis of the assumption of 
l-stability, we develop a generalization of a part of the theory of forking of types 
originally developed in [9] for stable first-order theories. The part in question is 
the one that concerns forking of types over models, rather than types over 
general sets. Although, for technical convenience, our definition of non-forking 
(independence) will be for a general base-set, we will be essentially restricted to 
using the notion with base-sets that are models, because of similar restrictions in 
the properties we can prove for the notion. It is to be noted that the notions to be 
introduced will coincide with the ‘usual’ ones for K = t-4,, only if the base-set is a 
model. 

In the rest of this section, a ‘formula over A’ means one of L,,(A), that is, an 
L,,-formula with parameters in A. 

Definition 4.5. (i) For sets A, B, C (subsets of %, of cardinality <](%ll as 
always), we say that A and B are independent over C, and write NF(C, A, B), or 
A bc B, if the following holds: whenever q(x) is a formula over C U B (with 
parameters in C U B), a E A, then L ~[a] implies there is a’ in C such that 

k da’l. 
(ii) For C c B and p E S,(B), we say that p does not fork (dnf) over C if for all 

q(x) EP, there is n’ E C such that I= ~[a’]. 

Clearly, A bLc B iff tp(A/C U B) dnf over C (where A is any tuple enumerating 
A). The notation a IL= b (or NF(C, cz, b), or a and b are independent over C) is 
used in the natural sense: L ~[a, b] implies l= (~[a’, b] for some a’ E C, whenever 
&x, y) is a formula over C; a 1~~ b is equivalent to saying A bc B with A, B the 
ranges of the tuples Q, b, respectively. The m,, ._: =‘anmg of a L&B should be clear. 

In the next proposition, a, b, c, . . . may denote (not just elements of I%‘], but 
also) tuples of length <K of elements of I %‘I. 

Proposition 4.6. Suppose a bLc b, b t&u’, and u ~a’ [i.e. tp(u/C) = tp(u’/C)]. 
Then 

u”b F u”‘b. 

Proof. Suppose the hypotheses, and assume that, contrary to the conclusion, 

(i) L q(a, b), 
(ii) blq(u’, 6) 

for some &x, y) over C. By induction on i < K define tuples ai, bi from C 
satisfying the following: 

(iii) L q(ai, b), 
(iv) ~ltp(q, bj) when j < i, 

(V) klV(u, bi), 
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or equivalently to (v), since a F a ’ and bi E C 

(v’) klq(a’, bi), 

(vi) k ~,(a~, bJ when j G i. 
Let i < K and assume uj, bj have been defined for all j < i satisfying the relevant 
parts of (iii) to (vi). Note that, by (i) and (v) (for j < i rather than i), 

k= ‘?‘(a, b) * ,ojl’P(u, bj). 

Here, we have a formula q(u, b) over C, hence by a c~=b, there is Ui E C with 

k (PC69 b, A ,/J1VCui9 bj)9 

that is, we have satisfied (iii) and (iv). Next, by (ii), (iii) and the choice of ui, we 
have 

L1QJCu’9 b, A A Vt"j, b)* 
jSi 

Therefore, by b L& a’, there is bi E C such that 

k1q(u’9 bi) A ,bi TC”j9 bi), 

that is, we have satisfied (v’) (= (v)) and (vi). 
Having completed the construction, (iv) and (vi) show that there is a long order 

defined by cp, in contradiction to Assumption 4.4. 0 

Proposition 4.7. Given sets A, B and a model M(!), there is a ~l-elementury 
mapping f with domain M U A such that f 1 M = identity, and f”A CL,+, B. 

Proof. Let us introduce a new individual constant b for each b E M U B, and 
another one, d for each a E A - M such that 6 # 6’, d # b’, 6 #Z whenever 
b#b’, bothinMUB, andufu’, bothinA-M. Let 

.Z”) = { cp(G E) * q(x y) E L,,, a E A - M, c E M, k q[a, c]} >. 7 7 

.c2) = (q(6) : q(x) E L XX, bEMUB, ~dbl), 
~(3’={~(d b)*q(x,y)EL,,,uEA-M,bEMUB , * 

and for all c E M matching X, k q[c, ‘b]). 

Let Z = 2(l) U Z(*) U Zc3’; we claim that ;5 is <K-consistent. Let Z’ be a subset of 
_Z of cardinality <K. Let A,, = {a E A - M : d occurs in some formula in 2’). Since 
M KKK %‘, there is an assignment a ~a*, UEA,+U*EM, such that (‘%, u* for 
d, c for I?),,~-~,~~~ k 2’ n Z (l) Thus (%, u* for d, b for 6) k 2’ since in _Z(*), . no d 
occurs, and the definition of Zc3) ensures that (Ce, u* for 6, b for 6) k Zc3) with any 
u* E M. We have shown that 2 is <K-consistent. 

Let (N, u** ford, b* for 6)oeA--M,b.MUB be a model of 2. By the universality of 
V, we may assume that N < (e. Because of the fact that (IV, b* for 6),,,,, is a 
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model of XC2), the mapping b* H b (b e M U B) is a &-elementary mapping; let g 
be an automorphism of %’ extending this mapping. By passing from N to g”N, 
from u** to g(u**), and from b * to g(b*) = b, we may assume that M U B c N < 
‘% and b * = b for all b E M U B. Let the function f with domain M U A be defined 
by f(a) = u** for a EA - M, f(c) = c for c EM. Since (ZV, a**, b)lleA_M,6EMVB k 
z(i), f is &-elementary, and of course, f 1 M = identity. If ly(x, y) EL,,, 
a E A - M, b E M U B, and k q(f(a), b), then ~$J(B, 6) $ ZC3), since otherwise, 

(N a**, b)G4-M,b&f”B kZC3’ would say that l=l~/~(f(a), b). The definition of 
ZC3) says that there is c EM such that # irj.~[c, b], i.e. k Q[c, b]. This shows that 
f”AbMB. 0 

Proposition 4.8. Properties of the independence relation (A denotes a tuple 
enumerating A, etc.) 

(I) (Invariance under 2,-elementay maps) 

A”B”C - A'^B'^C', A $ B j A’ $ B’ 

(M) (Monotonicity) 

(T) (Transitivity) 

(C),, (<K-continuity) 

(i) [VA’ E 9,,(A), VB’ E Y’,,(B) A’ $ B’] 3 A $ B, 

(ii) [(Ai)x,, (Ci)i<rc are increasing, Vi < KAY $, B] j IJ Ai Ui$K c B. 
i<K 

(E) (Existence) For any A, B, M there is A’ such that 

A’,-A and A’$ B. 

(9 (Symmetry) 

A&B + B$A. 

(U) (Uniqueness) 

A’,-A,A’&B,A$B + A’ - A. 
MU.3 

(B), Suppose pcK = p 2 K'. 
(i) For any A, B, if IBI s ,u, then there is C E 9,,(A) such that A ILL B. 

(ii) For any A, M, if IAl d p, then there is N < M such that IlNll <p and 
AIL~M. 
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Proof. (I), (M). Clear. 
(T). Suppose Q+) is a formula over C U B, and k ~[a], a E A (again, here and 

below, a, b, . . . may denote tuples of length <K of elements of %, x, y, . . . tuples 
of variables). Since C G C’ and A bcP B, there is a’ E C’ such that k ~[a’]. Since 
C’ ILL B, there is a” E C such that I= ~[a”], as required. 

(C),,. Clear. 
(E). This is 4.7. 
(S). This follows from the special case a &,,., b + b CL,,,, a (by (C)<J; in turn, the 

latter follows from 4.6 and (E): assume a &,+, b; by (E), let b’ be such that b’ z b, 

6’ hLM a; by 4.6, u”b z u”b’; thus, by (I), b bMu follows from b’ hLM a. 

(W. BY (CL this follows from the special case 

a’,-u,u’$b,u$b + u’^b,-u^b. 

In turn, this follows by 4.6 once we note that, by (S), u’ bM b implies b &,+, a’. 

(B), (i). Define, by induction on i < K, subsets Ci of A such that lC,( SK’ as 
follows. Having defined Cj for j < i, consider all formulas q(x) over B U lJjci Cj; 
since pcK = p, there are GP many such formulas; for each such &Y) such that 
k q[u] for some a E A, choose a particular such a = uV, and define Ci as the union 
of all the tuples uV, 47 as above. This completes the definition of (Ci)i<K; put 
C = lJicrc Ci. Any formula q(x) over B U C is over B U lJjci Cj for some i < K; if 
k q[u], a E A, then urp E C witnesses that A ILL B. 

(ii). In the proof of (i), if A is a model, then, by dLST, each Ci can be made 
into a model. This means that, under the conditions in (ii), we can find N < M, 

llNll s p, such that MI&A. By (S), A hLN M as follows. Cl 

Remark. Most of the properties of cl, in 4.8 have useful forms in terms of 
non-forking of types: 

(I). C E B, f is a &-elementary map with domain B, p E S(B), p dnf over 
A j f(p) dnf over f”A. 

(M). p E S(B), C E C’ E B’ c B, p dnf over C + p ( B’ dnf over C’ (and q I B’ 

dnf over C’ for any subtype q E S(B) of p :q E S,,(B) for some x’ cx if 

P E S,(B))- 
(C),,. For p E S(B), C E B, if p I (B’ U C) dnf over C for all B’ E B,,(B), 

then p dnf over C. 
(T). C E C’ G B, p E S(B), p dnf over C’, p I C’ dnf over C I$ p dnf over C. 
(E). For any M G B, p E S(M), there is q E S(B) such that q ( M =p and q dnf 

over M. 

(U). IfMGB,p,qES(B)bothdnfoverM,pIM=qIM, thenp=q. 

(B)w Any p E lF”(M) dnf over some N < M of cardinality SK" (K" = 

(K')-). 

Proposition 4.9. Suppose p E S’“(lJ~c, Mi), where a < K. Then p dnf over Mi for 

some i < ff. 
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Proof. Let U be a K-complete ultrafilter on a set I. For any model M, the 
ultrapower M “=fliE,M/U Of M is a model in K again, with the canonical 
L,,-elementary embedding M+ M” mapping each a E IMI into (a) ef (u)~,,/U. 
If M < %‘, we may take M” to be an $-substructure of $7, by applying an 
s-embedding f : M “+ % over M, that is, for which f ((u)) = a. Below, we will 
mean by M” the copy f “M” for such an f; note that the canonical embedding has 
become an inclusion M < M”; also, by (ai)isl/U (a typical element of M”) we 
will mean f (( Ui)i,l/U)p with (ui)iel/U here in the original sense. Note, however, 
that M” is not uniquely determined within %; it is determined up to an 
M-isomorphism. 

For A = %’ (IA1 < Il~ll), we define A” such that A c A” c % (A” is somewhat 
ambiguous as M” above is) as follows: we consider any M with A c M < V; we 
take 

with M” meant in the original sense; we finally let A” be f “A” for any f : M”+ %’ 
over M. 

Suppose A G B ; consider the ultrapower B”, and the canonical copy of A” 
inside B”; by A” below, we mean this canonical copy. Then, we claim, we have 

Indeed, assume that I= c~jc, b], with b E B, c EA”, c = (c,),,,, cs = (uf)iel/U. 
By Los’s theorem on ultraproducts, we have b q[(~f)~<~, b] for all i E P, with 
some P E U, hence for at least one i. This shows what we want since uf E A for all 
/3 < Ly. 

Turning to the data given in the proposition, let M = IJic, Mi, and let U be a 
K-complete ultrafilter on some set Z such that p is realized in M” by d E M”, say. 
[Such U exists, since K is compact, by the familiar argument: we let Z be the set of 
all subsets of p of cardinality <K, and U a K-complete ultrafilter on Z such that for 
every i E Z, [i] dgf {j E Z : i ~j} belongs to U; since n,<, [is] = [lJg.=W is] ((Y < K), 

and thus the intersection of <K many [i]‘s is non-empty, such U exists by K being 
compact (see [4]). For any i E ‘9,,(p) = Z, let Ui E IMJ be such that b (A i)[ai]* 
Then d = (u~)~,JU will realize p.] Let My mean the canonical copy of My inside 
M”; then, as it is easily seen, M” = LJi<a My, since M = IJi<a Mi, CY < K, and Z is 
K-complete. Thus, since d is a finite tuple, d E My for some i E 1. Applying our 
above general observation, we have MzvhMi M, hence d hNi M, hence p = 
tp(d/M) dnf over Mi, as desired. 0 

Proposition 4.10. With a an arbitrary ordinal >O, ussume p E Sco(IJit,, Mi), 
C c M,, and p I Mi dnf over C for every i < a. Then p dnf over C. 

Proof. If cf (Y 2 K, then every B E 9?<,(IJiT,, Mi) is contained in some Miy 
i < a-, hence the assertion follows from (C),,. Otherwise, if cf (Y < K, then we 
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may assume without loss of generality that (Y = cf LY < K, and by 4.9, we have 
that p dnf over C. 0 

All along, we have been interested in the case when K is a compact cardinal 
greater than X0, although so far, the assumption K > No was not essential. At this 
point, we can make an essential use of that assumption, and we formally make the 

Assumption 4.11. K > X,, for the rest of this section. 

Under 4.11, ‘superstability’ is a consequence of (l-) stability unlike in the 
finitary case. 

Proposition 4.12. Suppose C-X is an arbitrary ordinal >O, and p E P’(Uir,,Mi). 
Then p dnf over Mi for some i < (Y. 

Proof. For (Y < K, this is 4.9. The case cf (Y < K is now an immediate conse- 
quence. Assume cf (Y Z= K, and assume, contrary to the assertion, that p forks over 
Mi for all i < (Y. By induction on n < w, we define the increasing sequence 

(in >,<, of ordinals <aO. i0 is arbitrary. Having defined i,, by (C),,, there is 
B c U/.,,Mi of cardinality <K such that p 1 (B U Zk&) forks over Mime Since 
CfCt’sK, thereisi,+,ai,withBcMin+,; we have that p 1 Min+, forks over Mi, (by 
(M)). Having defined the i,, we let M* = IJj?<, Mi,< M. By (M), q =p 1 M* 
forks over each Mi”, n < o; i.e., we have a situation when the assertion of 4.9 
fails to hold, with a = o. But o <K; contradiction to 4.9. 0 

Corollary 4.13. (i) For M = Uit,, Mi, and finite tuples a and b, if a G b for all 
i < a, then a E b. 

(ii) For M = I_&, Mi and p E S’“(M), if p 1 Mi dnf over M,, for all i < a; then 
p dnf over MO. 

(iii) (B);c’.” For any type p E S<“(M), there is N < M of power K’ such that p 
dnf over N. 

Proof. (i) By 4.12 there is i < (Y such that a bMi M, b hMi M. By a g b and (U), 
a z b follows. 

(ii) By 4.12, p dnf over Mi for some i < a. Since p I Mi dnf over M,, by (T), p 
dnf over MO. 

(iii) By (B),,,,+, there is N-CM with llN[l G (K')+ such that p dnf over N. 
Write N = U&V,+ Ni such that IlNill = K’. By 4.12, there is I<+ such that 
p I N dnf over Ni, hence, by (T), p dnf over Ni. 0 

Proposition 4.14. Let ~~ = sup{lS<“(M)I : j[Mll = K'}. Then 

IS<“(M)1 s max(lMJ, K~) for all M E K. 

Proof. By induction on IlMll (SK’). For l]Mll = K’, the assertion is obvious. 
Suppose llMll>~‘. Then M=UTI,,Mi, with (YcIIMII, llMi/l <llMll for every 
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i < (Y. Any p E S<“(M) dnf over Mi, for some ip < CY; by (U), p is the unique nf 
extension of p 1 Mi, to M. It follows that the mapping 

S<“(M)+ lua S<“(Mi) (disjoint sum) 

P-P IN, 

is an injective mapping. Since, by the induction hypothesis, lS’“(M,)ll < 
max(llMjll, K~), we conclude that 

P’“(WI s I4 x maxWfII, Ed= m=4lWl, KA. 

Corollary 4.15. Zf K is stable in K’, then it is stable in all p 2 K'. Cl 

Assumption 4.16. K is stable in K'. 

Remark. In view of 3.5, and the fact that we are interested in the case when K is 
categorical in some A. > K’, the last assumption is reasonable. 

Lemma 4.17. Let us write A 6, [B]‘” to mean that A IL, b for all tinite tuples b of 
elements of B. Let K’ = (K’)<~. Then, for any A, M and B c M with IBI < p, there 
is N < M such that 

BcN, IlNll Cmax(llAll, K") and A $[M]<“. 

Proof. Let p = max(lAl, K”). If pCK= CL, then, by (B),, we can find N with 
IIN < ~1 satisfying the stronger condition A L&M. Otherwise, p> K" (since K” 

satisfies (K')<~ = K"), and p is a limit cardinal. Let ,u = limiCw pi, with the ,ui 
increasing successor cardinals, each SK". Let us write B as B = IJi’,, Bi with 
lBil 6 cli. Let P be a model, P < V, containing the set A, of power p, and let 
P = Uif,,fi with models e, each of cardinality pi. By induction on i < a; define 
Ni <M such that Bi c Ni, llNill s pi, Ni < Ni for i < i, and 4 bLNi M: this is easily 
done by (B),i. Let N = lJiCn Ni. Then B c N. By (M), we have Pi bLN M for all 
i < (Y. Now, let a be any finite tuple of elements of M. Then (by (S)), a hLN 4; 
hence, by 4.13(ii), a hN P (since P = IJiT,,e), hence P +.,a. Since a was an 
arbitrary finite tuple from M, we have P hLN [Ml’“, and a fortiori A hN [Ml<“. 
Note that IIN CP. 0 

Proposition 4.18. Let 3L be a cardinal >K” = (K')<~. Suppose that M = UT<, Mi, 
and that each Mi is A-saturated. Then M is k-saturated. 

Proof. If cf (Y 5 3c, then every subset of M of cardinality <3c is included in some 
Mi, thus the assertion is clearly true in this case. We thus may assume that 
cf (Y < A; then, by taking a suitable subsequence of ( Mi)i<,, we may assume that 
cu=cfa<A. LetAcM, IAI<k. Let~=max()lAll,~“,l~l);wehave~<il. We 
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construct, by induction on /? < K, for each i < (Y a <-continuous chain (N~)s<K of 
models Nf < Mi of cardinality sp such that A c IJiCrr fl, 

.y Nis $+, wi1- (1) 

(see 4.1’7; rnd 

N;-x Nf (6 < K, j < i, i < (u), 

as follows. We choose fl< Mi of power sp to contain A n Mi; at limit ordinals 
/3, we take unions. Suppose /3 < K and the N? have been defined (i < (u). We 
define Nf+r by induction on i < a. Assuming i < (Y and that Nf+’ has been 
defined for every j < i, we let Ni B+l be an %submodel of Mi of power <y such 
that (1) holds and such that Uj<i Nf+’ < Nf+‘: Nf+’ exists by 4.17, the choice of 
p, and liJ < p, IINf”II G ,u. This completes the definition of the Nf (/3 < K, i < a). 

Let Ni = IJBcK Nf and N=IJi<,Ni. Then AGN, Ni<N<M, llNll<p, and 

by (C)<,, from (1) we obtain 

N $ [Mi]‘“. (2) 

Now, consider any p E S’“(A). Extend p to some q E S(N), and choose, by 4.12, 
some i < (Y such that q dnf over Ni. Since llNill< 3c, and Mi is A-saturated, there is 
a E Mi realizing q I Ni. From (2), we obtain 

hence (by (S)), a realizes the unique non-forking extension of q I Ni to N, which is 
q. Thus, a realizes p, and the proof is complete. Cl 

Proposition 4.19. For every 3, > K' there is a saturated model of cardinality I.. 

Proof. By 4.15 and 4.16, K is stable in all p 3 K'. For A a successor cardinal, the 
assertion follows from 2.6 (put p= I in 2.6). Assume Iz is a limit cardinal: 
il = limicn Ai with strictly increasing successor cardinals Ai > K'. Let, by induction 
on i < CY, Mi be saturated of power Ai such that I_& Mi -C Mi (see 2.2(ii)); Mi 
exists by 2.6 since Ai is a successor cardinal. Consider M = IJit,, Mi. For any 
iO < a, Mi is &,-saturated for all i, iO s i < LY, hence, by 4.18, M is &,-saturated. 
Since this is true for all i, < a; and A = limicn 3ri, M is A-saturated; clearly, 
jIMI =A. Cl 

Lemma 4.20. Let ,I be an infinite cardinal such that A’” = I., and A 2 K'. Suppose 
(Ni)i<A+ is a <-continuous chain of models Ni of power <A, (Mi)i<A+ is an 
increasing chain of models such that Mi < Ni for all i < A+. Let 

Nn+ = U Ni, 
id.+ 

MA+ = U Mi. 
i-4 

Then there is i < A+ such that M,,+ hMi Ni. 
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Proof. For each A c N,+ of cardinality <A, let i(A)<A+ be chosen so that 
IV,+ ~L~~(,,A: such i(A) exists, by (B), and (M). Given any i < A+, the number 
of subsets of Ni of cardinality <K is =ZAcK = A, hence 

1 ‘*d’f~~p{i(A):A E P<K(Ni)} <A+. 

Define the sequence (ia)nsw by i0 = 0, i,,, = (ia)*, is = lim,,B i, for 6 limit. 
Since K S A, i, < II+. Any A c Niz = U,<, Nie with IAl < K is in some N,,, (Y < K, 

and thus 

by (M) and (S). 

It follows (by (C),,) that MA+ &Mix Nix. 0 

Definition 4.21. Let A, B c V, M < 5%‘. A dominates B over M if for any C, 
A CL~ C implies A U B CL,+, C. 

Proposition 4.22. (i) Let M be saturated, of power )c, such that A’” = A and 
), > K”, and let c be any finite tuple of elements in %. Then there is a saturated 
model N 2 M U {c} of power 3L, dominated by c over M. 

(ii) Let, in addition to the data of (i), M* be an S-substructure of M of power 
-4 such that C hM. M, and r a type, r E Sff(M* U {c}), with a G A. Then N can be 
found as in (i), and also such that it realizes r. 

Proof. It suffices to show (ii): by 4.13(iii) (or even (B),.), we can find M* with 
IIM*lj < ), and c hM. M; take r to be any l-type, say. 

Let us assume the hypotheses of (ii). We will exploit the obvious fact that if f is 
a Z,-elementary map with a domain including M and c, then f (c), f”M, f “M* and 
f(r) satisfy the conclusion iff c, M, M* and r do. 

Let M<M’, M’ saturated of power 3L, and c GLUM’. Then there is a 
E,-elementary map with domain including M and c for which f”M = M’, f(c) = c 
and f 1 M* = identity: by (T), c bLM* M’; since M, M’ are both saturated of power 
iz, and IIM*ll <A, there is an automorphism g of %’ such that g”M = M’, 
g I M* = identity (see 2.2(iii)); we have g(c) hLM. M’, hence by (U), c G f (c); it 
follows that the function f with domain M U {c} for which f I M = g ) M and 
f(c) = c is .X1-elementary. 

Assume that the assertion fails for the given M, c, M* and r. Then, by the 
above, it also fails for M’ and the same c, M* and r, whenever M KM’, M’ is 
saturated of power 3c, and c bM M’. 

We construct <-continuous chains (Mi)i<i+, (Ni)i<A+ of saturated models Mi, 
Ni of power Iz such that 

Mi < Ni, M,=M, c $ Mi, N $. Mi+l 

for all i < A+. We put MO = M, NO any saturated model of power 3c containing MO 
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and c, and realizing r. Suppose we have constructed all items with indices up to 
and including i. Since the assertion of the proposition fails for Mi, c, M* and r, Ni 
realizes I, (since No does), we have that Ni fails to be dominated by c over Mi. It 
follows that there is B with c &LIM, B, but Ni&M, B. By (C),,, B may be chosen to 
be of power <K; we choose a saturated model M,+i of power 3L containing B U Mi 
such that c hLy Mi+l by (E) and (U); we will have Nj \L~, Ni+1. We define N,+i to 
be any saturated model of power 13. containing Ni and Mi+, (see 2.2(ii)). 

Finally, let i < A+ be a limit ordinal, and assume the construction done below i. 
Let Mi = Uj<i Mi, Ni = IJici Nj. Mi and Ni are saturated of power A by 4.18. The 
property c bM, Mi follows from the induction hypothesis and 4.13(ii). 

We have constructed items making up a counterexample to 4.20; this 
contradiction proves the assertion. Cl 

Definition 4.23. (i) p, q E S(M) are weakly orthogonal, p I, q, if a bLM b 
whenever a realizes p and b realizes q. 

(ii) p, q E S(M) are orthogonal, p I q, if for all N 2 M, and any non-forking 
extensions p’, q’ of p, q, respectively, to N, we have p’ I, q’. 

Proposition 4.24. (i) Zf M E N, p, q E S(N) both do not fork over M, and p I, q, 
thenpJM.l,qlM. 

(ii) Zf p, q E S”“(M), M is (K’)+-Saturated, then p I, q implies that p I q. 

Proof (compare Theorem V.12 in [9]). (i) A ssume the hypothesis in (i), and let 
a, b realize p ( M, q ( M, respectively. Let a’, b’ be such that 

a’“b’ $ N and a”‘b’ G a”b. 

Then, since a’ and b’ realize p and q, respectively, we have a’ &,,, b’. Since 
a’ CL~ N, by (T) we conclude a’ bLM b’; since a”‘b’ a a”b, a 1~, b follows. 

(ii) Note, first of all, that for types p, q over a model M, p E S,(M), q E S,,(M), 
x and y disjoint tuples of variables, p I, q means that p(x) U q(y) is complete, 
that is, there is a unique r E Sxny(M) with p(x) U q(y) c r(x, y). Assume the 
hypotheses of (ii), and contrary to the assertion, p _L q. There is a model N 
extending M such that for the nonforking extensions p’, q’ of p, q, respectively, 
to N, we have p’ I, q’. Since by (i), for any .%-extension of N, the non-forking 
extensions of p’, q’ remain non-weakly-orthogonal, we may assume that N is 
(K’)+-saturated. 

Note that the definition of non-forking implies that if a type p E S(N) does not 
fork over M, then p does not split over M: for any tuples a, b from N and for 
c realizing p, if a z b, then a ;1 b: if we had a formula Q, such that k ~(c, a) A 
T+I(C, b), then by chM N, there would be c’ E M with k Q)(C), a) A TQ)(c’, b), 
contradicting a z b. 

The fact that p’ I, q’ means that there is a formula Q$X, y, z) and a tuple c E N 
such that both p’(x) U q’(y) U {~(x, y, c)} and p’(x) U q’(y) U {l&, y, c)} are 
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consistent. By 4.13(iii) and (M), there is M,, < M of power K’ such that p and q do 
not fork over MO. Since M is (K’)+-saturated, there is d EM such that ~--~d. 

We claim that P’(X) U q’(y) U (~6, Y, 4) and p’(x) U q’(y) U {T,(x, Y, 4) 

are both consistent. Let P, Q be subsets of p’ and q’, respectively, of power <K. 

Let a be a <K-tuple of elements of N containing all the parameters mentioned in 
P or Q. By N being (&)+-saturated, there is b in N such that d”a - c”b. Let 

p, & be obtained from P and Q, respectively, by replacing each paramzer from a 
in any formula by the corresponding parameter in b. Since a z0 b, and p’, q’ do 

not split over M,,, P cp’, & c q’. It follows that P(X) U &(y) U {c&x, y, c)}, 

P(x) U Q(Y) U h4-G Y, c)) are both consistent; since d “a ; c ^b, we conclude 
that P(x) U Q(y) U {q(x, y, d)} and P(x) U Q(y) U {lq(x, y, d)} are both con- 
sistent, which was to be shown. 

Of course, the claim implies that p(x) U q(y) U {QJ(X, y, d)}, p(x) U q(y) U 
{TJ.$x, y, d)} are both consistent; since d E M, this contradicts the assumption 

pLvq* 0 

Proposition 4.25. Suppose there is a model which is (rc’)+-saturated, but not 
saturated. Then, for M* the saturated model of power (K’)+, there are types 
p*, q* E S’(M*), neither realized in M*, such thutp* I q*. 

Proof. Suppose M is not saturated, but (K’)+-saturated. Let MO < M, pO E Sl(M,,) 
such that pdgf llM,,ll < IlMll and pO is not realized in M; ~2 (K')+. 

We claim that there is MI, MO -C MI 4 M, II MI11 = p, and an extension p1 of p. 
to MI such that all extensions of p1 to M do not fork over MI. Suppose not, and 
define by induction on n<o, M,=Mi<Mh<...<M;f<..., p”=po, pnc 
S’(MI;), p” cpn+‘, such that llM:ll = p and p”+’ forks over M;f; by the indirect 
supposition, this is clearly possible; let M* = IJ,<, M,“, and by 2.14, let 
p* ES~(M*) be such that p* I M:=p”; then, by (M), p* forks over each 
Mg (n < w), in contradiction to 4.12; this shows our claim. 

Note that saying that all extensions of p1 to M do not fork over MI means that 
p1 has a unique extension to M, and to any set A with MI c A c M. 

We can easily construct M2 such that MI < M2 < M, llM211 = p, and M2 is 
(K’)+-saturated: let M2 = LJ&,+ M:, where Mz = MI, each M: has power p, and 

M i+‘” realizes all types over M: (we have stability in p). Let p2 be the unique 
extension of p1 to M2. Since llM211 = P-C IlMll, there is b EM - M2; let q2 = 
tp(b/M,). We claim that p2 I, q2. . indeed, if a realizes pz, then tp(u/M) must be 
the unique, hence the non-forking, extension of p2, i.e. u&,,M, and thus 
a CL~, b, as desired. 

Let N < M2 be of power K' such that p2 and q2 dnf over N (by 4.13(iii)). By 
2.2(ii) applied to Diag,(N) and 4.19, let M* be saturated of power (K')+ such 
that N < M* -CM,, and let p* =p2 I M*, q* = q2 ( M*. Since p2, q2 dnf over M*, 
by 4.24(i), p* I, q*, and by 4.24(ii), p* I q*. It is clear by the choice of p* and 

q * that they are not realized in M*. q 
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Lemma 4.26. Suppose there is a model which is (rc’)+-saturated, but not saturated. 
Then, for any p > K” ( = (K’)<~) there is a pair M, N of saturated models of power 
p such that M 2 N, and there is a type q E S’(M) not realized in M which has a 
unique extension to N. 

Proof. First, let ~1 be a successor cardinal. Let M be any saturated extension of 

M*, the saturated model of power (K’)+, with llM[l = y; note p 2 (K’)+. Let p, q 
be the non-forking extensions of p * and q *, respectively, to M, where p * and q * 
are from 4.25. We have that p and q are orthogonal to each other. Let a E 92 
realize p, and, by 4.22(i), let N I M U {a} be a saturated model of power p, 

dominated by a over M. Let b be any realization of q; since p I q, we have 

a CL, b, and since N is dominated by a over M, N &,,, b; this shows that any 

extension of q to N dnf over M, that is, q has a unique extension to N, as desired. 

Secondly, let y be a limit cardinal. Since p > K”, and either K” = K’, or 

K” = (K’)+, I’leCeSSarily p > (K’)+. Let (pi)i<.aap be a strictly increasing sequence 

of cardinals such that p = SUpi<cfp /Ai, p. = (K’)+, CL/.+~ is a successor cardinal for 

all j < cf p, and pi = SUpj<i pj whenever i < cf ~1 is a limit ordinal. Let MO = M* be 

the safurated model of power (K’)+, a an element realizing p* (from 4.25), No 

any model of power (K’)+ containing MO U {a}. 
We construct, by induction on i, 0 < i < cf ~1, models Mi, Ni such that 

(i) (Mi)i<,rp, (Ni)i<crp are continuous <-chains; and, for all i, j < cf pFL, 

(ii) Mj+r, N~+I are saturated of power pj+r; 

(iii) Mi < Ni; 
(iv) a CL,,,,, Mi; 

(V) Nj+l is dominated by a over M,,,. 
Suppose 0 < i < cf ,u and Mj, Nj have been defined for all j < i with the required 

properties. Let first i be a limit ordinal. Put Mi = LJjCi Mj, Ni = UjCi Nj. Property 

(iii) for i follows from the same for j < i, and (iv) for i follows from the same for 

j < i, and 4.13(ii). 

Next, let i = j + 1. Let fi be any saturated model of power pj+r extending Mj 
such that a CL,, I@, and let r = tp(Nj/Mj U {a}); we will use 4.22(ii) with pj+r as 

A, A as M, a as C, Mj as M *, and r as r. 4.22(ii) is applicable, and we get the 

saturated model fi of power ~j+l such that fi -C fi, a E fi, fi is dominated by a 
over A, and fi realizes r. Let Ni be a realization of r in A. There is an 

automorphism g of % which is the identity on Mj U {a}, and for which g(Ni) = Nj. 
Let Mj+l = g”A& Nj+l = 
a&,,&; hence a& 

g”fi. Then, since a LJ,,,+ fi, and (iv) holds at j, we have 

M0 Mj+l as required for (iv). Since fi is dominated by a over 

A, and g(a) = a, (v) holds. The construction also ensures that Mj -C Mj+l, 
Nj < Nj+r (for (i)) and Mj+l< Nj+l (for (iii)). This completes the construction. 

Having the Mi, Ni with (i) to (v), we put M = LJiCcfP M,, N = lJiCcf c1 Ni. As 
a CL,+_,,, M (by 4.13(ii)), and a 4 MO, we have a 4 M [if a E M, the formula x = a 
belongs to tp(a/M), hence there is a’ E MO with a’ = a]. Thus, M 2 N. Now, with 

q* E S’(M*) (M* = MO), the type from 4.25, let q be the non-forking extension of 
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q* to M. 4.13(i) says that any type q’ E S’(N) = S’(LJ,<Cfr Ni+,) is determined by 
its restrictions q’ ) Ni for i < cf p. But, since Ni+, is dominated by a over Mi+i, 
and tp(a/Mi+,), the non-forking extension of p* to Mi+1 is orthogonal to q 1 Mi+*, 
q 1 M,+* has a unique extension to Ni+i, by the argument at the beginning of this 
proof. It follows that q has a unique extension to N as promised. Since q* is not 
realized in M*, its non-forking extension q to M is not realized in M (for the 
same reason as a $ M). Cl 

Proposition 4.27. Suppose there is a model which is (K’)+-saturated, but not 
saturated. Then for every successor cardinal p+ > (K")+ (K" = (K')<~), there is a 
non-saturated model of power p+. 

Proof. By 4.26, there is a pair M 2 N of saturated models of power p with a type 
q E S’(M), not realized in M, such that q has a unique extension to N. Let 
M” < M be a model of power K' such that q dnf over MO. By induction on i < p+, 
we define Mi, a saturated model of power p, such that MO = M, (Mi)i<p+ is 
<-continuous, as follows. We put Mr = N. If i is a limit ordinal <p+, we put 
Mi = lJiCi Mi; by 4.18, Mi is saturated of power ~1. For i = j + 1, having 
constructed Mi, note that, by 2.2(iii), there is an isomorphism g : MO 5 Mj which 
is the identity on MO; with h any automorphism of % extending g, we let 
Mj+l = h”N; in other words, there is an automorphism gj leaving MO fixed, taking 
M to Mj, N tO Mj+l. 

We claim that q has a unique extension to MPfdAffUiCP+ Mi; in fact, by 
induction on i < p+, we show that q has a unique extension to Mi. For i a limit 
ordinal, the induction step follows by 4.13. Let i = j + 1; let the unique extension 
of q to Mj be qj. qj dnf over MO. With gj the isomorphism mentioned in the 
construction, gj(q) E S’(gyM) has a unqiue extension to g;N. But also, gj(q) dnf 
over q;M” = MO. Since g;M = Mj, g;N = Mj+l, we have qj = gj(q) (since they are 
both nf extensions of q), and qj has a unique extension to Mj+l. It follows that q 
has a unique extension to Mj+l. This proves our claim. 

Since q is not realized in M, its unique nf extension to M,+ is not realized in 

M,+. IlMll = y < IIMr+ll = p+ (since M, 2 Mj+l for all j<p+); M,+ is a non- 
saturated model of power ,u+. 0 

5. Summary 

Conclusion 5.1. = Theorem of the Introduction. 

Proof. (i) Assume T is a theory in a fragment 9 of L,,, K is a compact cardinal 
>o, and T is categorical in the successor cardinal p+ > (K')<~+, K' = 

max(K, ISI). By 1.9, every M E Kis existentially closed, hence (by 1.6), K has the 
amalgamation property. By 1.8, K has the joint embedding property. This means 
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that the assumption stated at the beginning of Section 2, and Assumption 4.0 are 

true. By 4.3, K does not have long definable order (K is l-stable), i.e., 

Assumption 4.4 holds true. K is stable in K’ by 3.5; Assumption 4.16 holds true. 

By 4.19, for every A > K’, there is a saturated model of cardinality )L; it is unique 

up to isomorphism by 2.2(iv) and 2.4. It now suffices to show that, for every 

A 2 min(p+, &.)+), every model of power A. is saturated. Since T is categorical in 

p+, the only model of T of power p+ is saturated. 

Assume A. > min(p+, +)+), 1lMll = A. Either A. Z= CL+, or J. 2 +)+. In the first 

case, M is p+-saturated: if it were not, by an obvious downward Lowenheim- 

Skolem argument, there would be a non-saturated model of power p+, in 

contradiction to the categoricity of T in p+. In the second case, M is 

(K’)+-saturated: otherwise, there are MO KM, llMOll = K’, and a type p E S’(M,) 
omitted in M; by 3.2, p is omitted in some model of power pL+, which contradicts 

the categoricity of Tin p+. Thus, in either case, M is (K’)+-saturated (p > K’). If 

M were not saturated, then by 4.27, there would be a non-saturated model of 

power p+, again in contradiction to the categoricity of T in pcL+. 

(ii) The proof of this part does not use Section 4, however, unlike part (i), it 

uses the more difficult arguments of Sections 1 and 3. Assume T, L, 9 and K’ are 

as before, and T is categorical in k where A > lK+1(~'). In the proof of 

Conclusion of 3.7, we concluded that, under the given hypotheses, the unique 

model of T of power A is saturated. Suppose p = x6 with 6 divisible by (2”‘)+, 

and assume, for reaching a contradiction, that M is a non-saturated model of T of 

power ~1. Since clearly, for any (Y < 6 we have LY + (2”‘)+ G 6, for any cardinal 

u < ~1, we have +,+(a) < ,u. 

There is M,, -C M with agf llMOll < p and there is p E S<“(M,) omitted by M. By 

3.3 (with u for p of 3.3), in every power >K' there is a non-(K’)+-saturated 

model; this applied to A, we get a contradiction. 

We conclude that for any p of the kind we are considering, all models of p have 

to be saturated; this says (by 2.2(iv) and 2.4) that T is categorical in p. •i 

Appendii: Squares on stationary sets 

This section contains set-theoretic material used in Section 1. 

For a set X of ordinals, X’ denotes the set of limit points of X : (Y E X’ iff a > 0 

and sup(a fl X) = (Y. A subset X of 3L (A any ordinal) is closed in A if 

X’ - {A} cX; it is unbounded in A if A E X’; it is a club in A if it is both the 

above; it is stationary in A if it meets every club in jl. 

A square-system on A (in the ‘limit formulation’) is a system C = (C, : a E S) of 

sets C, such that S c lim(;l) ( = the set of limit ordinals <i), C, is a club in (Y and 

(Cm)’ G S for all cy E S, and finally, C, = C, n/3 whenever (Y ES and /3 E (C,)’ 

(and hence /3 E S). When S is to be mentioned with the square-system, we call the 

square-system S-indexed. Of course, the square-system C is of interest only if S is 
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large enough (e.g., stationary in A), and if the C, are small enough (e.g., have 
small ordertypes). We call C a <X-square-system if each C, is of ordertype <x, 

A simple argument in [14] (2, Lemma l), using a lemma due to Engelking and 
Karlowich, provides square-systems via the following 

Proposition A.l. Suppose u, x are infinite cardinals with ucx = u. Then we can 
find a family (SE) Eir of subsets SE of ,u+ such that 

lJ Sg={6<p+:cf6<X) 
5<P 

and for each 5 < u, there exists an &-indexed <x-square-system on A. 

For the application in Section 1, we need a modified kind of square-system, 
also incorporating a controlled role for successor ordinals. 

Definition A.2. A modified square-system on A is a system (C, : (Y E S) of sets 
such that S c )L, and, for all (Y E S, 

(i) C, is a subset of (Y which is closed in cu, and if a is a limit ordinal, C, is a 
club in CY. 

(ii) C, E S. 
(iii) j3 E C, 3 C, = C, II /3. 
(iv) If C, has a last element /3 which is a limit ordinal, then (Y = /3 + 1. 
The main difference is that (ii) and (iii) now apply to all elements of C, rather 

than to its limit points only as before. 

Proposition A.3. Suppose u, x, o are infinite cardinals such that ucx = u, o is 
regular, o < x. Then there is a modified square-system (C, : (Y E S) on ,u+ such 
that {a E S : otp(C,) = a} is stationary in u+. 

Proof. We start with the square-systems (Cz: a E S, ) given by A.1 (5 < p); in 
particular, otp(C$) < x for all (Y E S,; also, lJlcr S, = { 6 < p+ : cf 6 < x}. The set 
{ cz < p+ : cf (Y = a} is a stationary set contained in l_lecr SE; therefore, there is 5 
such that SE dgf {(Y E S, : cf (Y = a} is stationary. For notational simplicity, assume 
c=o. 

Let us assume that u > o. (The case o = o is essentially trivial.) The stationary 
set $, is the union of the less than p+ many sets S y = {(Y E & : otp(Ct) = y} (y < 
x); hence there is y < x such that S y is stationary; let us fix such a y. Since for any 
(Y E S”, cf a: = o and C”, is cofinal in (Y, we have that cf y = o. Let DO c y be a club 
in y of order-type otp(D,) = o such that every element of DO is a limit ordinal (DO 
exists since u is a regular cardinal >o). Put D = DO U {y}. Now, let 

S*~f{~ESO:otp(C;)~D}, 

S**~f{~#,:otp(CO,)ED’}, 

Cz%f ((C”,)’ - {(u}) rl S* for a E S*. 

Claim 1. Zf a E S*, then Cz is closed in a, and if cx E S* *, Cz is a club in a. 
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Proof. Indeed, let LX E S*. D fl otp(C”,) is closed in otp(Ct); and if (Y E S**, it is a 
club in otp(C”,). Since C”, is a club in (Y, it follows that the set 

C;ef{p E C”,:otp(C”,rIp) E D} 

is closed in (Y, and it is a club in (Y in case (Y E S* *. As we now show, 

this will show the claim. 
Suppose first /3 E Cz. Since otp(C”, n o), being in D, is a limit ordinal, and C”, 

is closed in LY, sup(C”, fl /I) = p. Th is means that B E (C”,)‘, hence /I E So and 
C$ = C”, n p, and thus otp(C”,) = otp(C”,n B) E D. We have shown that p E S* 
and p E Cz. 

Secondly, assume p E Cz. Then 0 E (Ct)‘, hence p E So and Ci = C”, n 6. Since 
also /3ES*, otp(C”,) ED; it follows that otp(CtfJ /I) ED; hence p E Cz as 
desired. Cl (Claim 1) 

Claim 2. Zf cx E S*, then (Cz)’ - {a} = Cz fl S**. 

Proof. Indeed, by the above, Cz = Cz. Assume that /3 E (CE)’ = (C,‘)‘, /3 < a. 
Then otp(C”, fl p) is a limit point of D and p E (C”,)‘; hence C”, n/3 = COB, and 
otp(C”,) E D’, and thus /3 ES**. This shows that the left-hand side is contained in 
the right-hand side. 

Conversely, if p E CE n S**, then p E (C”,)‘, hence COB = C”,n /3; otp(C%fl 
fi) E D’, and #I is a limit point of C,‘, which suffices. 0 (Claim 2) 

We also have 

c;cs* for all (YE S*, (3) 

C;=C:nfi wheneverpecz, (YES*; (4) 

(3) is clear, and (4) follows from /3 E (C”,)’ =$ COB = C”, n 6. 
In Claim 1, for (3) and (4) we have analogs of (i), (ii), (iii), respectively, of A2, 

with S* for S, Cz for C,, and in (i), with “m E S**” for “a is a limit ordinal”. To 
arrive at the final set S, we replace in S* every LYE S* -S** by LY + 1 (thereby 
forcing every limit ordinal in S to be in S**), and to make (iv) hold, we also add 
cu+ 1 to S for all (YES**; we define C, accordingly. In more detail: 

Sd~fS**U{~+l:exS* - ,**> u { LY + 1: (Y E s**>, 

~~~f(c~nS**)u{p+l:p~c~n(S*-S**)} 

u{p+i:pEc:ns**} foraES*, 

C,gf& for&ES**, 

C n+,dgfCa foraeS*-S**, 

C “&U{((Y} foraeS**; or+1 - 

the last three definitions specify C, for every cr E S. 
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Since CW is obtained from Cz by replacing some elements by their successors, 
and adding successors of some other elements, we have (Cm)’ = (Cz)‘. Since, by 
Claim 2, (Cz)’ - {a} c S**, and by Claim 1, CE rl S** c Cm, we see that Ca is 
closed in a. It is also clear that sup Cm = sup Cz in case Cz has no largest 
element; by Claim 1, it follows that sup Cm = (Y, hence Cm is a club on (Y, in case 
d E s**. If a ES and a is a limit ordinal, then necessarily (Y ES**. Thus, we see 
that A.2(i) holds as desired. (ii) is clear from the definitions and (3), (iii) from the 
definitions and (4). 

Finally, for (iv), assume that 6 E S, p is the largest element of C,, and /I is a 
limit ordinal, to show that 6 = /I + 1. 6 ES** is impossible since then C, has no 
largest element. If 6 = (Y + 1, LYE S**, then p = a; thus 6 = /3 + 1 as desired. 
However, if 6 = (Y+ 1 and a’~ S* -S**, then a is a limit ordinal and p < cu; 
since all limit ordinals in C, are in S**, /I E S** ; but then /I + 1 < (Y and thus 
j3 + 1 E C,, by the presence of the third term in the union defining C, = Cm; this 
contradicts the assumption that p is maximal in C,. 0 

Let us quote 

Proposition A.4 Zf p is a strong limit cardinal with 2’ = p+, then OS hol& for 
everystationarySc{6<p+:cf6#p}. 

Proof. See the end of [12]. 0 

Conclusion AS. Let K be compact >N,,, K’ any cardinal, p = &(K’), (T a regular 
cardinal <K. Then there is S c p+ and an S-indexed modified square-system 
(C,: (Y E S) on p+ such that S* dsf {a E S: otp(C,) = a} i.s stationary; also, 0s. 
holds. 

Proof. By A.3 and A.4, since piK = ,u is clear, and 2P = ,uL+ is true by [16]. •i 
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